
2/15/17

1

HDP	Developer:
Enterprise	Spark	1

2 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Logistics

Daily	Schedule
– 9AM	– 5PM
– Lunch
– Breaks

Computers
VM/AWS	Environment

2/15/17

2

3 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Introductions	

Ã Name	

Ã Previous	Hadoop	experience	(if	any)

Ã Experience	with	Spark	(if	any)

Ã Expectations	for	this	class

Ã A	Favorite	hobby

Please	share:

4 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDP	Overview	for	
Developers

2/15/17

3

5 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Describe	the	characteristics	and	types	of	Big	Data

Ã Define	HDP	and	how	it	fits	into	overall	data	lifecycle	management	strategies

Ã Describe	and	use	HDFS

Ã Explain	the	purpose	and	function	of	YARN

After	completing	this	lesson,	students	should	be	able	to:

6 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Defining	Big	Data

2/15/17

4

7 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

What	Makes	Data	"Big"	Data?
Ã The	term	Big	Data	comes	from	the	computational	sciences

Ã It	is	used	to	describe	scenarios	where	the	volume,	rate	of	creation,	and	types	of	data	
threaten	to	overwhelm	the	tools	used	to	store	and	process	it

Three V’s Description

VOLUME
Petabytes	and	more,	spurred	by	exponential	growth	in	
computers,	sensors,	social	media,	and	regulatory	
requirements.

Velocity
Gigabytes	per	*second,*	and	faster,	plus	new	data	and	
new	ways	to	create	data	are	generated	an	an	increasing	
rate.

Variety Structured,	semi-structured,	unstructured.	Databases,	
XML,	JSON,	text,	photo,	video,	audio,	etc.

8 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Common	Types	of	Data	in	Hadoop

Ã There	are	six	types	of	data	commonly	found	in	Hadoop.
– Sentiment	data:	how	customers	react
– Clickstream	data:	website	visitor	behavior
– Sensor	or	machine	data:	data	from	remote	devices
– Geographic	data:	location-based	data
– Server	log	data:	failure	and	security	logs
– Text:	email,	web	pages,	documents,	etc.

2/15/17

5

9 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Defining	Big	Data
Ã HDP	Introduction

10 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

What	is	Hadoop?

Ã Hadoop:
– Is	a	collection	of	open	source	software	frameworks	for	the	distributed	storing	and	processing	of	

large	sets	of	data
– Is	scalable	and	fault	tolerant
– Works	with	commodity	hardware
– Processes	all	types	of	Big	Data

Ã Hadoop	design	goals:
– Use	inexpensive,	enterprise-grade	hardware	to	create	very	large	clusters
– Achieve	massive	scalability	through	distributed	storage	and	processing

Ã HDP	is	an	enterprise-ready	collection	of	these	frameworks
– Supported	by	Hortonworks	for	business	clients

2/15/17

6

11 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hortonworks	Data	Platform

12 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDP	Introduction

2/15/17

7

13 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data	Management	and	Operations	Frameworks

Framework Description
Hadoop	Distributed	File	
System	(HDFS)

A	Java-based, distributed	file	system	that	provides	scalable,	reliable,	high-throughput	access	to	
application data	stored	across	commodity	servers

Yet	Another	Resource	
Negotiator	(YARN)

A	framework	for	cluster resource	management	and	job	scheduling

Framework Description
Ambari A	Web-based	framework for	provisioning,	managing,	and	monitoring	Hadoop	clusters

ZooKeeper A	high-performance coordination	service	for	distributed	applications

Cloudbreak A	tool	for	provisioning	and	managing	Hadoop	clusters	in	the	cloud

Oozie A	server-based	workflow	engine used	to	execute	Hadoop	jobs

These	brief	descriptions	are	provided	for	quick	
convenience.	More	detailed	descriptions	are	available	
online	or	in	other	lessons	and	courses.

14 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data	Access	Frameworks

Framework Description
Pig A	high-level	platform	for	extracting, transforming,	or	analyzing	large	datasets

Hive A	data	warehouse	infrastructure	that	supports	ad	hoc	SQL	queries

HCatalog A	table	information,	schema,	and	metadata	management	layer	supporting	Hive,	Pig,	
MapReduce,	and	Tez	processing

Cascading An	application development	framework	for	building	data	applications,	abstracting	the	details	
of	complex	MapReduce	programming

HBase A	scalable,	distributed NoSQL	database	that	supports	structured	data	storage	for	large	tables

Phoenix A	client-side	SQL	layer over	HBase	that	provides	low-latency	access	to	HBase	data

Accumulo A	low-latency,	large	table	data	storage	and	retrieval	system	with	cell-level	security

Storm A	distributed computation	system	for	processing	continuous	streams	of	real-time	data

Solr A	distributed	search platform	capable	of	indexing	petabytes	of	data

Spark A fast,	general	purpose	processing	engine	use	to	build	and	run	sophisticated	SQL,	streaming,	
machine	learning,	or	graphics	applications.

2/15/17

8

15 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Governance	and	Integration	Frameworks

Framework Description
Falcon A	data	governance	tool	providing	workflow	orchestration, data	lifecycle	management,	and	

data	replication	services.

WebHDFS A	REST	API that uses	the	standard	HTTP	verbs	to	access,	operate,	and	manage	HDFS

HDFS	NFS	Gateway A gateway	that	enables access	to	HDFS	as	an	NFS	mounted	file system

Flume A distributed,	reliable,	and	highly-available	service	that	efficiently	collects,	aggregates,	and	
moves	streaming	data

Sqoop A	set	of	tools	for importing	and	exporting	data	between	Hadoop	and	RDBM	systems

Kafka A	fast,	scalable,	durable,	and	fault-tolerant	publish-subscribe messaging	system

Atlas A	scalable	and	extensible set	of	core	governance	services	enabling	enterprises	to	meet	
compliance	and	data	integration	requirements

16 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Security	Frameworks

Framework Description
HDFS A storage	management	service providing	file and	directory	permissions,	even	more	granular	file	

and	directory	access	control	lists,	and	transparent	data	encryption

YARN A	resource	management service	with	access	control	lists	controlling	access	to	compute	
resources	and	YARN	administrative	functions

Hive A	data	warehouse	infrastructure service	providing	granular	access	controls	to	table	columns	and	
rows

Falcon A	data	governance	tool	providing	access	control lists	that	limit	who	may	submit	Hadoop	jobs

Knox A	gateway providing	perimeter	security	to	a	Hadoop	cluster

Ranger A	centralized security	framework	offering	fine-grained	policy	controls	for	HDFS,	Hive,	HBase,	
Knox,	Storm,	Kafka,	and	Solr

2/15/17

9

Pre-Lab:	Setting	Up	the	
Lab	Environment

18 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Defining	Big	Data
Ã HDP	Introduction
Ã HDFS	Overview

2/15/17

10

19 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDFS	and	YARN	are	the	Core	of	HDP

20 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDFS

Ã Write	Once,	Read	Many	times	(WORM)

Ã Divide	files	into	big	blocks	and	distribute	across	the	cluster

Ã Store	multiple	replicas	of	each	block	for	reliability

Ã Programs	can	ask	"where	do	the	pieces	of	my	file	live?”

Key	Ideas

10110100101
00100111001
11111001010
01110100101
00101100100
10101001100
01010010111
01011101011
11011011010
10110100101
01001010101
01011100100
11010111010

0

Logical File

1

2

3

4

Blocks

1

Cluster

1

1

2

2
2

3

3

34

4
4

2/15/17

11

21 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDFS	– The	HDP	File	System

Ã Hadoop	stores	files	using	the	Hadoop	distributed	file	system	(HDFS).	

Ã HDFS	is	the	basis	for	Hadoop’s	storage	scalability	and	availability.	HDFS:	
– Splits	large	data	files	into	smaller	chunks	called	blocks	
– Spreads	those	blocks	across	different	slave/worker	nodes
– Tracks	data	block	location
– Automatically	replicates	data	for	high	availability	

Ã Scaling	storage	is	easy	– simply	add	more	nodes!

22 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDFS	Command	Line	Interaction

Ã -cat:	display	file	content	(uncompressed)

Ã -text:	just	like	-cat but	works	on	compressed	files

Ã -mkdir:	create	a	directory	in	HDFS

Ã -put, -get, -mv:	copies	files	between	local	file	system	and	HDFS,	as	well	as	move	
within	HDFS.	

Ã -ls, -rm:	list	and	remove	files/directories	(add	-R to	make	commands recursive)

Ã -chgrp, -chmod, -chown:	changes	file	permissions

Ã -stat:	statistical	info	for	a	given	file

hdfs dfs –command [args]

2/15/17

12

23 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDFS	Commands	and	Permissions

Ã hdfs dfs -mkdir mydata

Ã hdfs dfs -put numbers.txt mydata/

Ã hdfs dfs -ls mydata

Ã HDFS	implements	a	POSIX-style	permissions	model
– User,	group,	and	other	rwx	permissions	for	files	and	directories
– Files:	r	=	read,	w	=	write	or	append
– Directories:	r	=	list	contents,	w	=	create	or	delete	files	or	subdirectories,	x	=	access	a	child	object

Lab:	Using	HDFS	Commands

2/15/17

13

25 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Defining	Big	Data
Ã HDP	Introduction
Ã HDFS	Overview
Ã YARN	Overview

26 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

YARN	Enables	Multiple	Workloads

HADOOP	2.0
Multi	Use	Data	Platform

Batch,	Interactive,	Online,	Streaming,	…

Interact	with	all	data	in	
multiple	ways	simultaneously

Redundant,	Reliable	Storage
HDFS	2

Cluster	Resource	Management
YARN

Standard	SQL	
Processing

Hive

Batch
MapReduce

Interactive
Tez

Online	Data	
Processing

HBase,	Accumulo

Real	Time	Stream	
Processing

Storm
others

…

HADOOP	1.0

HDFS	1
(redundant,	reliable	storage)

MapReduce
(distributed	data	processing	

&	cluster	resource	management)

Single	Use	System
Batch	Apps

Data	Processing	
Frameworks

(Hive,	Pig,	Cascading,	…)

2/15/17

14

27 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

YARN	Architectural	Components	

Ã Resource	Manager
– Global	resource	scheduler
– Hierarchical	queues

Ã Node	Manager
– Per-machine	agent
– Manages	the	life-cycle	of	container
– Container	resource	monitoring

Ã Application	Master
– Per-application
– Manages	application	scheduling	and	task	

execution
– E.g.	MapReduce	Application	Master

28 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

YARN	– the	HDP	Operating	System

Ã Apache	Hadoop	YARN	is	the	data	operating	system	for	Hadoop	2.

Ã YARN	is:
– Responsible	for	scheduling	

tasks	and	managing	CPU	
and	memory	resources		

– Designed	to	enable	multiple	
distributed	applications	to	utilize	
cluster	resources	in	a	shared,	
secure,	and	multi-tenant	manner

2/15/17

15

29 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

YARN	Resource	Containers

Ã Is	the	abstraction	used	to	represent	a	discreet	amount	of	CPU	and	memory	resources	on	a	machine
– Hadoop	applications	run	inside	containers.	

Ã Is	managed	and	scheduled	by	YARN

Ã Is	logically	isolated	from	other	containers	running	on	the	same	machine
– Isolation	supports	application	multi-tenancy.

Ã Is	allocated	in	different	sizes	based	on	application-defined	resource	requests	

A	resource	container:

Knowledge	Check

2/15/17

16

31 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. Name the three V’s of big data.
2. Name four of the six types of data commonly found in Hadoop.
3. Why is HDP comprised of so many different frameworks?
4. What two frameworks make up the core of HDP?
5. What is the base command-line interface command for manipulating files and

directories in HDFS?
6. YARN allocates resources to applications via _____________________.

Summary

2/15/17

17

33 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã Data	is	made	"Big"	Data	by	ever-increasing	Volume,	Velocity,	and	Variety

Ã Hadoop	is	often	used	to	handle	sentiment,	clickstream,	sensor/machine,	server,	
geographic,	and	text	data

Ã HDP	is	comprised	of	an	enterprise-ready	and	supported	collection	of	open	source	
Hadoop	frameworks	designed	to	allow	for	end-to-end	data	lifecycle	management

Ã The	core	frameworks	in	HDP	are	HDFS	and	YARN

Ã HDFS	serves	as	the	distributed	file	system	for	HDP

Ã The	hdfs dfs command	can	be	used	to	create	and	manipulate	files	and	directories

Ã YARN	serves	as	the	operating	system	and	architectural	center	of	HDP,	allocating	
resources	to	a	wide	variety	of	applications	via	containers

34 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Overview	of	Zeppelin	
and	Spark

2/15/17

18

35 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Use	Apache	Zeppelin	to	work	with	Spark

Ã Describe	the	purpose	and	benefits	of	Spark

Ã Define	Spark	REPLs	and	application	architecture

36 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Zeppelin	Overview

2/15/17

19

37 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Introducing	Zeppelin	

Ã Apache	Zeppelin	is	a	web-based	notebook	that	enables	interactive	data	analytics	on	top	
of	Spark
– In	second	Tech	Preview	as	of	HDP	2.4

Ã Multi-language	support
– Python,	Scala,	Hive,	SparkSQL,	shell,	markdown,	etc.

Ã Allows	for	data	visualization,	report	generation,	and	collaboration

38 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Zeppelin	Major	Functions

Ã Data	Ingestion

Ã Data	Discovery

Ã Data	Analytics

Ã Data	Visualization	and	Collaboration

2/15/17

20

39 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data	Visualization

Ã Several	built-in	ways	to	interactively	view	/	visualize	data
– Table
– Column
– Pie	
– Area
– Line
– Scatter

40 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Zeppelin	Overview
Ã Spark	Overview

2/15/17

21

41 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	Introduction

Ã Large-scale,	cluster-based,	in-memory	data	processing	platform
– Store	reusable	data	in	memory

Ã Development	APIs	for	Scala,	Java,	Python,	and	R

Ã Supports	SQL-like	operations,	streaming,	and	machine	learning

Ã Runs	on	YARN,	providing	access	to	shared	datasets	across	various	HDP	applications	and	
enables	Spark	to	run	on	a	Kerberized cluster

42 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	RDDs	– Scalability	and	Performance

Ã Leverages	HDP's	horizontal	scalability

Ã Fault-tolerant	collection	of	data	elements.

Ã Enables	parallel	processing	across	the	cluster

RAM

RAM

RAM

RAM

on-disk	RDD in-memory	RDD

2/15/17

22

43 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	High-Level	Tools

Ã The	Spark	Core	Engine	supports	four	
high-level	tools	to	build	applications
that	are	part	of	the	Spark	project:
– Spark	SQL
– Spark	Streaming
– MLlib
– GraphX

Ã Spark	also	integrates	with	other	HDP	
platforms	to	extend	and	enhance	its	
capabilities	- for	example:
– Hive
– Zeppelin

44 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	and	HDP

Ã HDP	2.5.3	– Spark	1.6.3	(Spark	2.0	as	tech	preview)

Ã HDP	2.4.0	– Spark	1.6.0

Ã HDP	2.3.4	– Spark	1.5.2

Ã HDP	2.3.2	– Spark	1.4.1

Ã HDP	2.2.8	– Spark	1.3.1

Ã For	this	class	we	will	use	Spark	1.6	on	HDP	2.4.	

2/15/17

23

45 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Zeppelin	Overview
Ã Spark	Overview
Ã Spark	REPLs	and	Application	Architecture

46 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

REPL	Spark	Shells

Ã The	Spark	Shell	provides	an	interactive	way	to	learn	Spark,	explore	data,	and	debug	
applications

Ã Available	for	Python	and	Scala
$ pyspark
$ spark-shell

Ã REPL
– Read	Evaluate	Print	Loop

2/15/17

24

47 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Enterprise	Spark	Application	Components	in	HDP

Ã Driver

Ã SparkContext

Ã YARN	

Ã HDFS

Ã Executors

HDP	Cluster

HDFS	Storage

YARN	
Resource	
Manager

Client Machine
or HDP Container

Driver

SparkContext

Executor

Executor

Executor

Executor Executor

Executor

48 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	Driver

Ã Contains	the	main() function	
– Spark	REPLs	are	Spark	driver	programs

Ã Creates	SparkContext and	uses	it	to	access	Spark

Ã Manages	writing	and	displaying	log	files

Ã Single	point	of	failure	when	running	YARN	client	(as	opposed	to	cluster)	applications

Driver

2/15/17

25

49 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

SparkContext

Ã Manages	the	connection	to	Spark

Ã Contacts	YARN	ResourceManager to	launch	Spark	executors

Ã Schedules	tasks	for	Spark	executors

Ã Automatically	created	as	sc by	a	REPL	at	startup

from pyspark import SparkContext, SparkConf
conf = SparkConf()
sc = SparkContext(conf=conf)

Driver

SparkContext

50 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	Executors

Ã Responsible	for	all	application	workload	processing
– The	"workers"	of	a	Spark	application,	with	SparkContext serving	as	the	"master"

Ã Exist	for	the	life	of	the	application

Ã Interchangeable	workspaces
– Tasks	assigned	to	a	lost	executor	will	be	reassigned
– Data	lost	will	be	recomputed	on	another	executor

Ã Behavior	and	performance	can	be	controlled
programmatically

HDP	Cluster

Executor

Executor

Executor

Executor Executor

Executor

2/15/17

26

Lab:	Introduction	to	Spark	
REPLs	and	Zeppelin

Knowledge	Check

2/15/17

27

53 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. Name the tool in HDP that allows for interactive data analytics, data
visualization, and collaboration with Spark.

