
Copyright © 2015, Hortonworks, Inc. All rights reserved.

1

Lab: Getting Started with Apache Spark

About This Lab
Objective: To start up a Spark Shell application, and perform Hello World

File locations: /root/spark/data/selfishgiant.txt

Successful outcome: User will have started the shell and performed word count on the
dataset

Before you begin Get your AWS IP

Lab Steps
Perform the following steps:
1. Login into the AWS instance

a. Everyone will be given an IP with their AWS instance started up. Navigate to the
web GUI by opening a web browser and going to the location below:

<aws_ip>/guacamole

b. Verify the cluster is running by going to the following url to log into Ambari:
<aws_ip>:8080

Log into Ambari using the following credentials:

Username: admin
Password: admin

c. You should now be logged into Ambari and can see the cluster information. Your
screen should look something like this:

Copyright © 2015, Hortonworks, Inc. All rights reserved.

2

	
d. Now that we have verified you’re able to login, and the cluster is setup and running,

we are now ready to move on to the next step of the lab.
2. Starting up the Spark Shell

a. Open up a Terminal window, either by clicking on the Terminal icon in the top
toolbar, or by the Application->System Tools pull-down:

Copyright © 2015, Hortonworks, Inc. All rights reserved.

3

	
b. In the opened Terminal window type the following to log into to the docker sandbox

container. Every command should be run from inside the docker sandbox
container:

ssh sandbox

c. Start the spark-shell by typing the following

For Scala:

spark-shell

For Python:
pyspark

d. Take a look at the Spark context and some attributes
> sc
> sc.appName
> sc.master

	

	
3. View the raw data for this lab

Copyright © 2015, Hortonworks, Inc. All rights reserved.

4

a. In a new terminal window, change directories to the data directory:
cd ~/spark/data

b. View the data file “selfishgiant.txt”
tail selfishgiant.txt

c. This file contains the short story “Selfish Giant.”
4. From the Spark Shell, write the logic for counting all the words

a. Create an RDD from the file we just viewed above:
>>> val baseRdd=sc.textFile("file:///root/spark/data/selfishgiant.txt")

b. Verify that you have created and RDD from the correct file using take(1):
>>> baseRdd.take(1)

	
c. Each element is currently a string, transform the string into arrays and examine the

output
>>> val splitRdd = baseRdd.flatMap(line => line.split(" "))
>>> splitRdd.take(5)

	
d. Map each element into a key/value pair, with the key being the word and the value

being 1. Examine the output.
>>> val mappedRdd = splitRdd.map(line=> (line,1))
>>> mappedRdd.take(5)

e. Reduce the key/value pairs to get the count of each word:
>>> val reducedRdd = mappedRdd.reduceByKey((a,b) => a+b)

f. Run an action to get output:
>>> reducedRdd.take(20)
>>> reducedRdd.collect()

Copyright © 2015, Hortonworks, Inc. All rights reserved.

5

	
5. CHALLENGE: Find the ten most prominent words.

	

RESULT
You should now know how to start the spark shell and perform some basic RDD
transformations and actions.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

6

Lab: Using HDFS Commands

About This Lab
Objective: To become familiar with how files are added to and removed from

HDFS, and how to view files in HDFS

File locations: /root/spark/data/

Successful outcome: You will have added and deleted several files and folders in HDFS

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. View the hdfs dfs command

a. With your AWS instance, open a Terminal window if you do not have one open
already.

b. From the command line, enter the following command to view the usage:
hdfs dfs

c. Notice the usage contains options for performing file system tasks in HDFS, like
copying files from a local folder into HDFS, retrieving a file from HDFS, copying an
moving files around, and making and removing directories. In this lab, you will
perform these commands and many others, to help you become comfortable with
working with the HDFS.

2. Create a directory in HDFS
Enter the following -ls command to view the contents of the user’s root directory in HDFS,
which is /user/root:
hdfs dfs –ls

You do not have any files in /user/root yet, so no output is displayed.

a. Run the -ls command, but this time specify the root HDFS folder:
hdfs dfs –ls /

The output should looking something like:

Copyright © 2015, Hortonworks, Inc. All rights reserved.

