
HDP Developer:
Apache Spark - Python

Lab Guide

Rev 1.1 - Early Release Workshop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

The contents of this course and all its lessons and related materials, including handouts to
audience members, are Copyright © 2012 - 2015 Hortonworks, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any
way, including, but not limited to, photocopy, photograph, magnetic, electronic or other record,
without the prior written permission of Hortonworks, Inc.

This instructional program, including all material provided herein, is supplied without any
guarantees from Hortonworks, Inc. Hortonworks, Inc. assumes no liability for damages or legal
action arising from the use or misuse of contents or details contained herein.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

All other trademarks are the property of their respective owners.

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

%ecome a Hortonworks Certified Professional and establish your credentials�

÷ H'3 Certified 'eveloper� for Hadoop developers using frameworks like 3ig, Hive, SToop and
)lume.

÷ H'3 Certified Administrator� for Hadoop administrators who deploy and manage Hadoop
clusters.

÷ H'3 Certified 'eveloper� Java� for Hadoop developers who design, develop and architect
Hadoop-based solutions written in the Java programming language.

÷ H'3 Certified 'eveloper� Spark� for Hadoop developers who write and deploy applications for
the Spark framework.

÷ HDF Certified Professional: for DataFlow Operators responsible for building and deploying
HDF workflows.

How to Register: 9isit www.examslocal.com and search for ³Hortonworks´ to register for an
exam. The cost of each exam is �250 US', and you can take the exam anytime, anywhere
using your own computer.)or more details, including a list of exam obMectives and instructions
on how to attempt our practice exams, visit http�//hortonworks.com/training/certification/

Earn Digital Badges: Hortonworks Certified 3rofessionals receive a digital badge for each
certification earned. 'isplay your badges proudly on your rpsump, LinkedIn profile, email
signature, etc.

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

6elI 3aFed /earning /iErar\

2n DePand /earning

Hortonworks University Self-3aced Learning Library is an on-demand dynamic repository
of content that is accessed using a Hortonworks University account. Learners can view
lessons anywhere, at any time, and complete lessons at their own pace. Lessons can be
stopped and started, as needed, and completion is tracked via the Hortonworks University
Learning 0anagement System.

Hortonworks University courses are designed and developed by Hadoop experts and
provide an immersive and valuable real world experience. In our scenario-based training
courses, we offer unmatched depth and expertise. :e prepare you to be an expert with
highly valued, practical skills and prepare you to successfully complete Hortonworks
Technical Certifications.

7arget $XdienFe: Hortonworks University Self-3aced Learning Library is designed for
those new to Hadoop, as well as architects, developers, analysts, data scientists, and IT
decision makers. It is essentially for anyone who desires to learn more about Apache
Hadoop and the Hortonworks 'ata 3latform.

DXration: Access to the Hortonworks University Self-3aced Learning Library is provided
for a 12-month period per individual named user. The subscription includes access to over
�00 hours of learning lessons.

The online library accelerates time to Hadoop competency. In addition, the content is
constantly being expanded with new material, on an ongoing basis.

9isit: http�//hortonworks.com/training/class/hortonworks-university-self-paced-learning-
library/

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Table of Contents

Pre-Lab Setup ... 1
About This Lab .. 1
Lab Steps .. 1

Result ... 5
Lab: Using HDFS Commands .. 7

About This Lab .. 7
Lab Steps .. 7

Result ... 11
Lab: Use the REPL to Create and Manipulate RDD’s ... 13

About This Lab .. 13
Lab Steps .. 13

Result ... 16
Lab: Advanced RDD Programming .. 17

About This Lab .. 17
Lab Steps .. 17

SOLUTIONS ... 21
Lab: Parallel Programming with Spark .. 23

About This Lab .. 23
Lab Steps .. 23

SOLUTIONS ... 27
Lab: Caching Data with Spark ... 29

About This Lab .. 29
Lab Steps .. 29

Result ... 30
Lab: Checkpointing and RDD Lineage .. 31

About This Lab .. 31
Lab Steps .. 31

SOLUTIONS ... 33
Lab: Build and Submit an Application to YARN .. 35

About This Lab .. 35
Lab Steps .. 35

SOLUTIONS ... 37
Lab: Using Accumulators to Check Data Quality .. 39

About This Lab .. 39
Lab Steps .. 39

SOLUTIONS ... 40
Lab: Using Broadcast Variables ... 41

About This Lab .. 41
Lab Steps .. 41

SOLUTIONS ... 43
Lab: Spark SQL Using UDFS .. 45

About This Lab .. 45
Lab Steps .. 45

SOLUTIONS ... 49
Lab: Spark SQL with Hive .. 51

About This Lab .. 51
Lab Steps .. 51

SOLUTIONS ... 52
Lab: Spark Streaming WordCount ... 53

About This Lab .. 53
Lab Steps .. 53

Result ... 54
Lab: Spark Streaming with Windows ... 55

About This Lab .. 55
Lab Steps .. 55

Result ... 56

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 1

Pre-Lab Setup

About This Lab
Objective: To setup VM environment
Successful outcome: User will setup the cluster and verify login

Before you begin Get your AWS IP Address

Lab Steps
Perform the following steps:

1. Start the VM

a. If applicable, start VMWare Player (or Fusion) on your local machine, select the course
VM from the list of virtual machines, then click the Play virtual machine link.

b. You should see the desktop of your local or cloud-hosted VM:

Pre-Lab Setup

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 2

c. Open a Terminal by double-clicking the shortcut on the desktop:

2. Verify that the cluster is running

a. Navigate into the Docker sandbox instance.