2. What programming languages does Spark currently support?
3. Name the five components of an enterprise Spark application running in HDP.
4. Which component of a Spark application is responsible for application workload

processing?

Summary

2/15/17

28

55 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã Zeppelin	is	a	web-based	notebook	that	supports	multiple	programming	languages	and	
allows	for	data	engineering,	analytics,	visualization,	and	collaboration	using	Spark

Ã Spark	is	a	large-scale,	cluster-based,	in-memory	data	processing	platform	that	supports	
parallelized	operations	on	enterprise-scale	datasets

Ã Spark	provides	REPLs	for	rapid,	interactive	application	development	and	testing

Ã The	five	components	of	an	enterprise	Spark	application	running	on	HDP	are:
– Driver
– SparkContext
– YARN
– HDFS
– Executors

56 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Working	with	RDDs

2/15/17

29

57 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Explain	the	purpose	and	function	of	RDDs

Ã Explain	Spark	programming	basics

Ã Define	and	use	basic	Spark	transformations

Ã Define	and	use	basic	Spark	actions

Ã Invoke	functions	for	multiple	RDDs,	create	named	functions,	and	use	numeric	
operations

58 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Introduction	to	RDDs

2/15/17

30

59 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Resilient	Distributed	Datasets	(RDDs)

Ã Distributed	collection	of	immutable	elements	(typically	stored	in-memory)	

Ã Dataset	divided	into	partitions,	which	allows	for	parallel	operation
– Node	selection	for	RDD	partitions	is	aligned	with	HDFS	blocks	to	maximize	parallelism	and	HDP	

infrastructure	benefits

Ã If	individual	partition	is	lost,	will	be	recreated	on	another	node

60 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Create	RDDs	Programmatically	- Simple	Lists

Ã Use	sc.parallelize() to	create	an	RDD,	assigned	to	a	local	variable	name,	
composed	of	lists	of	numbers	and	verify	with	collect()

Ã This	is	a	great	API	for	unit	testing

rddNumList = sc.parallelize([5, 7, 11, 14])
rddNumList.collect()
[5, 7, 11, 14]

rddTextList = sc.parallelize(["car", "house", "garage"])
rddTextList.collect()
['car', 'house', 'garage']

2/15/17

31

61 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Create	Simple	RDDs	From	Text	Files

Ã An	RDD	can	also	be	created	from	a	text	file	on	local,	HDFS,	or	other	locations	(such	as	
network	or	cloud	storage)	using	sc.textFile()

rddLocal = sc.textFile("file:/localPathToFile/filename.txt")
rddHDFS = sc.textFile("/HDFSpath/filename.txt")

Ã Multiple	files	can	be	combined	as	part	of	a	single	RDD	using	a	comma-separated	list	or	a	
wildcard	character

rddComma = sc.textFile("fileLocation/file1.txt,fileLocation/file2.txt")
rddWild = sc.textFile("fileLocation/*.txt")

62 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

From	Data	Files	to	HDFS	to	RDD

Node 1 Node 2 Node 3 Node 4 Node 5

HDFS

DF1.1 DF2.1 DF3.1 DF2.2 DF3.2

Example
assumes

blocks are
replicated to

other nodes in
the cluster, not

shown here

Spark	Application RDD1	=	
DF2	+	DF1	

RDD	1.1 RDD	1.2

Processing occurs
on these three nodes

RDD	1.3

data	file	1

data	file	2

data	file	3

2/15/17

32

63 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Multiple	RDDs	in	a	Cluster

Node1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

RDD	1.1
RDD	1.2RDD	1.3 RDD	1.4

RDD	2.3 RDD	2.2 RDD	2.1

RDD1	=	
4	Partitions

RDD2	=	
3	Partitions

64 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

RDD	Characteristics

Ã Can	contain	any	type	of	serializable element,	meaning	those	that	can	be	converted	to	
and	from	a	byte	stream
– Examples:	int,	float,	bool,	and	sequences/iteratives like	arrays,	lists,	tuples,	and	string

Ã Element	types	can	be	mixed	- for	example,	an	array	of	strings	and	int values.	

Ã Non-serializable	elements	(for	example:	objects	created	with	certain	third-party	JAR	files	
or	other	external	resource)	cannot	be	made	into	RDDs

2/15/17

33

65 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

RDD	Operations

Ã Two	operations	can	be	performed	on	an	RDD
– Transformations:	apply	a	function	and	create	new	RDD	partitions	based	on	the	output

– Actions:	return	a	result	of	a	function	as	output	to	a	screen,	file,	etc.	

RDD1A
Transformation

RDD1B

Returned
ResultRDD Action

66 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Introduction	to	RDDs
Ã Spark	Programming	Basics

2/15/17

34

67 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Functional	Programming	Implications	in	Spark

Ã Immutable	data: RDD1A	can	be	transformed	into	RDD1B,	but	an	individual	element	
within	RDD1A	cannot	be	independently	modified

Ã No	state	or	side	effects: No	interaction	with	or	modification	of	any	values	or	properties	
outside	of	the	function

Ã Behavioral	consistency: If	you	pass	the	same	value	into	a	function	multiple	times,	you	
will	always	get	the	same	result	- changing	order	of	evaluation	does	not	change	results

Ã Functions	as	arguments: function	results	(including	anonymous	functions)	can	be	
passed	as	input/arguments	to	other	functions

Ã Lazy	evaluation: function	arguments	are	not	evaluated	/	executed	until	required

68 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Anonymous	(a.k.a.	Lambda)	Functions

Ã Passed	as	an	argument	to	another	function,	called	using	the	lambda keyword

Ã Element	variable	is	defined	to	the	left	of	a	colon,	function	body	defined	to	the	right
– Example	using	z	as	the	anonymous	function	variable	and	z	+	1	as	the	function	body:

rddNumList = sc.parallelize([5, 7, 11, 14])

rddAnon = rddNumList.map(lambda z: z + 1)

rddAnon.collect()
[6, 8, 12, 15]

Spark Function Anonymous
Function Call

Anonymous
Function Body /

Definition

2/15/17

35

69 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Introduction	to	RDDs
Ã Spark	Programming	Basics
Ã Basic	Spark	Transformations

70 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

map()

Ã Applies	a	function	supplied	as	its	argument	to	each	element	of	the	RDD

rddNumList = sc.parallelize([5, 7, 11, 14])
rddNumList.map(lambda z: z + 1).collect()
[6, 8, 12, 15]

rddMary = sc.textFile("fileLocation/mary.txt")

rddLineSplit = rddMary.map(lambda line: line.split(" "))

Mary	had	a	little	lamb
Its	fleece	was	white	as	snow
And	everywhere	that	Mary	went
The	lamb	was	sure	to	go

Array(And,	everywhere,	that,	Mary,	went)

Array(Mary,	had,	a,	little,	lamb)

Array(The,	lamb,	was,	sure,	to,	go)

Array(Its,	fleece,	was,	white,	as,	snow)

2/15/17

36

71 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

flatMap()

Ã Similar	to	map(),	but	after	a	map	function	has	been	performed,	takes	an	additional	step	
and	flattens	the	file

rddLineSplit = rddMary.map(lambda line: line.split(" "))

rddFlat = rddMary.flatMap(lambda line: line.split(" "))

Array(And,	everywhere,	that,	Mary,	went)

Array(Mary,	had,	a,	little,	lamb)

Array(The,	lamb,	was,	sure,	to,	go)

Array(Its,	fleece,	was,	white,	as,	snow)
a

Mary

little

had

to

go

sure

72 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

filter()

Ã Keeps	elements	that	meet	a	defined	criteria	
– If	the	element	meets	that	criteria,	it	is	passed	on	to	the	new	RDD
– If	not,	the	element	is	discarded

rddNumList = sc.parallelize([5, 7, 11, 14])

rddNumList.filter(lambda number: number <= 10).collect()

[5, 7]

months = ["January", "March", "May", "July", "September"]

rddMonths = sc.parallelize(months)

rddMonths.filter(lambda name: len(name) > 5).collect()

['January', 'September']

2/15/17

37

73 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

distinct()

rddBigList = sc.parallelize([5, 7, 11, 14, 2, 4, 5, 14, 21])
rddBigList.collect()
[5, 7, 11, 14, 2, 4, 5, 14, 21]

rddDistinct = rddBigList.distinct()
rddDistinct.collect()
[4, 5, 21, 2, 14, 11, 7]

74 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Introduction	to	RDDs
Ã Spark	Programming	Basics
Ã Basic	Spark	Transformations
Ã Basic	Spark	Actions

2/15/17

38

75 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

collect(), first(),	and	take()

Ã collect() returns	an	entire	RDD

Ã first() returns	only	the	first	element	in	an	RDD

Ã take() returns	a	specified	number	of	elements	in	an	RDD

rddNumList = sc.parallelize([5, 7, 11, 14])

rddNumList.collect()
[5, 7, 11, 14]

rddNumList.first()
5

rddNumList.take(2)
[5, 7]

76 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

count()

Ã Returns	the	number	of	elements	in	an	RDD

rddNumList = sc.parallelize([5, 7, 11, 14])

rddNumList.count()
4

rddMary = sc.textFile("mary.txt")

rddMary.count()
4

Mary	had	a	little	lamb
Its	fleece	was	white	as	snow
And	everywhere	that	Mary	went
The	lamb	was	sure	to	go

2/15/17

39

77 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

saveAsTextFile()

Ã Writes	the	contents	of	RDD	partitions	as	a	set	of	text	files	to	a	specified	location	
(hdfs://,	file:/,	etc.)	and	directory

rddBigList.saveAsTextFile("/desiredLocation/foldername")

Ã In	this	example,	can	verify	the	file	was	successfully	written		from	the	command	line

$ hdfs dfs -ls desiredLocation/foldername

78 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Transformations	vs.	Actions:	Lazy	Evaluation

Ã Transformations	are	lazy	- they	do	not	compute	until	an	action	is	performed

rddMary = sc.textFile("mary.txt")
rddFlat = rddMary.flatmap()
rddFilter = rddFlat.filter(lambda words: len(words) > 4)

rddFilter.count() Action triggers execution
of the series of transformations

Series of transformations is
built and tracked by the

Spark driver

2/15/17

40

79 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Lazy	Evaluation	Visualized

Execute an action
and data goes through
the transformations

Mary	had	a	little	lamb
Its	fleece	was	white	as	snow
And	everywhere	that	Mary	went
The	lamb	was	sure	to	go

flatMap()

Mary	had	a	little	lamb
Its	fleece	was	white	as	snow
And	everywhere	that	Mary	went
The	lamb	was	sure	to	go

a

Mary

little

had

lamb

The

Mary

lamb

went

to

was

go

sure

count	=	4

filter()

white

little

everywhere

fleece

80 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Introduction	to	RDDs
Ã Spark	Programming	Basics
Ã Basic	Spark	Transformations
Ã Basic	Spark	Actions
Ã RDD	Special	Topics

– Multiple	RDDs
– Named	Functions
– Numeric	Operations

2/15/17

41

81 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Multiple	RDDs:	union() and intersection()

rddNumList = sc.parallelize([5, 7, 11, 14])

rddNumList2 = sc.parallelize([2, 4, 5, 14, 21])

rddCombined = rddNumList.union(rddNumList2)

rddCombined.collect()

[5, 7, 11, 14, 2, 4, 5, 14, 21]

rddInter = rddNumList.intersection(rddNumList2)

rddInter.collect()

[5, 14]

82 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Named	Functions

Ã Functions	used	multiple	times	or	those	that	require	more	than	a	single	line	of	code	
should	be	explicitly	defined	and	named

def gradeAorNot(percentage):

if percentage > 89:

return "A"

else:

return "Not an A"

rddGrades = sc.parallelize([87, 94, 41, 90])

rddGrades.map(gradeAorNot).collect()

['Not an A', 'A', 'Not an A', 'A']

2/15/17

42

83 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

More	Functions:	Spark	Documentation

Ã http://spark.apache.org/docs/<version>/api/

Ã Version	options
– Official	version	number,	such	as	"1.4.0"	or	"1.6.1"
– "latest"	for	the	newest	release

Lab:	Create	and	Manipulate	
RDDs

2/15/17

43

Knowledge	Check

86 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. What does RDD stand for?
2. What two functions were covered in this lesson that create RDDs?
3. True or False: Transformations apply a function to an RDD, modifying its values
4. What operation does the lambda function perform?
5. Which transformation will take take all of the words in a text object and break

each of them down into a separate element in an RDD?
6. True or False: The count action returns the number of lines in a text document,

not the number of words it contains.
7. What is it called when transformations are not actually executed until an action

is performed?
8. True or False: The distinct function allows you to compare two RDDs and return

only those values that exist in both of them

2/15/17

44

Summary

88 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã Resilient	Distributed	Datasets	(RDDs)	are	immutable	collection	of	elements	that	can	be	
operated	on	in	parallel

Ã Once	an	RDD	is	created,	there	are	two	things	that	can	be	done	to	it:	transformations	
and	actions

Ã Spark	makes	heavy	use	of	functional	programming	practices,	including	the	use	of	
anonymous	functions

Ã Common	transformations	include	map(),	flatmap(),	filter(),	distinct(),	
union(),	and	intersection()

Ã Common	actions	include	collect(),	first(),	take(),	count(),	
saveAsTextFile(),	and	certain	mathematic	and	statistical	functions

2/15/17

45

89 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Pair	RDDs

90 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Learning Objectives

ÃDefine	and	create	Pair	RDDs
ÃPerform	common	operations	on	Pair	RDDs

2/15/17

46

91 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Pair	RDD	Introduction

92 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Pair	RDD	Introduction

Ã A	Pair	RDD	has	elements	comprised	of	a	key-value	pairs

Ã Allows	for	additional	key-value	based	functions	and	operations
– Direct	RDD	interactions	that	can	be	used	as	an	alternative	to	SQL-like	APIs

2/15/17

47

93 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Create	Pair	RDDs:	map()

Ã Pair	RDDs	can	be	created	from	regular	RDDs	by	using	the	map()	transformation:
rddMary = sc.textFile("/path/to/mary.txt")
rddFlat = rddMary.flatMap(lambda line: line.split(' '))
kvRdd = rddFlat.map(lambda word: (word,1))
kvRdd.collect()

a

Mary

little

had

to

go

sure

(a,	1)

(Mary,	1)

(little,	1)

(had,	1)

(to,	1)

(go,	1)

(sure,	1)

map(x	=>(x,	1))

94 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Create	Pair	RDDs:	keyBy()

Ã Creates	key-value	pairs	by	applying	a	function	on	each	data	element
– Function	result	becomes	the	key,	data	element	becomes	the	value	in	the	pair

rddTwoNumList = sc.parallelize([(1,2,3),(7,8)])

keyByRdd = rddTwoNumList.keyBy(len)

keyByRdd.collect()

[(3, (1, 2, 3)), (2, (7, 8))]

2/15/17

48

95 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Create	Pair	RDDs:	zipWithIndex()

Ã Creates	key-value	pairs	by	making	element	index	(position)	the	value
– Element	becomes	the	key

rddThreeWords = sc.parallelize(["cat","A","spoon"])

zipWIRdd = rddThreeWords.zipWithIndex()

zipWIRdd.collect()

[('cat', 0), ('A', 1), ('spoon', 2)]

96 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Pair	RDD	Introduction
Ã Pair	RDD	Operations

2/15/17

49

97 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

mapValues()

Ã Performs	a	function	on	Pair	RDD	values,	leaving	keys	unchanged

zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)])

rddMapVals = zipWIRdd.mapValues(lambda val: val + 1)

rddMapVals.collect()

[('cat', 1), ('A', 2), ('spoon', 3)]

98 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

keys(), values()

rddMapVals.collect()

