

Logistics

Daily Schedule

– 9AM – 5PM

© Hortonworks Inc. 2011 – 2016. All Rights Reserved

- Lunch
- Breaks

Computers VM/AWS Environment

Introductions

Please share:

- Name
- Previous Hadoop experience (if any)
- Experience with Spark (if any)
- Expectations for this class
- A Favorite hobby

Objectives

After completing this lesson, students should be able to:

- Describe the characteristics and types of Big Data
- Define HDP and how it fits into overall data lifecycle management strategies
- Describe and use HDFS
- Explain the purpose and function of YARN

The	term Big Data comes fro	om the computational sciences	
lt is thre	used to describe scenar aten to overwhelm the	ios where the volume, rate of creation, and types of tools used to store and process it	of data
	Three V's	Description	
	VOLUME	Petabytes and more, spurred by exponential growth in computers, sensors, social media, and regulatory requirements.	
	Velocity	Gigabytes per *second,* and faster, plus new data and new ways to create data are generated an an increasing rate.	
	Variety	Structured, semi-structured, unstructured. Databases, XML, JSON, text, photo, video, audio, etc.	

L

What is Hadoop?

- Hadoop:
 - Is a collection of open source software frameworks for the distributed storing and processing of large sets of data
 - Is scalable and fault tolerant
 - Works with commodity hardware
 - Processes all types of Big Data
- Hadoop design goals:
 - Use inexpensive, enterprise-grade hardware to create very large clusters
 - Achieve massive scalability through distributed storage and processing
- HDP is an enterprise-ready collection of these frameworks
 - Supported by Hortonworks for business clients

							Ong	oing	Inno	ovati	ion i	n Ap	oac	he										
HDP 2.4 Mar. 2016	2.7.1	0.1	5.0 1.2.1	0.7.0	5.2.1	1.6.0	0.80.0	1.12	4.4.0	1.7.0	0.10.	0.6	1	0.5.0	1.4.6	1.5.2	0.9.	2	21	.0.0	3.4.6	4.2.0	0.6.0	0.5.0
HDP 2.3 Jul. 2015	2.7.1	0.1	5.0 - 1.2.1	- 0.7.0	5.2.1	1.3.1	- 0.80.0	1.1.1	4.4.0	- 1.7.0	0.10	0.6	1-	0.5.0	1.4.6	1.5.2	- 0.8.	2 - 2.	1.0 - 1	1.0.0	3.4.6	4.2.0	- 0.6.0	0.5.0
HDP 2.2 Dec. 2014	2.6.0	- 0.1	4.0 - 0.14.0	0.5.2	4.10.2	1.2.1	0.60.0	0.98.4	4.2.0	1.6.1	- 0.9.3	-0.6	.0	-	1.4.5	1.5.2	0.8.	1 - 2		-	3.4.6	4.1.0	0.5.0	0.4.0
HDP 2.1 Apr. 2014	2.4.0][0.1	2.1 - 0.13.0	- 0.4.0	4.7.2			0.98.0	4.0.0	1.5.1	- 0.9.1	- 0.5	.0	-	1.4.4	1.4.0	\vdash	-[1]	5.1	¥ -	3.4.5	4.0.0	0.4.0]
	Hadoop & YARN	-14	нive	Tez	Solr	Spark	Slider	HBase	Phoenix	Accumulo	Storm	Falcon		Atlas	Sqoop	Flume	Kafka	and and	Ambari	Cloudbreal	Zookeeper	Oozie	Knox	Ranger
	DATA MGN	π				DATA	ACCESS						30VE	RNAN	CE & I)	TEGRA	TION	П	0	PERA	TIONS		SEC	URITY

Data	Management	and	Operations	Frameworks
------	------------	-----	------------	------------

Framework	Description
Hadoop Distributed File System (HDFS)	A Java-based, distributed file system that provides scalable, reliable, high-throughput access to application data stored across commodity servers
Yet Another Resource Negotiator (YARN)	A framework for cluster resource management and job scheduling
Framework	Description
Ambari	A Web-based framework for provisioning, managing, and monitoring Hadoop clusters
ZooKeeper	A high-performance coordination service for distributed applications
Cloudbreak	A tool for provisioning and managing Hadoop clusters in the cloud
Oozie	A server-based workflow engine used to execute Hadoop jobs
	These brief descriptions are provided for quick convenience. More detailed descriptions are available

Data Access	Frameworks
--------------------	------------

Framework	Description
Pig	A high-level platform for extracting, transforming, or analyzing large datasets
Hive	A data warehouse infrastructure that supports ad hoc SQL queries
HCatalog	A table information, schema, and metadata management layer supporting Hive, Pig, MapReduce, and Tez processing
Cascading	An application development framework for building data applications, abstracting the details of complex MapReduce programming
HBase	A scalable, distributed NoSQL database that supports structured data storage for large tables
Phoenix	A client-side SQL layer over HBase that provides low-latency access to HBase data
Accumulo	A low-latency, large table data storage and retrieval system with cell-level security
Storm	A distributed computation system for processing continuous streams of real-time data
Solr	A distributed search platform capable of indexing petabytes of data
Spark	A fast, general purpose processing engine use to build and run sophisticated SQL, streaming, machine learning, or graphics applications.

Framework	Description
Falcon	A data governance tool providing workflow orchestration, data lifecycle management, and data replication services.
WebHDFS	A REST API that uses the standard HTTP verbs to access, operate, and manage HDFS
HDFS NFS Gateway	A gateway that enables access to HDFS as an NFS mounted file system
Flume	A distributed, reliable, and highly-available service that efficiently collects, aggregates, and moves streaming data
Sqoop	A set of tools for importing and exporting data between Hadoop and RDBM systems
Kafka	A fast, scalable, durable, and fault-tolerant publish-subscribe messaging system
Atlas	A scalable and extensible set of core governance services enabling enterprises to meet compliance and data integration requirements

Framework	Description	
HDFS	A storage management service providing file and directory permissions, even more granular file and directory access control lists, and transparent data encryption	
YARN	A resource management service with access control lists controlling access to compute resources and YARN administrative functions	
Hive	A data warehouse infrastructure service providing granular access controls to table columns and rows	
Falcon	A data governance tool providing access control lists that limit who may submit Hadoop jobs	
Knox	A gateway providing perimeter security to a Hadoop cluster	
Ranger	A centralized security framework offering fine-grained policy controls for HDFS, Hive, HBase, Knox, Storm, Kafka, and Solr	

YARN – the HDP Operating System • Apache Hadoop YARN is the data operating system for Hadoop 2. YARN is: Batch Script SQL NoSQL Stream Search In-Mem Others. - Responsible for scheduling Мар Pia Hive HBase Storm Solr ISV Sparl tasks and managing CPU Reduce ccum Phoenia and memory resources Slider s 🖊 1 - Designed to enable multiple distributed applications to utilize YARN: Data Operating System cluster resources in a shared, secure, and multi-tenant manner HDFS Hadoop Distributed File System 28 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Questions