7

	
IMPORTANT: Notice how adding the / in the –ls command caused the contents of
the root folder to display, but leaving off the / showed the contents of /user/root,
which is the user root’s home directory on hadoop. If you do not provide the path
for any hdfs dfs commands, the user’s home on hadoop is assumed.

b. Enter the following command to create a directory named test in HDFS:
hdfs dfs -mkdir test

c. Verify the folder was created successfully:
hdfs dfs –ls

	
d. Create a couple of subdirectories of test:

hdfs dfs -mkdir test/test1
hdfs dfs -mkdir –p test/test2/test3

e. Use the -ls command to view the contents of /user/root:
hdfs dfs -ls

Notice you only see the test directory. To recursively view the contests of a folder,
use -ls –R:

hdfs dfs -ls -R

The output should look like:

	
3. Delete a directory

a. Delete the test2 folder (and recursively its subcontents) using the -rm -R
command:

hdfs dfs -rm -R test/test2

b. Now run the -ls -R command:
hdfs dfs -ls -R

The directory structure of the output should look like:

Copyright © 2015, Hortonworks, Inc. All rights reserved.

8

	
NOTE: Notice Hadoop create a .Trash folder for the root user and moved the
deleted content there. The .Trash folder empties automatically after a configured
amount of time.

4. Upload a file to the HDFS
a. Now put a file into the test folder.

Change directories to /root/spark/data/:
cd /root/spark/data/

b. Notice this folder contains a file named data.txt
tail data.txt

c. Run the following -put command to copy data.txt into the test folder in HDFS:
hdfs dfs -put data.txt test/

d. Verify the file is in the HDFS by listing the contents of test:
hdfs dfs -ls test

The output should look like the following:

	
5. Copy a file in the HDFS

a. Now copy the data.txt file in test to another folder in HDFS using the -cp
command:

hdfs dfs -cp test/data.txt test/test1/data2.txt

b. Verify the file is in both places by using the -ls -R command on test. The output
should look like the following:

hdfs dfs -ls -R test

	
c. Now delete the data2.txt file using the -rm command

hdfs dfs -rm test/test1/data2.txt

d. Verify the data2.txt file is in the .Trash folder

6. View the contents of a file in the HDFS

Copyright © 2015, Hortonworks, Inc. All rights reserved.

9

a. You can use the -cat command to view text files in the HDFS.

Enter the following command to view the contents of data.txt:
hdfs dfs -cat test/data.txt

b. You can also use the -tail command to view the end of a file:

7. Getting a file from the HDFS
a. See if you can figure out how to use the -get command to copy test/data.txt

from the HDFS into your local /tmp folder.

8. The getmerge command

a. Put the file /root/spark/data/small_blocks.txt into the test folder in HDFS.
You should now have two files in test: data.txt and small_blocks.txt.

b. Run the following -getmerge command:
hdfs dfs -getmerge test /tmp/merged.txt

c. What did the previous command do? Open the file merged.txt to see what
happened.

RESULT
You should now be comfortable with executing the various HDFS commands, including
creating directories, putting files in the HDFS, copy files out of the HDFS, and deleting files and
folders.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

10

Lab: Advanced RDD Programming

About This Lab
Objective: To use advanced RDD transformations.

File locations: /root/spark/data/

Successful outcome: Find the top 3 airlines with the most flights
Find the top 5 most common routes between cities
Find the airline with the most delays over 15 minutes
Find the most common plane for flights over 1500 miles

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. Put the required data from the lab from local into the HDFS

a. From within your AWS instance, open a terminal.
b. Navigate to the following location:

cd /root/spark/data

c. Put the following files into the HDFS:
flights.csv, airports.csv, carriers.csv, plane-data.csv

2. Explore the data that was just put into the HDFS, using your local machine
a. Use the head/vi/tail command take a look at the data

flights.csv

Field Index Example data

Month 0 1

DayofMonth 1 3

DayOfWeek 2 4

DepTime 3 1738

ArrTime 4 1841

UniqueCarrier 5 WN

Copyright © 2015, Hortonworks, Inc. All rights reserved.

11

FlightNum 6 3948

TailNum 7 N467WN

ElapsedTime 8 63

AirTime 9 49

ArrDelay 10 1

DepDelay 11 8

Origin 12 JAX

Dest 13 FLL

Distance 14 318

TaxiIn 15 6

TaxiOut 16 8

Cancelled 17 0

CancellationCode 18

Diverted 19 0
carrier.csv

Field Index Example

Code 0 WN

Description 1 Southwest
airports.csv

Field Index Example

AirportCode 0 00M

Airport 1 Thigpen

City 2 Bay Springs

State 3 MS

Country 4 USA

Lat 5 31.95376472

Copyright © 2015, Hortonworks, Inc. All rights reserved.

