

Copyright © 2017, Hortonworks, Inc. All rights reserved.

1

Lab: Kafka Word Count

Storm Word Count with Kafka

About this Lab
Objective: Enhance the existing Word Count application with integration to

Kafka

File locations: /labs/rtlabs/projects/storm/word-count

Successful outcome: Have successfully leveraged Storm’s Kafka spout to source the
Word Count streaming application

Before you begin N/A

Related lesson: Storm Architecture

Leverage LocalCluster Submission
Enhance the developer experience by leveraging Storm’s LocalCluster to run, and debug,

Storm topologies within IDEA.
Replace the existing submitTopology() method with the following code.
 /*
 StormSubmitter.submitTopologyWithProgressBar(
 "word-count", conf,
 builder.createTopology());
 */

 LocalCluster cluster = new LocalCluster();
 cluster.submitTopology("word-count-local",
 conf, builder.createTopology());

To simplify things even further, reduce the parallelism hint down to 1 for the counter bolt.
HINT: The counter bolt is currently set to 2
Adapt the pom.xml to work with in LocalCluster configuration. First, uncomment the

dependencies within the following XML comments.
 <!-- Logging dependencies needed for local mode -->

 <!-- End of Logging -->

Comment out the scope provided tag for the storm-core artifact.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

2

 <!-- <scope>provided</scope> avail in cluster mode, but tag
needs to be commented out for local -->

For that same artifact, uncomment the exclusions block.

Ensure the project can be built.
Run the project within IDEA by right-clicking on the RandomWordCountTopology class and

selecting “Run … as main()” and examine the live (and consolidated) output.

To stop, just use the red square in the upper portion of the left-nav toolbar.
Enhance the experience by placing one, or more, checkpoints in the source code and initiating

the debugger by right-clicking the same class and choosing “Debug … as main()” option.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

3

As before, click on the red square in the left-nav toolbar to stop the debugging session.

Stop the Storm Service
As we have transitioned to running topologies in local mode, we can shut down the Storm

service by logging into Ambari at http://127.0.0.1:8081 as raj_ops (password also
raj_ops) and selecting the service on the left-hand nav and “Stop” in the “Service
Actions” pulldown.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

4

Setup Kafka Sentence Topic
As explained in the Kafka Topics lab, create a topic named sentences with a single partition

and a single replica.

NOTE: This topic may already exist from a prior lab exercise.
HINT: Use the --create switch on the kafka-topics.sh script.
Verify your new topic was created.
[maria_dev@sandbox ~]$ /usr/hdp/current/kafka-broker/bin/kafka-topics.sh --
list --zookeeper sandbox.hortonworks.com:2181
ATLAS_HOOK
__consumer_offsets
mariaTopic - marked for deletion
sentences
[maria_dev@sandbox ~]$

As explained earlier, establish a console-based producer to this new topic and add a few
sentences. NOTE: Do not close this window.

HINT: Don’t forget you need to use the --broker-list swich on the kafka-console-producer.sh
script.

In another terminal window or tab, establish a console-based consumer to verify that your ad-
hoc sentences are consumable from a Kafka client.

[maria_dev@sandbox ~]$ /usr/hdp/current/kafka-broker/bin/kafka-console-
consumer.sh --bootstrap-server sandbox.hortonworks.com:6667 --topic sentences
--from-beginning
Now is the time for all good men to come to the aid of their country
Here is another sentence
And yet another one

Create a Kafka Spout
Make a copy of the existing RandomWordCountTopology class and call it

KafkaWordCountTopology.

Create an object to keep track of the Zookeeper quorum.
 BrokerHosts hosts = new ZkHosts("sandbox.hortonworks.com:2181");

Provide the necessary plumbing to instantiate a KafkaSpout referencing the topic we will be
consuming.

 SpoutConfig sc = new SpoutConfig(hosts,
 "sentences", "/sentences",
 UUID.randomUUID().toString());
 sc.scheme = new SchemeAsMultiScheme(new StringScheme());

Copyright © 2017, Hortonworks, Inc. All rights reserved.

5

 KafkaSpout spout = new KafkaSpout(sc);

Change the existing setSpout() method to reference the spout object reference and rename
is moniker to “kafka-spout”. Then reconfig the “splitter” bolt to be wired up to receive
tuples from this new bolt.

HINT: The existing spot is referred to as “generator”.
As we did not implement the declareOutputFields() method of this new bolt with a

friendly name, update the SplitSentenceBolt to get the sentence by its numeric offset
from the tuple instead of a named field.

HINT: Use getString(0) instead.

Ensure the project can be built.

Execute the Updated Topology
Run and/or debug in IntelliJ as performed earlier and verify the correct word counts are

occurring.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

6

Via the Kafka console producer add two sentences repeating a single word multiple times and

verify that this word and the appropriate count is displayed in the console output.

Summary
You have successful built a complete Storm topology, submitted it to the Storm cluster, and

monitored this real-time application.
A complete solution to this lab can be found in /root/rtlabs/proj-

solns/storm/kafka-world-count.