[('cat', 1), ('A', 2), ('spoon', 3)]

Ã keys() - returns	a	list	of	just	the	keys	

rddMapVals.keys().collect()
['cat', 'A', 'spoon']

Ã values() - returns	a	list	of	just	the	values	

rddMapVals.values().collect()
[1, 2, 3]

2/15/17

50

99 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

sortByKey()

rddMapVals.collect()

[('cat', 1), ('A', 2), ('spoon', 3)]

Ã sortByKey(ascending=True/False)
– "ascending=False"	sorts	from	largest	to	smallest;	default	is	"ascending=True"

rddMapVals.sortByKey().collect()
[('A', 2), ('cat', 1), ('spoon', 3)]

100 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Reorder	Key-Value	Pairs	using	map()

Ã Use	pattern	matching	to	reorder	placement	of	key-value	pair	elements	in	an	RDD

zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)])

rddReorder = zipWIRdd.map(lambda (key, value): (value, key))

rddReorder.collect()

[(0, 'cat'), (1, 'A'), (2, 'spoon')]

2/15/17

51

101 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

lookup(), countByKey(), and collectAsMap()

Ã lookup(key) - returns	a	list	containing	all	values	for	a	given	key

keyByRdd.lookup(2)
[(7, 8)]

Ã countByKey() - counts	the	number	times	a	key	appears

keyByRdd.countByKey()
defaultdict(<type 'int'>,{2: 1, 3: 1})

Ã collectAsMap() - collects	the	result	as	a	map
– If	multiple	values	exist	for	the	same	key	only	one	will	be	returned

keyByRdd.collectAsMap()
{2: (7, 8), 3: (1, 2, 3)}

102 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

reduceByKey()

Ã Performs	a	reduce	operation	on	elements	of	a	Pair	RDD	and	runs	a	function	on	any	
elements	that	share	a	key

kvReduced = kvRdd.reduceByKey(lambda a,b: a+b)

kvReduced.collect()
(a,	1)

(Mary,	1)

(little,	1)

(had,	1)

(lamb,	1)

(The,	1)

(Mary,	1)

(lamb,	1)

(went,	1)

(to,	1)

(was,	1)

(go,	1)

(sure,	1)

(Mary,	2)

(lamb,	2)

2/15/17

52

103 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

groupByKey()

Ã Returns	an	RDD	with	a	grouping	of	values	by	key
– Grouped	values	are	returned	as	a	single	iterable object
– Can	be	viewed	by	mapping	the	elements	of	the	iterable object	into	a	defined	list

kvGroupByKey = kvRdd.groupByKey()

kvGroupByKey.collect()

[(u'a', [1]), (u'lamb', [1, 1]), (u'little', [1]),…(u'Mary',[1, 1])]

When desired output can be obtained by reduceByKey(), use that instead

104 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

subtractByKey()

Ã Returns	key-value	pairs	containing	keys	in	the	source	RDD	not	found	in	another	RDD

zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)])
rddSong = sc.parallelize([("cat", 7), ("cradle", 9), ("spoon", 4)])

rddSong.subtractByKey(zipWIRdd).collect()
[('cradle', 9)]

('A', 1) is not returned because it does not exist in the source RDD

2/15/17

53

105 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Pair	RDD	Joins

Ã All	joins	types	are	supported:	inner	("join"),	full	outer,	left	outer,	right	outer

zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)])
rddSong = sc.parallelize([("cat", 7), ("cradle", 9), ("spoon", 4)]

rddSong.leftOuterJoin(ZipWIRdd).collect()

[('spoon', (4, 2)), ('cradle', (9, none)), ('cat', (7, 0))]

106 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

More	Functions:	Spark	Documentation

Ã http://spark.apache.org/docs/<version>/api/

Ã Version	options
– Official	version	number,	such	as	"1.4.0"	or	"1.6.1"
– "latest"	for	the	newest	release

2/15/17

54

Lab:	Create	and	Manipulate	
Pair	RDDs,		Advanced	RDD	
Programming

Knowledge	Check

2/15/17

55

109 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. An RDD that contains elements made up of key-value pairs is
sometimes referred to as a _________________.

2. Name two functions that can be used to create a Pair RDD.
3. True or False: A key can have a value that is actually a list of

many values.
4. Since sortByKey() only sorts by key, and there is no

equivalent function to sort by values, how could you go about
getting your Pair RDD sorted alphanumerically by value?

5. You determine either reduceByKey() or groupByKey()
could be used in your program to get the same results. Which
one should you choose?

6. How can you use subtractByKey() to determine *all* of the
unique keys across two RDDs?

Summary

2/15/17

56

111 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã Pair	RDDs	contain	elements	made	up	of	key-value	pairs

Ã Common	functions	used	to	create	Pair	RDDs	include	map(), keyBy(), and
zipWithIndex()

Ã Common	functions	used	with	Pair	RDDs	include	mapValues(), keys(),
values(), sortByKey(), lookup(), countByKey(),
collectAsMap(), reduceByKey(), groupByKey(),
flatMapValues(), subtractByKey(), and	various	join	types.	

112 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	Streaming

2/15/17

57

113 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Describe Spark Streaming
Ã Create and view basic data streams
Ã Perform basic transformations on streaming data
Ã Utilize window transformations on streaming data

After	completing	this	lesson,	students	should	be	able	to:

114 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Spark	Streaming	Overview

2/15/17

58

115 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

What	is	Spark	Streaming?

Ã Implements	a	receiver	and	specialized	RDDs	called	DStreams	on	top	of	Spark

Ã Enables	micro-batch	processing	of	live	streaming	data

Ã Allows	for	additional	ROI	on	Spark	platform	investment

Receiver Spark	Core

DStream

DStream

DStream

Output

Spark	Streaming

Streaming	Data

116 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DStreams

Ã Batches	of	input	data	created	at	regular	time	intervals
– Micro-batching	as	opposed	to	true	streaming

Data	Stream:	A,	B,	C,	D,	E,	F,	G,
H,	I,	J,	K,	L,	M,	N,	O	 Receiver

DStream	t=5
A,	B,	C,	D,	E

DStream	t=10
F,	G,	H,	I,	J

DStream	t=15
K,	L,	M,	N,	O

2/15/17

59

117 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DStream	vs.	RDD

Ã DStreams	contain	data	and	physically	exist	in	memory	from	moment	of	creation
– Normal	RDDs	are	just	sets	of	instructions	until	an	action	is	performed

Ã By	default,	DStreams	are	deleted	after	processing

Ã Outputs	vs.	Actions

118 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DStream Replication
Ã Receiver	duplicates	data	to	two	executors	by	default

Executor	2

Executor	1

Receiver DStream1

DStream1

2/15/17

60

119 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Receiver Availability
Ã If	an	executor	with	a	receiver	goes	down,	it	will	be	restarted	in	another	executor

Executor	2

Executor	1

Receiver DStream1

DStream1

Executor	3

Receiver

DStream1

120 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Receiver Reliability

Ã By default, receivers are "unreliable"
– No acknowledgment between receiver and source
– No record of whether data has been successfully written
– No ability to ask for retransmission for missed data
– Possibility for data loss if receiver is lost

Ã To implement a reliable receiver, a custom receiver must be created
– Scala / Java only as of Spark 1.6.0
– Not supported by Python APIs

2/15/17

61

121 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Streaming	Data	Source	Examples

Ã Basic	Sources
– Text	files	from	an	HDFS	directory
– Text	via	TCP	socket	connection
– Queue	of	RDDs	(for	testing	purposes)

Ã Advanced	Sources
– Kafka
– Kinesis
– Flume
– MQTT

*Additional	basic	and	advanced	sources	are	available	in	Scala	/	Java

122 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Spark	Streaming	Overview
Ã Basic	Streaming

2/15/17

62

123 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

StreamingContext

Ã An	extension	of	the	SparkContext

Ã Entry	point	for	streaming	applications

Ã Sets	up	receiver	and	enables	real-time	transformations	on	Dstreams,	as	well	as	various	
output	types

Client Machine
or HDP Container

Driver

SparkContext
StreamingContext

124 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Modify	REPL	CPU	Cores

Ã Streaming	requires	having	two	or	more	CPU	cores	available
– One	core	for	the	receiver	plus	one	core	for	each	DStream	being	ingested

Ã This	can	be	changed	by	modifying	the	MASTER	environment	variable	when	launching	
the	REPL
– To	utilize	two	cores:	pyspark --master local[2]

2/15/17

63

125 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Launch	StreamingContext

Ã Import	the	StreamingContext API
– Example:	from pyspark.streaming import StreamingContext

Ã Create	an	instance	of	the	StreamingContext and	supply	the	name	of	the	
SparkContext (when	using	the	REPL,	sc)	and	an	interval	time	for	micro-batching
– Example	setting	a	one-second	interval:			ssc = StreamingContext(sc, 1)

Ã Spark	StreamingContext instances	can	be	defined	with	varying	time	intervals	
based	on	needs
– Only	one	StreamingContext is	allowed	per	JVM

sscTen = StreamingContext(sc, 10)

126 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Stream	from	HDFS	Directories	and	TCP	Sockets

Ã To	create	a	stream	by	monitoring	an	HDFS	directory	and	ingesting	any	new	files:

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")

Ã To	create	a	stream	by	monitoring	TCP	socket	source	(hostname	and	port):

tcpInputDS = ssc.socketTextStream("someHostname", portNumber)

2/15/17

64

127 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Output	to	Console	and	to	HDFS

Ã Print	output	to	the	console:
– Python:	DSvariableName.pprint()
– Scala/Java:	DSvariableName.print()

Ã Suggestion:	set	sc log	level	to	"ERROR"	when	printing	to	console	to	reduce	screen	clutter
– Example:	sc.setLogLevel("ERROR")

Ã Save	output	as	a	time-stamped	text	file	on	HDFS:
– DSVariable.saveAsTextFiles("HDFSlocation/prefix", "optionalSuffix")
– Directory	permissions	must	be	set	accordingly

Ã Can	use	the	same	DStream	to	output	to	both	console	and	HDFS	text	file

128 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Start	and	Stop	the	Streaming	Application

Ã All	operations	must	be	defined	before	the	stream	is	started

Ã When	ready:		ssc.start()

Ã When	finished:		ssc.stop()

2/15/17

65

129 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Simple	Streaming	Program	Example	Using	a	REPL

pyspark --master local[2]

>>> sc.setLogLevel("ERROR")

>>> from pyspark.streaming import StreamingContext

>>> sscFive = StreamingContext(sc, 5)

>>> hdfsInputDS = sscFive.textFileStream("/user/root/test/")

>>> hdfsInputDS.saveAsTextFiles("/user/root/test/stream/name")

>>> hdfsInputDS.pprint()

>>> sscFive.start()

Lab:	Basic	Spark	Streaming	using	
HDFS	Directories	and	TCP	Sockets

2/15/17

66

131 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Spark	Streaming	Overview
Ã Basic	Streaming	
Ã Basic	Streaming	Transformations

132 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DStream	Transformations

Ã Allow	modification	of	DStream	data	similar	to	RDD	transformations

Ã Familiar	functions
– map()
– flatMap()
– filter()
– repartition()
– union()
– count()
– reduceByKey()
– join()
– Etc.

2/15/17

67

133 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Transformation	using	flatMap()

...

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")

flatMapDS = hdfsInputDS.flatMap(lambda line: line.split(" ")

flatMapDS.pprint()

ssc.start()

134 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Combine	DStreams	using	union()

Ã A	simple	example	that	creates	two	DStreams	from	the	same	source	and	combines	them	

. . .

input1 = ssc.textFileStream("/user/root/test/")

input2 = ssc.textFileStream("/user/root/test/")

combined = input1.union(input2)

combined.pprint()

ssc.start()

2/15/17

68

135 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Create	Key-Value	Pairs

. . .

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")

kvPairDS = hdfsInputDS.flatMap(lambda line: line.split(" ").map(lambda word: (word, 1))

kvPairDS.pprint()

ssc.start()

136 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

reduceByKey()

. . .

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")

kvPairDS = hdfsInputDS.flatMap(lambda line: line.split(" ").map(lambda word: (word, 1))

kvReduced = kvPairDS.reduceByKey(lambda a,b: a+b)

kvReduced.pprint()

ssc.start()

2/15/17

69

Lab:	Basic	Spark	Streaming	
Transformations

138 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Spark	Streaming	Overview
Ã Basic	Streaming
Ã Streaming	Transformations
Ã Window	Transformations

2/15/17

70

139 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Stateful vs.	Stateless	Operations

Ã By	default,	DStreams	are	discarded	from	memory	when	the	next	batch	of	data	arrives
– Assumes	all	operations	performed	are	on	single	DStreams,	not	dependent	on	previous	data
– This	is	referred	to	as	working	with	"stateless"	operations	/	transformations

Ã However,	it	is	sometimes	beneficial	to	perform	transformations	and	gather	output	using	
overlapping	time	slices,	or	across	an	entire	collected	dataset
– Example:	Every	15	seconds	perform	operations	over	the	last	45	seconds	worth	of	data
– This	is	referred	to	as	working	with	"stateful"	operations	/	transformations

140 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Checkpointing

Ã Used	in	stateful streaming	operations	to	maintain	state	in	the	event	of	system	failure

Ã To	enable:

. . .

ssc.checkpoint("someHDFSdirectory")

. . .

2/15/17

71

141 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Streaming Window Functions

Ã Window	functions	perform	combined	operations	on	a	set	of	Dstreams

Ã The	window	length	(size,	in	seconds)	and	interval	(how	often	it	is	collected)	are	set	
during	creation
– These	values	must	be	a	multiple	of	the	StreamingContext interval	value

Dstream1 Dstream2 Dstream3 Dstream4 Dstream5

Window	1

Window	2

Window	3

142 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Basic	Window	Transformations

Ã window(windowLength, interval) - returns	a	new	DStream	which	is	
computed	based	on	the	length	and	interval	provided
– Functionally	similar	to	a	union() transformation
– Example:	windowDS = streamingDS.window(30,10)

Ã countByWindow(windowLength, interval) - returns	a	count	of	the	number	
of	elements	in	the	stream
– Example:	windowCountDS = streamingDS.countByWindow(30,10)
– Equivalent	output	to	streamingDS.window(30, 10).count(),	but	more	efficient	if	

number	of	elements	is	large

2/15/17

72

143 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Sample	Window	Application

pyspark --master local[2]

>>> sc.setLogLevel("ERROR")

>>> from pyspark.streaming import StreamingContext

>>> ssc = StreamingContext(sc, 1)

>>> ssc.checkpoint("/user/root/test/checkpoint/")

>>> tcpInputDS = ssc.socketTextStream("sandbox",9999)

>>> windowDS = tcpInputDS.window(15, 5).
flatMap(lambda line: line.split(" ")).count()

>>> windowDS.pprint()

>>> ssc.start()

144 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

reduceByKeyAndWindow()

. . .

tcpInDS = ssc.socketTextStream("sandbox",9999)

myDS = tcpInDS.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).
reduceByKeyAndWindow(lambda a,b: a+b, lambda a,b: a-b, 10, 2)

myDS.pprint()

ssc.start()

2/15/17

73

Lab:	Spark	Streaming	Window	
Transformations

Knowledge	Check

2/15/17

74

147 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. Name the two new components added to Spark Core to create
Spark Streaming.

2. If an application will ingest three streams of data, how many CPU
cores should it be allocated?

3. Name the three basic streaming input types supported by both
Python and Scala APIs.

4. What two arguments does an instance of StreamingContext
require?

5. What is the additional prerequisite for any stateful operation?
6. What two parameters are required to create a window?

Summary

2/15/17

75

149 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã Spark	Streaming	is	an	extension	of	Spark	Core	that	adds	the	concept	of	a	streaming	data	
receiver	and	a	specialized	type	of	RDD	called	a	DStream.	

Ã DStreams	are	fault	tolerant,	whereas	receivers	are	highly	available.	
Ã Spark	Streaming	utilizes	a	micro-batch	architecture.
Ã Spark	Streaming	layers	in	a	StreamingContext on	top	of	the	Spark	Core	
SparkContext.

Ã Many	DStream	transformations	are	similar	to	traditional	RDD	transformations
Ã Window	functions	allow	operations	across	multiple	time	slices	of	the	same	DStream,	

and	are	thus	stateful and	require	checkpointing to	be	enabled.	