1. Name the three V's of big data.

© Hortonworks Inc. 2011 – 2016. All Rights Reserved

31

- 2. Name four of the six types of data commonly found in Hadoop.
- 3. Why is HDP comprised of so many different frameworks?
- 4. What two frameworks make up the core of HDP?
- 5. What is the base command-line interface command for manipulating files and directories in HDFS?
- 6. YARN allocates resources to applications via _____

Summary

- Data is made "Big" Data by ever-increasing Volume, Velocity, and Variety
- Hadoop is often used to handle sentiment, clickstream, sensor/machine, server, geographic, and text data
- HDP is comprised of an enterprise-ready and supported collection of open source Hadoop frameworks designed to allow for end-to-end data lifecycle management
- The core frameworks in HDP are HDFS and YARN
- HDFS serves as the distributed file system for HDP
- The hdfs dfs command can be used to create and manipulate files and directories
- YARN serves as the operating system and architectural center of HDP, allocating resources to a wide variety of applications via containers

Objectives

- Use Apache Zeppelin to work with Spark
- Describe the purpose and benefits of Spark
- Define Spark REPLs and application architecture

Spark and HDP

- HDP 2.5.3 Spark 1.6.3 (Spark 2.0 as tech preview)
- HDP 2.4.0 Spark 1.6.0
- HDP 2.3.4 Spark 1.5.2
- HDP 2.3.2 Spark 1.4.1
- HDP 2.2.8 Spark 1.3.1
- For this class we will use Spark 1.6 on HDP 2.4.

Questions

- 1. Name the tool in HDP that allows for interactive data analytics, data visualization, and collaboration with Spark.
- 2. What programming languages does Spark currently support?
- 3. Name the five components of an enterprise Spark application running in HDP.
- 4. Which component of a Spark application is responsible for application workload processing?

Summary

- Zeppelin is a web-based notebook that supports multiple programming languages and allows for data engineering, analytics, visualization, and collaboration using Spark
- Spark is a large-scale, cluster-based, in-memory data processing platform that supports parallelized operations on enterprise-scale datasets
- Spark provides REPLs for rapid, interactive application development and testing
- The five components of an enterprise Spark application running on HDP are:
 - Driver
 - SparkContext
 - YARN
 - HDFS
 - Executors

|--|

Objectives

- Explain the purpose and function of RDDs
- Explain Spark programming basics
- Define and use basic Spark transformations
- Define and use basic Spark actions
- Invoke functions for multiple RDDs, create named functions, and use numeric operations

distinct() rddBigList = sc.parallelize([5, 7, 11, 14, 2, 4, 5, 14, 21]) rddBigList.collect() [5, 7, 11, 14, 2, 4, 5, 14, 21] rddDistinct = rddBigList.distinct() rddDistinct.collect() [4, 5, 21, 2, 14, 11, 7]


```
collect(), first(), and take()
    collect() returns an entire RDD
    first() returns only the first element in an RDD
    take() returns a specified number of elements in an RDD
    rddNumList = sc.parallelize([5, 7, 11, 14])
    rddNumList.collect()
    [5, 7, 11, 14]
    rddNumList.first()
    5
    rddNumList.take(2)
    [5, 7]
```

```
count()
• Returns the number of elements in an RDD
rddNumList = sc.parallelize([5, 7, 11, 14])
rddNumList.count()
4
rddMary = sc.textFile("mary.txt")
rddMary.count()
4
Mary had a little lamb
Its fleece was white as snow
And everywhere that Mary went
The lamb was sure to go
```


Questions

- 1. What does RDD stand for?
- 2. What two functions were covered in this lesson that create RDDs?
- 3. True or False: Transformations apply a function to an RDD, modifying its values
- 4. What operation does the lambda function perform?
- 5. Which transformation will take take all of the words in a text object and break each of them down into a separate element in an RDD?
- 6. True or False: The count action returns the number of lines in a text document, not the number of words it contains.
- 7. What is it called when transformations are not actually executed until an action is performed?
- 8. True or False: The distinct function allows you to compare two RDDs and return only those values that exist in both of them

86 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Summary

- Resilient Distributed Datasets (RDDs) are *immutable* collection of elements that can be operated on in parallel
- Once an RDD is created, there are two things that can be done to it: transformations and actions
- Spark makes heavy use of functional programming practices, including the use of anonymous functions
- Common transformations include map(), flatmap(), filter(), distinct(), union(), and intersection()
- Common actions include collect(), first(), take(), count(), saveAsTextFile(), and certain mathematic and statistical functions

Learning Objectives

- Define and create Pair RDDs
- Perform common operations on Pair RDDs


```
keys(), values()
rddMapVals.collect()
[('cat', 1), ('A', 2), ('spoon', 3)]
keys() - returns a list of just the keys
rddMapVals.keys().collect()
['cat', 'A', 'spoon']
values() - returns a list of just the values
rddMapVals.values().collect()
[1, 2, 3]
```


Section Content of the section of the section

Objectives

After completing this lesson, students should be able to:

• Describe Spark Streaming

113 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

- Create and view basic data streams
- Perform basic transformations on streaming data
- Utilize window transformations on streaming data

Combine DStreams using union () • A simple example that creates two DStreams from the same source and combines them input1 = ssc.textFileStream("/user/root/test/") input2 = ssc.textFileStream("/user/root/test/") combined = input1.union(input2) combined.pprint() sc.start()

Create Key-Value Pairs hdfsInputDS = ssc.textFileStream("someHDFSdirectory") kvPairDS = hdfsInputDS.flatMap(lambda line: line.split(" ").map(lambda word: (word, 1)) kvPairDS.pprint() sc.start()

reduceByKey()	
hdfsInputDS = ssc.textFileStream("someHDFSdirectory")	
<pre>kvPairDS = hdfsInputDS.flatMap(lambda line: line.split(" ").map(lambda word:</pre>	(word, 1))
<pre>kvReduced = kvPairDS.reduceByKey(lambda a,b: a+b)</pre>	
kvReduced.pprint()	
<pre>ssc.start()</pre>	n et til
136 O Hortonworks Inc. 2011 – 2016. All Rights Reserved	HÖRTÖNWÖRKS UNIVERSITY

Windov	v functions p	erform com	bined operat	ions on a set	of Dstream	S
 The winduring of the second sec	dow length creation e values must	(size, in seco be a multiple o	nds) and inte	erval (how of	ten it is colle	ected) are set
	Dstream1	Dstream2		Dstream4	Dstream5	
		Window 1				
			Window 2			

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Summary

- Spark Streaming is an extension of Spark Core that adds the concept of a streaming data receiver and a specialized type of RDD called a DStream.
- DStreams are fault tolerant, whereas receivers are highly available.
- Spark Streaming utilizes a micro-batch architecture.
- Spark Streaming layers in a StreamingContext on top of the Spark Core SparkContext.
- Many DStream transformations are similar to traditional RDD transformations
- Window functions allow operations across multiple time slices of the same DStream, and are thus stateful and require checkpointing to be enabled.

