

Copyright © 2017, Hortonworks, Inc. All rights reserved.

1

Lab: Word Count Topology

Real-time Word Count with Storm

About this Lab
Objective: Use Storm to implement the canonical Word Count application

File locations: /labs/rtlabs/projects/storm/word-count

Successful outcome: Have successfully written a complete Storm topology with custom
spout and bolt components

Before you begin N/A

Related lesson: Storm Architecture

Validate Skelton Project Maven Build
Launch the IntelliJ IDE by opening a new Terminal window in the desktop UI and navigating to

/root/idea/bin and executing the ./idea.sh script.

Then open the skeleton of the Word Count project by selecting File > Open >

/root/rtlabs/projects/storm/word-count > OK.

NOTE: If given the option to “Enable Auto-Import” via a hover box in the lower-right
corner of the IDE, click on that link.

Ensure the Maven tooling is accessible by selecting View > Tool Windows > Maven Projects.
Build the Maven project by selecting Run Maven Build after right-clicking on Maven Projects

(window) > Lifecycle > package.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

2

Verify the jar file was created by opening a new Terminal window in the desktop UI and
navigating to /root/rtlabs/projects/storm/word-count/target and seeing the
compiled jar files highlighted in red below.

[root@ip-172-30-0-164 target]# pwd
/root/rtlabs/projects/storm/word-count/target
[root@ip-172-30-0-164 target]# ls -l
total 75528
drwxr-xr-x. 3 root root 83 Jun 3 18:51 classes
drwxr-xr-x. 2 root root 27 Jun 3 18:51 maven-archiver
drwxr-xr-x. 3 root root 34 Jun 3 18:51 maven-status
-rw-r--r--. 1 root root 6830 Jun 3 18:51 original-storm-word-count-1.0-
SNAPSHOT.jar
-rw-r--r--. 1 root root 77332126 Jun 3 18:51 storm-word-count-1.0-
SNAPSHOT.jar
[root@ip-172-30-0-164 target]#

Complete the Sentence Generating Spout
Examine the RandomSentenceSpout and make the necessary code addition for declaring the

field it will emit when the nextTuple() method is call.
 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer)
{
 outputFieldsDeclarer.declare(new Fields("sentence"));
 }

Save the changes and ensure the project can be built.

Create a Sentence Splitting Bolt
Create a new class called SplitSentenceBolt that subclasses BaseBasicBolt and allow

IDEA to create stubs for any required methods.
HINT: Right-click on class name (in source code, not left-hand nav) > Generate… > Implement

Methods > OK
public class SplitSentenceBolt extends BaseBasicBolt {

 public void execute(Tuple tuple, BasicOutputCollector
basicOutputCollector) {

 }

 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer)
{

 }
}

Copyright © 2017, Hortonworks, Inc. All rights reserved.

3

The class will break apart the sentence into individual words and emit each one separately, so
as with the spout, implement the declareOutputFields() method.

HINT: Same code as the spout, but we are now emitting a word instead of a sentence

NOTE: If you have any trouble with auto-completing imports, put the cursor on the class
name and press ALT-ENTER to see a list to choose from.

For the execute() method, tokenize the sentence that will later be wired up to be passed into
this method. Emit each individual word back into the workflow.

HINT: Use the org.apache.storm.shade.org.apache.commons.lang package for the
StringUtils class

 public void execute(Tuple tuple, BasicOutputCollector
basicOutputCollector) {
 String[] words =
StringUtils.split(tuple.getStringByField("sentence"));
 for(String word : words) {
 System.out.println("\n*** Split Sentence Bolt *** " + word + "
***\n");
 basicOutputCollector.emit(new Values(word));
 }
 }

Ensure the project can be built.

Create a Word Counting Bolt
Create another bolt that extends BaseBasicBolt. This one will emit two values; a word and

a running total.
 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer)
{
 outputFieldsDeclarer.declare(new Fields("word", "count"));
 }

For the implementation of the execute() method, we will need a class-level private
Map<String, Integer> to store the rolling results with. Once you retrieve the word
from the passed in Tuple you can create a simple block of code to update any existing
count for that word; or initialize it if it is new. Then you can emit out the running total for
the particular word.

 String word = tuple.getStringByField("word");
 Integer count = counts.get(word);
 if(count == null) {
 count = 0;
 }
 count++;
 counts.put(word, count);

Copyright © 2017, Hortonworks, Inc. All rights reserved.

4

HINT: Don’t forget to emit the these values. Like with the declare output Fields object, the
Values constructor can take more than one attribute.

Ensure the project can be built.