150 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	SQL

2/15/17

76

151 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Name the various components of Spark SQL and explain their purpose
Ã Describe the relationship between DataFrames, tables, and contexts
Ã Use various methods to create and save DataFrames and tables
Ã Manipulate DataFrames and tables

After	completing	this	lesson,	students	should	be	able	to:

152 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Spark	SQL	Components	Overview

2/15/17

77

153 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	SQL

Ã A	Spark	module	for	processing	structured data

Ã Automated	performance	improvements	compared	to	Spark	Core	API	programs

Ã Allows	leveraging	of	investments	in	Hive	data	and	knowledge-building	while	taking	
advantage	of	Spark's	in-memory	processing	capabilities

154 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrames

Ã Data	organized	into	one	or	more	columns,	similar	to	a	table
– Underlying	constructs	=	RDD

Ã Can	be	created	from	RDDs,	Hive	tables,	and	outside	data	sources

Ã Can	be	used	to	create	SQL	tables

Ã Three	primary	methods	available	to	interact	with	DataFrames	and	tables
– DataFrames	API	available	for	Java,	Scala,	Python,	and	R
– Native	Spark	SQL	(subset	of	SQL92)
– HiveQL (with	just	a	few	exceptions)

2/15/17

78

155 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hive

Ã Original	data	warehouse	platform	in	Hadoop
– Interacts	with	data	using	a	SQL-like	query	language,	HiveQL

Ã Represents	unstructured	data	in	HDFS	as	tables	using	a	metadata	overlay

Ã Ubiquitous	
– Every	Hadoop	distribution	includes	it	
– Massive	amounts	of	existing	data	managed	by	Hive

156 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hive Data Visually

Col(1) Col(2) Col(3) … Col(n)Represented	logically	as….

HDFS	
(unstructured	data)

data	file	1

data	file	2

data	file	3

Hive	(metadata)

2/15/17

79

157 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The DataFrame Visually

Col(1) Col(2) Col(3) … Col(n)

RDD	1.1xRDD	1.3x RDD	1.2x

Represented	logically	as….

data	file

Spark	SQL

Converted	to…

HDFS	
(unstructured	data)

Hive	(metadata)

RDD

158 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	SQL	Contexts

Ã Two	options:

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

or

from pyspark.sql import HiveContext

sqlContext = HiveContext(sc)

Ã Zeppelin	uses	HiveContext named	sqlContext when	running	%sql code

Ã REPL	also	creates	a	HiveContext named	sqlContext at	launch

2/15/17

80

159 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

SQLContext vs.	HiveContext

Ã SQLContext
– Provides	a	generic	SQL	parser

Ã HiveContext
– Superset	of	(extends)	SQLContext
– Enables	numerous	additional	operations	using	the	HiveQL parser
– Allows	ability	to	read	data	directly	from	and	write	back	to	Hive	tables
– Provides	access	to	Hive	User	Defined	Functions	(UDFs)

Ã Which	to	use?
– SQLContext has	fewer	dependencies	and	uses	less	resources	if	the	limited	API	meets	your	needs
– HiveContext allows	greater	flexibility	and	capabilities
– When	in	doubt,	use	HiveContext

160 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Catalyst,	the	Spark	SQL	Optimizer
Ã Accelerates	query	performance	via:	

– Built-in	catalog	of	optimizations
– Intelligent,	cost-based	plan	selection	and	execution

Ã Simpler	to	write	a	SQL	statement	than	a	series	of	filter(),	group(),	etc.	calls
Ã Performance	matches	or	outperforms	equivalent	core	RDD	programs

Dataframe

Spark	SQL	Query Cost	
Modeling	
and	Plan	
Selection

Analysis Logical	
Optimization

Physical	Plan	
Creation

Code	
GenerationRDD	1.1xRDD	1.3x RDD	1.2x

2/15/17

81

161 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Spark	SQL	Components	Overview
Ã Create	and	Save	DataFrames	and	Tables

162 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Convert	an	RDD	to	a	DataFrame

Ã An	RDD	with	elements	that	adhere	to	a	properly	defined	schema	can	be	converted	to	a	
DataFrame using	one	of	the	following	methods:

toDF():		 dataframeX = rddName.toDF()

createDataFrame():
dataframeX = sqlContext.createDataFrame("rddName")

Ã In	Python,	if	an	RDD	is	properly	formatted	but	lacks	a	schema,	createDataFrame()
can	be	used	to	infer	the	schema	on	DataFrame	creation

rddName = sc.parallelize([(‘AA’, 150000), (‘BB’, 80000)])

dataframeX = sqlContext.createDataFrame(rddName, [‘code’, ‘value’])

2/15/17

82

163 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Create	DataFrames From	Text	Programmatically

from pyspark.sql import SQLContext, Row
sqlContext = SQLContext(sc)
##Want to create a DataFrame of People
##Attributes will be Name, Age

lines = sc.textFile("examples/src/main/resources/people.txt")
parts = lines.map(lambda l: l.split(","))
people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))

##Create the DataFrame
peopleDF=sqlContext.createDataFrame(people)

164 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Creating	a	DataFrame from	a	table	in	Hive

Ã Load	the	entire	table
df = sqlContext.table("patients")

Ã Load	using	a	SQL	Query
sqlContext.sql("Use people")
df1 = sqlContext.sql("SELECT * from patients WHERE age>50")
df2 = sqlContext.sql("""
SELECT col1 as timestamp, SUBSTR(date,1,4) as year, event
FROM events
WHERE year > 2014""")

164

2/15/17

83

165 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Register	DataFrames	as	Temporary	Tables

Ã Use	registerTempTable() to	make	the	DataFrame available	to	SQL	within	the	
current	context

dataframe1.registerTempTable("table1")

166 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrames	and	Tables	- Summary

Ã Registering	a	temporary	table	makes	that	table	available	for	either	DataFrames	API	or	
SQL	interactions	while	operating	in	that	specific	context,	but	storing	tables	in	Hive	(and	
using	HiveContext)	makes	them	available	across	contexts

HDFS	
(unstructured	data)

Hive	(metadata)

sqlContext1 sqlContext2 sqlContext3tempTable1 tempTable2 tempTable3

HiveTable

HiveTable HiveTable HiveTable

2/15/17

84

167 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

sqlContext.sql() and show()

Ã The	DataFrames	API	enables	a	user	to	run	native	SQL	commands	using	the	sql()
function	prepended	by	the	name	of	the	context	(default	is	usually	sqlContext)

Ã When	displaying	DataFrame contents	or	the	output	from	a	SQL	command	run	from	the	
DataFrames	API,	append	show() to	display	the	contents	on-screen

sqlContext.sql("SELECT * FROM permcd").show()

168 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Saving Dataframe to Hive Table

Ã Use	the	HiveQL CREATE TABLE function	to	make	a	copy	of	a	DataFrame as	a	
permanent	Hive	table

sqlContext.sql("CREATE TABLE table1hive AS SELECT * FROM table1")

168

2/15/17

85

169 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrameReader / DataFrameWriter API

ÃDataFrameReader
– Interface	used	to	load	a	DataFrame from	external	storage
–format(str)	– supports	“orc”,	“parquet”,	“json”,	etc
– load(path-to-file)	

ÃDataFrameWriter
– Interface	used	to	store	a	DataFrame to	external	storage
–format(str) – supports	“orc”,	“parquet”,	“json”,	etc
–mode(str) - what	to	do	when	file	exists:	“append”,	“ignore”,	“overwrite”,	“error”
–save(path-to-file)

170 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Create	DataFrames	from	Files	using	read()

Ã DataFrames	can	be	created	easily	from	certain	structured	file	types,	including	ORC,	
parquet,	and	if	properly	formatted,	JSON	(as	well	as	others)

dataframeJSON = sqlContext.read.format("json").load("dfsamp.json")

Or,	if	reading	from	a	folder	of	part-*	files	created	using	write():

dataframeJSON = sqlContext.read.format("json").load("folderName/*")

2/15/17

86

171 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Save	DataFrames	as	Files	Using	write()

Ã DataFrames	can	be	saved	to	HDFS	as	files	of	many	commonly	used	file	formats,	
including	ORC,	JSON,	and	parquet.	

dataframe1.write.format("json").save("dfjson")

dataframe1.write.format("orc").save("dforc")

dataframe1.write.format("parquet").save("dfparquet")

172 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Save	Modes

Ã Save	modes	control	behavior	during	save	operations
– ErrorIfExists:	Default	mode,	returns	an	error	if	the	data	already	exists
– Append:	Appends	data	to	file	or	table	if	it	already	exists
– Overwrite:	Replaces	existing	data	if	it	already	exists
– Ignore:	Does	nothing	if	the	data	already	exists

dataframe1.write.format("orc").save("dforc", mode="overwrite")

2/15/17

87

Lab:	Create	and	Save	
DataFrames

174 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Spark	SQL	Components	Overview
Ã Create	and	Save	DataFrames	and	Tables
Ã Manipulate	DataFrames	and	Tables

2/15/17

88

175 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Working	with	Dataframes and	sql()

Ã SQL	can	be	run	against	dataframes with	just	small	modification

df = sqlContext.table("myHiveTable")

df.registerTempTable("t1")

df2 = sqlContext.sql("SELECT A, B, C from t1")

df2.registerTempTable("t2")

df3 = sqlContext.sql("… from t2")

df3.registerTempTable("t3")

175

176 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Zeppelin	and	the	%sql binding

Ã In	Zeppelin	we	have	a	shortcut	for
sqlContext.sql()

Ã In	Zeppelin,	we	can	use	the	%SQL	on	tables	registered	to	the	SQL	Context	(temp	and	
hive	tables).

176

2/15/17

89

177 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example	DataFrames

For	the	next	few	slides,	let's	create	two	data	frames:
df1 = sc.parallelize(

[Row(cid='101', name='Alice', age=25, state='ca'), \
Row(cid='102', name='Bob', age=15, state='ny'), \
Row(cid='103', name='Bob', age=23, state='nc'), \
Row(cid='104', name='Ram', age=45, state='fl')]).toDF()

df2 = sc.parallelize(
[Row(cid='101', date='2015-03-12', product='toaster', price=200), \
Row(cid='104', date='2015-04-12', product='iron', price=120), \
Row(cid='102', date='2014-12-31', product='fridge', price=850), \
Row(cid='102', date='2015-02-03', product='cup', price=5)]).toDF()

178 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Inspecting	Content	(1	of	2)

Ã first() – return	the	first	row

Ã take(n) – return	n	rows

df1.first()
Row(age=23, cid=u'104', name=u'Bob', state=u'nc')

df1.take(2)
[Row(age=45, cid=u'104', name=u'Ram', state=u'fl')
Row(age=15, cid=u'102', name=u'Bob', state=u'ny')]

2/15/17

90

179 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Inspecting	Content	(2	of	2)

Ã limit(n): reduce the DataFrame to n random rows
– Result is still a DataFrame, not a Python result list

Ã show(n): prints the first n rows to the console

df1.show(3)

+---+---+-----+-----+
|age|cid| name|state|
+---+---+-----+-----+
25	101	Alice	ca
15	102	Bob	ny
23	103	Bob	nc
+---+---+-----+-----+

df1.limit(2).show()

+---+---+-----+-----+
|age|cid| name|state|
+---+---+-----+-----+
| 15|102| Bob| ny|
| 45|101|Alice| ca|
+---+---+-----+-----+

180 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Inspecting	Schema

df1.columns #Display column names
[u'age', u'cid', u'name', u'state']

df1.dtypes #Display column names and types
[('age', 'bigint'), ('cid', 'string'), ('name', 'string'), ('state',
'string')]

df1.schema #Display detailed schema
StructType(List(StructField(age,LongType,true),
StructField(cid,StringType,true),
StructField(name,StringType,true),
StructField(state,StringType,true)))

2/15/17

91

181 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Counting	Rows

Ã Count	all	the	rows	in	a	DataFrame

df1.count()
4

182 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Summary	Statistics	

df1.describe().show()

+-------+------------------+
|summary| age|
+-------+------------------+
count	4
mean	27.0
stddev	11.045361017187261
min	15
max	45
+-------+------------------+

Describe() shows	statistics	for	all	numeric	columns,	ignoring	others

2/15/17

92

183 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Removing	Duplicates

Ã Remove	duplicate	rows

df1.distinct().show()

+---+---+-----+-----+
|age|cid| name|state|
+---+---+-----+-----+
23	103	Bob	nc
15	102	Bob	ny
45	104	Ram	fl
25	101	Alice	ca
+---+---+-----+-----+

184 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Removing	Rows	by	Key

Ã Removing	duplicate	rows	by	key,	drops	every	row	with	the	same	key	but	the	first	
occurrence

df1.drop_duplicates(["name"]).show()

+---+---+-----+-----+
|age|cid| name|state|
+---+---+-----+-----+
15	102	Bob	ny
45	104	Ram	fl
25	101	Alice	ca
+---+---+-----+-----+

2/15/17

93

185 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Sorting	Rows	

df1.sort(df1["age"].desc()).
show()

+---+---+-----+-----+
|age|cid| name|state|
+---+---+-----+-----+
45	104	Ram	fl
25	101	Alice	ca
23	103	Bob	nc
15	102	Bob	ny
+---+---+-----+-----+

df1.sort("age",
ascending=True).show()

+---+---+-----+-----+
|age|cid| name|state|
+---+---+-----+-----+
15	102	Bob	ny
23	103	Bob	nc
25	101	Alice	ca
45	104	Ram	fl
+---+---+-----+-----+

186 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Adding	a	Column	

df1.withColumn("age-dog-years", df1["age"]*7).show()

+---+---+-----+-----+-------------+
|age|cid| name|state|age-dog-years|
+---+---+-----+-----+-------------+
25	101	Alice	ca	175
15	102	Bob	ny	105
23	103	Bob	nc	161
45	104	Ram	fl	315
+---+---+-----+-----+-------------+

2/15/17

94

187 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Renaming	a	Column	

df1.withColumnRenamed("age", "age2").show()

+----+---+-----+-----+
|age2|cid| name|state|
+----+---+-----+-----+
25	101	Alice	ca
15	102	Bob	ny
23	103	Bob	nc
45	104	Ram	fl
+----+---+-----+-----+

188 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	select() Operator	

df1.select("name", "age").show()

+-----+---+
| name|age|
+-----+---+
Alice	25
Bob	15
Bob	23
Ram	45
+-----+---+

df1.select(df1["name"],
df1["age"]*7).show()

+-----+---------+
| name|(age * 7)|
+-----+---------+
Alice	175
Bob	105
Bob	161
Ram	315
+-----+---------+

• select(*cols)
– Cols: list of column names (strings) or list of "Column" expressions

2/15/17

95

189 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	selectExpr() Operator	

Ã selectExpr(*expr) – Selects	a	set	of	SQL	expressions.

df.selectExpr("colA","colB as newName","abs(colC)")

df1.selectExpr("substr(name,1,3)", "age*7").show()

+------------------+---------+
|SUBSTR(name, 1, 3)|(age * 7)|
+------------------+---------+
Ali	175
Bob	105
Bob	161
Ram	315
+------------------+---------+

190 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Column	Expression

Ã Column	objects	can	be	created	from	a	DataFrame	

Select	a	column:	df1["age"]
OR
Expression:	df1.age * 2 – 15

Ã Operations	on	Column	objects:

Cast	to	type:	 df1["age"].cast("string")

Rename	a	column:	 df1["age"].alias("age2")

Sort	a	column:	 df1["age"].asc() or df["age"].desc()

Substring:	 df1["name"].substr(1,3)

Between:	 df1["age"].between(25, 34)

2/15/17

96

191 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DataFrame	Operations:	Dropping	Columns	

df1.drop("age").show()

+---+-----+-----+
|cid| name|state|
+---+-----+-----+
101	Alice	ca
102	Bob	ny
103	Bob	nc
104	Ram	fl
+---+-----+-----+

192 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data	Frame	Operations:	Filtering	Rows	

df1.filter(df1.age>21).show()

OR	

df1.filter(df1["age"]>21).show()

+---+---+-----+-----+
|age|cid| name|state|
+---+---+-----+-----+
25	101	Alice	ca
23	103	Bob	nc
45	104	Ram	fl
+---+---+-----+-----+

2/15/17

97

193 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data	Frame	Operations:	groupBy()

df1.groupBy("name").count().show()

+-----+-----+
| name|count|
+-----+-----+
Ram	1
Alice	1
Bob	2
+-----+-----+

194 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data	Frame	Operations:	groupBy() and	sum()

df2.select(df2["date"].substr(1,4).alias("year"),
df2["price"]).groupBy("year").sum().show()

+----+----------+
|year|SUM(price)|
+----+----------+
|2014| 850|
|2015| 325|
+----+----------+

2/15/17

98

195 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data	Frame	Operations:	groupBy() and	agg()