12

Long 6 -89.23450472
plane-data.csv

Field Index Example

Tailnum 0 N10156

Type 1 Corporation

Manufacturer 2 EMBRAER

Issue_date 3 02/13/2004

Model 4 EMB-145XR

Status 5 Valid

Aircraft_type 6 Fixed Wing Multi-Engine

Engine_type 7 Turbo-Fan

Year 8 2004

i. The charts above will be helpful when trying to access individual fields
3. The first goal of this lab is to find top 3 airlines with the most flights

a. Create an RDD for flight.csv and split it into arrays:
>>> val flightRdd=sc.textFile("/user/root/flights.csv").
 map(line => line.split(","))

b. This application looks like a word count. As a general rule of thumb, process the
minimum amount of data to get the answer. Transform the RDD created above to
only get the necessary fields, along with anything else needed for a word count:

>>> val carrierRdd = flightRdd.map(line => (line(5),1))
>>> carrierRdd.take(1)

c. Reduce the RDD to get the number of flights for each airline.
d. Using sortByKey, find the top 3 airlines.

4. Find the top 5 most common routes, between two cities
a. This application also looks like a word count, but the key is made up of more then

one field. Also, there might be more than one airport for each city, make sure to
take that into account.

b. Reuse the flightRdd created in 3a, and create an airportsRdd using
airports.csv:

>>> val airportsRdd = sc.textFile("/user/root/airports.csv").
 map(line=> line.split(","))

Copyright © 2015, Hortonworks, Inc. All rights reserved.

13

c. Create a new RDD using the smallest amount of required data, and join the
airportsRdd to flightsRdd.

i. Prep the airportsRdd and flightRdd to only keep what is needed:
>>> val cityRdd = airportsRdd.
 map(line=> (line(0), line(2)))
>>> val flightOrigDestRdd = flightRdd.
 map(line=> (line(12), line(13)))

ii. Join the RDDs to get the correct city, retaining only the required data.
d. Map the citiesRdd to a new RDD that is then ready to do a reduceByKey.

5. CHALLENGE: Find the longest departure delay for each airline if its over 15 minutes
a. This application is similar to a word count, believe it or not.
b. Filter out all departure delays less then 15 minutes
c. Instead of adding together values, compare them to find the longest for each key

HINT: math.max(a,b) returns the greater of the two values, make sure you’re
comparing ints, as the data is read as a string until casted.

6. CHALLENGE: Find the most common airplane model for flights over 1500 miles

NOTE: Not all data is perfect (plane-data.csv has some missing values), so make sure to
filter out airplane model records that don’t contain 9 fields after it is split into an array.

SOLUTIONS
3. a:
>>> val flightRdd=sc.textFile("/user/root/flights.csv").
map(line => line.split(","))

3. b:
>>> val carrierRdd = flightRdd.map(line => (line(5),1))
>>> carrierRdd.take(1)

3. c:
>>> val carrierReduce = carrierRdd.reduceByKey((a,b) => a+b)

3. d:
>>> val carriersSorted = carrierReduce.map{case (a,b) => (b,a)}.
sortByKey(false)
>>> carriersSorted.take(3)

4. b:
>>> val airportsRdd = sc.textFile("/user/root/airports.csv").
map(line=> line.split(","))

4. c. i:
>>> val cityRdd = airportsRdd.map(line=> (line(0), line(2)))
>>> val flightOrigDestRdd = flightRdd.
map(line=> (line(12), line(13)))

Copyright © 2015, Hortonworks, Inc. All rights reserved.

14

4. c. ii:
>>> val origJoinRdd = flightOrigDestRdd.join(cityRdd)
>>> val destAndOrigJoinRdd = origJoinRdd.
map{case(a,(b,c))=> (b,c)}.join(cityRdd)
>>> val citiesCleanRdd = destAndOrigJoinRdd.values

4. d:
>>> val citiesReducedRdd = citiesCleanRdd.
map(line=> (line,1)).reduceByKey((a,b)=> a+b)

4. e:
>>> citiesReducedRdd.map{case (a,b)=> (b,a)}.
sortByKey(false).take(5)

5:
>>>flightRdd.filter(line=> line(11).toInt > 15).
map(line=> (line(5), line(11).toInt)).
reduceByKey((a,b)=> math.max(a,b)).take(10)

6:
>>> val airplanesRdd = sc.textFile("/user/root/plane-data.csv").
map(line=> line.split(",")).filter(line=> line.length == 9)
>>> val flight15Rdd = flightRdd.
filter(line=> line(14).toInt > 1500).map(line=> (line(7),1))
>>> val tailModelRdd = airplanesRdd.map(line=> (line(0),line(4)))
>>> flight15Rdd.join(tailModelRdd).
map{case (a,(b,c))=> (c,b)}.reduceByKey((a,b)=> a+b).
map(pair => pair.swap).sortByKey(false).take(2)

Copyright © 2015, Hortonworks, Inc. All rights reserved.