Objectives

After completing this lesson, students should be able to:

- Name the various components of Spark SQL and explain their purpose
- Describe the relationship between DataFrames, tables, and contexts
- Use various methods to create and save DataFrames and tables
- Manipulate DataFrames and tables

Spark SOL Contexts
from pyspark.sql import SQLContext
<pre>sqlContext = SQLContext(sc)</pre>
or
<pre>sqlContext = HiveContext(sc)</pre>
• Zeppelin uses HiveContext named sqlContext when running %sql code
REPL also creates a HiveContext named sqlContext at launch
158 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

SQLContext vs. HiveContext

- SQLContext
 - Provides a generic SQL parser

HiveContext

- Superset of (extends) SQLContext
- Enables numerous additional operations using the HiveQL parser
- Allows ability to read data directly from and write back to Hive tables
- Provides access to Hive User Defined Functions (UDFs)
- Which to use?
 - SQLContext has fewer dependencies and uses less resources if the limited API meets your needs
 - HiveContext allows greater flexibility and capabilities
 - When in doubt, use HiveContext

Saving Dataframe to Hive Table	
 Use the HiveQL CREATE TABLE function to make a construction permanent Hive table 	opy of a DataFrame as a
sqlContext.sql("CREATE TABLE table1hive AS S	SELECT * FROM table1")
<pre>%pyspark sqlContext.sql("CREATE TABLE table1hive AS SELECT * FROM table1") sqlContext.sql("SHOW TABLES").show()</pre>	
++	
tableName isTemporary	
++	
table1 true	
test4 true	
permab false	
permcd false	
permenriched false	HORTONWORKS
168 a table1hive false	168
	708

In Zeppelin we have a shore	tcut for	
<pre>sqlContext.sql()</pre>		
 In Zeppelin, we can use the hive tables). 	e %SQL on tables registered to t select code from permab	he SQL Context (temp and
	code	
	AA	
	BB	UNIVERSITY

Example DataFrames

For the next few slides, let's create two data frames:

```
df1 = sc.parallelize(
    [Row(cid='101', name='Alice', age=25, state='ca'), \
    Row(cid='102', name='Bob', age=15, state='ny'), \
    Row(cid='103', name='Bob', age=23, state='nc'), \
    Row(cid='104', name='Ram', age=45, state='fl')]).toDF()

df2 = sc.parallelize(
    [Row(cid='101', date='2015-03-12', product='toaster', price=200), \
    Row(cid='104', date='2015-04-12', product='iron', price=120), \
    Row(cid='102', date='2014-12-31', product='fridge', price=850), \
    Row(cid='102', date='2015-02-03', product='cup', price=5)]).toDF()
```


C	DataFrame Operations: Inspecting Schema
	df1.columns #Display column names [u'age', u'cid', u'name', u'state']
	dfl.dtypes #Display column names and types [('age', 'bigint'), ('cid', 'string'), ('name', 'string'), ('state', 'string')]
	<pre>dfl.schema #Display detailed schema StructType(List(StructField(age,LongType,true), StructField(cid,StringType,true), StructField(name,StringType,true), StructField(state,StringType,true)))</pre>
180	O Hortonworks Inc. 2011 – 2016. All Rights Reserved

summary	++	-
		-
count mean stddev min max	4 27.0 11.045361017187261 15 45	
	++	-

df:	1.w	ith(Column	("age-c	log-years", dfl	["age"]*7).show()
+	+	·4	+4		+	
aq	ge	cid	name	state	age-dog-years	
+	+	+	++		++	
	25	101	Alice	ca	175	
	15	102	BOD	ny	105	
	23 45	104	BOD	nc £1	101	
+	ן כ י +	104	Raiii	L L	+	

DataF	rame	Opera	tions: Re	enamin	ng a Co	olumn		
Batari	ame	opera						
df1.wi	ithCc	olumnRe	enamed("	age",	"age2	").sh	ow()	
			(-) - ,	- [,	- ()	
+	r+	rame	+ state					
ugcz +	C ± G +		+					
25	101	Alice	ca					
15	102	Bob	ny					
23	103	Bob	nc					
45	104	Ram	fl					
+	+	F1	+					
								HORTONWORKS
187 © Hortonwo	rks Inc. 2011 – 7	2016. All Rights Reserve	d					

Г

	f "Column" expressions
dfl.select("name", "age").show() ++ name age ++ Alice 25 Bob 15 Bob 23 Ram 45 ++	<pre>df1.select(df1["name"], df1["age"]*7).show() ++ name (age * 7) ++ Alice 175 Bob 105 Bob 161 Ram 315 ++</pre>

selectExpr(*expr)	– Selects a set of	of SQL ex	pression	s.		
df.selectExpr("colA'	',"colB as	newNam	le","ab	s(colC)	")	
	-		·	· ·	-	
df1 salactFypr("subs	str(name.1.	3/11 11	age*7").show(()	
arr.sereccushr(subs		J / /		/ (()	
+	++			, ,	(
+	+ (age * 7)			,	()	
++ SUBSTR(name, 1, 3) ++	++ (age * 7) ++	J , ,		,	.,	
+	+ (age * 7) ++ 175	<i></i>		,	.,	
+	(age * 7) + 175 105	<i></i>		,		
+	(age * 7) (age * 7) 175 105 161	<i></i>		,		

Column Expression • Column objects can be created from a DataFrame Select a column: df1["age"] OR Expression: dfl.age * 2 - 15 • Operations on Column objects: Cast to type: df1["age"].cast("string") df1["age"].alias("age2") Rename a column: Sort a column: df1["age"].asc() or df["age"].desc() df1["name"].substr(1,3) Substring: df1["age"].between(25, 34) Between: 190 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Data Frame Operations: Filtering I	Rows
dfl.filter(dfl.age>21).show()	
OR	
dfl.filter(df1["age"]>21).show	7 ()
++ age cid name state ++ 25 101 Alice ca 23 103 Bob nc 45 104 Ram fl +++	

Data Frame Operation	s:groupBy() and sum()	
df2.select(df2["date df2["price"]).groupB	e"].substr(1,4).alias("year"), ey("year").sum().show()	
++ year SUM(price)		
++ 2014 850 2015 325 ++		
194 © Hortonworks Inc. 2011 – 2016. All Rights Reserved		UNIVERSITY

age	 cid	+ name	state	cid	date	price	product	
25	101	Alice	ca	101	2015-03-12	200	toaster	-
15	102	Bob	ny	102	2014-12-31	850	fridge	
15	102	Bob	ny	102	2015-02-03	5	_cup	
45		Ram	ΪĹ	104	2015-04-12		1ron	_

wurt	Multiple Conditions in JoinExpr								
Notice	Notice the special way to join with multiple conditions:								
df1.	df1.join(df2, (df1["cid"]==df2["cid"]) & (df2["price"] >								
200),	, "lr	ner")	.show	()					
+ age	+ cid	name	 state	cid	date	price	+ product	-	
	++	Pob	+ ny	 102	2014-12-31	850	 fridge	-	
+	102	вор	·						
+ 15 +	102 +	аоа +ł		F		+	+4	÷	
+ 15 +	102 +	вор 	++	F	+	+	+4	-	