Ã agg(*exprs) is	a	generic	function	for	implementing	aggregations	after	groupBy

Ã Exprs:	a	dictmapping	column	names	to	aggregate	function	(min,	max,	count,	
avg,	sum)	

df2.select(df2["date"].substr(1,4).alias("year"),
df2["price"]).groupBy("year").
agg({"price": "avg", "year": "count"}).show()

+----+------------------+-----------+
|year| AVG(price)|COUNT(year)|
+----+------------------+-----------+
|2014| 850.0| 1|
|2015|108.33333333333333| 3|
+----+------------------+-----------+

196 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Inner	Join	with	Data	Frames	

df1.join(df2, df1["cid"]==df2["cid"], "inner").show()

+---+---+-----+-----+---+----------+-----+-------+
|age|cid| name|state|cid| date|price|product|
+---+---+-----+-----+---+----------+-----+-------+
25	101	Alice	ca	101	2015-03-12	200	toaster
15	102	Bob	ny	102	2014-12-31	850	fridge
15	102	Bob	ny	102	2015-02-03	5	cup
45	104	Ram	fl	104	2015-04-12	120	iron
+---+---+-----+-----+---+----------+-----+-------+

2/15/17

99

197 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

More	About	join()

Ã df1.join(df2, joinExpr, joinType)

Ã joinType is	one	of:	inner,	outer,	left_outer,	right_outer and	semijoin

Ã joinExpr can	be	written	in	two	ways
– df1.join(df2, "cid", "inner")
– df1.join(df2, df1["cid"]==df2["cid"], "inner")

198 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Multiple	Conditions	in	joinExpr

Notice	the	special	way	to	join	with	multiple	conditions:	

df1.join(df2, (df1["cid"]==df2["cid"]) & (df2["price"] >
200), "inner").show()

+---+---+----+-----+---+----------+-----+-------+
|age|cid|name|state|cid| date|price|product|
+---+---+----+-----+---+----------+-----+-------+
| 15|102| Bob| ny|102|2014-12-31| 850 | fridge|
+---+---+----+-----+---+----------+-----+-------+

2/15/17

100

199 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Broadcast	Joins	in	Spark	SQL

Ã Spark	automatically	tries	to	optimize	joins	by	implementing	broadcast,	or	map	side	
joins.
spark.sql.autoBroadcastJoinThreshold = 10485760 (10 mb)

Ã Spark	Dataframe API	allows	for	broadcast	hints
– Useful	when	joining	LARGE	tables	to	small tables
df1.join(broadcast(df2), df1.cid == df2.cid, inner)

Ã Can	also	be	used	for	other	shuffle	based	operations,	like	the	SQL	equivalent	to	the	rdd
method	intersect	->	execpt:
df1.except(broadcast(df2))

200 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

User	Defined	Functions	(UDFs)

from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType

get_year = udf(lambda x: int(x[:4]), IntegerType())

df2.select(get_year(df2["date"]).alias("year"),
df2["product"]).collect()

+----+-------+
|year|product|
+----+-------+
2015	toaster
2015	iron
2014	fridge
2015	cup
+----+-------+

2/15/17

101

201 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

UDFS	with	Multiple	Parameters

from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType

calc_mins = udf(lambda h,m: int(h*60+m), IntegerType())

df2.select(calc_mins(df2["hour"],
df2["mins"]).alias("my_mins"))

202 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Using	UDFs	in	SQL	Statements	

df2.registerTempTable("my_df")

sqlContext.registerFunction("get_year", lambda x: int(x[:4]))

sqlContext.sql("select get_year(date) as year FROM
my_df").show()

+----+
|year|
+----+
|2015|
|2015|
|2014|
|2015|
+----+

2/15/17

102

203 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

explain()

Ã The	explain() command	describes	Spark-SQL	execution	plan	
df1.join(df2, (df1["cid"]==df2["cid"]) & (df2["price"] > 200),
"inner").show()

ShuffledHashJoin	[cid#140],	[cid#143],	BuildRight	
Exchange	(HashPartitioning	200)	

PhysicalRDD	[age#139L,cid#140,name#141,state#142],	MapPartitionsRDD[286]	
at	applySchemaToPythonRDD	at	NativeMethodAccessorImpl.java:-2	
Exchange	(HashPartitioning	200)	

Filter	(price#145L	>	200)	
PhysicalRDD	[cid#143,date#144,price#145L,product#146],	

MapPartitionsRDD[295]	at	applySchemaToPythonRDD	at	NativeMethod	
AccessorImpl.java:-2	

204 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

More	on	DataFrames

Ã We	covered	a	subset	of	data	frames	operations	

Ã Other	areas	not	covered	here:
– Data	Frame	windowing	functions	(OVER with	rank,	first_value,	last_value,	etc)	
– cov,	crosstab,	corr,	rollup
– fillna() to	deal	with	missing	values	

Ã The	best	reference	is	the	documentation:	
https://spark.apache.org/docs/latest/api/python/pyspark.sql
.html#pyspark.sql.DataFrame

2/15/17

103

Lab:	Work	with	Tables	and	
DataFrames,	Dataframes
and	UDFs,	Hive	+	Spark	SQL

Knowledge	Check

2/15/17

104

207 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. While core RDD programming is used with [structured/unstructured/both]
data Spark SQL is used with [structured/unstructured/both] data.

2. True or False: Spark SQL is an extra layer of translation over RDDs.
Therefore while it may be easier to use, core RDD programs will generally
see better performance.

3. True or False: A HiveContext can do everything that a SQLContext can
do, but provides more functionality and flexibility.

4. True or False: Once a DataFrame is registered as a temporary table, it is
available to any running sqlContext in the cluster.

5. Hive tables are stored [in memory/on disk].
6. Name two functions that can convert an RDD to a DataFrame.
7. Name two file formats that Spark SQL can use without modification to

create DataFrames.

Summary

2/15/17

105

209 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã Spark	SQL	gives	developers	the	ability	to	utilize	Spark's	in-memory	processing	
capabilities	on	structured	data

Ã Spark	SQL	integrates	with	Hive	via	the	HiveContext,	which	broadens	SQL	capabilities	and	
allows	Spark	to	use	Hive	HCatalog	for	table	management

Ã DataFrames	are	RDDs	that	are	represented	as	table	objects	which	can	used	to	create	
tables	for	SQL	interactions

Ã DataFrames	can	be	created	from	and	saved	as	files	such	as	ORC,	JSON,	and	parquet
Ã Because	of	Catalyst	optimizations	of	SQL	queries,	SQL	programming	operations	will	

generally	outperform	core	RDD	programming	operations

210 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data	Visualization	in	
Zeppelin

2/15/17

106

211 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Explain the purpose and benefits of data visualization
Ã Perform interactive data exploration using visualization in Zeppelin
Ã Collaborate with other developers and stakeholders using Zeppelin

After	completing	this	lesson,	students	should	be	able	to:

212 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Data	Visualization	Overview

2/15/17

107

213 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data	Visualization	Introduction

Ã Table-based	data	is	great	for	calculation	and	organization,	but	hard	to	use	for	decision	
making	when	working	with	large	sets	of	data

Ã Data	visualizations	enable	humans	to	make	inferences	and	draw	conclusions	about	large	
sets	of	data	based	on	visual	input	alone

213

214 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data	Visualization	and	Spark

Ã The	Spark	project	contains	a	module	called	GraphX for	visualizations

– Scala	only

– Programmatic	(difficult	for	non-coders	to	interact	with)

Ã Zeppelin	can	be	used	for	data	visualization	as	well

– Lots	of	built-in,	easy	to	use	visualizations

– Virtually	any	visualization	library	from	any	supported	language	can	be	used

– Easy	collaboration	with	other	developers	and	non-technical	business	owners

214

2/15/17

108

215 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Data	Visualization	Overview
Ã Data	Exploration

216 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Visualizations	on	Tables	(%sql default)

216

2/15/17

109

217 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Visualizations	on	DataFrames

Ã z.show(DataFrameName)

217

218 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Visualizations	on	Other	Formatted	Data

Ã Use	%table as	part	of	the	print	instruction	and,	if	formatted	correctly,	the	data	will	be	
presented	with	visualizations	enabled

println("%table code\tvalue\nAA\t150000\nBB\t80000\n")

218

2/15/17

110

219 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Interactive	Visualization	- Programmatic

Ã Visualization	displays	change	any	time	a	new	query	(or	other	command)	is	executed

219

220 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Interactive	Visualization	- Pivot	Charts

Ã In	addition,	Zeppelin	provides	a	Pivot	Chart	capability	under	Settings	in	which	additional	
data	manipulations	can	be	performed	without	changing	the	original	query	or	command

220

2/15/17

111

221 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Pivot	Chart	- Value	Options

Ã Click	on	the	box	under	"Values"	and	a	drop-down	menu	appears

Ã Use	it	to	change	the	default	value	action
– Switch	between	SUM,	AVG,	COUNT,	MIN,	and	MAX

221

222 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Pivot	Chart	- Change	Values	or	Keys	

Ã Click	on	the	"x"	to	the	right	of	a	box	to	remove	that	from	the	appropriate	column,	then	
drag	and	drop	from	the	column	options	to	display	something	new

222

2/15/17

112

223 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Pivot	Chart	- Add	Groups

Ã Drag	and	drop	the	appropriate	grouping	category	from	the	list	of	options	to	see	the	data	
further	broken	down

223

224 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Ã Sometimes	Pivot	Charts	don't	provide	the	flexibility	needed	when	interacting	with	data

Ã In	these	instances,	Dynamic	Forms	can	be	implemented	in	the	query	/	command	to	
provide	parameters	for	WHERE	clauses

SELECT * FROM table WHERE colName [mathOp] ${LabelName=DefValue}

Dynamic	Forms

224

2/15/17

113

225 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Dynamic	Forms	- Multiples

Ã Multiple	variables	can	be	included	as	Dynamic	Forms

225

226 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Ã Select	forms	(drop-down	menus)	can	be	created	as	Dynamic	Forms	as	well.

... WHERE colName = "${LabelName=defaultLabel,opt1|opt2|opt3|…}"

Dynamic	Forms	- Select

226

2/15/17

114

227 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Data	Visualization	Overview
Ã Data	Exploration
Ã Collaboration	and	Sharing

228 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Clone	and	Export	a	Note

Ã Before	sharing	a	note	with	others,	it	may	be	a	good	idea	to	make	a	copy	of	it

Ã Two	ways	to	do	this:

– Clone:	make	a	copy	of	the	note	in	Zeppelin

– Export:	save	a	copy	of	the	note	in	JSON	format			

228

2/15/17

115

229 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Import	a	Note

Ã Exported	notes	can	be	shared	with	and	imported	by	another	developer

229

230 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Note	Cleanup

Ã In-process	notes	can	be	messy	and	contain
unnecessary	duplicate	code	or	alternatives

Ã Individual	paragraphs	that	are	no	longer	needed	
can	be	deleted	from	the	note

Ã Paragraphs	can	also	be	reordered	and	new	
paragraphs	can	be	inserted
– For	example,	to	add	Markdown	comments

230

2/15/17

116

231 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Interactive	Note	Sharing

Ã Note	URLs	can	be	shared
– All	connections	using	this	URL	are	live,	real-time	connections	to	the	same	note

231

232 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Note	Access	Control

Ã By	default,	anyone	with	the	note	link	can	completely	control	the	note

Ã To	control	access,	click	the	Note	Permissions	(padlock)	icon	at	the	top-right	corner	of	the	
note	and	set	permissions	accordingly

232

2/15/17

117

233 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Note	Formatting

Ã Note	owners	can	control	all	paragraphs	at	the	note	level,	including:

– Hide/Show	all	code

– Hide/Show	all	output

– Clear	all	output

Ã There	are	also	two	additional	note	views

– Simple:	Removes	note-level	controls

– Report:	Removes	note-level	controls	and	all	code

233

234 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Automate	Note	Updates

Ã Entire	notes	can	be	played,	paragraph	by	paragraph,	at	regular	intervals

234

2/15/17

118

235 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Paragraph	Formatting

Ã Paragraphs	also	contain	formatting	settings,	including:

– Hide/Show	paragraph	code

– Hide/Show	paragraph	output

– Clear	paragraph	output	is	available	
in	the	settings	menu	(gear	icon)

235

236 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Paragraph	Enhancement	- Width

Ã Width:	Controls	width	of	the	paragraph	in	
the	note,	allowing	multiple	paragraphs	to	be	
displayed	in	a	row

236

2/15/17

119

237 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Paragraph	Enhancement	- Show	Title

Ã Paragraph	titles	can	be	added	for	clarity

237

238 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Paragraph	Enhancement	- Line	Numbers

Ã Line	numbers	can	be	added	to	paragraph	code

238

2/15/17

120

239 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Paragraph	Sharing

Ã Individual	paragraphs	can	be	shared	via	links
which	can	be	sent	to	users	or	embedded	in	
reports	generated	by	other	tools

Ã If	Dynamic	Forms	have	been	implemented	in
the	paragraph,	users	will	be	able	to	interact	with
the	data,	even	though	they	do	not	have	access
to	the	code

239

240 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Disable	Paragraph	Output	Changes

Ã Disable	the	paragraph	run	feature	to	lock	the
output	of	a	paragraph

Ã Changes	to	Dynamic	Forms	or	code	will	not
be	reflected	in	the	paragraph

240

2/15/17

121

Lab:	Data	Visualization	in	
Zeppelin

Knowledge	Check

2/15/17

122

243 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. What is the value of data visualization?
2. How many chart views does Zeppelin provide by default?
3. How do you share a copy of your note (non-collaborative) with another

developer?
4. How do you share your note collaboratively with another developer?
5. Which note view provides only paragraph outputs?
6. Which paragraph feature provides the ability for an outside person to see a

paragraph's output without having access to the note?
7. What paragraph feature allows you to give outside users the ability to modify

parameters and update the displayed output without using code?

Summary

2/15/17

123

245 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã Data	visualizations	are	important	when	humans	need	to	draw	conclusions	about	large	
sets	of	data

Ã Zeppelin	provides	support	for	a	number	of	built-in	data	visualizations,	and	these	can	be	
extended	via	visualization	libraries	and	other	tools	like	HTML	and	JavaScript

Ã Zeppelin	visualizations	can	be	used	for	interactive	data	exploration	by	modifying	
queries,	as	well	as	the	use	of	pivot	charts	and	implementation	of	dynamic	forms

Ã Zeppelin	notes	can	be	shared	via	export	to	a	JSON	file	or	by	sharing	the	note	URL
Ã Zeppelin	provides	numerous	tools	for	controlling	the	appearance	of	notes	and	

paragraphs	which	can	assist	in	communicating	important	information
Ã Paragraphs	can	be	shared	via	a	URL	link
Ã Paragraphs	can	be	modified	to	control	their	appearance	and	assist	in	communicating	

important	information

246 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Job	Monitoring

2/15/17

124

247 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Describe	the	components	of	a	Spark	job	

Ã Explain	default	parallel	execution	for	stages,	tasks,	across	CPU	cores

Ã Monitor	Spark	jobs	via	the	Spark	Application	UI

After	completing	this	lesson,	students	should	be	able	to:

248 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Job	Anatomy

2/15/17

125

249 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark Task/Stage/Job/ DAG Schedule

ÃTask	is	a	unit	of	work	(pipeline	of	operations	that	do	not	require	a	shuffle)
ÃStage	is	a	group	of	tasks	separated	by	a	operation	that	requires	a	shuffle
ÃA	job	is	a	grouping	of	stages

ÃThe	DAG	scheduler	tells	Spark	which	stages	to	execute	when
–The	next	stage	cannot	start	before	all	the	tasks	in	the	previous	stage	have	finished

250 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Wide and Narrow Operations

ÃWide	operations	require	a	shuffling	of	data	(many	to	1	relationship)
– reduceByKey
–groupByKey
– repartition
– join

ÃNarrow	operations	can	be	executed	locally	(1	to	many	relationship)
–map
– filter
– flatMap

2/15/17

126

251 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

RDD Graph

sc.textFile("/path/to/data")
.flatMap(lambda	line:	line.split("	"))
.map(lambda	word:	(word,1)))
.reduceByKey(lambda	a,b: a+b,	numPartitions =	3)
.collect()

252 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

DAG Scheduler

mapflatMap reduceByKey collecttextFile

map

Stage 2Stage 1

flatMap reduceByKey collecttextFile

Task 2

Task 1

Task 4

Task 3

Task 2

Task 1

Task 4

Task 3

2/15/17

127

253 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Job	Anatomy
Ã Parallel	Execution

254 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Task	Steps
Ã A	task	consists	of	three	steps