15

Lab: Parallel Programming on Spark

About This Lab
Objective: Explore the Spark UI to see the tasks, stages, and DAG schedule

of an application. Explore how partitioning affects number of
tasks.

File locations: HDFS:
/user/root/flight.csv
/user/root/carriers.csv

Successful outcome: Use the UI to see how their application is performing
Repartition data
View the DAG schedule

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. Navigate to a fresh Spark web UI

a. Close any REPL’s currently open:
>>>exit()

If it seems like the REPL is taking a long time to exit, hit enter.

b. Start a new REPL.
c. Open a web browser in guacamole:

i. Navigate to sandbox:4040

ii. Verify you see something like the image below:

Copyright © 2015, Hortonworks, Inc. All rights reserved.

16

	
2. Create two RDDs and repartition the largest RDD to 40 partitions

a. Create an RDD using flights.csv:

i. The application will be joining data so split the data into K/V using keyBy and
the UniqueCarrier field.

ii. Check the number of partitions:
>>>val flightRdd = sc.textFile("/user/root/flights.csv").
map(line=> line.split(","))
>>>val flightsKVRdd=flightRdd.map(//key by 5th index, value 6th index)
>>>flightsKVRdd.partitions.size

b. Create an RDD using carriers.csv:

i. Split the data into the K/V pairs:
>>> val carrierRdd =
 sc.textFile("/user/root/carriers.csv").
 map(line=> line.split(",")).
 map(line=> (line(0), line(1)))

3. Join the flightRdd to the carrierRdd

a. Join the two RDDs and run a count on the new RDD:
>>>val joinedRdd = flightsKVRdd.join(carrierRdd)
>>>joinedRdd.count()

i. Refresh the web UI.
ii. Click into the stage and view the tasks.
iii. Click on the dag visualizer to see the DAG created.
iv. Note the different metrics.
v. View the event timeline.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

17

	
b. Repeat 2a and 3, but repartition the flightsKVRdd to 10 partitions. Explore the

tasks of the stages more in this example:
>>>val flightspartKVRdd=flightsKVRdd.repartition(10)
>>>flightspartKVRdd.partitions.size
>>>flightspartKVRdd.join(carrierRdd).count()

c. Find the number of flights using the 10 partition RDD by unique carrier and sort the
list:

i. Use reduceByKey, pattern matching and sortByKey.

ii. Collect the results to the driver.
iii. View the Web UI, repeating the Web UI steps from 3a.

NOTE: If you see grey stages like below, its because Spark stores the
intermediate files to local disk temporarily, so instead of re-processing all the
data, it picks up the intermediate data and skips the stages from previous.
Data is stored to disk temporarily during operations that require a shuffle.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

18

	

SOLUTIONS:
2. a:
>>>val flightRdd = sc.textFile("/user/root/flights.csv").
map(line=> line.split(","))
>>>val flightsKVRdd=flightRdd.map(line=> (line(5),line(6)))
>>>flightsKVRdd.partitions.size

2. b:
>>>val carrierRdd = sc.textFile("/user/root/carriers.csv").
map(line=> line.split(",")).map(line=> (line(0), line(1)))

3. b:
>>>val flightspartKVRdd=flightsKVRdd.repartition(10)
>>>flightspartKVRdd.partitions.size
>>>flightspartKVRdd.join(carrierRdd).count()

4. c:
>>>flightspartKVRdd.map{case (a,b)=> (a,1)}.
reduceByKey((a,b)=> a+b).join(carrierRdd).
map{case (a,(b,c))=> (b,c)}.
sortByKey(false).collect().foreach(println)

Copyright © 2015, Hortonworks, Inc. All rights reserved.

19

Lab: Caching Data with Spark

About This Lab
Objective: Explore different persisting options and the speed improvements

File locations: HDFS:
/user/root/flight.csv
/user/root/carriers.csv

Successful outcome: See the benefits of using caching in Spark

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. Testing caching

a. Perform a count on the RDD joinedRdd from the previous lab (if you deleted,
repaste in the code to create it).

i. Note the time it took to complete.
ii. In the following steps, we will be comparing the time, so make sure to save

the time in a notepad or write it down.
b. Using the cache API, cache the joinedRdd.

i. cache is not an action, so no data will be processed.

c. Perform a count on the joinedRdd again.

i. Note the time it took to complete. Was it more or less than in 2b? Why?
d. Perform a count on the joinedRdd one more time.

i. Notice the performance increase.
2. Exploring the persist options

a. Restart the REPL to the clear cached RDD
i. Recreate the joinedRDD:

>>> val flightRdd=sc.textFile("/user/root/flights.csv").
map(line=> line.split(",")).map(line=> (line(5),line(6)))

>>>val carrierRdd = sc.textFile("/user/root/carriers.csv").
map(line=> line.split(",")).map(line=> (line(0), line(1)))

>>>val joinedRdd = flightRdd.join(carrierRdd)

b. Import the necessary libraries:

Copyright © 2015, Hortonworks, Inc. All rights reserved.