Note:
Type "yes" if asked "are you sure you want to continue connecting".

root@ubuntu:~# ssh sandbox
[root@sandbox ~]# start_ambari

Pre-Lab Setup

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 3

b. From the command line, enter the following command, which displays the usage of the
hdfs dfsadmin utility:

su -l hdfs -c "hdfs dfsadmin"

Note:
The “dfs” in dfsadmin stands for distributed filesystem, and the dfsadmin utility contains
administrative commands for communicating with the Hadoop Distributed File System.

c. Notice the dfsadmin utility has a -report option, which outputs the current health of
your cluster. Enter the following command to view this report:

su -l hdfs -c "hdfs dfsadmin -report"

d. What is the configured capacity of your distributed filesystem?

Answer: Look for the value of “Configured Capacity” at the start of the output.

e. What is the present capacity?

Answer: Look for the value of “Present Capacity” at the start of the output.

f. How much of your distributed filesystem is used right now?

Answer: Look for the value of “DFS Used.”

g. What do you think an “Under-replicated block” is?

Answer: Data in HDFS is chunked into blocks and copied to various nodes in the
cluster. If a particular block does not have enough copies, it is referred to as “under
replicated.”

h. How many available DataNodes does your cluster have?

Answer: 1

Pre-Lab Setup

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 4

3. View the Processes on the Cluster Nodes

a. Enter the jps command, which lists all Java processes running on this machine. While
your specific processes and they order they are presented in may look slightly different
than the list below, you should still see the NameNode process running:

jps
3706 ResourceManager
2988 QuorumPeerMain
3675 RunJar
4032 RunJar
3740 NodeManager
3188 Nfs3
3186 Portmap
3738 JobHistoryServer
2556 DataNode
2557 SecondaryNameNode
2560 NameNode
3712 ApplicationHistoryServer
3511 RunJar
24669 -- process information unavailable
5516 AmbariServer
31813 Jps
3029 Bootstrap

Pre-Lab Setup

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 5

4. Login into the AWS instance

a. Verify the cluster is running by going to the following url to log into Ambari:

<aws_ip>:8080
Log into Ambari using the following credentials
Username: admin
Password: admin

b. You should now be logged into ambari and can see the cluster information. Your
screen should look something like this:

Result
We have verified you’re able to login, and the cluster is setup and running, we are now ready.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 7

Lab: Using HDFS Commands

About This Lab
Objective: To become familiar with how files are added to and removed from

HDFS, and how to view files in HDFS
File locations: /root/spark/data/
Successful outcome: You will have added and deleted several files and folders in HDFS
Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:

1 . View the hdfs dfs command

a. With your AWS instance, open a Terminal window if you do not have one open already.

b. From the command line, enter the following command to view the usage:

hdfs dfs

c. Notice the usage contains options for performing file system tasks in HDFS, like
copying files from a local folder into HDFS, retrieving a file from HDFS, copying an
moving files around, and making and removing directoires. In this lab, you will perform
these commands and many others, to help you become comfortable with working with
the hdfs.

2 . Create a directory in HDFS

a. Enter the following -ls command to view the contents of the user’s root directory in
HDFS, which is /user/root:

hdfs dfs –ls

 You do not have any files in /user/root yet, so no output is displayed

b. Run the -ls command, but this time specify the root HDFS folder:

hdfs dfs –ls /

Lab: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 8

The output should looking something like:

Important: Notice how adding the / in the –ls command caused the contents of the root folder to
display, but leaving off the / showed the contents of /user/root, which is the user root’s home
directory on hadoop. If you do not provide the path for any hdfs dfs commands, the user’s home on
hadoop is assumed.

c. Enter the following command to create a directory named test in HDFS:

hdfs dfs -mkdir test

d. Verify the folder was created successfully

hdfs dfs -ls

e. Create a couple of subdirectories of test:

hdfs dfs -mkdir test/test1
hdfs dfs -mkdir –p test/test2/test3

f. Use the -ls command to view the contents of /user/root:

hdfs dfs -ls

Notice you only see the test directory. To recursively view the contests of a folder, use -ls
-R

hdfs dfs -ls -R

The output should look like:

Lab: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 9

3 . Delete a directory

a. Delete the test2 folder (and recursively its subcontents) using the -rm -R command:

hdfs dfs -rm -R test/test2

b. Now run the -ls -R command:

hdfs dfs -ls -R

The directory structure of the output should look like:

Note: Notice Hadoop create a .Trash folder for the root user and moved the deleted
content there. The .Trash folder empties automatically after a configured amount of time.

4 . Upload a f i le to the HDFS

a. Now put a file into the test folder.
Change directories to /root/spark/data/

cd /root/spark/data/

b. Notice this folder contains a file named data.txt

tail data.txt

c. Run the following -put command to copy data.txt into the test folder in HDFS:

hdfs dfs -putt data.txt test/

d. Verify the file is in the HDFS by listing the contents of test:

hdfs dfs -ls test

The output should look like the following:

Lab: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 10

5 . Copy a f i le in the HDFS

a. Now copy the data.txt file in test to another folder in HDFS using the -cp command:

hdfs dfs -cp test/data.txt test/test1/data2.txt

b. Verify the file is in both places by using the -ls -R command on test. The output
should look like the following:

hdfs dfs -ls -R test

c. Now delete the data2.txt file using the -rm command

hdfs dfs -rm test/test1/data2.txt

d. Verify the data2.txt file is in the .Trash folder

6 . View the contents of a f i le in the HDFS

a. You can use the -cat command to view text files in the HDFS.
Enter the follwionig command to view the contest of data.txt

hdfs dfs -cat test/data.txt

b. You can also use the the -tail command to view the end of a file

7 . Getting a f i le from the HDFS

a. See if you can figure out how to use the -get command to copy test/data.txt from the
HDFS into your local /tmp folder.

