
12/16/17

1

1 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDP,	HBase,	Kafka	&	Storm	
Development

2 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Copyright	©	2012	- 2017	Hortonworks,	Inc.	All	rights	reserved.
The	contents	of	this	course	and	all	its	lessons	and	related	materials,	including	handouts	to
audience	members,	are	Copyright	© 2012	– 2017	Hortonworks,	Inc.

No	part	of	this	publication	may	be	stored	in	a	retrieval	system,	transmitted,	altered	or	reproduced	in	any
way,	including,	but	not	limited	to,	editing,	photocopy,	photograph,	magnetic,	electronic	or	other	record,
without	the	prior	written	permission	of	Hortonworks,	Inc.

This	instructional	program,	including	all	material	provided	herein,	is	supplied	without	any
guarantees	from	Hortonworks,	Inc.	Hortonworks,	Inc.	assumes	no	liability	for	damages	or	legal
action	arising	from	the	use	or	misuse	of	contents	or	details	contained	herein.

Linux®	is	the	registered	trademark	of	Linus	Torvalds	in	the	United	States	and	other	countries.
Java®	is	a	registered	trademark	of	Oracle	and/or	its	affiliates.

All	other	trademarks	are	the	property	of	their	respective	owners.

12/16/17

2

3 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Connection before Content
Lester Martin

Hadoop/Spark/Storm Trainer & Consultant

lmartin@hortonworks.com

http://lester.website (links to blog, twitter, github, LI, FB, etc)

4 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Agenda
Day	1 Day	2 Day	3

Hadoop	Ecosystem Kafka	Architecture Building	Storm	Topologies

HDFS	Architecture Storm Architecture Managing	/	Monitoring

HBase Components	&	Groupings Trident	Overview

Phoenix Integration with	Kafka Storm	Workshop

12/16/17

3

5 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Class	Logistics

Ã 8am	- 4pm	EST	(ending	earlier	on	Wednesday)	

Ã Bundle	breaks	and	lunch	with	lab	exercises

Ã Facility	information	(if	applicable)	
– Exits,	restrooms,	break	room…

Ã Courseware	via	email

Ã AWS	lab	environments	(share	at	first	lab)

6 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Introductions

Ã Your	name

Ã Your	job	role	and	responsibilities

Ã Your	Big	Data	and/or	Hadoop	experience,	if	any

Ã Programming	experiences	&	tools

Ã Your	expectations	for	this	course

12/16/17

4

7 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hadoop	Primer

8 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Threats

Existing	data	architectures	make	
data	inaccessible,	incomplete,	irrelevant,	
and	expensive.

12/16/17

5

9 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Opportunities

Apache™	Hadoop® transforms	your	
business,	making	Big	Data	easily	
accessible	for	advanced	analytic	
applications.

10 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

What	is	Apache	Hadoop?

Ã Allows	for	the	distributed	processing	of	large	data	sets	across	clusters	of	computers	
using	simple	programming	models

Ã Is	designed	to	scale	up	from	single	servers	to	thousands	of	machines,	each	offering	local	
computation	and	storage

Ã Does	not	rely	on	hardware	to	deliver	high-availability,	but	rather	the	library	itself	is	
designed	to	detect	and	handle	failures	at	the	application	layer

Ã Delivers	a	highly-available	service	on	top	of	a	cluster	of	computers,	each	of	which	may	
be	prone	to	failures

The	Apache	Hadoop	project	describes	the	technology	as	a	software	framework	that:

Source:			http://hadoop.apache.org

12/16/17

6

11 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hadoop	Core	=	Storage	+	Compute

storage storage

storage storage

CPU RAM

Yet	Another	Resource	
Negotiator	(YARN)

Hadoop	Distributed	File	
System	(HDFS)

12 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hortonworks	Delivers	Open	Enterprise	Hadoop

HO R TONWOR K S 	 D ATA 	 P L AT F O RM

YARN:	Data	Operating	System

CLICKSTREAM SENSOR SOCIAL MOBILE GEOLOCATION SERVER	LOG

Batch Interactive Search Streaming Machine	Learning

EXISTING

12/16/17

7

13 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hortonworks	DataFlow	Adds	to	Hadoop	Capabilities

Hortonworks Data Platform
powered by Apache Hadoop

Hortonworks Data Platform
powered by Apache Hadoop

Enrich
Context

Store Data
and Metadata

Internet
of Anything

Hortonworks DataFlow
powered by Apache NiFi

Perishable
Insights

Historical
Insights

Hortonworks DataFlow and Hortonworks Data Platform
deliver the industry’s most complete solution for Big Data management

14 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Hadoop	Ecosystem	Frameworks

12/16/17

8

15 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hadoop	Core	=	Storage	+	Compute

storage storage

storage storage

CPU RAM

Yet	Another	Resource	
Negotiator	(YARN)

Hadoop	Distributed	File	
System	(HDFS)

16 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The	Hadoop	Ecosystem

Hadoop

12/16/17

9

17 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hortonworks	Hadoop	Distribution

18 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Ecosystem	Component	Versions

12/16/17

10

19 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã Hadoop	Ecosystem	Frameworks
Ã Hadoop	in	the	Datacenter

20 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Distinct	Masters	and	Scale-Out	Workers

worker node

NodeManager

DataNode

master node 2

ZooKeeper

Resource
Manager

master node 1

ZooKeeper

NameNode

master node 3

ZooKeeper

HiveServer2

utility node 1

Client Gateway

Knox

utility node 2

Client Gateway

Ambari Server

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

12/16/17

11

21 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Worker	Nodes	can	Scale	into	the	Thousands

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

worker node

NodeManager

DataNode

22 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Connected	Data	Platforms

D
A

TA
 S

YS
TE

M
AP

PL
IC
AT

IO
N
S

Enterprise
Applications

BI	/	Reporting,
Ad	Hoc	Analysis

Interactive Web
and	Mobile	
Applications

Streaming
Application

Search Statistical
Analysis

Machine
Learning

Repositories

NoSQL

SOLUTIONS

System	
Integrators	and	
Consultants

HDP

G
ov

er
na

nc
e

&I

nt
eg

ra
tio

n Data Access

O
pe

ra
tio

ns

Se
cu

rit
y

Data Management

YARN
EDW

DEV	AND	DATA	TOOLS

Build,	Dev
and	Test

OPERATIONAL	TOOLS

Provision,	Manage
and
Monitor

INFRASTRUCTURE

On-Premises,
Cloud	and	
ApplicationsSO

U
R

C
ES

Existing
Systems

Clickstream Web	and
Social

Geolocation Sensor	and	
Machine

Server	Logs Documents
&	Emails

12/16/17

12

23 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hadoop	as	a	+1	Architecture

OPERATIONAL	TOOLS

DEV	&	DATA TOOLS

INFRASTRUCTURE

SO
U

R
C

ES

EXISTING	
Systems

Clickstream Web	&Social Geolocation Sensor	&	
Machine

Server	Logs Unstructured

D
A

TA
 S

YS
TE

M
AP

PL
IC
AT

IO
N
S

HDP

G
ov

er
na

nc
e

&
In

te
gr

at
io

n

Se
cu

rit
y

O
pe

ra
tio

nsData Access

Data Management

YARN

Lab	1:	Validate	Lab	
Environment

12/16/17

13

25 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDFS	Architecture

26 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Lesson	Objectives

Ã Present	an	overview	of	the	Hadoop	Distributed	File	System	(HDFS)

Ã Detail	the	major	architectural	components	and	their	interactions
– NameNode
– DataNode
– Clients

Ã Discuss	additional	features

Ã LAB:	Using	HDFS	Commands

After	completing	this	lesson,	students	should	be	able	to:

12/16/17

14

27 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã HDFS	Overview

28 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

What	is	HDFS?

“I	have	a	200	TB	file	
that	I	need	to	store.”

“Wow	- that	is	big	data!	
I	will	need	to	distribute	
that	across	a	cluster.”

Hadoop	Client
HDFS

“Sounds	risky!	What	
happens	if	a	drive	

fails?”

“No	need	to	worry!	I	am	
designed	for	failover.”

12/16/17

15

29 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDFS

Ã Write	Once,	Read	Many	times	(WORM)

Ã Divide	files	into	big	blocks	and	distribute	across	the	cluster

Ã Store	multiple	replicas	of	each	block	for	reliability

Ã Programs	can	ask	"where	do	the	pieces	of	my	file	live?”