20

>>>import org.apache.spark.storage.StorageLevel._

c. Using the persist API, persist the RDD with MEMORY_ONLY:
>>>rdd.persist(MEMORY_ONLY)

i. Run a count() a couple of times to put the data into memory.

ii. Note the time of the 2nd count().

d. Using the unpersist API, unpersist the dataset.

e. Persist the data to DISK_ONLY.

i. Run a count a couple of times to put the data into memory.
ii. Note the time of the 2nd count.

Go ahead and try it with one or two other persistence levels.

RESULT
You have successfully used to caching and persistence to realize performance benefits.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

21

Lab: Checkpointing and RDD Lineage

About This Lab
Objective: Create a long iterative application that breaks lineage, and use

checkpointing to fix the issue.

File locations: No files

Successful outcome: Successfully checkpoint an iterative application

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. Start by pasting the first line of code in

a. This will create an RDD:
>>>var data = sc.parallelize(Array(1,2,3,4,5))

b. Using the toDebugString() API, take a look at the lineage.

2. Creating an iterative application
a. Paste the for loop in, notice the iterations that are being done:

>>> for(i <- 1 until 100){
 data = data.map(x=> x+1)
 }

b. Notice the last RDD is still called data, and run a toDebugString and take a look at
the lineage:

>>> data.toDebugString

c. Perform a count on the same RDD above.

3. Increasing the length of the lineage
a. Modify the for loop above by 50 iterations.

b. Run a count on the RDD.

c. Continue doing A and B until an error happens.
d. When count fails, run a toDebugString on the subsequent RDD.

4. Enabling checkpointing
a. Enable checkpointing:

>>> sc.setCheckpointDir("checkpointDir")

b. Don’t necessarily need to checkpoint every iteration, figure out a way to checkpoint
every 7 iterations.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

22

c. Recreate the base data:
>>>var data = sc.parallelize(Array(1,2,3,4,5))

d. Create the checkpoint, and perform an action to force Spark to checkpoint:
>>>for (i <- 1 to 1000){
 data=data.map(v=> v+1)
 //Create the checkpoint
 //Run an action, like count
 //Only do this every 7th iteration of I

 }

e. Modify the for loop back to 100 and perform an action:
>>> data.take(1)

f. Modify it to the point where it broke in 4c.
g. Use the toDebugString on the above code to see what checkpointing is doing.

h. It works!

SOLUTIONS
4. d:
>>>for (i <- 1 to 1000){
 data=data.map(i=> i+1)
 if (i%7 == 0) {
 data.checkpoint()
 data.count()
 }
}
>>>data.take(1)
>>>data.toDebgugString

Copyright © 2015, Hortonworks, Inc. All rights reserved.

23

Lab: Build and Submit an Application to YARN

About This Lab
Objective: Create a Standalone application and submit the application to

YARN

File locations: Project:
/spark/scala/projects/WordCount/src/main/scala/stub

HDFS:
/user/root/selfishgiants.txt

Successful outcome: Standalone Application should complete and print out the words
from a file

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. Develop an application for spark-shell

a. Start by changing the directory to the application directory:
$cd ~/spark/scala/projects/WordCount/src/main/scala/stub

b. This is a simple exercise focusing on building and submitting an application with
Spark

c. In a text editor (like vi or gedit), open the file WordCount.scala
 $vi myapp.scala

d. Import the correct libraries.
e. Create an object called WordCount and set up the main.

f. Create the spark conf.

i. Name the application MyApp.

ii. Set up Kryo Serialization, don’t worry about registering a class for this
exercise.

iii. Set spark.speculation to true.

g. Create the Spark Context.
h. Put the selfishgiants.txt file in the HDFS if its not already there.

i. In the application, perform a wordcount on the sleepinggiants.txt file and
print out the final value of the top 10 most said words.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

24

i. Stop the Spark Context.
2. Build the application

a. Navigate to the root directory of the application and type the following:
$ cd ~/ spark/scala/projects/WordCount/
$ mvn package

3. Submitting an application
a. Using spark-submit, submit the application to the cluster.

i. Use yarn-client master, with number of executors as 2, and executor
memory of 1GB.

ii. Once submitted, open Firefox and navigate to the YARN History server at
sandbox:18080 and find your application.