– Fetch	input	data
– Execute	the	operation
– Produce	output

Ã Parallel	execution	minimizes	task	completion	times

Task

Task

Stage

Task

Fetch	Input

Execute	Task

Write	Output

All three steps can be
working at the same time

Task
Start

Task
End

2/15/17

128

255 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Tasks and CPU Cores

Worker 1

CPU1 CPU2

Worker 2

CPU1 CPU2

Fetch	Input

Execute	Task

Write	Output

Worker	1
Core	1

Fetch	Input

Execute	Task

Write	Output

Fetch	Input

Execute	Task

Write	Output

Fetch	Input

Execute	Task

Write	Output

Fetch	Input

Execute	Task

Write	Output

Worker	1
Core	2

Fetch	Input

Execute	Task

Write	Output

Worker	2
Core	1

Fetch	Input

Execute	Task

Write	Output

Fetch	Input

Execute	Task

Write	Output

Fetch	Input

Execute	Task

Write	Output

Each CPU core
on each node can

process tasks
independently

256 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Inherent	Parallelism	– parallelize()

Ã parallelize() bases	default	partitioning	on	the	number	of	cores	across	all	
executors	it	is	assigned

– Minimum	of	two	partitions
– Default	behavior	can	be	overridden
– Intent	is	to	maximize	parallel	operations

Ã Can	be	overridden	at	RDD	creation	time:

rdd = sc.parallelize([1,2,3,4,5,6],8)

2/15/17

129

257 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Inherent	Parallelism	– textFile()

Ã textFile() partitions	based	on	the	number	of	HDFS	blocks	the	file	uses
– A	single	file	(default	128	MB	or	less)	will	get	the	minimum	of	two	partitions
– RDD	partition	number	can	be	any	size
– Goal	is	to	avoid	moving	data	between	nodes

Ã Can	be	overridden	at	RDD	creation	time:	

rdd2 = sc.textFile("statePopulations.csv",numPartitions=8)

258 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Tune Data Parallelism

ÃSpark	works	with	partitions	as	the	mechanism	for	data	processing	parallelization
ÃUse	repartition() or	coalesce() to	control	parallelism	when	needed

–Use	coalesce	when	reducing	partitions,	repartition	to	increase
rdd.repartition(500)

rdd.coalesce(20)

ÃMany	operations	include	numPartitions as	parameter	that	does	this	automatically
rdd.reduceByKey(lambda ab: a+b, numPartitions=10)

ÃIn	the	REPL,	users	can	check	the	number	of	partitions	by	executing	the	following:
rdd.getNumPartitions()

2/15/17

130

259 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Changing the Level of Parallelism

260 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Job	Anatomy
Ã Parallel	Execution
Ã Spark	Application	UI

2/15/17

131

261 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	Application	UI

Ã Generated	by	and	available	for	the	life	of	a	SparkContext

– When	the	SparkContext is	exited,	no	longer	available

Ã Accessed	via	<drivernode>:4040

– In	our	environment:	sandbox:4040

Ã If	multiple	SparkContext instances	are	launched,	multiple	Spark	Application	UIs	will	exist

– Each	new	one	incremented	port	number	by	one	- for	example:	sandbox:4041,	sandbox:4042
– For	example:	running	Zeppelin,	open	a	PySpark REPL

262 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark UI: Jobs View

2/15/17

132

263 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark UI: Single Job View

264 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark UI: Single Job DAG Visualization

2/15/17

133

265 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark UI: Inside a Stage

266 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark UI: Inside a Stage, cont.

2/15/17

134

267 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark UI: Environment

268 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Executor	View

2/15/17

135

269 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

SQL	View

270 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

SQL	Query	Details	- Visual

2/15/17

136

271 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

SQL	Query	Details	- Text

272 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Streaming	Tab

2/15/17

137

273 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Streaming	View

274 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Streaming	Additional	Charts

2/15/17

138

275 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Streaming	Batches

276 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Batch	Detail

2/15/17

139

Lab:	Job	Monitoring

Knowledge	Check

2/15/17

140

279 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. Spark jobs are divided into _____________, which are logical
collections of _______________.

2. A job is defined as a set of tasks that culminates in a
________________.

3. What Spark component organizes stages into logical groupings
that allow for parallel execution?

4. What is the default port used for the Spark Application UI?
5. If two SparkContext instances are running, what is the port used

for the Spark Application UI of the second one?
6. As discussed in this lesson, what tabs in the Spark Application UI

only appear if certain types of jobs are run?

Summary

2/15/17

141

281 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã Spark	applications	consist	of	Spark	jobs,	which	are	collections	of	tasks	that	culminate	in	
an	action.

Ã Spark	jobs	are	divided	into	stages,	which	separate	lists	of	tasks	based	on	shuffle	
boundaries	and	are	organized	for	optimized	parallel	execution	via	the	DAG	Scheduler.

Ã The	Spark	Application	UI	provides	a	view	into	all	jobs	run	or	running	for	a	given	
SparkContext instance,	including	detailed	information	and	statistics	appropriate	for	the	
application	and	tasks	being	performed.	

282 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Caching	and	Persisting	
Data,	Checkpointing

2/15/17

142

283 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Understand	the	caching,	persisting,	and	the	different	storage	levels

Ã Describe	and	implement	checkpointing

After	completing	this	lesson,	students	should	be	able	to:

284 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Caching	and	Persisting	Data

2/15/17

143

285 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Caching	and	Persisting	Data

Ã Spark	data	is	not	maintained	in	memory	by	default

Ã Spark	allows	the	developer	to	persist	data	in	memory

– Beneficial	when	an	RDD	is	going	to	be	used	more	than	once	- for	example:	an	application	where	a	
"clean"	file,	reject	file,	and	summary	file	are	each	created	by	processing	the	same	original	file

– Very	useful	(and	incredibly	fast)	for	iterative	applications

286 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Memory	Representations	&	Limitations

Ã Caching	occurs	at	the	partition	level

Ã Cached	datasets	can	be	stored	three	ways
– Serialized:	objects	are	turned	into	compact	byte	streams	- reduces	memory	usage,	but	require	

more	processing	resources	to	deserialize when	needed
– Raw:	fastest	to	process,	but	can	easily	take	up	2-10x	more	memory	than	serialized	datasets
– Off-heap:	Utilize	off	heap	memory	to	avoid	GC's.		Slower	to	access	off	heap	memory	(all	data	must	

be	serialized,	primative classes	have	encoders)

Ã Executor	memory	is	a	finite	resource
– Least	Recently	Used	(LRU)	algorithm	determines	which	dataset(s)	to	evict	when	needed
– If	an	operation	tries	to	use	cache	that	no	longer	exists,	data	will	be	recomputed	and	recached

• Will	discuss	in	more	detail	later

2/15/17

144

287 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Caching	Syntax

Ã persist() - developer	can	control	caching	storage	level
– persist(StorageLevel.Selection)

Ã cache() - simple	operation
– cache() == persist(StorageLevel.MEMORY_ONLY)

Ã unpersist()- remove	data	from	cache

Ã Must	import	library	to	use	it:
scala -> import org.apache.spark.storage.storageLevel._
python -> from pyspark import StorageLevel

Ã In	pyspark:	objects	are	always	stored	with	the	Pickle	library
– So	MEMORY_ONLY and	MEMORY_ONLY_SER are	the	same

Spark	SQL:

sqlContext.cacheTable()
sqlContext.uncacheTable()

288 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Physical	Options	for	Caching

Storage	Level Memory Disk Serialized Replicas
MEMORY_ONLY (default) Yes Never No No
MEMORY_AND_DISK Yes Spills No No
MEMORY_ONLY_SER Yes No Yes No
MEMORY_AND_DISK_SER Yes Spills Yes No
MEMORY_ONLY_2 Yes No No Yes
MEMORY_AND_DISK_2 Yes Spills No Yes
DISK_ONLY No Yes No No

2/15/17

145

289 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example

from pyspark import StorageLevel

rdd = sc.textFiles("/user/root/logs/*")
rdd.persist(StorageLevel.MEMORY_ONLY_SER)
rdd.map(…).saveAsTextFile("/user/root/cleanLogs.txt")
rdd.filter(…).saveAsTextFile("/user/root/filteredLogs.txt")
rdd.unpersist()

290 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Which	Storage	Level	to	Choose?

Ã If	the	RDD	fits	in	memory,	use	the	default	MEMORY_ONLY

Ã If	RDDs	are	too	big,	try	MEMORY_ONLY_SER	with	a	fast	serialization	library	(Scala	only)

Ã If	the	RDDs	are	still	too	big:
– Consider	the	time	to	compute	this	RDD	from	parent	RDD	vs	the	time	to	load	it	from	disk
– Re-computing	an	RDD	may	sometimes	be	faster	than	reading	it	from	disk

Ã Replicated	storage	is	good	for	fast	fault	recovery,	but…
– Usually	this	is	overkill,	and	not	a	good	idea	if	you're	using	a	lot	of	data	relative	to	total	memory

Ã For	DataFrames,	use	cache() instead	of	persist(StorageLevel)

2/15/17

146

291 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Serialization	Options

Ã For	Scala,	Spark	provides	two	serialization	libraries:	
– Java	serialization	(default)	
– Kryo serialization

Ã Kryo is	much	faster	&	more	compact	(often	as	much	as	10x)
– Used	to	require	registration	of	custom	classes,	but	this	has	since	been	
addressed

Ã Python	uses	Pickle	for	RDD	serialization
– DataFrames	generate	Java	byte	code,	so	DataFrames	should	leverage	Kryo

292 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Kyro	Serialization

Ã Using	Kryo	Serialization	(always	use	it)

conf = SparkConf()

conf.set('spark.serializer',

'org.apache.spark.serializer.KryoSerializer')

sc=SparkContext(conf=conf)

2/15/17

147

Lab:	Caching	and	Persisting	
Data

294 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Caching	and	Persisting	Data
Ã Checkpointing

2/15/17

148

295 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Recomputation Problem

Ã As	Spark	transformations	are	processed	they	create	a	lineage
– This	lineage	provides	resilience,	but	can	also	cause	problems	as	number	of	transformations	grows

Ã If	data	is	lost	on	an	executor,	re-computing	that	data	can	take	a	very	long	time
– The	data	can	potentially	have	to	be	reprocessed	through	hundreds/thousands	of	operations

296 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Checkpointing	

Ã Helps	mitigate	the	recomputation problem

Ã Enabling	checkpointing does	the	following
– Data	checkpointing	that	saves	intermediate	data	to	reliable	storage	(HDFS)
– Metadata	checkpointing,	which	stores	file	names	and	other	configuration	data

Ã Lineage	is	"reset"	to	the	point	of	the	last	checkpoint

Ã Considerations:
– Performed	at	the	RDD,	not	the	application,	level
– There	is	an	expense	to	persist	to	HDFS,	but	this	is	usually	overshadowed	by	the	benefits
– No	automatic	cleanup	of	HDFS	files

2/15/17

149

297 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Node Loss Without Checkpointing

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

RDD	1.1x RDD	1.2xRDD	1.3x

All processing must be repeated, potentially
hundreds or thousands of transformations

HDFS

298 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Node Loss With Checkpointing

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

CP1.3x CP1.1x CP1.2x

RDD	1.1x RDD	1.2xRDD	1.3x

HDFS

RDD	1.2x

Only processing since last
checkpoint must be repeated

Trade performance while
processing in exchange

for faster recovery in
case of node loss

2/15/17

150

299 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Checkpointing	vs	Caching

Ã Checkpoint
– Saves	a	permanent	copy	of	the	intermediate	data
– Lineage	is	then	rebuilt	from	the	intermediate	data
– If	data	is	lost,	recomputes the	data	from	intermediate	data

Ã Caching
– Data	is	stored	somewhere	temporarily
– Lineage	is	preserved
– If	data	is	lost,	recomputes from	base	data

300 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

When	to	Use	Checkpointing

Ã Window	and	other	stateful streaming	application	transformations	require	it

Ã Iterative	applications	that	may	loop	through	data	hundreds,	or	thousands	of	times
– Machine	learning	algorithms	typically	do	this

2/15/17

151

301 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Implementing	Checkpointing

Ã Set	a	checkpoint	directory,	and	checkpoint	the	rdd:

sc.setCheckpointDir("somedir/")

rdd = sc.textFile("/path/to/file.txt")

while x in range(<large number>)

rdd.map(…)

if x % 5 == 0

rdd.checkpoint()

rdd.saveAsTextFile("/path/to/output.txt")

302 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Understand RDD lineage with toDebugString()

ÃExample:
rdd.toDebugString

(2)	PythonRDD[29]	at	RDD	at	PythonRDD.scala:43	[]	
|	 MapPartitionsRDD[28]	at	mapPartitions at	PythonRDD.scala:346	[]	
|	 ShuffledRDD[27]	at	partitionBy at	NativeMethodAccessorImpl.java:-2	[]

+-(2)	PairwiseRDD[26]	at	reduceByKey at	<ipython-input-8-1817f0de03c6>:2	[]	
|	PythonRDD[25]	at	reduceByKey at	<ipython-input-8-1817f0de03c6>:2	[]	 |	

MapPartitionsRDD[24]	at	textFile at	NativeMethodAccessorImpl.java:-2	[]	
|	some-text-file	HadoopRDD[23]	at	textFile at	NativeMethodAccessorImpl.java:-2	[]	

2/15/17

152

Lab:	Checkpointing and	RDD	
Lineage

304 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	Shared	Variables

2/15/17

153

305 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Use	accumulators

Ã Use	broadcast	variables

After	completing	this	lesson,	students	should	be	able	to:

306 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Accumulators

2/15/17

154

307 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Accumulators

counter = sc.accumulator(0)
rdd.foreach(...

counter += 1
)

counter.value()

Executor 1

3 Counter += 1

Executor 2

8 Counter += 1

Executor 3

5 Counter += 1

Driver

16counter.value

308 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Accumulators

ÃAccumulator = A variable that is only “added” to through an associated operation, and
can therefore be efficiently supported in parallel.

ÃAccumulators can be used to implement counters (as in MapReduce) or sums.
ÃOnly the driver can access the value.

–Updates are sent to the driver, will get an exception if you use the .value on executors
ÃSpark natively supports accumulators of numeric types, and developers can add

support for new types.
–Doubles
–Floats
– Ints

ÃMost common uses
–Count events that occur, like invalid records

2/15/17

155

309 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Accumulators and Fault Tolerance

ÃSpark automatically deals with failed or slow machines by re-executing failed or slow
tasks.

ÃAccumulators are returned at the end of successful tasks
ÃFor accumulators used in actions, Spark applies each task’s update to each

accumulator only once
– If a reliable counter is required, they must be used in an action, like foreach()

ÃFor accumulators used in transformations, the guarantee does not exist
–Transformations can happen more than once in an action, if there are slow or failed tasks
–Accumulators in transformations should only be used for debugging

310 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Accumulator in Transformation Example

rdd=sc.textFile(myfile.txt)
blanklines = sc.accumulator(0) ## Create an Accumulator[Int]
initialized to 0
rddNotBlank = rdd.map(lambda line: \

if not line:
blanklines += 1

else:
line).map(lambda line: line.split(',')

rddNotBlank.saveAsTextFile("myfile.txt")

2/15/17

156

311 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Accumulator in Action Example

val rdd=sc.textFile(myfile.txt)
//Create Accumulator[Int] initialized to 0
val blanklines = sc.accumulator(0)
val rddNotBlank = rdd.filter(line => !line.isEmpty)

rdd.foreach(line =>
if (line.isEmpty){

blanklines +=1
})
rdd.join(otherrdd).saveAsTextFile()

blanklines.value
rddNotBlank.saveAsTextFile("myfile.txt")

Lab:	Using	Accumulators	to	
Check	Data	Quality

2/15/17

157

313 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Using	Accumulators
Ã Using	Broadcast	variables

314 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

How do Broadcast Variables Work?

ÃWithout broadcast variables, reference
data gets sent to every task on the
executor, even though multiple tasks
reuse the same variables.

ÃUsing broadcast variables, Spark
sends a copy to the node once, then
the data is stored in memory. Each
task will reference the local copy of the
data.

Executor
Driver

Reference	
Data

Task

Task

Task

RefD

RefD

RefD

ExecutorDriver

Reference	
Data

Task

Task

Task

RefD

2/15/17

158

315 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Broadcast Variables

Ã Spark feature for sharing a variable throughout the application cluster
– The broadcast variable must fit within an executor's memory
– Not intended for RDDs or DataFrames
– Immutable

Ã Give every node a copy of an input dataset in an efficient manner
– Uses P2P torrenting concepts to efficiently distribute
– Lazy - the first read of a broadcast variable will retrieve and store the data
– Sent to each executor once

316 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Why Use Broadcast Variables?