8 . The getmerge command

a. Put the file /root/spark/data/small_blocks.txt into the test folder in HDFS.
You should now have two files in test: data.txt and small_blocks.txt.

b. Run the following -getmerge command:

hdfs dfs -getmerge test /tmp/merged.txt

Lab: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 11

c. What did the previous command do?
Open the file merged.txt to see what happened.

Result
You should now be comfortable with executing the various HDFS commands, including creating
directories, putting files in the HDFS, copy files out of the HDFS, and deleting files and folders.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 13

Lab: Use the REPL to Create and Manipulate RDD’s

About This Lab
Use the REPL to Create and Manipulate RDDs
/root/spark/data/selfishgiant.txt
User will have started the shell and perform some basic RDD
transformations and actions.
Finish Pre-Lab

Objective:
Fi le locations:
Successful outcome:

Before you begin:

Lab Steps
Perform the following
steps:

1 . Start up the spark shell

a. Open up a Terminal window, either by clicking on the Terminal icon in the top toolbar,
or by the Application->System Tools pull-down:

b. First, you must be in the sandbox:

ssh sandbox

Lab: Use the REPL to Create and Manipulate RDD’s

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 14

c. To open the spark shell, type the following

For Scala:
spark-shell

For Python:
pyspark

d. Take a look at the spark context and some attributes
> sc
> sc.appName
> sc.master

2 . View the raw data for this lab

a. In a new terminal window, ssh to sandbox and change directories to the data directory

#ssh sandbox
cd ~/spark/data

b. View the data file “selfishgiant.txt”

tail selfishgiant.txt

c. This file contains the short story Selfish Giant.

3 . From the Spark Shell, write the logic for counting all the words

a. Create an RDD from the file we just viewed above

>>> baseRdd=sc.textFile("file:///root/spark/data/selfishgiant.txt")

Lab: Use the REPL to Create and Manipulate RDD’s

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 15

b. Verify that you have created and RDD from the correct file using take(1)

>>> baseRdd.take(1)

c. Each element is currently a string, transform the string into arrays and examine the
output

>>> splitRdd = baseRdd.flatMap(lambda line: line.split(" "))
>>> splitRdd.take(5)

d. Map each element into a key value pair, with the key being the word and the value
being 1. Examine the output.

>>> mappedRdd = splitRdd.map(lambda line: (line,1))
>>> mappedRdd.take(5)

e. Reduce the key value pairs to get the count of each word

>>> reducedRdd = mappedRdd.reduceByKey(lambda a,b: a+b)

f. Run an action to get output.

>>> reducedRdd.take(20)
>>> reducedRdd.collect()

Lab: Use the REPL to Create and Manipulate RDD’s

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 16

4 . Challenge: Find the ten most prominent words

Result
You should now know how to start the spark shell and perform some basic RDD transformations and
actions.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 17

Lab: Advanced RDD Programming

About This Lab
Objective: To use the advanced RDD transformations that were covered in the

previous lesson
File locations: HDFS:

/user/root/flights.csv
/user/root/carriers.csv
/user/root/plane-data.csv

Successful outcome: Find the top 3 airlines with the most flights
Find the top 5 most common routes between cities
Find the airline with the most delays over 15 mins
Find the most common plane for flights over 1500 miles

Before you begin You should be logged in to your lab environment
Related lesson: Advanced RDD Programming

Lab Steps
Perform the following steps:

1 . Put the required data for the lab from local into the HDFS

a. From within your AWS instance, open a terminal.

b. Navigate to the following location:

cd /root/spark/data

c. Put the following files into the hdfs:

flights.csv, airports.csv, carriers.csv, plane-data.csv

2 . Explore the data that was just put into the HDFS, using your local machine

a. Use the head/vi/tail command take a look at the data:

flights.csv

Field Index Example data
Month 0 1
DayofMonth 1 3
DayOfWeek 2 4
DepTime 3 1738
ArrTime 4 1841
UniqueCarrier 5 WN
FlightNum 6 3948
TailNum 7 N467WN

Lab: Advanced RDD Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 18

ElapsedTime 8 63
AirTime 9 49
ArrDelay 10 1
DepDelay 11 8
Origin 12 JAX
Dest 13 FLL
Distance 14 318
TaxiIn 15 6
TaxiOut 16 8
Cancelled 17 0
CancellationCode 18
Diverted 19 0

carrier.csv

Field Index Example
Code 0 WN
Description 1 Southwest

airports.csv

Field Index Example
AirportCode 0 00M
Airport 1 Thigpen
City 2 Bay Springs
State 3 MS
Country 4 USA
Lat 5 31.95376472
Long 6 -89.23450472

plane-data.csv

Field Index Example
Tailnum 0 N10156
Type 1 Corporation
Manufacturer 2 EMBRAER
Issue_date 3 02/13/2004
Model 4 EMB-145XR
Status 5 Valid
Aircraft_type 6 Fixed Wing Multi-Engine
Engine_type 7 Turbo-Fan
Year 8 2004

i. The charts above will be helpful when trying to access individual fields.

Lab: Advanced RDD Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 19

3 . Find the top 3 air l ines with the most f l ights

a. Create an RDD for flights.csv:

>>> flightRdd=sc.textFile("/user/root/flights.csv").map(lambda line:
line.split(","))

b. This application looks like a word count. As a general rule of thumb, process the
minimal amount of data to get the answer. Transform the RDD created above to only
get the necessary fields, along with anything else needed for a word count.

>>> carrierRdd = flightRdd.map(lambda line: (line[5],1))
>>> carrierRdd.take(1)

c. Reduce the RDD to get the number of flights for each airline.

d. Using sortByKey, find the top 3 airlines.