SOLUTIONS
Sample solution code for this lab is contained within the VM.
Spark-Submit code:
spark-submit --class stub.WordCount --master yarn-client --num-executors 2 --
executor-memory 1g target/WordCount-1.0-SNAPSHOT.jar

Copyright © 2015, Hortonworks, Inc. All rights reserved.

25

Lab: Using Accumulators to Check Data Quality

About This Lab
Objective: Work with Spark Accumulators

File locations: HDFS:
/user/root/plane-data.csv

Successful outcome: Developer should create an accumulator to check data quality

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. Open up the REPL
2. Count the number of planes that don’t have all the data filled out

a. Create an RDD from the plane-data.csv file and split it out:
>>> val planeRdd=sc.textFile("/user/root/plane-data.csv").
map(line => line.split(","))

b. Create an accumulator to do the counting.
c. Using foreach, check to see if the size of the resulting array is 9, if not increment

the accumulator:
>>> planeRdd.foreach(line =>
 //Add the logic here
)

d. Print the accumulator value to the screen.
i. foreach is an action and will trigger data to be processed.

>>>badData.value

SOLUTIONS
2. b:
>>>val badData=sc.accumulator(0)

2. c:
>>>planeRdd.foreach(line =>
 if(line.length != 9){
 badData+=1
 })

Copyright © 2015, Hortonworks, Inc. All rights reserved.

26

Lab: Using Broadcast Variables

About This Lab
Objective: Join a large file in the HDFS efficiently to a small local lookup file

using a broadcast variable.

File locations: HDFS:
/user/root/flight.csv

Local:
/root/spark/data/carriers.csv

Successful outcome: Developers will successfully use a broadcast variable to join a
large table to a lookup table.

Before you begin You should be logged in to your AWS instance.

Lab Steps
Perform the following steps:
1. Open up the REPL if not still open from the previous lab
2. Create a dictionary of the carrier.csv file and broadcast it

a. Paste the following code into the REPL. This will create a map to broadcast:
>>> import scala.io.Source
>>> val list =
Source.fromFile("/root/spark/data/carriers.csv").getLines.map(line=>line.spli
t(",")).map(line => (line(0),line(1))).toMap

b. Broadcast the map created in 3a.
3. Join the broadcast variable and the flights.csv file

a. Create an RDD of flights.csv and split the flights into an array of elements
keeping the flight number and unique carrier:

>>> val flightRdd=sc.textFile("/user/root/flights.csv").
 map(line=> line.split(",")).map(line=>(line(6),line(5)))

b. Using the broadcast.value API, create a new RDD with the flight number and
carrier name, this is called a broadcast join.

c. Verify the broadcast join worked by running a take and return a few records.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

27

SOLUTIONS
2. b:
>>>val carrierbc=sc.broadcast(list)

3. b:
>>> val flightUpdate=flightRdd.map{case (a,b)=> (a,carrierbc.value(b))}

Copyright © 2015, Hortonworks, Inc. All rights reserved.

28

Lab: Spark SQL Using UDFs

About This Lab
Objective: Read a text file from the HDFS, create a Dataframe, query the

Dataframe with a UDF and Dataframe operations

File locations: HDFS:
/user/root/flight.csv

Successful outcome: Developer should work heavily with dataframes, including
creating, saving, loading, and manipulating. Developer should
also be able to use UDFs.

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. Open up the REPL if not still open from the previous lab

NOTE: when the spark-shell is started, a sqlContext is created. Import the implicits
library to allow Scala to do some conversions for you:

>>>import sqlContext.implicits._

2. Create a dataframe from the flights.csv file

a. Create an RDD from the flights.csv file:
>>> val flightRdd=sc.textFile("/user/root/flights.csv").map(line =>
line.split(","))

b. Create the case class to be used in a DataFrame. Copy and paste the code
below:

>>> case class Flight(
Month: Int,
DayofMonth: Int,
DayOfWeek: Int,
DepTime: Int,
ArrTime: Int,
UniqueCarrier: String,
FlightNum: Int,
TailNum: String,
ActualElapsedTime: Int,
AirTime: Int,
ArrDelay: Int,
DepDelay: Int,
Origin: String,
Dest: String,
Distance: Int,
TaxiIn: Int,

Copyright © 2015, Hortonworks, Inc. All rights reserved.