Ã Minimize network traffic by passing referenced variables to an executor only
one time
– Especially beneficial when local variables are 20kb or larger

Ã Complements Spark's task launching behavior for RDD programming, which is
optimized for small tasks
– Not used with Spark SQL

2/15/17

159

317 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Implementing Broadcast Variables

rdd = sc.textFile(input.txt).map(….)…
toBroadcast = //some dictonary
lkp_bc = sc.broadcast(toBroadCast)
lookuprdd = rdd.map(lambda (key, value):
(key, lkp_bc.value[value])))

Lab:	Using	Broadcast	
Variables

2/15/17

160

319 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Performance	Tuning

320 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Control	behavior	and	performance	of	Spark	applications	via:
– mapPartitions() vs.	map()
– Implementing	joining	strategies
– Optimizing	executors

After	completing	this	lesson,	students	should	be	able	to:

2/15/17

161

321 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã mapPartitions() vs.	map()

322 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Improve	Performance:	mapPartitions() vs. map()

Ã mapPartitions() is	a	special	kind	of	map	transformation	
– Requires	both	input	and	output	to	be	iterable
– Operates	at	the	RDD	partition	level,	as	opposed	to	the	element	level	like	map()

Ã Ex:	Initialize	a	database	with	2,000,000	elements	spread	across	four	RDD	partitions
– map() initializes	each	element	individually,	thus	2,000,000	initializations
– mapPartitions() initializes	each	partition	(four	initializations	total)	and	then	can	iterate	

through	the	elements	in	each	partition
– Can	result	in	significant	performance	improvements

rdd1 = sc.parallelize((1,2,3,4,5,6,7,8),2)

rdd1.mapPartitions(lambda x: [sum(x)]).collect()

[(10, 26)]

2/15/17

162

323 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

map vs mapPartitions example cont.

ÃLets	fix	this,	and	use	a	better	parser	->	Converting	string	to	Array[String]
rdd = ##someRdd

rdd.mapPartitions(lambda lines: {
myObject = simulateExpensiveOjectCreation()
lines.map(lambda line: {
myObject.map(lambda line: …
})

}).take(5).foreach(println)

ÃIn	this	example	we	created	a	single	instance	of	a	an	obect per	partition,	instead	of	per	record.	

def simulateExpensiveObjectCreation() {
Thread sleep 10

}

324 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã mapPartitions() vs.	map()
Ã Partition	Optimization

2/15/17

163

325 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

PairRDD Parallelism – Hashed Partitions

Ã By default, files read into Spark are not necessarily organized so that matching
keys are written to the same partition
– Also, when map() is used to create a PairRDD, partitions are not reorganized

Ã PairRDDs can be partitioned so that matching keys are in the same partition
– Can result in performance improvements, particularly when implementing joins

Ã Some operations create hashed partitions by design
–partitionBy(), cogroup(), join(), groupByKey(), reduceByKey(), sort()
–The default HashPartitioner guarantees identical keys go to same partition

326 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Preserving Hashed Partitions

Ã Some Spark transformations maintain partitioning after hashing
– No need to recreate hashed partitions after the first run
– No new keys are created and partition placement is maintained

Ã Examples of operations that preserve hashed partitioning:
–mapValues(), flatMapValues(), filter(), reduceByKey(), groupByKey(),

and join()

2/15/17

164

327 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Partitioning Optimization
Ã Generally	speaking,	too	many	partitions	is	better	than	too	few

– Increase	partitions	by	numbers	by	50%	until	performance	stops	improving
– Tasks	will	usually	take	at	least	200ms
– Scheduling	tasks	takes	~10ms-20ms	regardless	of	the	amount	of	data	being	processed

Ã Number	of	partitions	should	be	a	slightly	less	than	a	multiple	of	the	number	of	executor	
cores
– Ten	executors	with	two	cores	each	=	RDDs	with	39,	58,	or	78	partitions
– Reasons	for	a	little	less	is	to	leave	a	couple	cores	open	for	speculative	execution

Ã Spark	SQL
– uses	"spark.sql.shufflePartitions"	by	default	is	200
– Best	to	have	number	partitions	=	output	datasize /	block	size

328 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã mapPartitions() vs.	map()
Ã Partition	Optimization
Ã Joining	Strategies

2/15/17

165

329 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Partition	1

Spark Joins at the Partition Level

Ã To improve performance, joins technically occur at the partition, not the
complete dataset, level
– Framework ensures that join key placement in partitions aligns with all datasets
– The collective results represent the comprehensive join request

Ã Leverages hash partitions and requires equal number of partitions for datasets
to be joined

Orders
ID=1
ID=3
ID=5

…

Order Items
O_ID=1
O_ID=1
O_ID=3
O_ID=5

…

Partition	2

Orders
ID=2
ID=4
ID=6

…

Order Items
O_ID=2
O_ID=4
O_ID=4
O_ID=6

…

330 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

No	Common	Hash	Partitioning	(Worst	Case)

Ã Neither	dataset	is	partitioned	by	the	
join	key

Ã Both	have	to	perform	a	
partitionBy() transformation
– Incurs	a	shuffle	for	each

Ã NOTE:	The	newly	created	hashed	
partitioned	datasets	use	the	number	of	
partitions	from	the	largest	original

Orders
ID=1
ID=2
ID=3
ID=4

ID=5
ID=6
ID=7
ID=8

Order Items
O_ID=1
O_ID=1
O_ID=1
O_ID=2

O_ID=2
O_ID=3
O_ID=3
O_ID=4

O_ID=5
O_ID=6
O_ID=7

O_ID=8
O_ID=8
O_ID=8

JOIN
ID=1

O_ID=1
O_ID=1
O_ID=1

ID=5
O_ID=5

ID=2
O_ID=2
O_ID=2

ID=6
O_ID=6

ID=3
O_ID=3
O_ID=3

ID=7
O_ID=7

ID=4
O_ID=4

ID=8
O_ID=8
O_ID=8
O_ID=8

2/15/17

166

331 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

One	Dataset	Hashed	Partitioned	(Better)

Ã The	larger	dataset	is	hashed	partitioned	
by	the	join	key

Ã The	smaller	one	performs	a	
partitionBy() transformation
– Only	one	shuffle	is	required

Orders
ID=1
ID=2
ID=3
ID=4

ID=5
ID=6
ID=7
ID=8

Order Items
O_ID=1
O_ID=1
O_ID=1
O_ID=5

O_ID=2
O_ID=2
O_ID=6

O_ID=3
O_ID=3
O_ID=7

O_ID=8
O_ID=8
O_ID=8
O_ID=8

JOIN
ID=1

O_ID=1
O_ID=1
O_ID=1

ID=5
O_ID=5

ID=2
O_ID=2
O_ID=2

ID=6
O_ID=6

ID=3
O_ID=3
O_ID=3

ID=7
O_ID=7

ID=4
O_ID=4

ID=8
O_ID=8
O_ID=8
O_ID=8

332 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Co-Partitioned	(Best	Case)

Ã Both	datasets	are	hashed	partitioned	
by	the	join	key	with	the	same	number	
of	partitions
– Referred	to	as	co-partitioned	join

Ã No	shuffles	are	required	
– This	is	a	narrow	operation!
– Significant	performance	gains

Orders
ID=1
ID=5
ID=2
ID=6
ID=3
ID=7
ID=4
ID=8

Order Items
O_ID=1
O_ID=1
O_ID=1
O_ID=5

O_ID=2
O_ID=2
O_ID=6

O_ID=3
O_ID=3
O_ID=7

O_ID=8
O_ID=8
O_ID=8
O_ID=8

JOIN
ID=1

O_ID=1
O_ID=1
O_ID=1

ID=5
O_ID=5

ID=2
O_ID=2
O_ID=2

ID=6
O_ID=6

ID=3
O_ID=3
O_ID=3

ID=7
O_ID=7

ID=4
O_ID=4

ID=8
O_ID=8
O_ID=8
O_ID=8

2/15/17

167

333 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Consideration and Guidelines

Ã RDD developers needs to consider order of operations
– DataFrames benefit from Catalyst interventions, so not as critical here

Ã If possible, filter out irrelevant data from large datasets before joining to a
smaller one
– Will require less shuffling to occur during the join

Ã Cache any hash partitioned datasets that will be used in a subsequent join
– Prevents the need to rebuild the intermediary dataset for each join

334 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã mapPartitions() vs.	map()
Ã Partition	Optimization
Ã Joining	Strategies
Ã Executor	Optimization	and	Memory	Management	and	

YARN

2/15/17

168

335 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Memory Management Overview

ÃMemory	usage	in	Spark	falls	under	one	of	two	categories
–Execution

- Memory	used	for	computations	in	shuffles,	joins,	sorts	and	aggregations
–Storage

- Memory	used	for	caching	across	the	cluster

ÃNew	in	Spark	1.6	is	a	unified	memory	region.		Memory	can	be	shared	between	the	execution	
and	storage.		Storage	takes	a	lower	precedence,	that	is	objects	stored	in	storage	can	be	evicted	
when	memory	is	required	by	the	execution	side	of	things.		We	can	set	minimums	(like	YARN	fair	
scheduler)	on	the	amount	of	memory	storage	must	have	available.

336 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Executor Optimization (Legacy)

Ã Executors are made up of three regions:
– Overhead (384MB by default)
– Space reserved for caching (60%)
– Space reserved for java objects (40%)

Ã Data that will be cached is stored in the area for caching
– The remaining will be used for creating objects

Ã Three main configurations to make up executor
--executor-memory

--executor-cores

--num-executors

Executor	Overhead	(384	MB)

Caching	60%
Java	

Objects	
40%

2/15/17

169

337 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Memory Management in Spark 1.6+

ÃConfigs depreciated	in	Spark	1.6
spark.shuffle.memoryFraction

spark.storage.memoryFraction
spark.storage.unrollFraction

spark.memory.useLegacyMode (false, can be set to true to use
old ways)

ÃSpark	moved	from	a	rigid	memory	structure	to	a	more	fluid,	and	(can	leverage)	off-heap	
managed	memory

ÃPros:
– Less	garbage	collection
– Less	wasted	resources

Ã Cons:
–Data	stored	off-heap	is	slower	to	access	than	on-heap	(still	MUCH	faster	than	disk)
–Everything	must	be	serialized/deserialized (encoders	are	available	for	primatives/java	beans	currently)
–More	knobs	to	tune

338 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Using off-heap Memory

ÃImportant	new	configs:
–spark.memory.offHeap.enabled (false by default)

- If	true,	Spark	will	attempt	to	use	off-heap	memory	for	certain	operations.	If	off-heap	memory	use	is	enabled,	
then	spark.memory.offHeap.sizemust	be	positive.

–spark.memory.offHeap.size (0 by default)

–spark.memory.fraction (0.6 by default)

–spark.memory.storageFraction

2/15/17

170

339 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Configuring Executors

Ã executor-memory
–Should be between 8GB and 64GB

Ã executor-cores
–At least 2, max 4

Ã num-executors
–This is the most flexible
– If caching data, desirable to have datasize * 2 as the total application memory

Ã EXAMPLE: YARN nodes with 128GB and 16 cores available would support a
relatively common 16GB-memory / 2-core executor size
– If caching a 100GB dataset, 13 executors could be ideal

340 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark on YARN and Resource Request Implications

ÃSpark	Applications	generally	have	a	higher	resource	usage	footprint.
–More	RAM
–More	CPU's	per	worker
– Larger	JVM's

ÃGeneral	recommendation	on	resource	requesting:
–Fewer,	larger	executors	are	generally	better	than	many	smaller	ones

- Minimize	shuffle
- More	data	available	locally	to	the	worker
- Less	overhead

2/15/17

171

341 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark on YARN and Resource Request Implications cont.

ÃEvery	machine	has	a	finite	amount	of	memory	and	CPU's	available	to	it
ÃThe	larger	the	requested	container,	the	harder	it	is	to	find	a	spot	to	allocate
Ex.		Request	4	– 40gb	RAM	executors	on	a	10	node,	100gb	RAM/machine	cluster,	no	load
Easily	to	find	resources	for	the	application	to	run

Executor	
1

Executor	
2

Executor	
3

Executor	
4

342 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark on YARN and Resource Request Implications cont.

ÃEvery	machine	has	a	finite	amount	of	memory	and	CPU's	available	to	it
ÃThe	larger	the	requested	container,	the	harder	it	is	to	find	a	spot	to	allocate
Ex.		Request	4	– 40gb	RAM	executors	on	a	10	node,	100gb	RAM/machine	cluster,	50%	load
Becomes	less	obvious	where	to	run

Executor	
1

Executor	
2

Executor	
3

Executor	
4

2/15/17

172

Knowledge	Check

344 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. Why can mapPartitions be faster than map?
2. Why does preserving partition potentially make down stream

operation faster?
3. Whats better, too many or to few partitions?
4. Is a lot of small executor, or fewer big ones ideal?

2/15/17

173

Summary

346 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã mapPartitions()	is	similar	to	map()	but	operates	at	the	partition	instead	of	element	level

Ã Controlling	RDD	parallelism	before	performing	complex	operations	can	result	in	
significant	performance	improvements

Ã Caching	uses	memory	to	store	data	that	is	frequently	used

Ã Checkpointing writes	data	to	disk	every	so	often,	resulting	in	faster	recovery	should	a	
system	failure	occur

Ã Broadcast	variables	allow	tasks	running	in	an	executor	to	share	a	single,	centralized	copy	
of	a	data	variable	to	reduce	network	traffic	and	improve	performance

Ã Join	operations	can	be	significantly	enhanced	by	pre-shuffling	and	pre-filtering	data

Ã Executors	are	highly	customizable,	including	number,	memory,	and	CPU	resources

Ã Spark	SQL	makes	a	lot	of	manual	optimization	unnecessary	due	to	Catalyst

2/15/17

174

347 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Build	and	Submit	Spark	
Applications

348 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Create an application to submit to the cluster
Ã Describe client vs. cluster submission with YARN
Ã Submit an application to the cluster
Ã List and set important configuration items

After	completing	this	lesson,	students	should	be	able	to:

2/15/17

175

349 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Creating	an	Application	to	Submit	to	a	Cluster

350 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Zeppelin / REPLs vs. Spark Applications

Ã Zeppelin and REPLs allow for interactive manipulation, exploration, and testing

Ã Spark applications run as independent programs for production applications
– Can be integrated into workflows managed by Falcon/Oozie

Ã The differences between them are minimal, making code reuse easy

2/15/17

176

351 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Writing an Application to Submit to YARN

Ã Zeppelin and the REPLs take care of a few things automatically
– Import the SparkContext and SparkConf libraries
–Set up the main program
–Create a Spark configuration object
–Create and initialize a SparkContext instance

Ã For production applications, this must be coded by the developer
– Can be accomplished in about five lines of code

352 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Importing Libraries

Ã The	user	must	code	the	import	all	the	libraries	used	by	the	application

Ã All	applications	will	need	the	SparkContext and	SparkConf libraries	in	addition	to	
basic	libraries	such	as	sys and	os

import os

import sys

from pyspark import SparkContext, SparkConf

Ã To	import	other	Spark	libraries,	its	the	same	as	any	other	application

from pyspark.sql import SQLContext

from pyspark.sql.types import Row, IntegerType

2/15/17

177

353 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Creating a "main" Program

Ã The	developer	must	set	up	the	main	program	for	the	application

import os

import sys

from pyspark import SparkContext, SparkConf, SQLContext

if __name__ == "__main__":

#Spark Programming

354 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Creating a Spark Configuration

Ã The	SparkConf configuration	object	is	used	by	the	context
– It	identifies	the	app	name,	resource	manager,	resources	to	request,	etc.