Key	Ideas

10110100101
00100111001
11111001010
01110100101
00101100100
10101001100
01010010111
01011101011
11011011010
10110100101
01001010101
10110100101
01001010101
01001010101
01011100100
11010111010

0

Logical File

1

2

3

4

Blocks

1

Cluster

1

1

2

2
2

3

3

34

4
4

30 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

It	Looks	Like	a	File	System

12/16/17

16

31 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

It	Acts	Like	a	File	System

Ã A few	of	the	almost	30	HDFS	commands:	

-cat:	display	file	content	(uncompressed)
-text:	just	like	cat	but	works	on	compressed	files
-chgrp,-chmod,-chown:	changes	file	permissions
-put,-get,-copyFromLocal,-copyToLocal:	copies	files	from	the	local	file	
system	to	the	HDFS	and	vice	versa.	
-ls,	-ls -R:	list	files/directories
-mv,-moveFromLocal,-moveToLocal:	moves	files
-stat:	statistical	info	for	any	given	file	(block	size,	number	of	blocks,	file	type,	etc.)

hdfs dfs –command [args]

32 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã HDFS	Overview
Ã HDFS	Components	and	Interactions

12/16/17

17

33 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDFS	Components

Ã NameNode
– Is	the	master	service	of	HDFS	
– Determines	and	maintains	how	the	chunks	of	data	are	distributed	across	the	DataNodes	

Ã DataNode
– Stores	the	chunks	of	data,	and	is	responsible	for	replicating	the	chunks	across	other	DataNodes	

34 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDFS	Architecture

Ã The	NameNode	
(master	node)	and	
DataNodes	(worker	
nodes)	are	
daemons	running	in	
a	Java	virtual	
machine.

NameNode
Namespace
• Hierarchy
• Directory	names
• File	names

DataNode DataNode DataNode DataNodeBlock	Storage
• Data	blocks

Block	Map
• File	names	>	

block	IDs
Metadata
• Permissions	and	ownership
• ACLs
• Block	size	and	replication	level
• Access	and	last	modification	

times
• User	quotas

- memory-based	service

12/16/17

18

35 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The	DataNodes

“I’m	still	here!	This	is	
my	latest	heartbeat.”

“I’m	here	too!	And	
here	is	my	latest	
heartbeat.”

123

“Hey	DataNode1,	
Replicate	block	123	to	

DataNode	3.”

NameNode

DataNode	1 DataNode 3 DataNode 4

123 123

DataNode	2

36 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

1. Client sends a request to the
NameNode to add a file to HDFS.

3. For	every	block,	the	client	will	request	the	NameNode	to	provide	a	new	blockid and	a	list	of	
destination	DataNodes.

4. The	client	will	write	the	block	directly	to	the	first	DataNode in	the	list.

5. The first DataNode pipelines the replication to the next DataNode in the list.

NameNode

DataNode 1 DataNode 2 DataNode 3

2. NameNode gives client a lease to
the file path.

12/16/17

19

37 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Replication	and	Block	Placement

DataNode

DataNode

blk1

DataNode

blk1

rack	2

DataNode

blk2

DataNode

DataNode

blk2

rack	3

DataNode

blk2

DataNode

blk1

DataNode

rack	1

write
Minimize	
write	cost

Maximize	
availability	
and	read	

performancewrite

HDFS	is	designed	to	
assume,	and	handle,	disk	
and	system	failures.

maximize	
availability

maximize	
availability

minimize	
write	cost

minimize	
write	cost

38 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Objectives

Ã HDFS	Overview
Ã HDFS	Components	and	Interactions
Ã Additional	HDFS	Interactions

12/16/17

20

39 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

NameNode	High	Availability

Ã The	HDFS	NameNode	is	a	single	point	of	failure.
– The	entire	cluster	is	unavailable	if	the	NameNode:

• Fails	or	becomes	unreachable
• Is	stopped	to	perform	maintenance

Ã NameNode	HA:
– Uses	a	redundant	NameNode
– Is	configured	in	an	Active/Standby	configuration
– Enables	fast	failover	in	response	to	NameNode	failure
– Permits	administrator-initiated	failover	for	maintenance
– Is	configured	by	Ambari

40 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HDFS	Multi-Tenant	Controls

Ã Security
– Classic	POSIX	permissioning	(ex:	-rwxr-xr--)
– Extended	Access	Control	Lists	(ACL)	for	richer	scenarios
– Centralized	authorization	policies	and	audit	available	via	Ranger	plug-in

Ã Quotas
– Easy	to	understand	data	size	quotas
– Additional	option	for	controlling	the	number	of	files

12/16/17

21

Knowledge	Check

42 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Questions

1. HDFS	breaks	files	into	_______	and	persists	multiple	________	across	
the	cluster	to	aid	in	the	file	system’s	_______	and	the	to	help	programs	
obtain	___________.

2. What	is	the	primary	master	node	service?
3. What	is	the	worker	node	service?
4. True/False? Clients	avoid	writing	data	through	the	NameNode.
5. True/False?		Clients	write	replica	copies	directly	to	each	DataNode.

12/16/17

22

Summary

44 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Summary

Ã HDFS	breaks	files	into	blocks	and	replicates	them	for	reliability	and	processing	data	
locality

Ã The	primary	components	are	the	master	NameNode	service	and	the	worker	DataNode	
service

Ã The	NameNode	is	a	memory-based	service

Ã The	NameNode	automatically	takes	care	of	recovery	missing	and	corrupted	blocks

Ã Clients	interact	with	the	NameNode	to	get	a	list,	for	each	block,	of	DataNodes	to	write	
data	to

12/16/17

23

Lab	2:	Using	HDFS	
Commands

46 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Apache	HBase

12/16/17

24

HBase Overview

48 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HBase is Deeply Integrated with Hadoop

100%	Open	Source
• Uses	HDFS	for	storage

Provides:
• Low-latency	data	retrieval
• Fault	tolerant	storage
• High	performance
• High	Availbility

12/16/17

25

49 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Apache HBase

A	non-relational	(NoSQL)	database
–Created	for	hosting	very	large	tables	with	billions	of	rows	and	millions	of	columns

HBase:
–Provides	random,	real-time	data	access
–Allows	table	inserts,	updates,	and	deletes
–Runs	on	top	of	the	Hadoop	distributed	file	system

–HBase	data	is	automatically	replicated	by	HDFS	for	higher	availability.

50 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HBase Architecture

12/16/17

26

51 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Access	Methods

Ã APIs
– Java
– REST	
– Thrift

Ã HBase	CLI
Ã Bulk	Load	tools

– Import	/	export

Ã High	Level	for	Analytics
– Pig
– Hive
– Spark

Ã ODBC/JDBC	via	Apache	Phoenix

52 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Key HBase Features

Page 52

High Availability
• Data is stored on multiple

nodes and HBase coordinates
failover.

• Data stays available if nodes
fail.

• HA for Hmaster is also
available

Strong Consistency
• HBase doesn’t sacrifice

consistency for scale.
• Improve quality by avoiding

difficult-to-detect bugs.

Deep Hadoop
Integration

• Add deep insight to your apps
through seamless integration
with Hadoop tools like Hive and
spark.

Multi Datacenter
• Replicate data between 2 or

more datacenters.
• Keeps data safe and available

through datacenter outages.

12/16/17

27

53 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Performance

ÃRead
– 0	to	3	ms cached
– 5	to	30	ms on	disk
– 10k	to	40k	reads	/	second	/	node	(cache)

ÃWrite
– 1	to	3	ms
– 1k	to	30k	writes	/	second	/	node

ÃCell size
– Try	to	stay	below	3	MB

Page 53

54 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HBase

Ã HBase	stores	data	in	column	families
– Compression	(none,	gzip,	lzo)

Ã HBase	is	called	a	sparse	database	– only	cells	with	data	are	physically	stored
Ã Rows	are	sorted	by	row	key
Ã Cells	can	have	multiple	dimensions	with	a	time	stamp

– Retention	policies

12/16/17

28

55 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Key-Value Mappings
–HBase	contains	maps	of	keys	and	their	values.		

- key	>	value

- If	you	know	the	key,	you	can	retrieve	the	value.
–Keys	are	multi-part.

- (rowID,	column	family	name,	column	qualifier,	timestamp)	>	value

- rowID – used	to	access	data	and	divide	table	data	into	regions

- column	family	name	– determines	storage	properties
All	data	in	the	same	column	family	is	stored	together	on	disk.

- column	qualifier	– the	column	name,	which	is	a	label	in	the	multi-part	key	

- In	any	given	row,	one	or	more	columns	might	or	might	not	exist.