4 . Find the top 5 most common routes, between two cit ies

a. This application also looks like a word count, but the key is made up of more then one
field. Also, there might be more than one airport for each city, make sure to take that
into account.

b. Reuse the flightRdd created in 3a, and create an airportsRdd using
airports.csv:

>>> airportsRdd = sc.textFile("/user/root/airports.csv").map(lambda
line: line.split(","))

c. Create a new RDD using the smallest amount of required data, and join the
airportsRdd to flightsRdd.

i. Prep the airportsRdd and flightRdd to only keep what’s needed.

>>> cityRdd = airportsRdd.map(lambda line: (line[0], line[2]))
>>> flightOrigDestRdd = flightRdd.map(lambda line: (line[12],
line[13]))

ii. Join the RDDs to get the correct city, retaining only the required data.

d. Map the citiesRdd to a new RDD that is then ready to do a reduceByKey.

Lab: Advanced RDD Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 20

5 . CHALLENGE:
Find the longest departure delay for each air l ine if its over 15 minutes

a. This application is similar to a word count, believe it or not.

b. Filter out all departure delays less then 15 minutes.

c. Instead of adding together values, compare them to find the longest for each key

HINT: max(a,b) returns the greater of the two values, make sure you’re comparing
ints, the data is read in as a string until casted.

6 . CHALLENGE: Find the most common airplane model for flights over 1500 miles

NOTE: Not all data is perfect (plane-data.csv has some missing values), make sure to filter
out airplane model records that don’t contain 9 fields after it is split into an array.

Lab: Advanced RDD Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 21

SOLUTIONS
3. a:
>>>flightRdd=sc.textFile("/user/root/flights.csv").map(lambda line: line.split(","))

3. b:
 >>> carrierRdd = flightRdd.map(lambda line: (line[5],1))
>>> carrierRdd.take(1)

3. c:
>>> cReducedRdd = carrierRdd.reduceByKey(lambda a,b: a+b)

3. d:
>>> carriersSorted = cReducedRdd.map(lambda (a,b): (b,a)).sortByKey(ascending=False)
>>> carriersSorted.take(3)

4.b:
 >>> airportsRdd = sc.textFile("/user/root/airports.csv").map(lambda line:
line.split(","))

4. c. i :
 >>> cityRdd = airportsRdd.map(lambda line: (line[0], line[2]))
 >>> flightOrigDestRdd = flightRdd.map(lambda line: (line[12], line[13]))

4. c. i i :
>>> origJoinRdd = flightOrigDestRdd.join(cityRdd)
>>> destAndOrigJoinRdd = origJoinRdd.map(lambda (a,b): (b[0],b[1])).join(cityRdd)
>>> citiesCleanRdd = destAndOrigJoinRdd.values()

4. d:
>>> citiesReducedRdd = citiesCleanRdd.map(lambda line: (line,1)).reduceByKey(lambda a,b:
a+b)

4. e:
>>> citiesReducedRdd.map(lambda (a,b): (b,a)).sortByKey(ascending=False).take(5)

5:
>>> flightRdd.filter(lambda line: int(line[11]) > 15) \
.map(lambda line: (line[5], line[11])).reduceByKey(lambda a,b:
max(int(a),int(b))).take(10)

6:
>>> airplanesRdd = sc.textFile("/user/root/plane-data.csv") \
.map(lambda line: line.split(",")) \
.filter(lambda line:len(line) == 9)
>>> flight15Rdd = flightRdd \
.filter(lambda line: int(line[14]) > 1500) \
.map(lambda line: (line[7],1))
>>> tailModelRdd = airplanesRdd \
.map(lambda line: (line[0],line[4]))
>>> flight15Rdd.join(tailModelRdd) \
.map(lambda (a,b): (b[1],b[0])) \
.reduceByKey(lambda a,b: a+b) \
.map(lambda (a,b): (b,a)).sortByKey(ascending=False).take(2)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 23

Lab: Parallel Programming with Spark

About This Lab
Objective: Explore the Spark UI to see the tasks, stages, and DAG schedule of an

application. Explore how partitioning affects number of tasks.
File locations: HDFS:

/user/root/flights.csv
/user/root/carriers.csv

Successful outcome: Use the UI to see how their application is performing
Repartition data
View the DAG schedule

Before you begin: You should be logged in to your lab environment
Related lesson: Parallel Programming with Spark

Lab Steps
Perform the following steps:

1 . Navigate to a fresh Spark web UI

a. Close any REPL’s currently open

>>>exit()

If it seems like the REPL is taking a long time to exit, hit enter.

b. Start a new REPL.

c. Open a web browser in guacamole:
i. Navigate to sandbox:4040

ii. Verify you see something like the image below:

Lab: Parallel Programming with Spark

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 24

2 . Create two RDDs

a. Create an RDD using flights.csv.

i. The application will be joining data, so split the data into K/V using map and the
UniqueCarrier field.

ii. Check the number of partitions:

>>>flightRdd=sc.textFile("/user/root/flights.csv") \
.map(lambda line: line.split(","))
>>>flightsKVRdd=flightRdd.map(##Key with 5th index, keep the 6th
value)
>>>flightsKVRdd.getNumPartitions()

b. Create an RDD using carriers.csv

i. Split the data into the K/V pairs:

>>> carrierRdd = sc.textFile("/user/root/carriers.csv")\
.map(lambda line: line.split(",")) \
.map(lambda line: (line[0], line[1]))

3 . Join the flightRdd to the carrierRdd

a. Join the two RDDs and run a count on the new RDD:

>>>joinedRdd = flightsKVRdd.join(carrierRdd)
>>>joinedRdd.count()

i. Refresh the web UI.

ii. Click into the stage and view the tasks.

iii. Click on the dag visualizer to see the DAG created.

iv. Note the different metrics.