29

TaxiOut: Int,
Cancelled: String,
CancellationCode: String,
Diverted: String)

c. Map the flightRdd into the case class, and convert to dataframe:
>>> val flightDF = flightRdd.map(f => Flight(f(0).toInt,
f(1).toInt,
f(2).toInt,
f(3).toInt,
f(4).toInt,
f(5).toString,
f(6).toInt,
f(7).toString,
f(8).toInt,
f(9).toInt,
f(10).toInt,
f(11).toInt,
f(12).toString,
f(13).toString,
f(14).toInt,
f(15).toInt,
f(16).toInt,
f(17).toString,
f(18).toString,
f(19).toString)).toDF()

d. Using the printSchema() API, examine the schema that was just created for the
dataframe.

	
3. Save the dataframe as a parquet file to the HDFS

a. Use the DataframeWriter API:
>>>flightDF.write.format("parquet").save("/user/root/flights.parquet")

b. In a new terminal window, verify the file was written to the HDFS.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

30

4. Create a new dataframe from the saved parquet file in 3a
a. Use the DataframeReader API:

>>>val dfflight=sqlContext.read.//Try to finish

b. Explore the schema to see what’s created, it should look familiar.
5. Explore flights with Departure Delays using dataframe operations

a. Find the highest average delays by airport origin:
>>> dfflight.select($"Origin", $"DepDelay").//Try to finish

b. Find the percentage of flights delayed/total flights for each airline, and sort the list to
get the most delayed airlines, by airline code.

i. Create a UDF to check if the flight is delayed or not:
>>>def delay_check(x:Int) : Int = {
 if(x>0) return 1
 else return 0
 }

>>> val depUDF = udf((x: Int) => delay_check(x))

ii. Select the columns using the UDF to check if a flight was delayed or not:
>>>val delayDF = dfflight.select($"UniqueCarrier",
/* Use the UDF here */.alias("IsDelayed"), $"DepDelay")

iii. Using groupBy, and the agg operator, create a count of the DepDelay to get
total number of flights, and a sum of the IsDelayed Column:

>>>val delayGroupDF = delayDF.
groupBy($"UniqueCarrier").
agg("/* Add the mapping here */")

iv. Create a UDF to get the percentage of delayed flights:
>>>val calc_percent = udf((s: Int, c: Int) => s.toFloat/c)

v. Create the final DataFrame by using a select, the UDF, and a sort, then
show it:

>>> delayGroupDF.select($"UniqueCarrier",
 calc_percent(/* use the correct columns for udf*/).
 alias("Percentage")).sort(/*sort on percent*/).
 show()

c. CHALLENGE: Find the top 5 airlines with longest average flight distance.

6. CHALLENGE: Explore taxi times
a. Find the top 5 airports with the largest average taxi time in.
b. Find the top 5 airports with the shortest average taxi time out.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

31

SOLUTIONS
4. c:
>>>val dfflight=sqlContext.read.format("parquet").
 load("/user/root/flights.parquet")

5. a:
 >>> dfflight.select($"Origin", $"DepDelay").groupBy($"Origin").avg().
 withColumnRenamed("AVG(DepDelay)","DelayAvg").sort($"DelayAvg".desc).sh
ow()

5. b. ii:
>>>val delayDF = dfflight.select($"UniqueCarrier",depUDF($"DepDelay").

alias("IsDelayed"), $"DepDelay")

5. b. iii:
>>>val delayGroupDF = delayDF.groupBy($"UniqueCarrier").
 agg("IsDelayed" -> "sum", "DepDelay" -> "count")

5. b. v:
>>> delayGroupDF.select($"UniqueCarrier",
calc_percent($"SUM(IsDelayed)".cast("int"),$"COUNT(DepDelay)".cast("int")).
alias("Percentage")).sort($"Percentage".desc).show()

5. c:
>>>dfflight.select($"UniqueCarrier",$"Distance").
groupBy($"UniqueCarrier").avg().sort($"AVG(Distance)".desc).show(5)

6. a:
>>> dfflight.select($"Origin", $"TaxiIn").
groupBy($"Origin").avg().sort($"AVG(TaxiIn)".desc).show(5)

6. b:
>>> dfflight.select($"Origin", $"TaxiOut").
groupBy($"Origin").avg().sort($"AVG(TaxiOut”.asc).show(5)

Copyright © 2015, Hortonworks, Inc. All rights reserved.

32

Lab: Spark SQL with Hive

About This Lab
Objective: Using tables already existing in Hive, perform analytics.

File locations: Data is stored in Hive

Successful outcome: Developer should interact with Hive metastore and be able to
query data

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. Open up the REPL if not still open from the previous lab
2. Find all the airplanes that fly the longest route
3. Using the hivecontext, create two dataframes. One from the table flight.flights and

the other from flight.planes

4. Sort the flights dataframe using distance to find the longest flight, do a take to look at the
distance of the longest flight

5. Filter all flights on the longest flight distance, and return the tail numbers of those flights
6. Join the tailnums to the planes RDD to get the models of the airplanes

7. Perform a count to find the most common airplane models

Copyright © 2015, Hortonworks, Inc. All rights reserved.