Jser Defined Functions (UDFs)	
from pyspark.sql.functions import udf from pyspark.sql.types import IntegerType	
get_year = udf(lambda x: int(x[:4]), IntegerType())	
<pre>df2.select(get_year(df2["date"]).alias("year"),</pre>	
df2["product"]).collect()	
<pre>df2["product"]).collect() ++ year product ++</pre>	
df2["product"]).collect() + year product + 2015 toaster	
<pre>df2["product"]).collect() ++ year product ++ 2015 toaster 2015 iron 2014 fridge </pre>	

	Using UDFs in SQL Statements
	df2.registerTempTable("my_df")
	<pre>sqlContext.registerFunction("get_year", lambda x: int(x[:4]))</pre>
	<pre>sqlContext.sql("select get_year(date) as year FROM my_df").show()</pre>
	++ year ++ 2015 2015 2014 2015 ++
	202 O Hortonworks Inc. 2011 – 2016. All Rights Reserved

Questions

- 1. While core RDD programming is used with [structured/unstructured/both] data Spark SQL is used with [structured/unstructured/both] data.
- 2. True or False: Spark SQL is an extra layer of translation over RDDs. Therefore while it may be easier to use, core RDD programs will generally see better performance.
- 3. True or False: A HiveContext can do everything that a SQLContext can do, but provides more functionality and flexibility.
- 4. True or False: Once a DataFrame is registered as a temporary table, it is available to any running sqlContext in the cluster.
- 5. Hive tables are stored [in memory/on disk].
- 6. Name two functions that can convert an RDD to a DataFrame.
- 7. Name two file formats that Spark SQL can use without modification to create DataFrames.

Summary

- Spark SQL gives developers the ability to utilize Spark's in-memory processing capabilities on structured data
- Spark SQL integrates with Hive via the HiveContext, which broadens SQL capabilities and allows Spark to use Hive HCatalog for table management
- DataFrames are RDDs that are represented as table objects which can used to create tables for SQL interactions
- DataFrames can be created from and saved as files such as ORC, JSON, and parquet
- Because of Catalyst optimizations of SQL queries, SQL programming operations will generally outperform core RDD programming operations

Objectives

After completing this lesson, students should be able to:

- Explain the purpose and benefits of data visualization
- Perform interactive data exploration using visualization in Zeppelin
- Collaborate with other developers and stakeholders using Zeppelin

Visualizations on DataFrames z.show(DataFrameName) Spyspark bankDataFrame = sqlContext.table("bankdataperm") z.show(bankDataFrame) 🚯 🔛 📈 🖄 = ad balance marital age 58 2,143 married 44 29 single 2 33 married 47 1.506 married 33 1 single 35 231 married 447 28 single 42 2 divorced 121 58 married 217

Note Access Co	ontrol	
• By default, anyoi	ne with the note link can completely control	the note
 To control access note and set per Note Permissions (0) 	s, click the Note Permissions (padlock) icon a missions accordingly Only note owners can change)	at the top-right corner of the default -
Enter comma separated u Empty field (*) implies any	isers and groups in the fields. rone can do the operation.	
Owners : *	Owners can change permissions, read and write the note.	
Owners : * Readers : *	Owners can change permissions, read and write the note.	
Owners : * Readers : * Writers : *	Owners can change permissions, read and write the note. Readers can only read the note. Writers can read and write the note.	

A	utomate Note Updat	:es
•	Entire notes can be played	I, paragraph by paragraph, at regular intervals Run note with cron scheduler. Either choose from preset or write your own cron expression. Preset None 1m 5m 1h 3h 6h 12h 1d Cron expression auto-restart interpreter on cron execution
234	© Hortonworks Inc. 2011 – 2016. All Rights Reserved	234

Questions

- 1. What is the value of data visualization?
- 2. How many chart views does Zeppelin provide by default?
- 3. How do you share a copy of your note (non-collaborative) with another developer?
- 4. How do you share your note collaboratively with another developer?
- 5. Which note view provides only paragraph outputs?
- 6. Which paragraph feature provides the ability for an outside person to see a paragraph's output without having access to the note?
- 7. What paragraph feature allows you to give outside users the ability to modify parameters and update the displayed output without using code?

243 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Summary

- Data visualizations are important when humans need to draw conclusions about large sets of data
- Zeppelin provides support for a number of built-in data visualizations, and these can be extended via visualization libraries and other tools like HTML and JavaScript
- Zeppelin visualizations can be used for interactive data exploration by modifying queries, as well as the use of pivot charts and implementation of dynamic forms
- Zeppelin notes can be shared via export to a JSON file or by sharing the note URL
- Zeppelin provides numerous tools for controlling the appearance of notes and paragraphs which can assist in communicating important information
- Paragraphs can be shared via a URL link
- Paragraphs can be modified to control their appearance and assist in communicating important information

245 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Sha	ark UI: Jo	bs view			
Spa	1.4.1 Jobs S	Stages Storage Environr	nent Executor	'S	Spark shell application
Spark	(Jobs ^(?)				
Total Upti Schedulin	ime: 1.8 h ng Mode: FIFO ed Jobs: 18				
Event Ti	imeline				
Comple	eted Jobs (18)				
Job Id	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
17	take at <console>:30</console>	2015/11/11 17:52:08	2 s	3/3	9/9
16	take at <console>:26</console>	2015/11/11 17:52:03	18 ms	1/1	1/1
15	take at <console>:26</console>	2015/11/11 17:51:03	18 ms	1/1	1/1
14	take at <console>:26</console>	2015/11/11 17:50:52	15 ms	1/1	1/1
13	take at <console>:30</console>	2015/11/11 17:50:36	0.1 s	1/1 (2 skipped)	1/1 (8 skipped)
12	take at <console>:30</console>	2015/11/11 17:50:36	0.5 s	1/1 (2 skipped)	4/4 (8 skipped)
11	take at <console>:30</console>	2015/11/11 17:50:33	3 s	3/3	9/9
10	take at <console>:26</console>	2015/11/11 17:50:19	26 ms	1/1	1/1
9	take at <console>:24</console>	2015/11/11 17:49:43	21 ms	1/1	1/1
•					