Lab: Parallel Programming with Spark

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 25

v. View the event timeline:

b. Repeat steps 2a and 3, but repartition the flightsKVRdd to 10 partitions. Explore the
tasks of the stages more in this example:

>>>flightspartKVRdd=flightsKVRdd.repartition(10)
>>>flightspartKVRdd.getNumPartitions()
>>>flightspartKVRdd.join(carrierRdd).count()

c. Find the number of flights using the 10 partition RDD by unique carrier and sort the list.

i. Use reduceByKey, pattern matching and sortByKey.

ii. Collect the results to the driver.

iii. View the Web UI, repeating the steps from 3a.

Lab: Parallel Programming with Spark

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 26

NOTE: If you see grey stages like below, it’s because Spark stores the intermediate
files to local disk temporarily, so instead of re-processing all the data, it picks up the
intermediate data and skips the stages from previous. Data is stored to disk
temporarily during operations that require a shuffle.

Lab: Parallel Programming with Spark

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 27

SOLUTIONS
2. a:
>>>flightRdd=sc.textFile("/user/root/flights.csv") \
.map(lambda line: line.split(","))
>>>flightsKVRdd=flightRdd.map(lambda line: (line[5], line[6]))
>>>flightsKVRdd.getNumPartitions()

2. b:
>>> carrierRdd = sc.textFile("/user/root/carriers.csv")\
.map(lambda line: line.split(",")) \
.map(lambda line: (line[0], line[1]))

3. b:
>>>flightspartKVRdd=flightsKVRdd.repartition(10)
>>>flightspartKVRdd.getNumPartitions()
>>>flightspartKVRdd.join(carrierRdd).count()

4. c:
>>> flightspartKVRdd.map(lambda (a,b): (a,1)) \
.reduceByKey(lambda a,b: a+b).join(carrierRdd) \
.map(lambda (a,b): (b[0],b[1])) \
.sortByKey(ascending=False).collect()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 29

Lab: Caching Data with Spark

About This Lab
Objective: Explore different persisting options and the speed improvements
File locations: HDFS:

/user/root/flights.csv
/user/root/carriers.csv

Successful outcome: See the benefits of using caching in Spark
Before you begin: You should be logged in to your lab environment
Related lesson: Caching and Persisting Data

Lab Steps
Perform the following steps:

1 . Testing caching

a. Perform a count on the RDD joinedRdd from the lab (if you deleted, repaste in the
code to create it)

i. Note the time it took to complete.

ii. In the following steps, we will be comparing the time, so make sure to save the time
in a notepad or write it down.

b. Using the cache API, cache the joinedRdd.

i. Cache is not an action, so no data will be processed

c. Perform a count on the joinedRdd again.

i. Note the time it took to complete. Was it more or less than in 2b? Why?

d. Perform a count on the joinedRdd one more time.

i. Notice the performance increase.

Lab: Caching Data with Spark

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 30

2 . Exploring the persist options

a. Restart the REPL to the clear cached RDD.

i. Recreate the joinedRDD:

>>> flightRdd=sc.textFile("/user/root/flights.csv").map(lambda line:
line.split(",")).map(lambda line: (line[5], line[6]))
>>>carrierRdd = sc.textFile("/user/root/carriers.csv").map(lambda
line: line.split(",")).map(lambda line: (line[0], line[1]))
>>>joinedRdd = flightRdd.join(carrierRdd)

b. Import the necessary libraries:

>>>from pyspark import StorageLevel

c. Using the persist API, persist the RDD with MEMORY_ONLY.

i. Run a count a couple of times to put the data into memory.

ii. Note the time of the 2nd count.

d. Using the unpersist API, unpersist the dataset.

e. Persist the data to DISK_ONLY.

i. Run a count a couple of times to put the data into memory.

ii. Note the time of the 2nd count.

f. Go ahead and try it with one or two other persistence levels.

Result
You have successfully used to caching and persistence to realize performance beenfits.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 31

Lab: Checkpointing and RDD Lineage

About This Lab
Objective: Create a long iterative application that breaks lineage, and use

checkpointing to fix the issue.
File locations: No files
Successful outcome: Successfully checkpoint an iterative application
Before you begin: You should be logged in to your lab environment
Related lesson: Caching and Persisting Data

Lab Steps
Perform the following steps:

1 . Start by pasting in the f irst l ine of code

a. This will create an RDD:

>>>data = sc.parallelize([1,2,3,4,5])

b. Using the toDebugString() API, take a look at the lineage.

2 . Creating an iterative application

a. Paste the for loop in, notice the iterations that are being done:

>>> for x in range(100):
. . . data = data.map(lambda i: i+1)

b. Notice the last RDD, still called data, and run a toDebugString and take a look at the
lineage:

>>> print(data.toDebugString())

c. Perform a count on the same RDD above.

3 . Increasing the length of the l ineage

a. Modify the for loop above by 50 iterations.

b. Run a toDebugString on the RDD.

c. Continue doing steps 3a and 3b until an error occurs.

d. When toDebugString fails, run a count on the subsequent RDD.

Lab: Checkpointing and RDD Lineage

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 32

4 . Enabling checkpointing

a. Enable checkpointing:

>>> sc.setCheckpointDir("checkpointDir")

b. It isn’t necessary to checkpoint every iteration; figure out a way to checkpoint every 7
iterations.

c. Recreate the base data:

>>>data = sc.parallelize([1,2,3,4,5]

d. Create the checkpoint:

>>>for x in range(1000):
... ##Create the checkpoint
...##Only do it every 7th iteration of i
...data=data.map(lambda i: i+1)

e. Modify the for loop back to 100 and perform an action:

>>> data.take(1)

f. Modify it to the point where it broke in 4c.

g. Use the toDebugString on the above code to see what checkpointing is doing.

h. It works!