- timestamp	– used	to	version	the	data	and	support	data	updates
Readers	can	request	any	available	version	of	the	data.	

56 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Rows and Columns
ÃImplemented	differently	from	most	relational	databases
- A	multi-part	key	identifies	a	cell with	a	value

- A	row	is	nothing	more	than	a	logical	collection	of	values	that	share	a	rowkey.

- A	column	is	just	an	additional	label	for	a	value	and	is	included	in	the	multi-
part	key

- Sparse	tables	are	possible	because	not	every	cell	requires	a	key>value	
mapping.

12/16/17

29

57 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Columns grouped in column families

58 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Timestamps

ÃBy	default,	generated	at	server;	client	can	override
ÃEstablishes	versioning	of	cell	values

12/16/17

30

HBase Shell

60 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

hbase shell as a client

12/16/17

31

61 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Invoking hbase shell

ÃFrom	within	a	Linux	shell,	run	hbase with	‘shell’	as	an	argument
– #hbase shell

– must	have	hbase directory	in	your	Linux	PATH	environment	variable

ÃOpens	a	subshell	with	its	own	command	line	interpreter
– Type	help	to	see	a	detailed	list	of	available	commands
– Take	advantage	of	tab	completion

62 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

General Commands

12/16/17

32

63 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

General	Commands

hbase> status
Shows	status	of	a	coprocessor
hbase> status ‘simple’
Hbase> status ‘summary’
hbase> status ‘detailed’

hbase> version
Output	this	HBase versionUsage:

hbase> whoami
Show	current	HBase user.Usage

64 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Table Management Commands

12/16/17

33

65 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

create and describe

Ã Create	a	table	(pass	table	name)
–Create

hbase> create ‘t1’, {NAME => ‘f1’, VERSIONS => 5}

hbase> create ‘t1’, {NAME => ‘f1’},{NAME => ‘f2’}, {NAME => ‘f3’}

Ã Describe	the	name	table
–Describe

hbase> describe ‘t1’

66 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

alter (1	of	2)

alter
ÃAlter	column	family	schema
ÃPass	table	name	and	a	dictionary	specifying	new	columns	family	schema

hbase> alter ‘t1’, NAME => ‘f1’, VERSIONS => 5

hbase> # Changes or adds the ‘f1’ column family in table

hbase> # ‘t1’ from the current value to keep a maximum

hbase> # of 5 cell VERSIONS

12/16/17

34

67 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

alter (2	of	2)

alter_status
ÃGet	the	status	of	the	alter	command
ÃIndicates	number	of	regions	on	the	table	that	have	received	updated	
schema	Pass	table	name

hbase> alter_status ‘t1’

alter_async
ÃAlter	column	family	schema
ÃDoes	not	wait	for	all	regions	to	receive	the	changes
hbase> alter_async ‘t1’, NAME => ‘f1’, METHOD =>
‘delete’

68 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

disable

Disable	named	table
disable

hbase> disable ‘t1’
Disable	all	tables	matching	the	given	regex
disable_all

hbase> disable_all ‘t.*’
Verify	named	table	disabled
is_disabled

hbase> is_disabled ‘t1’

12/16/17

35

69 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

drop

Drop	named	table
drop
hbase> drop ‘t1’

Disable	all	tables	matching	the	given	regex
drop_all
hbase> drop_all ‘t.*’

70 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

enable

Enable	named	table
enable

hbase> enable ‘t1’
Enable	all	tables	matching	the	given	regex
enable_all

hbase> enable_all ‘t.*’
Verify	named	table	enabled
is_enabled

hbase> is_enabled ‘t1’

12/16/17

36

71 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Additional	Commands

Does	the	named	table	exist
exists
hbase> exists ‘t1’
List	all	tables	in	HBase	(use	parameters	to	filter	results)
list
hbase> list‘t1’
hbase> list ‘abc.*’
Show	all	filters	in	HBase
show_filters
hbase> show_filters ‘t1’

72 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Data Manipulation Commands

12/16/17

37

73 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

put

put

ÃPut	a	cell	value	at	specified	table/row/column	and	optionally	
timestamp

hbase> put ‘t1’, ‘r1’, ‘c1’, ‘value’, ts1

74 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

get

get

ÃGet	row	or	cell	contents
ÃPass	table	name,	row	and	optionally	a	dictionary	of	column(s),	
timestamp,	timerange and	versions

Ã hbase> get 't1', 'r1'

Ã hbase> get 't1', 'r1', {TIMERANGE => [ts1, ts2]}

Ã hbase> get 't1', 'r1', {COLUMN => 'c1'}

Ã hbase> get 't1', 'r1', {COLUMN => ['c1', 'c2', 'c3']}

Ã hbase> get 't1', 'r1', {COLUMN => 'c1', TIMESTAMP => ts1}

12/16/17

38

75 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

scan

scan

ÃScan	a	table
ÃPass	table	name	and	optionally	a	dictionary	of	scanner	specs

Ãhbase> scan '.META.'

76 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

count

count
ÃCount	the	number	of	rows	in	a	table
ÃMay	take	a	long	time	to	complete

hbase> count ‘t1’

hbase> count ‘t1’, INTERVAL => 100000

hbase> count ‘t1’, CACHE => 1000

hbase> count ‘t1’, INTERVAL => 10, CACHE => 1000

12/16/17

39

77 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

incr

incr

ÃIncrements	a	cell	value	at	a	specified	table/row/column	coordinates

hbase> incr ‘t1’, ‘r1’, ‘c1’

hbase> incr ‘t1’, ‘r1’, ‘c1’, 1

hbase> incr ‘t1’, ‘r1’, ‘c1’, 10

hbase> # increments a cell value in table ‘t1’ at ‘r1’
hbase> # under column ‘c1’ by 1 – or by 10

78 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

get_counter

get_counter

Ã Return	a	counter	cell	value	at	the	specified	
table/row/column	coordinates.

hbase> get-counter ‘t1’, ‘r1’, ‘c1’

12/16/17

40

79 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Delete and deleteall

Put	a	delete	cell	value	at	the	specified	table/row/column
Optionally	timestamp	coordinates	- Must	match	coordinates	exactly
delete
hbase> delete ‘t1’, ‘r1’, ‘c1’, ts1

Delete	all	cells	in	a	given	row
Pass	table	name,	row	and	optionally	column	and	timestamp
hbase> deleteall ‘t1’, ‘r1’

hbase> deleteall ‘t1’, ‘r1’, ‘c1’

hbase> deleteall ‘t1’, ‘r1’, ‘c1’, ts1

80 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

truncate

truncate

ÃDisables,	drops	and	recreates	the	specified	table

hbase> truncate ‘t1’

12/16/17

41

Lab	3:	HBase Shell

Lab	4:	HBase Column	
Families

82 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Row	Key	Design	and	
Region	Hot	Spotting

12/16/17

42

83 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Design Patterns

ÃRowkey	design	is	the	single	most	important	decision
ÃDesign	for	the	questions,	not	the	answers
ÃThere	are	only	two	sizes	of	data	when	scanning	to	answer	an	interactive	request:

–Too	big
–Not	too	big

ÃBe	compact
ÃUse	row	atomicity	as	a	design	tool
ÃMove	attributes	into	the	rowkey

84 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Rowkey Considerations

ÃPrimary	access	patterns
ÃSecondary	access	patterns
ÃInformation	known	by	an	application	before	a	query	is	made
ÃInformation	to	be	retrieved	by	an	application	when	it	makes	a	query
ÃHow	often	data	changes
ÃNumber	of	cell	versions	that	should	be	retained

12/16/17

43

85 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Identifying a Region Hot Spot

86 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

What is Hot Spotting?

ÃTable	data	is	distributed	across	regions
–Contiguous	row	keys	are	stored	in	the	same	region

ÃAn	initial	empty	table	has	a	single	region
ÃAs	the	region	fills	and	splits,	subsequent	writes	are	separated	across	regions	by	row	key	range
ÃWriting	new	rows	with	sequentially	increasing	row	keys	will	cause	all	writes	to	go	to	the	same	
region
–That	region	is	considered	a	Hot	Spot
–The	benefits	of	a	distributed	table	are	lost

12/16/17

44

87 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Monitoring Regionserver activity

ÃA	hot	spot	region	will	carry	all	the	work	load
• CPU	utilization	may	appear	imbalanced
• Memory	allocation	may	appear	imbalanced

ÃA	busy	cluster	may	obfuscate	the	effects	of	hot	spotting

88 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

View region requests

12/16/17

45

89 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Avoiding Hot Spotting

90 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Avoiding sequential row keys

ÃRandomize	the	row	key
–Solves	hot	spotting	but	makes	scanning	a	range	of	row	keys	impossible

ÃSalt	the	row	key
ÃDistributed	row	keys

12/16/17

46

91 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Possible complications

ÃRandomizing	the	row	key	has	performance	complications
– In	a	table	scan,	the	data	is	retrieved	in	order	of	row	key,	but	because	of	randomization,	this	is	not	a	
true	recreation	of	the	original	sequential	row	key.	Further	processing	may	be	required.		