Sp	Jobs Stages Stora	ge Environment Executors					S	park shell a	application
Deta	ils for Job 17								
Status: Comple	SUCCEEDED ted Stages: 3								
 Event DAG 	Timeline								
Comp	leted Stages (3)								
Stage Id	Description		Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Read	Shuffle Write
25	take at <console>:30</console>	+details	2015/11/11 17:52:09	0.4 s	1/1			1120.9 KB	
	keyBy at consoler (22	+details	2015/11/11 17:52:08	1 s	2/2	64.1 KB			41.8 KB
24	Reyby at <00150182.25		2015/11/11	2 s	6/6	657.8 MB			4.1 MB
24 23	keyBy at <console>:23</console>	+details	17:52:08			in D			

~										
Spark	1.4.1 Jo	obs Stages Stora	age Environm	ent Executors					Spark shell application	
Details f	or Stage	23 (Attempt 0)							
Total Time Acr Input Size / Re Shuffle Write: 4	oss All Tasks: cords: 657.8 M 4.1 MB / 68613	5 s B / 7009728	-							
 DAG Visualiza Show Addition Event Timelin 	ation Inal Metrics									
Summary M	letrics for 6	Completed Tasks								
Metric		Min	25th per	rcentile	Median		75th percentile		Max	
Duration		0.1 s	0.8 s		1 s		1 s		1 s	
Scheduler Dela	ay	2 ms	3 ms		5 ms		7 ms		17 ms	
Controlation Dist	CTime 8 ms		22 ms		0.1 s		0.1 s		0.1 s	
GC Time		8 ms			128.1 MB / 1368262		128.1 MB / 1369518			
GC Time Input Size / Re	cords	8 ms 17.5 MB / 184198	128.1 M	B / 1351102	128.1 MB / 1368262		128.1 MB / 1369518		128.1 MB / 1372006	
GC Time Input Size / Re Shuffle Write S	cords Size / Records	8 ms 17.5 MB / 184198 110.3 KB / 1759	128.1 M 807.6 K	IB / 1351102 B / 13134	128.1 MB / 1368262 825.0 KB / 13364		128.1 MB / 1369518 826.8 KB / 13413		128.1 MB / 1372006 841.8 KB / 13617	
GC Time Input Size / Re Shuffle Write S	cords Size / Records Metrics by	8 ms 17.5 MB / 184198 110.3 KB / 1759 Executor	128.1 M 807.6 K	IB / 1351102 B / 13134	128.1 MB / 1368262 825.0 KB / 13364		128.1 MB / 1369518 826.8 KB / 13413		128.1 MB / 1372006 841.8 KB / 13617	
GC Time Input Size / Re Shuffle Write S Aggregated Executor ID	acords Bize / Records Metrics by Address	8 ms 17.5 MB / 184198 110.3 KB / 1759 Executor Task Time	128.1 M 807.6 Ki	B / 1351102 B / 13134 Failed Tasks	128.1 MB / 1368262 825.0 KB / 13364 Succeeded Tasks	Input	128.1 MB / 1369518 826.8 KB / 13413 Size / Records	Shuffle	128.1 MB / 1372006 841.8 KB / 13617 Write Size / Records	

asks													
Index I	ID /	Attempt	Status	Locality Level	Executor ID / Host	Launch Time	Duration	Scheduler Delay	GC Time	Input Size / Records	Write Time	Shuffle Write Size / Records	Errors
) 3	33 (0	SUCCESS	ANY	driver / localhost	2015/11/11 17:52:08	1 s	5 ms	95 ms	128.1 MB (hadoop) / 1372006	5 ms	823.3 KB / 13326	
1 3	34 (0	SUCCESS	ANY	driver / localhost	2015/11/11 17:52:08	1 s	7 ms	0.1 s	128.1 MB (hadoop) / 1368262	7 ms	841.8 KB / 13617	
2 3	35 (0	SUCCESS	ANY	driver / localhost	2015/11/11 17:52:08	1 s	3 ms	0.1 s	128.1 MB (hadoop) / 1369518	5 ms	825.0 KB / 13364	
3 3	36	0	SUCCESS	ANY	driver / localhost	2015/11/11 17:52:08	1 s	4 ms	0.1 s	128.1 MB (hadoop) / 1364642	6 ms	826.8 KB / 13413	
4 3	37 (0	SUCCESS	ANY	driver / localhost	2015/11/11 17:52:09	0.8 s	17 ms	22 ms	128.1 MB (hadoop) / 1351102	4 ms	807.6 KB / 13134	
5 3	38	0	SUCCESS	ANY	driver / localhost	2015/11/11 17:52:09	0.1 s	2 ms	8 ms	17.5 MB (hadoop) / 184198	2 ms	110.3 KB / 1759	

	ient			
Spork 1.4.1 Jobs Stages Storage	Environment	Executors		Spark shell application U
Environment				
			Value	
Java Home			/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.91.x86_64/jre	
Java Version			1.7.0_91 (Oracle Corporation)	
Scala Version			version 2.10.4	
Spark Properties				
Name			Value	
spark.app.id			local-1447263545873	
spark.app.name			Spark shell	
spark.driver.extraJavaOptions			-Dhdp.version=2.3.2.0-2950	
spark.driver.host			192.168.1.170	
spark.driver.port			35557	
				HORTONWOR

Spar	1.6.0 Jo	bs Sta	ges Storage	e Env	ironment	Executor	s SQL							Zeppelin application
Execu	tors (3)													
Memory: 0. Disk: 0.0 B	.0 B Used (797.6 MB Used	Total)												
Executor ID	Address	RDD Blocks	Storage Memory	Disk Used	Active Tasks	Failed Tasks	Complete Tasks	Total Tasks	Task Time	Input	Shuffle Read	Shuffle Write	Logs	Thread Dump
1	sandbox:52087	0	0.0 B / 143.3 MB	0.0 B	0	4	594	598	32.9 s	2.2 MB	10.8 KB	21.6 KB	stdout stderr	Thread Dump
2	sandbox:57010	0	0.0 B / 143.3 MB	0.0 B	0	4	628	632	32.8 s	2.0 MB	10.8 KB	21.7 KB	stdout stderr	Thread Dump
driver	172.17.0.1:52752	0	0.0 B / 511.1 MB	0.0 B	0	0	0	0	0 ms	0.0 B	0.0 B	0.0 B		Thread Dump

	Spork 1.6.0 Jobs Stages Storage E	Environment Ex	cecutors SQI				Zeppelin application
S	QL						
Co	ompleted Queries						
ID	Description		Submitted	Duration	Jobs	Detail	
5	take at NativeMethodAccessorImpl.java:-2	+details	2016/06/09 10:46:18	2 s	12	== Parsed Logical Plan ==	+details
4	take at NativeMethodAccessorImpl.java:-2	+details	2016/06/09 10:46:15	2 s	11	== Parsed Logical Plan ==	+details
3	take at NativeMethodAccessorImpl.java:-2	+details	2016/06/09 10:46:12	3 s	10	== Parsed Logical Plan ==	+detail:
2	take at NativeMethodAccessorImpl.java:-2	+details	2016/06/09 10:45:50	2 s	5	== Parsed Logical Plan ==	+details
1	take at NativeMethodAccessorImpl.java:-2	+details	2016/06/09 10:45:48	2 s	4	== Parsed Logical Plan ==	+details
0	take at NativeMethodAccessorImpl.java:-2	+details	2016/06/09 10:45:32	16 s	3	== Parsed Logical Plan ==	+detail:

TakeOrde	eredAndProject
- Details	
== Parsed Log	ical Plan ==
Limit 1001	
+- Sort [Spen	dinginBillions#43 DESC], true
+- Aggrega	te [category#29], [category#29,(cast((sum(cast(spending#32 as bigint)),mode=Complete,isDistinct=false) as double) / cast(cast(1000 as bigint) as double)) AS Sp
+- Suba	iseraj unor halth table
+- L	ogicalRDD [year#27, state#28, category#29, funding_src1#30, funding_scr2#31, spending#32], MapPartitionsRDD[40] at rddToDataFrameHolder at <console>:36</console>
== Analyzed L	ogical Plan ==
category: str	ing, SpendinginBillions: double
Limit 1001	
+- Sort [Spen	dinginBillions#43 DESC], true
r- Aggrega	te [category#z3], [category#z3,(cast[cast[spenuing#3z as uigint]),mode=compiete,isuistint=raise) as uuuuie) / cast[tast[tast as uigint] as uuuuie)) As sp n=#d41
+- Suba	uery health table
+- L	ogicalRDD [year#27,state#28,category#29,funding_src1#30,funding_scr2#31,spending#32], MapPartitionsRDD[40] at rddToDataFrameHolder at <console>:36</console>
== Optimized	Logical Plan ==
Limit 1001	
+- Sort ISpen	alnoinkillions#43 Desci, true
== Optimized Limit 1001 +- Sort [Spen	logical Plan == dinoinBillions#43 DESC1, true

Г

	Net				1				
Spo	Jobs Stages Stor	age	Environment E	Executors	Stre	eaming)		PySparkShell application
Sparl	k Jobs ^(?)								
Total Up Scheduli Active Jo Complete Event 1	time: 3.9 min ng Mode: FIFO bbs: 1 ed Jobs: 6 Timeline								
Job Id	JODS (1)		Submitted		Duratio	on	Stages: Succeeded/Total		Tacks (for all stages): Succeeded/Total
0	Streaming job running receiver 0 start at NativeMethodAccessorImpl.java:-2		2016/06/09 12:17	7:36	1.2 min	1	D/1	l	0/1
Comple	eted Jobs (6)								
Job Id	Description	Submi	tted	Durat	ion	Stage	s: Succeeded/Total	Tas	ks (for all stages): Succeeded/Total
6	runJob at PythonRDD.scala:393	2016/0	6/09 12:18:45	0.1 s		1/1			3/3
5	runJob at PythonRDD.scala:393	2016/0	6/09 12:18:45	52 ms		1/1			1/1
4	runJob at PythonRDD.scala:393	2016/0	6/09 12:18:40	0.1 s		1/1			2/2
3	runJob at PythonRDD.scala:393	2016/0	6/09 12:18:40	59 ms		1/1			1/1
2	runJob at PythonRDD.scala:393	2016/0	6/09 12:18:35	63 ms		1/1			1/1
	run-lob at PythonBDD scala:393	2016/0	6/09 12:18:35	0.4 s		1/1			1/1

Streaming Batches

275 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

Batch Time	Input Size	Scheduling Delay (?)	Processing Time (?)	Output Ops: Su	cceeded/Total	Status
Completed Ba	tches (last 26 out	of 26)				
Batch Time	Input Siz	scheduling Delay (?)	Processing Time (?)	Total Delay (?)	Output Ops: Succeeded/Tota	I
2016/06/09 12:19	.45 0 events	2 ms	27 ms	29 ms	1/1	
2016/06/09 12:19	:40 0 events	0 ms	17 ms	17 ms	1/1	
2016/06/09 12:19	:35 0 events	1 ms	10 ms	11 ms	1/1	
2016/06/09 12:19	:30 0 events	0 ms	14 ms	14 ms	1/1	
2016/06/09 12:19	25 0 events	0 ms	13 ms	13 ms	1/1	
2016/06/09 12:19	20 0 events	3 ms	31 ms	34 ms	1/1	
2016/06/09 12:19	15 0 events	0 ms	13 ms	13 ms	1/1	
2016/06/09 12:19	10 0 events	0 ms	14 ms	14 ms	1/1	
2016/06/09 12:19	:05 0 events	0 ms	13 ms	13 ms	1/1	
2016/06/09 12:19	:00 0 events	0 ms	14 ms	14 ms	1/1	
2016/06/09 12:18	:55 0 events	0 ms	87 ms	87 ms	1/1	

0,0 0,11	1.6.0 Jobs Stages Storage Environment Ex	ecutors	Streaming				PySparkShell ap	plication UI
Batch Durat Input data s Scheduling Processing Total delay: Output Op	ion:5 s ize:0 records delay:2 ms iime:27 ms 29 ms			Job		Stages:	Tasks (for all stages):	
ld	Description	Duration	Status	ld	Duration	Succeeded/Total	Succeeded/Total	Error
0	callForeachRDD at NativeMethodAccessorImpl.java:-2 +detail	s 28 ms	Succeeded	-	-	-		-

Summary

281 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

- Spark applications consist of Spark jobs, which are collections of tasks that culminate in an action.
- Spark jobs are divided into stages, which separate lists of tasks based on shuffle boundaries and are organized for optimized parallel execution via the DAG Scheduler.
- The Spark Application UI provides a view into all jobs run or running for a given SparkContext instance, including detailed information and statistics appropriate for the application and tasks being performed.

<complex-block>

Storage Level	Memory	Disk	Serialized	Replicas
MEMORY_ONLY (default)	Yes	Never	No	No
MEMORY_AND_DISK	Yes	Spills	No	No
MEMORY_ONLY_SER	Yes	No	Yes	No
MEMORY_AND_DISK_SER	Yes	Spills	Yes	No
MEMORY_ONLY_2	Yes	No	No	Yes
MEMORY_AND_DISK_2	Yes	Spills	No	Yes
DISK_ONLY	No	Yes	No	No
Example from pyspark import StorageLevel frd = sc.textFiles("/user/root/logs/") fd.ersist(StorageLevel.MEMORY_ONLY_SER) fd.map(...).saveAsTextFile("/user/root/filteredLogs.txt") fd.filter(...).saveAsTextFile("/user/root/filteredLogs.txt")

Kyro Serialization • Using Kryo Serialization (always use it) conf = SparkConf() conf.set('spark.serializer', 'org.apache.spark.serializer.KryoSerializer') sc=SparkContext(conf=conf)

Checkpointing

- Helps mitigate the recomputation problem
- Enabling checkpointing does the following
 - Data checkpointing that saves intermediate data to reliable storage (HDFS)
 - Metadata checkpointing, which stores file names and other configuration data
- Lineage is "reset" to the point of the last checkpoint
- Considerations:
 - Performed at the RDD, not the application, level
 - There is an expense to persist to HDFS, but this is usually overshadowed by the benefits
 - No automatic cleanup of HDFS files