Assemble the Topology Submitter
Now we need to put it all together. First, build a basic Java “main” program to house the

topology submission code.
package wordcount;

public class RandomWordCountTopology {

 public static void main(String[] args) {

 }
}

Instantiate a TopologyBuilder object and add our sentence generating spout to it.
 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("generator",
 new RandomSentenceSpout(), 1);

Wire up an instance of the word tokenizing bolt to the sentence generating spout and have the
sentences be delivered in a round-robin manner.

 builder.setBolt("splitter",
 new SplitSentenceBolt(), 1)
 .shuffleGrouping("generator");

For the final bolt, use the previously created word counter. Wire it up to receive the words that
come from the splitter and ensure that specific instances of the words being received are
always routed to the same bolt instance.

 builder.setBolt("counter",
 new WordCountBolt(), 2)
 .fieldsGrouping("splitter", new Fields("word"));

Add the necessary code to subit the topology to a Storm cluster.
 Config conf = new Config();
 conf.setDebug(true);
 conf.setNumWorkers(1);

 StormSubmitter.submitTopologyWithProgressBar(
 "word-count", conf,
 builder.createTopology());

HINT: Either wrap the submit() method with a try/catch block or declare the exceptions on
the main() method’s signature.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

5

Ensure the project can be built.

Submit, Monitor, and Kill the Topology
The jar was built on the host that supports a desktop UI, but the HDP cluster is running on the

Docker sandbox instance we created earlier. We will need to move the jar file to that
machine, but in this configuration the scp command will not work. We will take a two-
phased approach of loading it into HDFS and then pulling it back down to the sandbox.

Log into http://127.0.0.1:8081 as user maria_dev with password maria_dev, use the
Files View to upload storm-word-count-1.0-SNAPSHOT.jar into the
/user/maria_dev.

Then, log into the sandbox, become user maria_dev and download the jar to that local file

system.
[root@ip-172-30-0-164 ~]# ssh -p 2222 root@127.0.0.1
root@127.0.0.1's password:
Last login: Fri Jun 2 18:49:27 2017 from 172.17.0.1
[root@sandbox ~]# su - maria_dev
[maria_dev@sandbox ~]$ hdfs dfs -get storm*.jar
[maria_dev@sandbox ~]$ ls -l storm*
-rw-r--r--. 1 maria_dev maria_dev 77335451 Jun 3 19:47 storm-word-count-1.0-
SNAPSHOT.jar
[maria_dev@sandbox ~]$

Now, you can submit the job to the Storm cluster.
[maria_dev@sandbox ~]$ storm jar storm-word-count-1.0-SNAPSHOT.jar
wordcount.RandomWordCountTopology
...
 ...

Copyright © 2017, Hortonworks, Inc. All rights reserved.

6

 ...
1532 [main] INFO o.a.s.StormSubmitter - Finished submitting topology: word-
count
[maria_dev@sandbox ~]$

NOTE: You can safely ignore the following exception if it is raised.
1532 [main] INFO o.a.s.StormSubmitter - Initializing the registered
ISubmitterHook [org.apache.atlas.storm.hook.StormAtlasHook]
1532 [main] WARN o.a.s.StormSubmitter - Error occurred in invoking submitter
hook:[org.apache.atlas.storm.hook.StormAtlasHook]
java.lang.ClassNotFoundException: org.apache.atlas.storm.hook.StormAtlasHook

From Ambari, launch the Storm UI from the link shown below.

This will surface the Storm UI in another tab of your browser.

Click on the word-count link within the Topology Summary section.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

7

You can now see links for the spout and the two bolts along with some statistics about how

many items where emitted from each.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

8

Click into the spout and bolts and scroll down to the Executors section to see the unique
instances of each.

From here, click on the Port link to get log-level details of what is going on in the specific

components.
Here are some log events from the spout that is generating sentences.

Details from the splitter bolt.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

9

Lastly, some output from the counter bolt.

Back on the Topology Summary page you can click on the Show Visualization button to get a

real-time visual perspective on the topology similar to the following.

To stop the topology from running, the Storm UI offers a Kill button.

You can also shut down the execution from the command line.
[maria_dev@sandbox ~]$ storm kill word-count
...
 ...
 ...
2387 [main] INFO o.a.s.c.kill-topology - Killed topology: word-count
[maria_dev@sandbox ~]$

Before killing the topology, or after resubmitting it, select the new Storm View in Ambari.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

10

This provides a cleaner user experience to the same information.

Explore this alternative UI to the “classic” Storm UI.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

11

Be sure to kill the running topology when done either from the command-line or this Storm

View UI’s icon.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

12

Summary
You have successful built a complete Storm topology, submitted it to the Storm cluster, and

monitored this real-time application.
A complete solution to this lab can be found in /root/rtlabs/proj-

solns/storm/world-count.