Lab: Checkpointing and RDD Lineage

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 33

SOLUTIONS
4. d:
>>>for x in range(100):
if x%7 == 0:
data.checkpoint()
 data=data.map(lambda i: i+1)
>>>data.take(1)
>>>print(data.toDebugString())

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 35

Lab: Build and Submit an Application to YARN

About This Lab
Objective: Create a Standalone application and submit the application to YARN
File locations: Project:

/root/spark/python/projects/myapp
HDFS:
/user/root/selfishgiants.txt

Successful outcome: Standalone Application should complete and print out the words from a
file

Before you begin: You should be logged in to your lab environment
Related lesson: Creating Spark Applications

Lab Steps
Perform the following steps:

1 . Develop an application for pyspark

a. Start by copying the directory /root/spark/python/projects/myapp/ to your
working directory.

b. This is a simple exercise focusing on building and submitting an application with Spark.

c. Open the myapp.py in a text editor.

i. The code should look like something that would be copied line by line into the
REPL with a basic Python wrapper around it.

d. Import the correct libraries.

e. Create the spark conf:

i. Name the application WordCount.

ii. Set spark.speculation to true.

f. Create the spark context.

g. Put the selfishgiants.txt file in the HDFS if its not already there.

h. In the application, perform a wordcount on the sleepinggiants.txt file and print out
the final value of the top 10 most said words.

i. Stop the spark context.

Lab: Build and Submit an Application to YARN

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 36

2 . Submitting an application

a. Using spark-submit, submit the application to the cluster.

NOTE: Specify the version of Python you are using by adding it before your submit
command: PYSPARK_PYTHON=/usr/bin/python spark-submit …

i. Use yarn-client master, with number of executors as 2, and executor memory
of 1g

ii. Once submitted, open Firefox and navigate to the YARN history server at
sandbox:18080 and find your application.

Lab: Build and Submit an Application to YARN

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 37

SOLUTIONS
Sample solution code for this lab is contained within the VM.

Spark submit code:

PYSPARK_PYTHON=/usr/bin/python spark-submit --master yarn-client \
--num-executors 2 --executor-memory 1g myapp.py

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 39

Lab: Using Accumulators to Check Data Quality

About This Lab
Objective: Work with Spark Accumulators
File locations: HDFS:

/user/root/plane-data.csv
Successful outcome: Developer should create an accumulator to check data quality
Before you begin You should be logged in to your lab environment
Related lesson: Advanced Features and Improving Performance

Lab Steps
Perform the following steps:

1 . Open up the REPL

2 . Count the number of planes that don’t have all the data f i l led out

a. Create an RDD from the plane-data.csv file and split it out:

>>> planeRdd=sc.textFile("/user/root/plane-data.csv") \
.map(lambda line: line.split(","))

b. Create an accumulator to do the counting.

c. Using foreach, check to see if the size of the resulting array is 9, if not increment the
accumulator.

i. Create a function to do this, pass an array and the accumulator as the input.

ii. Pass the function into a map.

d. Print the accumulator value to the screen.

i. foreach is an action and will trigger data to be processed:

>>>print(badData.value)

Lab: Using Accumulators to Check Data Quality

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 40

SOLUTIONS
2. b:
>>> badData=sc.accumulator(0)

2. c. i :
>>>def dataCheck(line,dataCounter):
if len(line) != 9:
dataCounter += 1

2. c. i i :
>>>planeRdd.foreach(lambda line: dataCheck(line, badData))

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 41

Lab: Using Broadcast Variables

About This Lab
Objective: Join a large file in the HDFS efficiently to a small local lookup file using a

broadcast variable.
File locations: HDFS:

/user/root/flights.csv
Local:
/root/spark/data/carriers.csv

Successful outcome: Developers will successfully use a broadcast variable to join a large
table to a lookup table.

Before you begin You should be logged in to your lab environment
Related lesson: Advanced Features and Improving Performance

Lab Steps
Perform the following steps:

1 . Open up the REPL if not sti l l open from a previous lab

2 . Create a dictionary of the carrier.csv f i le and broadcast it

a. Navigate to the /root/spark/python/stubs/ directory and view the lab9.py file.

b. Execute the code in the REPL using the execfile command:

>>>execfile("/root/spark/python/stubs/lab9.py")

c. Verify a dictionary named “result” was created:

>>>print(result)
>>>type(result)

d. Broadcast the dictionary created in 2b.

>>>carrierbc=sc.broadcast(result)

Lab: Using Broadcast Variables

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 42

3 . Join the broadcast variable and the flights.csv f i le

a. Create an RDD of flights.csv and split the flights into an array of elements keeping
the flight number and unique carrier:

>>> flightRdd=sc.textFile("/user/root/flights.csv").map(lambda line:
line.split(",")).map(lambda line: (line[6],line[5]))

b. Using the broadcast.value API, create a new RDD with the flight number and carrier
name, this is called a broadcast join.

c. Verify the broadcast join worked by running a take and return a few records.

Lab: Using Broadcast Variables

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 43

SOLUTIONS
2. d:
>>>carrierbc=sc.broadcast(result)

3. b:
>>>flightUpdate=flightRdd \
.map(lambda (a,b): (a,carrierbc.value[b]))

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 45

Lab: Spark SQL Using UDFS

About This Lab
Objective: Read a text file from the HDFS, create a Dataframe, query the Dataframe

with a UDF and Dataframe operations
File locations: HDFS:

/user/root/flights.csv
Successful outcome: Developer should work heavily with dataframes, including creating,

saving, loading, and manipulating. Developer should also be able to use
UDFs.