–Performing	a	get	for	a	particular	row	key	would	require	scanning	all	the	regions	looking	for	randomized	
row	keys	containing	the	desired	row	key.	

ÃMay	work	in	some	situations,	untenable	in	others

92 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Distributed row keys

ÃSalt	the	row	key
–Add	a	random	value	as	a	prefix	to	the	row	key	to	randomize	a	sequential	row	key
–Retains	row	key	information,	but	still	complicates	gets	and	scans

ÃUse	a	hash	that	generates	buckets	of	row	key	values
prefix = Hash(row-key) % NUMBER_OF_REGIONS

newRowKey = prefix + “_” + row-key

12/16/17

47

93 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Scanning with distributed row keys

ÃScanning	a	table	with	distributed	row	keys	will	require	all	region	servers	be	engaged	in	the	
retrieval	of	all	rows

ÃThe	result	set	would	be	ordered	by	the	distributed	row	key
ÃThis	may	result	in	additional	processing	on	the	part	of	the	client	to	remove	the	row	key	prefix	in	
order	to	process	the	original	row	key

ÃWhen	performing	a	get	of	a	single	row	key,	the	client	would	recreate	the	distributed	row	key	
using	the	same	hashing	algorithm
–use	that	distributed	row	key	so	that	only	a	single	Regionserver need	respond

94 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Reversing the Key

ÃReverse	a	fixed-width	or	numeric	rowkey
–Puts	the	part	that	changes	most	often	first

- The	least	significant	digit
–Effectively	randomizes	rowkeys
–Sacrifices	row	ordering	properties

12/16/17

48

95 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Configuring an HBase Table
Using Pre-splitting

96 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Preslitting table regions

ÃBy	default,	a	table	is	created	with	a	single	region
–Data	is	written	into	the	table	and	the	underlying	storage	file	grows	to	a	configurable	maximum	size.	
–For	large	tables,	data	may	be	distributed	to	many	nodes	on	the	cluster.	

ÃIdentifying	split	boundaries	at	table-creation	time	immediately	imposes	a	distribution	of	
processing	on	a	new	table
–Administrator	controls	split	boundaries	based	on	prior	knowledge	of	row	key	range

ÃExample	hbase shell	command
hbase:016:0> create 'splittable', 'cf1', SPLITS => ['1','2','3','4']

12/16/17

49

97 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Visualizing Presplits

98 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Case	Study:	Trucking	
Company

12/16/17

50

99 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Overview

ÃThe	Case	Study	is	based	on	a	shipping	company	tracking	parcels	as	they	move	through	the	system
–Parcel	shipped	from	one	individual’s	home	address	to	a	destination	address	
–As	parcel	is	transferred	from	one	location	to	another:

- It	is	scanned

- Current	status	is	updated	in	a	system	managed	by	HBase	

100 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The Shipping Process

1. Order	is	placed
2. Package	is	picked	up
3. Package	arrives	at	State	facility

– In	transit
4. Arrives	at	District	Facility

– In	transit
5. Arrives	at	Destination

12/16/17

51

101 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

1: Order is placed

102 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

2: Package is picked up

12/16/17

52

103 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

3: Package Arrives at State Facility

104 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

In Transit

12/16/17

53

105 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

4: Package Arrives at District Facility

106 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

In Transit

12/16/17

54

107 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

5: Package Arrives at Final Destination

108 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Apache	Phoenix	
Architecture

12/16/17

55

109 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Apache Phoenix

Phoenix Is:
• A	SQL	Skin	for	HBase.
• Provides	a	SQL	interface	for	managing	data	in	HBase.
• Create	tables,	insert	and	update	data	and	perform	low-latency	point	lookups	through	JDBC.
• Phoenix	JDBC	driver	easily	embeddable	in	any	app	that	supports	JDBC.

Phoenix Is NOT:
• An	replacement	for	the	RDBMS	from	that	vendor	you	can’t	stand.
• Why?	No	transactions,	lack	of	integrity	constraints,	many	other	areas	still	maturing.

Phoenix Makes HBase Better:
• Killer	features	like	secondary	indexes,	joins,	aggregation	pushdowns.
• Phoenix	applies	performance	best-practices	automatically	and	transparently.
• If	HBase	is	a	good	fit	for	your	app,	Phoenix	makes	it	even	better.

110 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Apache	Phoenix
Ã Entirely	written	in	Java,	Phoenix	enables	querying	and	managing	HBase tables	using	SQL	commands.	

Ã Apache	Phoenix	takes	your	SQL	query,	compiles	it	into	a	series	of	HBase scans,	and	orchestrates	the	running	of	
those	scans	to	produce	regular	JDBC	result	sets.	

Ã Execute	Scans	in	Parallel.	

Ã Phoenix	works	with	existing	HBase tables	or	can	be	used	to	create	new	HBase tables.		

Ã The	table	metadata	necessary	to	support	SQL-like	operation	is	stored	in	a	companion	HBase table	and	is	
versioned,	such	that	snapshot	queries	over	prior	versions	will	automatically	use	the	correct	schema.	

Ã Direct	use	of	the	HBase API,	along	with	coprocessors	and	custom	filters,	results	in	performance	on	the	order	of	
milliseconds	for	small	queries	or	seconds	for	tens	of	millions	of	rows.	This	is	in	contrast	to	Apache	Hive	which	can	
also	be	used	to	access	HBase data	using	SQL,	but	uses	traditional	MapReduce batch	processing.			

110

12/16/17

56

111 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix: Architecture

HBase	Cluster

Phoenix	
Coprocessor

Phoenix	
Coprocessor

Phoenix	
Coprocessor

Java	
Application
Phoenix	

JDBC	Driver

User	Application

112 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Apache	Phoenix

HBase

user	
data

table

meta	
data

table

HBase	client

table	
schema

table	
data

SQL	queries

Phoenix

SQL														HBase	scans • Phoenix	is	NOT part	of	HBase
• Phoenix	is	a	skin	over	HBase

12/16/17

57

113 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Client

RegionServer RegionServer RegionServer

HDFS

ZooKeeper

ZooKeeper

ZooKeeper

HMaster

HMasterClient	finds	RegionServer	
address	from	ZooKeeper

Client	reads	and	writes	
by	directly	accessing	
RegionServers

Master	assigns	regions	
and	achieves	load	
balancing

HBase Cluster Architecture

114 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Client

RegionServer RegionServer RegionServer

HDFS

ZooKeeper

ZooKeeper

ZooKeeper

HMaster

HMasterClient	finds	RegionServer	
address	from	ZooKeeper

Client	reads	and	writes	
by	directly	accessing	
RegionServers

Master	assigns	regions	
and	achieves	load	
balancing

HBase Cluster Architecture + Phoenix

Phoenix

12/16/17

58

115 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Client

RegionServer RegionServer RegionServer

HDFS

ZooKeeper

ZooKeeper

ZooKeeper

HMaster

HMasterClient	finds	RegionServer	
address	from	ZooKeeper

Client	reads	and	writes	
by	directly	accessing	
RegionServers

Master	assigns	regions	
and	achieves	load	
balancing

HBase Cluster Architecture + Phoenix

Phoenix-QS

Phoenix

Lab	5:	Getting	Started	with	
Apache	Phoenix

12/16/17

59

117 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix	SQL	Constructs

118 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Provides Familiar SQL Constructs

Compare: Phoenix versus Native API
Code Notes

// HBase Native API.
HBaseAdmin hbase = new HBaseAdmin(conf);
HTableDescriptor desc = new HTableDescriptor("us_population");
HColumnDescriptor state = new HColumnDescriptor("state".getBytes());
HColumnDescriptor city = new HColumnDescriptor("city".getBytes());
HColumnDescriptor population = new HColumnDescriptor("population".getBytes());
desc.addFamily(state);
desc.addFamily(city);
desc.addFamily(population);
hbase.createTable(desc);

// Phoenix DDL.
CREATE TABLE us_population (

state CHAR(2) NOT NULL,
city VARCHAR NOT NULL,
population BIGINT

CONSTRAINT my_pk PRIMARY KEY (state, city));

• Familiar	SQL	syntax.
• Provides	additional	
constraint	checking.