33

SOLUTIONS
3:
>>>sqlContext.sql("Use flight")
>>>val flights = sqlContext.table("flights")
>>>val planes = sqlContext.table("planes")

4:
>>>flights.select($"distance").sort($"distance".desc).show(5)

5:
>>>val longflights = flights.filter($"distance"===4962)
.select($"tailnum").distinct

6:
>>>val longflightplanes = longflights.join(planes,
longflights("tailnum")===planes("tailnum") , "inner")

7:
>>> longflightplanes.select($"model").groupBy($"model")
.count.show()

Copyright © 2015, Hortonworks, Inc. All rights reserved.

34

Lab: Spark Streaming WordCount

About This Lab
Objective: Create a Streaming application that outputs all words said in a

Dstream, utilize the nc command to simulate a data source

File locations: No files

Successful outcome: Output words from simulated source to screen

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. Close the REPL
2. Start a new REPL specifying the following information:
#spark-shell --master local[2]

3. Create a Spark Streaming application that performs a wordcount on a socket text stream
a. Import the Streaming library:

>>>import org.apache.spark.streaming._

b. Create the streaming context, with a 5 second batch duration:
>>>val ssc = new StreamingContext(sc, Seconds(5))

c. Create the Dstream using sandbox and port 9999:
>>>val inputDS = ssc.socketTextStream("sandbox",9999)

d. Transform the RDD to create a wordcount application, split on spaces:
>>>val wc = inputDS.flatMap(line=> line.split(" ")).
map(word=> (word,1)).reduceByKey((a,b) => a+b)

e. Print out the output to the client:
>>>wc.print()

f. Set the log level to ERROR to avoid clutter:
>>>setLogLevel("ERROR")

g. Start the streaming application:
>>>ssc.start()

NOTE: You will see an error when it starts, it’s waiting for an input connection.
4. If a new terminal run the following command to start outputting data:
#nc -lkv 9999

Copyright © 2015, Hortonworks, Inc. All rights reserved.

35

a. Start typing words separated by space, hit return occasionally to submit them.

b. Look at the other terminal where the streaming application is running.
c. While the application is running, navigate to the web UI in Firefox and explore the

web UI tabs:
sandbox:4040

d. To quit the streaming application, press control-d, control-c for the terminal
running nc.

RESULT
You have now successfully created and run a stateless application.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

36

Lab: Spark Streaming with Windows

About This Lab
Objective: Create a Spark Streaming utilizing a window function to find words

read in the previous 10 seconds

File locations: No files

Successful outcome: Developer will use the window function to create a windowed
wordcount.

Before you begin You should be logged in to your AWS instance

Lab Steps
Perform the following steps:
1. Close the REPL
2. Start a new REPL specifying the following information:
#spark-shell --master local[2]

3. Create a Spark Streaming application that performs a wordcount on a socket text stream
using the window function reduceByKeyAndWindow. Set a 10 second window with a 2
second sliding duration

a. Import the Streaming library:
>>>import org.apache.spark.streaming._

b. Create the streaming context, with a 2 second batch duration:
>>>val ssc = new StreamingContext(sc, Seconds(2))

c. Create the Dstream using sandbox and port 9999:
>>>val inputDS = ssc.socketTextStream("sandbox",9999)

d. For this lab, enable checkpointing the lazy way:
>>>ssc.checkpoint("checkpointDir")

e. Transform the inputDS to use a window and then a reducebykey
>>>val windowDS = inputDS.window(Seconds(10),Seconds(2)).
flatMap(line => line.split(" ")).map(word=>(word,1)).
reduceByKey((a,b)=> a+b)

f. Print the output out:
>>>windowDS.print()

g. To avoid clutter the output, set the log level to ERROR:
>>>sc.setLogLevel("ERROR")

Copyright © 2015, Hortonworks, Inc. All rights reserved.

37

h. Start the streaming application:
>>>ssc.start()

4. In a new terminal run the following command to start outputting to the stream:
#nc -lkv 9999

a. Start typing words separated by space, hit return occasionally to submit them.

b. Look at the other terminal where the streaming application is running.
c. While the application is running, navigate to the web UI in Firefox and explore the

web UI tabs:
sandbox:4040

d. To quit the streaming application, press control-d, control-c for the terminal
running nc.

RESULT
You have now successfully created an application that utilizes the window function.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

38