Accumulators

- Accumulator = A variable that is only "added" to through an associated operation, and can therefore be efficiently supported in parallel.
- •Accumulators can be used to implement counters (as in MapReduce) or sums.
- •Only the driver can access the value.
 - -Updates are sent to the driver, will get an exception if you use the .value on executors
- Spark natively supports accumulators of numeric types, and developers can add support for new types.
 - -Doubles
 - -Floats
 - -Ints
- Most common uses
 - -Count events that occur, like invalid records

Accumulator in Transformation Example

```
rdd=sc.textFile(myfile.txt)
blanklines = sc.accumulator(0) ## Create an Accumulator[Int]
initialized to 0
rddNotBlank = rdd.map(lambda line: \
    if not line:
        blanklines += 1
else:
        line).map(lambda line: line.split(',')
rddNotBlank.saveAsTextFile("myfile.txt")
```

Accumulator in Action Example

```
val rdd=sc.textFile(myfile.txt)
//Create Accumulator[Int] initialized to 0
val blanklines = sc.accumulator(0)
val rddNotBlank = rdd.filter(line => !line.isEmpty)
rdd.foreach(line =>
    if (line.isEmpty){
        blanklines +=1
})
rdd.join(otherrdd).saveAsTextFile()
blanklines.value
rddNotBlank.saveAsTextFile("myfile.txt")
```


Objectives

After completing this lesson, students should be able to:

- Control behavior and performance of Spark applications via:
 - mapPartitions() vs.map()
 - Implementing joining strategies
 - Optimizing executors

map can be a better parser -> Converting string to Array[String] rdd = ##someRdd rdd.mapPartitions(lambda lines: { myObject = simulateExpensiveOjectCreation() lines.map(lambda line: ... }) .take(5).foreach(println) net net secample we created a single instance of a an obsect per partition, instead of per record. def simulateExpensiveObjectCreation() { Thread sleep 10 }

<u<section-header><list-item><list-item><list-item><list-item> Order Order Order Des Des</list-item></list-item></list-item></list-item></u<section-header>	JOIN ID=1 0_ID=1 0_ID=1 ID=5 0_ID=5 ID=2 0_ID=2 0_ID=2 ID=6 0_ID=6 0_ID=6 ID=3 0_ID=3 ID=7 0_ID=7 ID=4 0_ID=4 ID=8 0_ID=8 0_ID=8 0_ID=8 0_ID=8 0_ID=8 0_ID=8 0_ID=8 0_ID=8 0_ID=8 0_ID=8 0_ID=1		Order Items 0_ID=1 0_ID=1 0_ID=2 0_ID=2 0_ID=3 0_ID=3 0_ID=4 0_ID=5 0_ID=6 0_ID=7 0_ID=8 0_ID=8 0_ID=8 0_ID=8 0_ID=8
--	--	--	---

 Both datasets are hashed partitioned by the join key with the same number of partitions Referred to as co-partitioned join No shuffles are required This is a narrow operation! Significant performance gains ID=4 ID=1 O_ID=1 O_ID=2 O_ID=3 O_ID=3 O_ID=7 	 Both datasets are hashed partitioned by the join key with the same number of partitions Referred to as co-partitioned join No shuffles are required This is a narrow operation! Significant performance gains Orders ID=1 ID=2 ID=3 ID=1 ID=3 ID=4 ID=4 ID=4 ID=4 ID=4 ID=4 ID=4 ID=4 ID=4 ID=4	Co-Partitioned (Best Case)		JOIN	Order Items	
 Referred to as co-partitioned join No shuffles are required This is a narrow operation! Significant performance gains ID=2 ID=2 O_ID=2 O_ID=2 O_ID=2 O_ID=3 O_ID=3 O_ID=3 O_ID=3 O_ID=3 O_ID=3 O_ID=7 ID=4 	 Referred to as co-partitioned join No shuffles are required This is a narrow operation! Significant performance gains ID=2 ID=1 ID=3 ID=3 ID=3 ID=3 ID=3 ID=3 ID=3 ID=3 ID=3 ID=4 ID=4	 Both datasets are hashed partitioned by the join key with the same number of partitions 	Orders ID=1 ID=5	0_ID=1 0_ID=1 0_ID=1 ID=5 0_ID=5	 O_ID=1 O_ID=1 O_ID=1 O_ID=5 O ID=2	
	ID=8 O_ID=3 O_ID=3 O_ID=3 O_ID=8 ID=7 O_ID=8 O_ID=7 O_ID=8 ID=4 ID=4	 Referred to as co-partitioned join No shuffles are required This is a narrow operation! Significant performance gains 	ID=2 ID=6 ID=3 ID=7 ID=4 ID=8	ID=2 ID=6 ID=3 ID=7 ID=4	ID=2 O_ID=2 O_ID=2 ID=6 O_ID=6 ID=3	O_ID=2 O_ID=6 O_ID=3 O_ID=3 O_ID=7 O_ID=7

Using off-heap Memory

Important new configs:

- -spark.memory.offHeap.enabled (false by default)
 - If true, Spark will attempt to use off-heap memory for certain operations. If off-heap memory use is enabled, then spark.memory.offHeap.size must be positive.
- -spark.memory.offHeap.size (0 by default)
- -spark.memory.fraction (0.6 by default)
- -spark.memory.storageFraction

Questions

- 1. Why can mapPartitions be faster than map?
- 2. Why does preserving partition potentially make down stream operation faster?
- 3. Whats better, too many or to few partitions?
- 4. Is a lot of small executor, or fewer big ones ideal?

Summary

- mapPartitions() is similar to map() but operates at the partition instead of element level
- Controlling RDD parallelism before performing complex operations can result in significant performance improvements
- Caching uses memory to store data that is frequently used
- Checkpointing writes data to disk every so often, resulting in faster recovery should a system failure occur
- Broadcast variables allow tasks running in an executor to share a single, centralized copy of a data variable to reduce network traffic and improve performance
- Join operations can be significantly enhanced by pre-shuffling and pre-filtering data
- Executors are highly customizable, including number, memory, and CPU resources
- Spark SQL makes a lot of manual optimization unnecessary due to Catalyst

Objectives

After completing this lesson, students should be able to:

- Create an application to submit to the cluster
- Describe client vs. cluster submission with YARN
- Submit an application to the cluster
- List and set important configuration items

Zeppelin / REPLs vs. Spark Applications

- Zeppelin and REPLs allow for interactive manipulation, exploration, and testing
- Spark applications run as independent programs for production applications
 Can be integrated into workflows managed by Falcon/Oozie
- The differences between them are minimal, making code reuse easy

Summary

- A developer must reproduce some of the back-end environment creation that Zeppelin and the REPLs handle automatically.
- The main differences between a yarn-client and yarn-cluster application submission is the location the Spark driver and SparkContext.
- Use spark-submit, with appropriate configurations, the application file, and necessary arguments, to submit an application to YARN.