12/16/17

60

119 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Connecting to Hbase Cluster

• It	also	supports	a	full	set	of	DML	commands	as	well	as	table	creation	and	versioned	
incremental	alterations	through	our	DDL	commands.	

• Tries	to	follow	the	SQL	standards	wherever	possible.

• How	to	Make	a	JDBC	Connection	to	HBase:

120 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Performance

Phoenix Performance Optimizations
• Table	salting.	(minimized	region	server	hotspotting)
• Column	skipping.
• Skip	scans.

Performance characteristics:
• Index	point	lookups	in	milliseconds.
• Aggregation	and	Top-N	queries	in	a	few	seconds	over	large	datasets.

12/16/17

61

121 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved 121

Phoenix	– Compared	to	Stinger

122 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix: Today and Tomorrow

Phoenix: SQL	for	HBase
Standard SQL	Data	Types UNION	/	UNION	ALL
SELECT, UPSERT,	DELETE Windowing	Functions
JOINs:	Inner	and	Outer Transactions
Subqueries Cross	Joins
Secondary Indexes Authorization
GROUP	BY,	ORDER	BY,	HAVING Replication	Management

AVG,	COUNT,	MIN,	MAX,	SUM Column	Constraints	and	
Defaults

Primary Keys,	Constraints UDFs
CASE, COALESCE
VIEWs
Flexible	Schema

Current																Future

12/16/17

62

123 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix	Data	Model

124 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Data Model

HBase	Table

Phoenix maps HBase data model to the relational world

12/16/17

63

125 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Data Model

HBase	Table
Column	Family	A	 Column	Family	B	

Phoenix maps HBase data model to the relational world

126 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Data Model

HBase	Table
Column	Family	A	 Column	Family	B	

Qualifier	1 Qualifier	2 Qualifier	3

Phoenix maps HBase data model to the relational world

12/16/17

64

127 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Data Model

HBase	Table
Column	Family	A	 Column	Family	B	

Qualifier	1 Qualifier	2 Qualifier	3
Row	Key	1 KeyValue

Phoenix maps HBase data model to the relational world

128 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Data Model

HBase	Table
Column	Family	A	 Column	Family	B	

Qualifier	1 Qualifier	2 Qualifier	3
Row	Key	1 KeyValue

Row	Key	2 KeyValue KeyValue

Phoenix maps HBase data model to the relational world

12/16/17

65

129 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Data Model

HBase	Table
Column	Family	A	 Column	Family	B	

Qualifier	1 Qualifier	2 Qualifier	3
Row	Key	1 KeyValue

Row	Key	2 KeyValue KeyValue

Row	Key	3 KeyValue

Phoenix maps HBase data model to the relational world

130 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HBase	Table
Column	Family	A	 Column	Family	B	

Qualifier	1 Qualifier	2 Qualifier	3
Row	Key	1 Value

Row	Key	2 Value Value

Row	Key	3 Value

HBase	Table
Column	Family	A	 Column	Family	B	

Qualifier	1 Qualifier	2 Qualifier	3
Row	Key	1 Value

Row	Key	2 Value Value

Row	Key	3 Value

Phoenix Data Model

HBase	Table
Column	Family	A	 Column	Family	B	

Qualifier	1 Qualifier	2 Qualifier	3
Row	Key	1 KeyValue

Row	Key	2 KeyValue KeyValue

Row	Key	3 KeyValue

Phoenix maps HBase data model to the relational world

Multiple Versions

12/16/17

66

131 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Data Model

HBase	Table
Column	Family	A	 Column	Family	B	

Qualifier	1 Qualifier	2 Qualifier	3
Row	Key	1 KeyValue

Row	Key	2 KeyValue KeyValue

Row	Key	3 KeyValue

Phoenix maps HBase data model to the relational world
Phoenix Table

132 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Data Model

HBase	Table
Column	Family	A	 Column	Family	B	

Qualifier	1 Qualifier	2 Qualifier	3
Row	Key	1 KeyValue

Row	Key	2 KeyValue KeyValue

Row	Key	3 KeyValue

Phoenix maps HBase data model to the relational world
Phoenix Table

Key Value Columns

12/16/17

67

133 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Data Model

HBase	Table
Column	Family	A	 Column	Family	B	

Qualifier	1 Qualifier	2 Qualifier	3
Row	Key	1 KeyValue

Row	Key	2 KeyValue KeyValue

Row	Key	3 KeyValue

Phoenix maps HBase data model to the relational world

Phoenix Table

Key Value ColumnsPrimary Key Constraint

134 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example

Row Key

SERVER METRICS

HOST VARCHAR

DATE DATE

RESPONSE_TIME INTEGER

GC_TIME INTEGER

CPU_TIME INTEGER

IO_TIME INTEGER

Over metrics data for servers with a schema like this:

12/16/17

68

135 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example
Over metrics data for servers with a schema like this:

Key Values

SERVER METRICS

HOST VARCHAR

DATE DATE

RESPONSE_TIME INTEGER

GC_TIME INTEGER

CPU_TIME INTEGER

IO_TIME INTEGER

136 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example

CREATE TABLE SERVER_METRICS (
HOST VARCHAR,
DATE DATE,
RESPONSE_TIME INTEGER,
GC_TIME INTEGER,
CPU_TIME INTEGER,
IO_TIME INTEGER,
CONSTRAINT pk PRIMARY KEY (HOST, DATE))

DDL command looks like this:

12/16/17

69

137 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

With data that looks like this:

SERVER METRICS

HOST + DATE RESPONSE_TIME GC_TIME
SF1 1396743589 1234
SF1 1396743589 8012
…
SF3 1396002345 2345
SF3 1396002345 2340
SF7 1396552341 5002 1234
…

Example

Row Key

138 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

With data that looks like this:

SERVER METRICS

HOST + DATE RESPONSE_TIME GC_TIME
SF1 1396743589 1234
SF1 1396743589 8012
…
SF3 1396002345 2345
SF3 1396002345 2340
SF7 1396552341 5002 1234
…

Example

Key Values

12/16/17

70

Lab	6:	Interactive	
Queries	on	Phoenix

140 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix	Integration

12/16/17

71

141 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix Integration

• Map	to	existing	HBase	table
• Integrate	with	Apache	Pig
• Integrate	with	Apache	Flume
• Integrate	with	Apache	Mapreduce
• Spark	Integration	

142 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Apache	Pig	Integration

142

• Pig	integration	may	be	divided	into	two	parts:	a	StoreFunc as	a	means	to	generate	Phoenix-
encoded	data	through	Pig,	and	a	Loader which	enables	Phoenix-encoded	data	to	be	read	by	Pig.

• Pig	StoreFunc
The	StoreFunc allows	users	to	write	data	in	Phoenix-encoded	format	to	HBase tables	using	
Pig	scripts.

• Pig	Loader
A	Pig	data	loader	allows	users	to	read	data	from	Phoenix	backed	HBase tables	within	a	Pig	
script.

12/16/17

72

143 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Apache	Flume	Plugin

143

• The	plugin	enables	us	to	reliably	and	efficiently	stream	large	amounts	of	data/logs	onto	
HBase using	the	Phoenix	API.

• The	necessary	configuration	of	the	custom	Phoenix	sink	and	the	Event	Serializer has	to	be	
configured	in	the	Flume	configuration	file	for	the	Agent.	

• Currently,	the	only	supported	Event	serializer is	a	RegexEventSerializer which	primarily	
breaks	the	Flume	Event	body	based	on	the	regex	specified	in	the	configuration	file.

144 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix	Map	Reduce

144

• Phoenix	provides	support	for	retrieving	and	writing	to	Phoenix	tables	from	within	
MapReduce jobs.	The	framework	now	provides	custom	InputFormat and	OutputFormat
classes	PhoenixInputFormat ,	PhoenixOutputFormat.

• PhoenixMapReduceUtil provides	several	utility	methods	to	set	the	input	and	output	
configuration	parameters	to	the	job.

• When	a	Phoenix	table	is	the	source	for	the	Map	Reduce	job,	we	can	provide	a	SELECT	query	
or	pass	a	table	name	and	specific	columns	to	import	data.

• Similarly,	when	writing	to	a	Phoenix	table,	we	use	the	PhoenixMapReduceUtil.setOutput
method	to	set	the	output	table	and	the	columns.

• Note:	The	SELECT	query	must	not	perform	any	aggregation	or	use	DISTINCT	as	these	are	not	
supported	by	our	map-reduce	integration.