Before you begin You should be logged in to your lab environment
Related lesson: Spark SQL and Dataframes

Lab Steps
Perform the following steps:

1 . Open up the REPL if not sti l l open from the previous lab

a. Import the Row module from pyspark

>>>from pyspark import Row

2 . Create a dataframe from the flights.csv f i le

a. Create an RDD from the flights.csv file:

>>> flightRdd=sc.textFile("/user/root/flight.csv").map(lambda line:
line.split(","))

b. Create a RDD of flight objects:

>>> flightORdd=flightRdd.map(lambda f: Row(Month=int(f[0]), \
DayOfMonth=int(f[1]), \
DayofWeek=int(f[2]), \
DepTime=int(f[3]), \
ArrTime=int(f[4]), \
UniqueCarrier=f[5], \
FlightNum=f[6], \
TailNum= f[7], \
ElapsedTime=int(f[8]), \
AirTime=int(f[9]), \
ArrDelay=int(f[10]), \
DepDelay=int(f[11]), \
Origin=f[12], \
Dest=f[13], \
Distance=int(f[14]), \
TaxiIn=int(f[15]), \
TaxiOut=int(f[16]), \
Cancelled=f[17], \
CancellationCode=f[18], \
Diverted=f[19]))

Lab: Spark SQL Using UDFS

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 46

c. Use the createDataFrame to create a dataframe:

>>> flightDF=sqlContext.createDataFrame(flightORdd)

d. Using the printSchema() API, examine the schema that was just created for the
dataframe.

3 . Save the dataframe as a parquet f i le to the HDFS

a. Use the DataframeWriter API:

>>>flightDF.write.format("parquet").save("/user/root/flights.parquet")

b. In a new terminal window, verify the file was written to the HDFS.

4 . Create a new dataframe from the saved parquet f i le in 3a

a. Use the DataframeReaderAPI.

>>>dfflight=sqlContext.read.##Try to finish

b. Explore the schema to see what’s created, it should look familiar.

Lab: Spark SQL Using UDFS

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 47

5 . Explore f l ights with Departure Delays using dataframe operations

a. Find the highest average delays by airport origin:

>>> dfflight.select(dfflight.Origin, dfflight.DepDelay). \
##Try to finish

b. Find the percentage of flights delayed/total flights for each airline and sort the list to
get the most delayed airlines, by airline code.

i. Create a UDF to check if the flight is delayed or not, then select the fields. The UDF
will be using an integer and a UDF, so import the libraries:

>>>from pyspark.sql.functions import udf
>>>from pyspark.sql.types import IntegerType
>>>def delay_check(x):
 if x > 0:

return 1
 else:

return 0
>>> depUDF = udf(delay_check, IntegerType())

ii. Select the columns using the UDF to check if a flight was delayed or not:

>>>delayDF = dfflight.select(dfflight.UniqueCarrier, \
##Use UDF here##.alias("IsDelayed"), dfflight.DepDelay)

iii. Using groupby, and the agg operator, create a count of the DepDelay to get total
number of flights, and a sum of the IsDelayed Column

>>>delayGroupDF = delayDF \
.groupBy(delayDF.UniqueCarrier).agg(##Add dict here##)

iv. Create a UDF to get the percentage of delayed flights, import the Float library as
well:

>>>from pyspark.sql.types import FloatType
>>>calc_percent = \
udf(lambda s,c: (float(s)/c), FloatType())

v. Create the final DF by using a select, the UDF, and a sort, then show it:

>>> delayGroupDF.select(delayGroupDF.UniqueCarrier, \
calc_percent(##Use the correct columns for the udf##) \
.alias("Percentage")).sort(##Sort on percent##).show()

c. CHALLENGE: Find the top 5 airlines with longest average flight distance.

Lab: Spark SQL Using UDFS

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 48

6 . CHALLENGE: Explore taxi t imes

a. Find the top 5 airports with the largest average taxi time in.

b. Find the top 5 airports with the shortest average taxi time out.

Lab: Spark SQL Using UDFS

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 49

SOLUTIONS
4. c:
>>>dfflight=sqlContext.read.format("parquet") \
.load("/user/root/flights.parquet")

5. a:
>>> dfflight.select(dfflight.Origin, dfflight.DepDelay) \
.groupBy('Origin').avg() \
.withColumnRenamed("AVG(DepDelay)", "DelayAvg") \
.sort('DelayAvg', ascending=False).show()

5. b. i i :
>>>delayDF = dfflight.select(dfflight.UniqueCarrier, \
depUDF(dfflight.DepDelay).alias("IsDelayed"), dfflight.DepDelay)

5. b. i i i :
>>>delayGroupDF = delayDF.groupBy(delayDF.UniqueCarrier) \
.agg({"IsDelayed": "sum", "DepDelay": "count"})

5. b. v:
>>> delayGroupDF.select(delayGroupDF.UniqueCarrier, \
calc_percent("SUM(IsDelayed)","COUNT(DepDelay)") \
.alias("Percentage")).sort("Percentage", ascending=False).show()

5. c:
>>> dfflight.select("UniqueCarrier", "Distance") \
.groupBy("UniqueCarrier").avg() \
.sort("AVG(Distance)", ascending=False).show(5)

6. a:
>>> dfflight.select("Origin", "TaxiIn") \
.groupBy("Origin").avg() \
.sort("AVG(TaxiIn)", ascending=False).show(5)

6. b:
>>> dfflight.select("Origin", "TaxiOut") \
.groupBy("Origin").avg() \
.sort("AVG(TaxiOut)", ascending=True).show(5)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 51

Lab: Spark SQL with Hive

About This Lab
Objective: Using tables already existing in Hive, perform analytics.
File locations: Data is stored in Hive
Successful outcome: Developer should interact with Hive metastore and be able to query data
Before you begin You should be logged in to your lab environment
Related lesson: Spark SQL and Dataframes