Ã The	developer	must	add	the	creation	of	the	configuration	to	the	application

Ã SparkConf supports	pipelining	as	well	as	“setting”	configuration	properties

conf = SparkConf().setAppName("appName").setMaster("yarnMode")

conf.set('spark.executor.instances', '5')

conf.set('configuration', 'value’)

2/15/17

178

355 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Creating the SparkContext
Ã The	SparkContext is	used	for	the	application	to	communicate	to	the	cluster,	request	

resources,	and	schedule	tasks	to	be	run

Ã The	developer	creates	the	context	using	the	configuration	object

sc = SparkContext(conf=conf)

Ã SparkContext has	configurations	that	can	be	set	after	its	been	created

sc.setLogLevel("ERROR")

Ã Always	stop	the	context	at	the	end	of	the	application
– Ensures	resources	are	properly	released

sc.stop()

356 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

A Complete Application (Python)

import os

import sys

from pyspark import SparkContext, SparkConf

if __name__ == "__main__":

conf = SparkConf().setAppName("appName").setMaster("yarnMode")

sc = SparkContext(conf=conf)

sc.textFile("dataFile.txt”)

Spark Programming

sc.stop()

2/15/17

179

357 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Creating	an	Application	to	Submit	to	a	Cluster
Ã YARN	Client	vs.	YARN	Cluster

358 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark Deployment Modes

yarn-client

yarn-cluster

Client Machine

Driver

Client Machine

YARN

Container AppMaster

YARN

Container AppMaster Driver

2/15/17

180

359 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

YARN Application Submission

Ã Spark YARN mode options:
– yarn-client

– yarn-cluster

Ã yarn-client
–Developing applications
–Testing of applications
–REPLs and Zeppelin

Ã yarn-cluster
– Running production applications

360 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

YARN Client Submission Process

Client Machine Worker 1 Worker 2

YARN ResourceManager

1)	Driver	Kickoff

Initiate	Spark	Program

Spark	Context

Create	Context

DAGScheduler

Run	Job

TASKScheduler

Run	Job

SchedulerBackend

Launch	Task

Container

3)	Allocate	container	and…

…launch	
ExecutorLauncher
ApplicationMaster

AppMaster

ExecutorLauncher

Container

Executor	and	
ExecutorBackend

5)	Allocate	containers
and	launch	program

2/15/17

181

361 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

YARN Cluster Submission Process

Client Machine Worker 1 Worker 2

YARN ResourceManager

Spark	Submit

Spark	Client

Create

Container

3)	Allocate	container	and…

…launch	
Spark	Driver
ApplicationMaster
(which	initiates
Spark	context,	
schedulers,	etc.)

AppMaster

Container

Executor	and	
ExecutorBackend

5)	Allocate	containers
and	launch	program

1)	Create	Spark	Client

Spark Driver
Spark Context

362 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark Deployment Modes

yarn-client

yarn-cluster

Client Machine

Driver

Client Machine

YARN

Container AppMaster

YARN

Container AppMaster Driver

2/15/17

182

363 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Creating	an	Application	to	Submit	to	a	Cluster
Ã YARN	Client	vs.	YARN	Cluster
Ã Submitting	an	Application	to	YARN

364 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Submitting an Application to YARN

Ã Spark	uses	the	spark-submit command	from	the	command	line

spark-submit /path/to/sparkDemo.py

Ã Between	spark-submit and	the	application	file,	the	developer	can	add	runtime	
configurations

--num-executors 2

--executor-memory 1g

--master yarn-cluster

--conf spark.executor.cores=2

Ã Arguments	can	be	added	after	the	file	name

2/15/17

183

365 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Using Different Versions of Python

Ã There	are	sometimes	issue	with	the	version	of	python	you	are	using	and	what	is	
configured	on	the	cluster.

Ã Specifying	the	PYSPARK_PYTHON variable	while	submitting	your	application	can	fix	
this	issue

PYSPARK_PYTHON=/usr/bin/python spark-submit \

--master yarn-cluster sparkDemo.py

366 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Application Submission Example

Ã Example	of	a	spark-submit command:

spark-submit --master yarn-cluster --num-executors 4 \

--executor-memory 8g /user/username/sparkDemo.py \

/home/username/input.json /home/username/output.orc

2/15/17

184

367 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Creating	an	Application	to	Submit	to	a	Cluster
Ã YARN	Client	vs.	YARN	Cluster
Ã Submitting	an	Application	to	YARN
Ã Setting	Important	Configurations	Items

368 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark Configuration Hierarchy

Ã Can	set	the	same	configuration	in	multiple	places
– Where	they	are	set	will	define	which	takes	priority

Highest	to	least	priority
1. Set	inside	the	application
2. Set	at	runtime
3. Set	in	a	configuration	file	passed	to	the	application
4. Spark	installation	defaults	located	at	

/etc/spark/conf/spark-defaults.conf

Ã Documented	at	spark.apache.org

2/15/17

185

369 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Setting Important Configuration Items at Runtime

--num-executors 20
--executor-mem 8g
--executor-cores 2
--master yarn-client
--driver-memory 1g

spark.shuffle.memoryFraction

spark.storage.memoryFraction

spark.default.parallelism

spark.speculation

Configurations	with	keywords Configuration	set	using	--conf key=value

370 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Setting Important Configuration Items in Application

Ã These	settings	should	always	be	set	in	the	application
– Don’t	forget	to	register	any	custom	classes	with	Kryo for	non-Python	applications

conf = SparkConf()

conf.set('spark.serializer',

'org.apache.spark.serializer.KryoSerializer')

conf.set('spark.speculation','true')

2/15/17

186

Lab:	Build	and	Submit	YARN	
Applications

Knowledge	Check

2/15/17

187

373 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. What components does the developer need to recreate when
creating a Spark Application as opposed to using Zeppelin or a
REPL?

2. What are the two YARN submission options the developer has?
3. What is the difference between the two YARN submission

options?
4. When making a configuration setting, which location has the

highest priority if the event of a conflict?
5. True or False: You should set your Python Spark SQL application

to use Kryo serialization

Summary

2/15/17

188

375 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã A developer must reproduce some of the back-end environment creation that
Zeppelin and the REPLs handle automatically.

Ã The main differences between a yarn-client and yarn-cluster
application submission is the location the Spark driver and SparkContext.

Ã Use spark-submit, with appropriate configurations, the application file, and
necessary arguments, to submit an application to YARN.

376 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Introduction	to	
Machine	Learning	with	
Spark

2/15/17

189

377 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Describe	the	purpose	of	machine	learning	and	some	common	algorithms	used	in	it

Ã Describe	the	machine	learning	packages	available	in	Spark

Ã Examine	and	run	sample	machine	learning	applications

After	completing	this	lesson,	students	should	be	able	to:

378 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Disclaimer

Ã This	is	not	a	Data	Science	class

Ã Fully	utilizing	the	packages	this	lesson	will	discuss	requires	fundamental	understandings	
of	topics	that	go	well	beyond	what	will	be	covered

Ã Labs	and	suggested	exercises	will	consist	of	pre-built	scripts	/	applications	that	will	
demonstrate	some	of	these	topics	in	practice

2/15/17

190

379 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Machine	Learning	Basics

380 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Machine	Learning	Basics

Ã Machine	learning	attempts	to	find	actionable	patterns	within	data

Ã Creates	a	model,	which	is	used	to	make	predictions

Ã Two	basic	types	of	Machine	Learning

– Supervised

– Unsupervised

2/15/17

191

381 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Supervised	Learning

Ã Most	common	type	of	machine	learning

Ã A	model	is	created	that	uses	one	or	more	variables	to	make	a	prediction,	and	then	that	
prediction	can	be	immediately	tested	to	determine	accuracy

Ã Two	common	types	of	predictions:
– Classification:		Yes	or	no,	approve	or	reject,	spam	or	safe,	etc.	- Will	the	flight	depart	on	time?
– Regression:	What	will	the	value	be?	- What	time	is	the	flight	likely	to	depart?

Ã Breaks	a	dataset	into	two	parts:
– Training	data:	used	to	create	the	model
– Testing	data:	used	to	determine	model	accuracy

382 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Supervised	Learning	Example	Dataset

Carrier Airplane Age Airport Time Weather StaffPerc Sched Actual
A B 11 SFO EarlyMorn Clear 90 05:31 05:31
C D 2 ORD Morn Windy 84 08:14 09:35
A D 7 ATL EarlyAft Cloudy 100 12:05 12:05
D D 14 ORD Aft Rain 100 15:21 15:45
B A 4 JFK EarlyEve Stormy 94 17:00 19:20
C B 6 BWI Eve Warnings 80 20:42 CANCEL
A D 2 HDP LateEve Clear 100 22:00 22:00
E D 10 STL RedEye Stormy 93 23:45 CANCEL
C B 8 DAL Aft Rain 99 14:10 14:10
C E 8 SJC Morn Clear 98 09:34 10:15

Thousands	upon	thousands	of	data	points	
collected	and	available	every	day	-
massive	historical	data	to	work	from

2/15/17

192

383 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Terminology

Ã Each	row	in	the	dataset	is	called	an	"observation"

Ã Each	column	in	the	dataset	is	called	a	"feature"

Ã Columns	selected	for	inclusion	in	the	model	are	called	"target	variables"

384 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Supervised	Learning	Example	Workflow

Ã Randomly	break	data	into	two	parts	for	training	vs.	test	data
– In	Spark,	extremely	large	datasets	can	be	used	due	to	availability	of	cluster	resources

Ã Pick	one	or	more	variables	to	use	to	build	model
– For	example:	airplane	age,	weather,	and	airport
– Pick	too	few	and	the	model	may	not	be	accurate	enough
– Pick	too	many	and	the	model	is	only	accurate	for	the	training	data

Ã Run	machine	learning	algorithm	to	build	model	based	on	those	variables

Ã Run	the	model	against	the	test	data	and	see	how	accurately	it	predicts	results
– Then	go	back	and	alter	variables,	build	new	model,	and	test	again	until	satisfied

2/15/17

193

385 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Supervised	Learning	- Examining	Results

Ã For	classification	results,	prediction	is	either	correct	or	incorrect
– Will	the	flight	depart	on	time?	
– Percentage	accuracy	against	testing	data	determines	strength	of	the	model

Ã For	regression	results,	prediction	will	often	be	inexact,	but	better	models	produce	closer	
predictions	when	compared	to	actual	results	on	test	data
– What	time	will	the	flight	leave?	How	far	off	is	the	prediction?
– Minimal	"sum	of	means	squared	error"	determines	strength	of	the	model

386 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Sum	of	Means	Squared	Error

Ã Simple	example:	four	observations,	two	models	with	an	average	(mean)	variance	of	2
– Model	A	variance	by	observation:	0,	4,	0,	4
– Model	B	variance	by	observation:	1,	3,	2,	2

Ã Intuitively,	even	though	Model	A	gets	it	exactly	right	more	often,	it	also	gets	it	more	
wrong	consistently	as	well

Ã Sum	of	means	squared	takes	each	value	and	squares	it,	then	adds	them	together
– Larger	variance	values	get	an	exponential	penalty
– Model	A	sum	of	means	squared	=	0	+	16	+	0	+	16	=	32
– Model	B	sum	of	means	squared	=	1	+	9	+	4	+	4	=	18

Ã Thus,	Model	B	is	determined	to	be	a	better	fit

2/15/17

194

387 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Decision	Tree	Algorithm

Ã Popular,	multi-stage	classification	algorithm	that	classifies	based	on	one	variable,	then	
drills	deeper	by	adding	another	variable,	and	repeats	process	for	additional	variables

Airport:	ORD
On	time:	65%
Delayed:	35%

Carrier	A:
On	time:	80%
Delayed	20%

Weather:	Clear
On	time:	95%
Delayed:	5%

Weather:	Rainy
On	time:	70%
Delayed:	30%

Carrier	B:
On	time:	50%
Delayed	50%

Weather:	Clear
On	time:	70%
Delayed	30%

Weather:	Rainy
On	time:	10%
Delayed:	90%

388 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Classification	Algorithms

Ã Draw	a	line	attempting	to	define	the	boundary	between	the	two	possible	options

2/15/17

195

389 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Linear	Regression	Algorithm

Ã Draw	a	line	that	has	the	best	fit	to	the	data

390 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Unsupervised	Learning

Ã Supervised	learning	is	great	as	long	as	data	is	labeled,	but	what	about	data	where	the	
label	is	unknown?

Ã Example:	Product	reviews	on	social	media	and	web	sites
– No	explicit	positive	or	negative	label
– How	can	we	group	them	to	determine	whether	general	consensus	is	positive	or	negative?

Ã Goal	is	to	find	patterns	in	data	that	allow	it	to	be	labeled
– Example:	Group	1	=	when	review	contains	phrase	X,	it	will	also	usually	contain	phrase	Y
– Upon	evaluation,	group	that	contains	phrase	Y	are	positive	reviews

Ã Most	common	type	is	clustering

2/15/17

196

391 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Unsupervised	Learning	Example	Dataset

Phrase1 Phrase2 Phrase3
did	not	like had	a	nice it	was	ok
i loved	this awesome place	to will	be	back

would not	recommend will	not	return did not	like
would definitely	recommend i loved	this service	was	good

could	not	stand would	not	recommend had	a nice
service	was	excellent food	was	cold not	sure	if
service	was	good will	be	back hard to	find

was a	dump food	was	outstanding might	try	again
food was	cold did	not	like will	not	return

server was	friendly was not	able hard	to	find

Data	is	cleaned	of	extraneous	phrases	-
search	for	patterns	so	that	reviews	can	be	

grouped	without	knowing	outcome

392 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

K-Means	Algorithm

Ã Identify	groupings	that	likely	share	the	same	label

2/15/17

197

393 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Other	Popular	Algorithms

Ã Classification
– Support	Vector	Machine	(SVM)
– Logistic	Regression
– Naïve	Bayes	

Ã Clustering
– K-Nearest	Neighbors

Ã Dimensionality	Reduction		/	Decomposition
– Help	determine	target	variables	when	dataset	contains	large	number	of	features
– Principal	Component	Analysis	(PCA)
– Singular	Value	Decomposition	(SVD)

Ã Collaborative	Filtering	/	Recommendation
– Used	to	predict	results	based	on	collaborative	data
– Alternating	Least	Squares

394 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Machine	Learning	Basics
Ã Spark	Machine	Learning	Libraries

2/15/17

198

395 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	Machine	Learning	Overview

Ã Spark	implementations	of	common	learning	algorithms	and	utilities
– Allows	traditional	data	science	work	to	be	performed	on	cluster-scale	data

Ã Two	packages	available
– spark.mllib:	operates	on	RDDs
– spark.ml:	operates	on	DataFrames

Ã Both	contain	modules	with	various	functions	and	sub-functions	which	provide	powerful	
machine	learning	capabilities

396 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

mllibModules

Ã classification

Ã clustering

Ã evaluation

Ã feature

Ã fpm

Ã linalg*

Ã optimization

Ã pmml

Ã random

Ã recommendation

Ã regression

Ã stat*

Ã tree*

Ã util

2/15/17

199

397 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

mlModules

Ã attribute

Ã classification

Ã clustering

Ã evaluation

Ã feature

Ã param

Ã recommendation

Ã regression

Ã source.libsvm

Ã tree*

Ã tuning

Ã util

398 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	Machine	Learning	Advantages

Ã Cluster-level	data	processing	capabilities
– Datasets	not	limited	to	what	can	fit	into	local	memory
– Built-in	parallel	processing	over	many	machines	at	one	time

Ã In-memory	processing
– Improved	performance	vs.	older	Hadoop	machine	learning	libraries

Ã ml advantages	over	mllib
– ml operates	on	DataFrames
– Greater	flexibility
– Automatic	performance	enhancements	via	Catalyst
– Create	reusable	machine	learning	pipelines

2/15/17

200

399 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Machine	Learning	Basics
Ã Spark	Machine	Learning	Libraries
Ã Machine	Learning	Sample	Applications

400 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Machine	Learning	Sample	Applications

Ã Installed	automatically	when	Spark	is	installed
– /usr/hdp/current/spark-client/examples/src/main/<language>/<mllib | ml>/

2/15/17

201

401 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Machine	Learning	Sample	Application	Files

402 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

mllib Decision	Tree	Classification	Example

2/15/17

202

403 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

ml Logistic	Regression	Example

404 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

K-Means	Clustering	Examples

2/15/17

203

405 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Zeppelin	Machine	Learning	Lab	Note

Lab:	Machine	Learning	
Walkthrough

2/15/17

204

Knowledge	Check

408 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. What are two types of machine learning?
2. What are two types of supervised learning?
3. What do you call columns that are selected as variables to build

a machine learning model?
4. What is a row of data called in machine learning?
5. What is the goal of unsupervised learning?
6. Name the two Spark machine learning packages.
7. Which machine learning package is designed to take advantage

of flexibility and performance benefits of DataFrames?
8. Name two reasons to prefer Spark machine learning over other

alternatives

2/15/17

205

Summary

410 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã Spark	supports	machine	learning	algorithms	running	in	a	highly	parallelized	fashion	
using	cluster-level	resources	and	performing	in-memory	processing

Ã Supervised	machine	learning	builds	a	model	based	on	known	data	and	uses	it	to	predict	
outcomes	for	unknown	data

Ã Unsupervised	machine	learning	attempts	to	find	grouping	patterns	within	datasets

Ã Spark	has	two	machine	learning	packages	available
– mllib operates	on	RDDs
– ml operates	on	DataFrames

Ã Spark	installs	with	a	collection	of	sample	machine	learning	applications

2/15/17

206

Thank	You