12/16/17

73

145 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Phoenix	+	Spark	Plugin

145

• The	phoenix-spark	plugin	extends	Phoenix’s	MapReduce support	to	allow	Spark	to	load	
Phoenix	tables	as	RDDs	or	DataFrames,	and	enables	persisting	them	back	to	Phoenix.

Lab	7:	Populating	
Phoenix	Data	with	Pig

12/16/17

74

147 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Kafka	Architecture

148 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Learning Objectives

When you complete this lesson you should be able to:
• Recognize	use	cases	for	Kafka

• Describe	the	components	of	Kafka

• Explain	the	concept	of	a	topic	leader	and	followers

• Describe	the	publication	and	consumption	of	Kafka	messages

12/16/17

75

149 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

What is Kafka?

• According	to	the	Kafka	website:

• distributed:	horizontally	scalable	(just	like	Hadoop!)
• partitioned:	the	data	is	split-up	and	distributed	across	the	brokers
• replicated:	allows	for	automatic	failover
• unique:	Kafka	does	not	track	the	consumption	of	messages	(the	consumers	do)
• fast:	designed	from	the	ground	up	with	a	focus	on	performance	and	throughput

Kafka is	a	distributed,	partitioned,	replicated	
commit	log	service.	It	provides	the	functionality	
of	a	messaging	system,	but	with	a	unique	design.

150 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

How	Fast	is	Kafka?
Ã “Up	to	2	million	writes/sec	on	3	cheap	machines”

– Using	3	producers	on	3	different	machines,	3x	async replication

http://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

12/16/17

76

151 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Why	is	Kafka	so	fast?
Ã Fast writes:

– While	Kafka	persists	all	data	to	disk,	essentially	all	writes	go	to	the
page	cache	of	OS,	i.e.	RAM.

Ã Fast reads:
– Very	efficient	to	transfer	data	from	page	cache	to	a	network	socket
– Linux:	sendfile() system	call

Ã Fast	writes	+	fast	reads	=	fast	Kafka!
– On	a	Kafka	cluster	where	the	consumers	are	mostly	caught	up,	you	will	see	no	read	activity	on	the	disks	as	

they	will	be	serving	data	entirely	from	cache.

15
1

http://kafka.apache.org/documentation.html#persistence

152 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Kafka Use Cases

• Web site activity: track page views, searches, etc. in real time
• Events & log aggregation: particularly in distributed systems where

messages come from multiple sources
• Monitoring and metrics: aggregate statistics from distributed applications

and build a dashboard application
• Stream processing: process raw data, clean it up, and forward it on to

another topic or messaging system
• Real-time data ingestion: fast processing of a very large volume of

messages

12/16/17

77

153 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Kafka Terminology

Kafka is a publish/subscribe messaging system comprised of the following
components:

• Topic: a message feed
• Producer: a process that publishes messages to a topic
• Consumer: a process that subscribes to a topic and processes its messages
• Broker: a server in a Kafka cluster

154 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Kafka Components

Kafka	Cluster

brokers

Kafka	uses	ZooKeeper to	coordinate	
brokers	with	consumers

12/16/17

78

155 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Overview of Topics

• A topic is a name assigned to a feed to which messages are published
• A	topic	in	Kafka	is	partitioned

• Each partition is an ordered, immutable sequence of messages
• it	is	continually	appended	to

• each	message	is	assigned	a	sequential	id	called	an	offset

• Messages are retained for a configurable amount of time (24 hours, 7 days,
etc.)

• Each consumer retains its own offset in the partition
• allows	the	consumer	to	go	back	and	re-read	messages	without	retaining	the	message

• the	offset	is	the	only	metadata	that	the	consumer	retains

• different	consumers	maintain	their	own	offset

156 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Publishing Messages

message_a
message_b
message_c
message_d
message_e
message_f
…

1.	A	producer	publishes	messages	to	a	topic

2.	The	producer	decides	which	
partition	to	send	each	message	to

offset	-> 0 1 2 3 4
Partition	0 message_b message_f

Partition 1 message_a message_c message_e

Partition	2 message_d

Old New
3.	New	messages	are	written	to	the	
end	of	the	partition

4.	A	consumer	fetches	messages	from	a	
partition	by	specifying	an	offset

12/16/17

79

157 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Understanding Partitions

• Partitions are distributed across the cluster
• A partition is managed by a broker
• Each partition is replicated for fault tolerance

• You	configure	the	replication	factor

• A replicated partition has one broker that acts as the leader
• The other brokers of that partition act as followers

• The	followers	passively	replicate	the	leader

• If	the	leader	fails,	one	of	the	followers	automatically	becomes	the	new	leader

• Brokers	distribute	their	roles	as	leaders	and	followers	to	maintain	a	well-balanced	cluster

158 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Leader and Followers

Broker	1

my_topic
Partition-1
(follower)

Broker	2

my_topic
Partition-1	
(leader)

Broker	3

my_topic
Partition-1	
(follower)

12/16/17

80

159 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Controlling Partitioning Logic

• The partitioning logic is performed by the producer
• This can happen various ways:

• hash	function	(default	behavior	– the	keys	are	hashed	and	divided	by	the	#	of	partitioners)

• random	distribution	(if	the	keys	are	null)

• you	can	specify	a	partitioner using	the	partitioner.class config property	(set	to	the	name	of	a	custom	Java	class	
that	you	write)

160 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Consuming Messages

• Messages are consumed in Kafka by a consumer group
• Each individual consumer is labeled with a group name
• Each message in a topic is sent to one consumer in the group
• In other words, messages are consumed at the group level, not at the

individual consumer level
• This	allows	for	fault	tolerance	and	scalability	of	consumers

• This design allows for both queue and publish-subscribe models:
• If	you	need	a	queue behavior,	then	simply	place	all	consumers	into	the	same	group

• If	you	need	a	publish-subscribe	model,	then	create	multiple	consumer	groups	that	subscribe	to	a	topic

12/16/17

81

161 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Consumer Groups

Broker	1

my_topic:	Partition-0

my_topic:	Partition-3

Broker	2

my_topic:	Partition-1

my_topic:	Partition-2

Consumer	Group	A

consumer-1 consumer-2

consumer-3 consumer-4

Consumer	Group	B

consumer-5 consumer-6

consumer-8 consumer-9

consumer-7

message_1

162 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The Consumer Offset

• It is up to the consumer to maintain its offset in the partition (stored in a
special topic named __consumer_offsets)

0 1 2 3 4 5 6 7 8 9 10 11 12

Messages a b c d e f g h i j

• This has several key benefits, including:
• performance:	there	is	no	back-and-forth	acknowledging	of	message	consumption

• simplicity:	the	consumer	only	has	to	maintain	a	single	integer	value	for	its	state,	which	can	be	easily	stored	and	shared	between	
consumers	(if	a	failure	occurs)

• re-consume	messages:	it	becomes	trivial	for	a	consumer	to	re-consume	messages		

consumer	offset

12/16/17

82

163 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Message Delivery Guarantees

• Kafka guarantees at-least-once delivery by default
• At-most-once delivery is possibly by disabling retries on the producer (when

a commit fails)
• Exactly-once delivery is possible (with clever coordination of your consumers

and the consumer offset)
• Other guarantees:

• Messages	in	a	partition	are	stored	in	the	order	that	they	were	sent	by	the	publisher

• Each	partition	is	consumed	by	exactly	one	consumer	in	the	group

• That	consumer	is	the	only	reader	in	the	group	of	that	partition	in	the	group

• Messages	are	consumer	in	order

• Messages	committed	to	the	log	are	not	lost	for	up	to	N-1	broker	failures	(where	N	is	the	replication	factor)

164 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

In-Sync Replicas

• Kafka replicates the messages in each partition across multiple brokers
• You	specify	the	replication	factor	at	the	topic	level

• New messages are always appended to the leader
• The	followers	replicate	new	messages	into	their	own	log

• The	leader	maintains	a	list	of	all	followers	that	are	“in	sync”

• A follower that keeps up is called an ISR, or in-sync replica, which means:
• The	follower	is	alive	(still	communicating	with	ZooKeeper)

• The	follower	has	not	fallen	too	far	behind	(the	replica.lag.max.messages property)

• A message is considered committed when all ISRs have a copy of the
message

• Kafka	guarantees	that	a	committed	message	will	not	be	lost	if	at	least	one	ISR	is	alive	at	all	times

12/16/17

83

165 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Defining Topics

• Use the kafka-topics.sh script to create a topic:

• Use --alter to modify an existing topic:

166 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Viewing Topics

• Use --list to view the current topics:

12/16/17

84

Lab	8:	Creating	and	
Managing	Kafka	Topics

168 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm	Components

12/16/17

85

169 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Learning Objectives

When you complete this lesson you should be able to:
• Define	the	terms	tuple,	stream,	topology,	spout,	bolt,	Nimbus,	and	Supervisor

• Diagram	the	relationship	between	a	Supervisor,	worker	process,	executor,	and	a	task

• Diagram	how	Storm	components	interact	to	provide	scalable,	distributed,	and	parallel	computation	of	real-time	
data

• Given	the	Java	code	for	a	topology,	diagram	the	spout	and	bolt	connections

• Define	the	purpose	of	a	stream	grouping

• List	types	of	stream	groupings

• Recognize	and	explain	sample	spout	and	bolt	Java	code

• List	functions	that	ZooKeeper provides	to	Storm

170 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Consider These Scenarios

What	if	you	are	a	financial	services	company	and	you	need	to	analyze	transactions	in	real	time	to	prevent	
fraud?	
What	if	you	are	a	telecom	company	and	you	need	to	analyze	network	traffic	in	real	time	to	allocate	cell	
towers	dynamically?	
What	if	you	need	to	monitor	application	logs	in	real	time	to	respond	to	application	anomalies	as	they	
happen?	
What	if	you	are	a	trucking	company	and	you	need	to	analyze	real-time	data	to	modify	drive	routes	to	save	
time	and	fuel	costs?
Apache	Storm	can	help	in	these	types	of	scenarios.

12/16/17

86

171 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Real-Time Streaming Data

The previous scenarios all had one thing in common:
• The	availability	of	continuous	streams	of	real-time	data

Apache Storm is a distributed computation system for processing continuous
streams of real-time data.
• Storm	augments	the	batch	processing	capabilities	provided	by	MapReduce

Storm is commonly used for:
• Stream	processing

• Continuous	computation

• Distributed	remote	procedure	calls	(DRPC)

172 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The Assembly Line Model

Storm processes real-time data using an assembly line model similar to the
automotive industry.
• Complex	tasks	are	accomplished	step	by	step	by	a	series	of	workers	performing	different	operations

• There	are	identical,	parallel	assembly	lines	to	increase	throughput

• In	Storm,	the	assembly	line	is	not	always	a	line;	there	are	branches	and	even	directed	acyclic	graphs

raw	
materials

finished	
product

loading	dock assembly				1 assembly	2 assembly	3

loading	dock assembly				1 assembly	2 assembly	3

Factory

(data	source) (Storm	spout) (Storm	bolt) (Storm	bolt) (Storm	bolt)

12/16/17

87

173 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Why	Enterprises	Choose	Storm

• Horizontally	scalable	like	HadoopHighly	scalable	

• For	example,	a	10	node	cluster	can	process	1M	100	byte	messages	per	second	per	nodeFast

• Highly	redundant	services	and	operation	with	automated	failover	capabilitiesFault	tolerant	

• Supports	at-least-once	and	exactly-once	processing	semanticsGuarantees	processing

• Data-processing	logic	can	be	written	in	multiple	languagesLanguage	agnostic

• Brand,	governance,	and	a	large	active	communityApache	project

174 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm	Use	Cases	– Prevent	and	Optimize

Prevent Optimize
finance • Securities fraud

• Compliance	violation
• Order	routing
• Pricing

telco • Network	breaches
• Network	outages

• Bandwidth	allocation
• Customer	service

retail • Inventory	overstock/under	
stock

• Offers
• Pricing

manufacturing • Machine	failures • Supply	chain

transportation • Driver and	fleet	issues • Routes
• Pricing

Web • Application	failures
• Operational	issues

• Site	content

streaming	real-time	data

Sentiment Clickstream Machine/Sensor Logs Geolocation

12/16/17

88

175 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Integrating	Real-Time	Processing	Workflows

persists	data

Hadoop

batch processing

batch	feeds
Update	event	models

Pattern	templates,	key-performance	
indicators,	and	alerts

Dashboards	and	Applications

Stormreal-time	
data	feeds

176 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

A Storm Topology

Storm data processing occurs in a
topology.
A topology consists of spout and bolt
components.
Spouts and bolts run on the systems
in a Storm cluster.
Multiple topologies can co-exist to
process different data sets in
different ways.
This lesson provides information
about topology components.

Storm	topology

stream

stream

spout

spout

bolt

bolt

bolt

bolt

12/16/17

89

177 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Tuples

The tuple is the fundamental data unit in Storm.
• A	tuple	is	a	unit	of	work	to	process

• A	Storm	topology	processes	tuples

A tuple is an ordered list of values.
• The	values	can	be	of	any	type

In Storm, each field in a tuple must assigned a field name.
• For	example,	the	fields	in	a	5-tuple	might	be	assigned	the	names	name,	user-id,	age,	salary,	and	currency

5,	10,	7,	35,	6

Rajesh,	3,	London

“some_binary_data”,	5

These	are	all	examples	of	
valid	tuples.

178 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Message Queues

Message queues are often the source of the data processed by Storm.
Storm integrates with many types of message queues.

real-time	
data	source

operating	
systems,	services	
and	applications,	

sensors

Kestrel,	
RabbitMQ,	AMQP,	

Kafka,	JMS,	
others…

message	
queue

log	entries,	
events,	errors,	
status	messages,	

etc.

Storm

data	from	queue	is	
read	by	Storm

12/16/17

90

179 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Streams

The stream is one of the core abstractions in Storm.
A stream is an unbounded sequence of tuples.
Every stream is assigned a stream ID when it is created.
• The	default	stream	ID	is	default

• For	more	information	about	assigning	stream	IDs,	see	
https://storm.apache.org/apidocs/backtype/storm/topology/OutputFieldsDeclarer.html

tuple tuple tuple tupletupletupletupletupleID

tuple tuple tuple tupletupletupletupletupleID

180 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spouts
A spout is a source of streams in a topology. Spouts:
• Act	as	an	adapter	between	external	data	source	and	Storm

• Read	data	from	an	external	source	(commonly	a	message	queue)

• Emit	one	or	more	streams	of	spout	tuples	into	a	topology
– Each	stream	requires	a	unique	stream	ID

Spouts can be reliable or unreliable.
• A	reliable	spout	replays	a	tuple	that	failed	to	process

• An	unreliable	spout	does	not	replay	a	tuple	that	failed	to	be	processed

tuple tuple tuple tupletupletupletupletupleID
external	
message	
queue

12/16/17

91

181 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example	Spout	Code	(1	of	2)

public class RandomSentenceSpout extends BaseRichSpout {
SpoutOutputCollector _collector;
Random _rand;

@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {

_collector = collector;
_rand = new Random();

}
@Override
public void nextTuple() {

Utils.sleep(100);
String[] sentences = new String[]{ "the cow jumped over the moon", "an apple a day keeps

the doctor away", "four score and seven years ago", "snow white and the seven dwarfs",
"i am at two with nature" };

String sentence = sentences[_rand.nextInt(sentences.length)];
_collector.emit(new Values(sentence));

}

Continued	next	page…

Storm	uses	open to	open	the	spout	and	provide	it	with	its	configuration,	a	
context	object	providing	information	about	components	in	the	topology,	and	
an	output	collector	used	to	emit	tuples.

Storm	uses	nextTuple to	request	the	
spout	emit	the	next	tuple.

The	spout	uses	emit to	send	a	tuple	
to	one	or	more	bolts.

Name	of	the	spout	class. Storm	spout	class	used	as	a	“template”.

182 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example Spout Code (2 of 2)

@Override
public void ack(Object id) {
}
@Override
public void fail(Object id) {
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields(”sentence"));
}

}

Storm	calls	the	spout’s	ackmethod	to	signal	that	a	
tuple	has	been	fully	processed.

Storm	calls	the	spout’s	failmethod	to	signal	that	a	
tuple	has	not	been	fully	processed.

The	declareOutputFields
method	names	the	fields	in	a	tuple.