Objectives

After completing this lesson, students should be able to:

- Describe the purpose of machine learning and some common algorithms used in it
- Describe the machine learning packages available in Spark
- Examine and run sample machine learning applications

377 © Hortonworks Inc. 2011 – 2016. All Rights Reserved

DisclaimerThis is not a Data Science class

- Fully utilizing the packages this lesson will discuss requires fundamental understandings of topics that go well beyond what will be covered
- Labs and suggested exercises will consist of pre-built scripts / applications that will demonstrate some of these topics in practice

Machine Learning Basics

- Machine learning attempts to find actionable patterns within data
- Creates a model, which is used to make predictions
- Two basic types of Machine Learning
 - Supervised
 - Unsupervised

Supervised Learning

- Most common type of machine learning
- A model is created that uses one or more variables to make a prediction, and then that prediction can be immediately tested to determine accuracy
- Two common types of predictions:
 - Classification: Yes or no, approve or reject, spam or safe, etc. Will the flight depart on time?
 - Regression: What will the value be? What time is the flight likely to depart?
- Breaks a dataset into two parts:
 - Training data: used to create the model
 - Testing data: used to determine model accuracy

Carrier	Airplane	Age	Airport	Time	Weather	StaffPerc	Sched	Actual
А	В	11	SFO	EarlyMorn	Clear	90	05:31	05:31
С	D	2	ORD	Morn	Windy	84	08:14	09:35
А	D	7	ATL	EarlyAft	Cloudy	100	12:05	12:05
D	D	14	ORD	Aft	Rain	100	15:21	15:45
В	A	4	JFK	EarlyEve	Stormy	94	17:00	19:20
С	В	6	BWI	Eve	Warnings	80	20:42	CANCEL
А	D	2	HDP	LateEve	Clear	100	22:00	22:00
E	D	10	STL	RedEye	Stormy	93	23:45	CANCEL
С	В	8	DAL	Aft	Rain	99	14:10	14:10
С	E	8	SJC	Morn	Clear	98	09:34	10:15

Phrase1	Phrase2	Phrase3	
did not like	had a nice	it was ok	
i loved this	awesome place to	will be back	
would not recommend	will not return	did not like	
would definitely recommend	i loved this	service was good	
could not stand	would not recommend	had a nice	
service was excellent	food was cold	not sure if	
service was good	will be back	hard to find	
was a dump	food was outstanding	might try again	
food was cold	did not like	will not return	
server was friendly	was not able	hard to find	

Machine Learning Sample Applicat	ions
Installed automatically when Spark is instal	lled
<pre>[root@sandbox main]# pwd /usr/hdp [root@sandbox main]# ls py [root@sa java py avro_inputformat.py cassandra_inputformat.py hbase_inputformat.py hbase_outputformat.py hbase_outputformat.py hbase_outputformat.py ml ml mlib</pre>	<pre>/thon pagerank.py parquet_inputformat.py pi.py sort.py sql.py status_api_demo.py streaming transitive_closure.py wordcount.py</pre>

Machine Learning Sample Application Files

[root@sandbox main]# ls python/mllib/ binary_classification_metrics_example.py correlations.py decision_tree_classification_example.py decision_tree_regression_example.py fpgrowth_example.py gaussian_mixture_model.py gradient_boosting_classification_example.py gradient_boosting_regression_example.py isotonic_regression_example.py kmeans.py logistic_regression.py multi_class_metrics_example.py multi_label_metrics_example.py naive_bayes_example.py random_forest_classification_example.py random_forest_regression_example.py random_rdd_generation.py ranking_metrics_example.py recommendation_example.py regression_metrics_example.py sampled_rdds.py word2vec.py

MITIDI	GNU nano 2.0.9 File:decision_tree_classification_example.py
	from pyspark.mllib.tree import DecisionTree, DecisionTreeModel from pyspark.mllib.util import MLUtils # \$example off\$
	ifname == "main":
	<pre>sc = SparkContext(appName="PythonDecisionTreeClassificationExample")</pre>
	<pre># \$example on\$ # Load and parse the data file into an RDD of LabeledPoint. data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt') # Split the data into training and test sets (30% held out for testing) (trainingData, testData) = data.randomSplit([0.7, 0.3])</pre>
	<pre># Train a DecisionTree model. # Empty categoricalFeaturesInfo indicates all features are continuous. model = DecisionTree.trainClassifier(trainingData, numClasses=2, catego\$</pre>
	<pre># Evaluate model on test instances and compute test error predictions = model.predict(testData.map(lambda x: x.features)) labelsAndPredictions = testData.map(lambda lp: lp.label).zip(prediction\$ testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() / \$ print('Test Error = ' + str(testErr)) print('Learned classification tree model:')</pre>

K-IVIEALIS CIUSTELLIS	GNU nano 2.0.9 File: python/ml/kmeans_example.py
GNU nano 2.0.9 Fil	e
import sys	from pyspark.ml.clustering import KMeans, KMeansModel from pyspark.mllib.linalg import VectorUDT, _convert_to_vector from pyspark.sql import SQLContext
import numpy as np from pyspark import SparkCo	from pyspark.sql.types import Row, StructField, StructType n
from pyspark.mllib.clusteri	""" A simple example demonstrating a k-means clustering. Run with:
def parseVector(line):	<pre>bin/spark-submit examples/src/main/python/ml/kmeans_example.py <input/></pre>
return np.array([float("" ""
ifname == "main":	def parseVector(line):
print("Usage: kmean exit(-1)	<pre>array = np.array([float(x) for x in line.split(' ')]) return _convert_to_vector(array)</pre>
<pre>SC = SparkContext(appNa lines = sc.textFile(sys data = lines.map(parseV</pre>	". eifname == "main":
k = int(sys.argv[2]) model = KMeans.train(da	FEATURES_COL = "features"
print("Final centers: "	if len(sys.argv) != 3:

Questions

- 1. What are two types of machine learning?
- 2. What are two types of supervised learning?
- 3. What do you call columns that are selected as variables to build a machine learning model?
- 4. What is a row of data called in machine learning?
- 5. What is the goal of unsupervised learning?
- 6. Name the two Spark machine learning packages.
- 7. Which machine learning package is designed to take advantage of flexibility and performance benefits of DataFrames?
- 8. Name two reasons to prefer Spark machine learning over other alternatives

Summary

- Spark supports machine learning algorithms running in a highly parallelized fashion using cluster-level resources and performing in-memory processing
- Supervised machine learning builds a model based on known data and uses it to predict outcomes for unknown data
- Unsupervised machine learning attempts to find grouping patterns within datasets
- Spark has two machine learning packages available
 - mllib operates on RDDs
 - ml operates on DataFrames
- Spark installs with a collection of sample machine learning applications