Lab Steps
Perform the following steps:

1 . Open up the REPL if not sti l l open from the previous lab

a Verify the sqlContext is of the type HiveContext:

>>>type(sqlContext)

2 . Use the database “flight”

>>>sqlContext.sql("USE flight")

3 . Find all the airplanes that f ly the longest route

4 . Using the hivecontext, create two dataframes. One from the table flights and
the other from planes

5 . Sort the flights dataframe, using distance to f ind the longest f l ight, do a take
to look at the distance of the longest f l ight

6 . Filter al l f l ights on the longest f l ight distance, and return the tail numbers of
those fl ights

7 . Join the tailnums to the planes RDD to get the models of the airplanes

8 . Perform a count to f ind the most common airplane models

Lab: Spark SQL with Hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 52

SOLUTIONS
4:
>>>sqlContext.sql("Use flight")
>>> flights = sqlContext.table("flights")
>>> planes = sqlContext.table("planes")

5:
>>>flights.sort("distance", ascending=False).take(1)

6:
>>>longflights = flights.filter(flights.distance==4962) \
.select("tailnum").distinct()

7:
>>>longflightplanes = longflights\
.join(planes, 'tailnum' , 'inner')

8:
>>> longflightplanes.select("model").groupBy("model") \
.count().show()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 53

Lab: Spark Streaming WordCount

About This Lab
Objective: Create a Streaming application that outputs all words said in a Dstream,

utilize the nc command to simulate a data source
File locations: No files
Successful outcome: Output words from simulated source to screen
Before you begin You should be logged in to your lab environment
Related lesson: Spark Streaming

Lab Steps
Perform the following steps:

1 . Close the REPL

2 . Start a new REPL specifying the following information:

#pyspark --master local[2]

3 . Create a Spark Streaming application that performs a wordcount on a socket
text stream

a. Import the Streaming library:

>>>from pyspark.streaming import StreamingContext

b. Create the streaming context, with a 5 second batch duration:

>>>ssc = StreamingContext(sc, 5)

c. Create the Dstream using sandbox and port 9999:

>>>inputDS = ssc.socketTextStream("sandbox",9999)

d. Transform the RDD to create a wordcount application, split on spaces:

>>>wc = inputDS.flatMap(lambda line: line.split(" ")).map(lambda
word: (word,1)).reduceByKey(lambda a,b: a+b)

e. Print out the output to the client:

>>>wc.pprint()

Lab: Spark Streaming WordCount

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 54

f. Set the log level to ERROR to avoid clutter:

>>>sc.setLogLevel("ERROR")

g. Start the streaming application:

>>>ssc.start()

NOTE: You will see an error when it starts, it’s waiting for an input connection.

4 . In a new terminal, run the following command to start outputting data:

#nc -lkv 9999

a. Start typing words separated by space, press return occasionally to submit them

b. Look at the other terminal where the streaming application is running

c. While the application is running, navigate to the web UI in Firefox and explore the web
UI tabs:

sandbox:4040

d. To quit the streaming application, press control-d, control-c for the terminal
running NC.

Result
You have now successfully created and run a stateless application.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 55

Lab: Spark Streaming with Windows

About This Lab
Objective: Create a Spark Streaming utilizing a window function to find words read

in the previous 10 seconds
File locations: No files
Successful outcome: Developer will use the window function to create a windowed

wordcount.
Before you begin: You should be logged in to your lab environment
Related lesson: Spark Streaming

Lab Steps
Perform the following steps:

1 . Close the REPL

2 . Start a new REPL specifying the following information:

#pyspark --master local[2]

3 . Create a Spark Streaming application that performs a wordcount on a socket
text stream using the window function reduceByKeyAndWindow.

Set a 10 second window with a 2 second sliding duration

a. Import the Streaming library:

>>>from pyspark.streaming import StreamingContext

b. Create the streaming context, with a 2 second batch duration:

>>>ssc = StreamingContext(sc, 2)

c. Create the Dstream using sandbox and port 9999

>>>inputDS = ssc.socketTextStream("sandbox",9999)

d. For this lab, enable checkpointing the lazy way:

>>>ssc.checkpoint("hdfs:///user/root/checkpointDir")

Lab: Spark Streaming with Windows

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 56

e. Transform the inputDS to use a window and then a reducebykey:

>>>windowDS = inputDS.window(10,2).flatMap(lambda line:
 line.split(" ")).map(lambda word: \
 (word,1)).reduceByKey(lambda a,b: a+b)

f. Print the output out:

>>>windowDS.pprint()

g. To avoid cluttering the output, set the loglevel to ERROR:

>>>sc.setLogLevel("ERROR")

h. Start the streaming application:

>>>ssc.start()

4 . In a new terminal, run the following command to start outputting to the stream:

#nc -lkv 9999

a. Start typing words separated by space, press return occasionally to submit them.

b. Look at the other terminal where the streaming application is running.

c. While the application is running, navigate to the web UI in Firefox and explore the web
UI tabs:

sandbox:4040

d. To quit the streaming application, press control-d, control-c for the terminal
running NC.

Result
You have now successfully created an application that utilizes the window function.

Hortonworks University courses are designed by the leaders and committers of Apache Hadoop.
:e provide immersive, real-world experience in scenario-based training. Courses offer
unmatched depth and expertise available in both the classroom or online from anywhere in the
world. :e prepare you to be an expert with highly valued skills and for Certification.

	HWU-FrontMatter-Template-03-2016
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	Summit Spark Lab Guide
	HWU-BackMatter-Template-02-2016
	Blank Page
	Blank Page