Continued…

12/16/17

92

183 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Bolts

A	bolt	implements	the	data-processing	logic.
• A	bolt	processes	each	tuple	in	a	stream	and	emits	a	new	stream	of	tuples
A	bolt	can	run	a	function	or	filter,	aggregate,	or	join	tuples.
A	bolt	can	also	send	tuples	to	other	message	queues,	databases,	HDFS,	and	more.
Complex	transformation	and	analysis	is	possible	by	connecting	multiple	bolts	together.

database

184 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example	Bolt	Code

public static class ExclamationBolt extends BaseRichBolt {
OutputCollector _collector;

public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
_collector = collector;

}

public void execute(Tuple tuple) {
_collector.emit(tuple, new Values(tuple.getString(0) + "!!!"));
_collector.ack(tuple);

}

public void cleanup(); {
}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));

}
}

The	preparemethod	
provides	the	bolt	with	its	
configuration	and	an	
OutputCollector
used	to	emit	tuples.

The	executemethod	
receives	a	tuple	from	a	
stream	and	emits	a	new	
tuple.	It	also	provides	an	
ackmethod	that	can	be	
used	after	successful	
delivery.

The	cleanup method	
releases	system	
resources	when	bolt	is	
shut	down.

Names	the	fields	in	the	output	
tuples.	More	detail	later.

Name	of	the	bolt	class. Bolt	class	used	as	a	“template.”

12/16/17

93

185 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example	Topology	Code

public static main(String[] args) throws exception {

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“words”, new TestWordSpout());
builder.setBolt(“exclaim1”, new NewExclamationBolt()) .shuffleGrouping(“words”);
builder.setBolt(“exclaim2”, new NewExclamationBolt()) .shuffleGrouping(“exclaim1”);

Config conf = new Config();

StormSubmitter.submitTopology(”add-exclamation", conf, builder.createTopology());
}

This	code…

words exclaim1 exclaim2

shuffleGrouping shuffleGrouping
…builds	this	
topology.

runs	code	in	
TestWordSpout() runs	code	in	

NewExclamationBolt()

runs	code	in	
NewExclamationBolt()

186 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. Performs	functions	or	filters,	aggregates,	or	joins	tuples
2. An	ordered	list	of	objects
3. The	source	of	streams	in	a	topology
4. Must	be	assigned	a	name
5. An	unbounded	sequence	of	tuples
6. A	collection	of	spouts	and	bolts
7. Can	send	tuples	to	a	database

a. spout
b. bolt
c. tuple
d. stream
e. tuple	field
f. topology

Match the definition with the correct term.

12/16/17

94

187 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge	Check

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“arg1”, new Class1());
builder.setBolt(“arg2”, new Class2()) .arg3(“arg4”);
builder.setBolt(“arg5”, new Class3()) .arg6(“arg7”);

Given	this	topology	and	code	segment,	match	args 1-7	to	the	correct	word	to	
complete	the	topology	code.

logs filter1 functionA

fieldsGrouping shuffleGrouping

1. arg1
2. arg2
3. arg3
4. arg4
5. arg5
6. arg6
7. arg7

a. logs
b. fieldsGrouping
c. filter1
d. shuffleGrouping
e. functionA

188 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Given this code segment, match
the number with the correct
description.

a. Method used to send a tuple

b. Method used to provide a spout a configuration

c. Name of the spout class

d. Storm class used as a parent spout class

e. Method used to request that a spout send the next
tuple

public class RandomSentenceSpout extends BaseRichSpout {
SpoutOutputCollector _collector;
Random _rand;

@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {

_collector = collector;
_rand = new Random();

}
@Override
public void nextTuple() {
Utils.sleep(100);

String[] sentences = new String[]{ "the cow jumped over the moon", "an apple a day keeps
the doctor away", "four score and seven years ago", "snow white and the seven dwarfs",
"i am at two with nature" };

String sentence = sentences[_rand.nextInt(sentences.length)];
_collector.emit(new Values(sentence));

}

1 23

4

5

12/16/17

95

189 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm Architecture

Storm	is	implemented	as	a	cluster	of	machines.
• Nimbus	– master	node	daemon

– Similar	function	to	YARN	ResourceManager

– Distributes	program	code	around	cluster

– Assigns	tasks

– Handles	failures

– Responds	to	topology	administration	requests

• Supervisor	– slave	node	daemons
– Similar	function	to	YARN	NodeManager

– Runs	bolts	and	spouts	as	tasks

– Commonly	runs	on	Hadoop	slave	machines

• ZooKeeper
– Cluster	coordination

– Stores	cluster	metrics

Nimbus ZooKeeper

ZooKeeper

ZooKeeper

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

190 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Worker Processes, Executors, and Tasks

Each Supervisor
machine uses three
entities to run a subset
of a topology.
• Worker	process

• Executor

• Task

Adding more machines
with more of these
entities can increase
Storm processing
scalability.

Each	Supervisor	machine	can	run	one	
or	more	worker	processes.	Each	
worker	process	is	a	Java	virtual	
machine.

Each	worker	process	runs	one	or	more	
threads,	called	executors.
• Executors	run	tasks
• One	task	per	executor,	by	default
• If	an	executor	runs	more	than	one	

task,	all	tasks	must	be	the	same	
component	type	(spout	or	bolt)

A	task	performs	the	spout	or	bolt	
data	processing.	A	spout	or	bolt	can	
run	in	parallel	across	many	tasks.

Supervisor	machine

worker	process	(JVM)

task

thread

task

thread

task

thread

task

thread

task

thread

task

thread

12/16/17

96

191 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Parallel	Execution	of	Topology	Components

a	logical	
topology

spout	A

bolt	A bolt	B

bolt	C

a	physical	
implementation

machine	A

machine	B

machine/worker/executor
/task	nestings

machine	E

machine	C

machine	D

machine	F

machine	G

spout	A			two	
tasks

bolt	A			two	
tasks

bolt	B		two	
tasks

bolt	C		one	
task

User	code	developed	for	a	
topology	is	submitted	to	
Nimbus	and	is	transferred	
to	appropriate	Supervisor	
machines.

192 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Per-Topology	Configuration	Settings

Default topology settings are configured by the topology.* settings in the
storm.yaml file.
• For	example,	topology.debug: false

These settings can be overridden on a per-topology basis when submitting a
topology using the submitTopology method in the StormSubmitter class.
• Only	for	those	configuration	settings	prefixed	by	topology

Code sample:

Config conf = new Config();
conf.setNumWorkers(20);
conf.setMaxSpoutPending(5000);
StormSubmitter.submitTopology("mytopology", conf, topology);

Create	a	new	configuration	
object	named	conf.

In	conf,	use	the	methods	to	modify	two	default	
settings.	Overrides	topology.workers and	
topology.max.spout.pending.

Submit	a	topology	named	mytopology to	
Storm,	using	the	settings	in	conf.

12/16/17

97

193 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Per-Spout	and	Per-Bolt	Configuration	Settings

Spouts and bolts can be individually configured using
the setSpout and setBolt methods in the
TopologyBuilder class.

builder.setBolt(“green-bolt”, new GreenBolt(), 2)
.setNumTasks(4) .shuffleGrouping(“blue-spout”);

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“blue-spout”, new BlueSpout(), 2);

Create	a	new	spout	named	blue-spout,	using	the	class	
BlueSpout,	and	modify	the	default	configuration	so	that	the	
spout	only	uses	two	executors	(threads)	and	tasks.

Supervisor
worker	
process

task

thread

Supervisor
worker	
process

task

thread

Supervisor Supervisor
worker	
process

task

thread

task

Supervisor
worker	
process

task

thread

task

Create	a	new	spout	named	blue-spout,	using	the	class	
BlueSpout,	and	modify	the	default	configuration	so	that	the	
spout	uses	only	two	executors	(threads)	and	tasks.

Create	a	new	bolt	named	green-bolt,	using	the	class	GreenBolt,	
and	modify	the	default	configuration	so	that	the	spout	only	uses	
two	executors	(threads)	and	four	tasks.

Create	a	new	bolt	named	green-bolt,	using	the	class	
GreenBolt,	and	modify	the	default	configuration	so	that	
the	spout	only	uses	two	executors	(threads)	and	four	
tasks.

Create	a	new	bolt	named	green-bolt,	using	the	class	
GreenBolt,	and	modify	the	default	configuration	so	that	the	
spout	uses	only	two	executors	(threads)	but	four	tasks.

Code	
examples:

194 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Topology	Parallelism	Example

Defined	in	the	storm.yaml file:
topology.workers: 50

Defined	in	the	various	topologies:
setSpout(“spout”, new Spout(), 30);
setBolt(“bolt”, new Bolt(), 20);
setSpout(“spoutA”, new SpoutA(), 30);
setBolt(“boltA”, new BoltA(), 20);

Total	threads	=	100

…worker	
process

1

2	per	worker

2

thread

thread

worker	
process

2

2	per	worker

4

thread

thread

worker	
process

3

2	per	worker

6

thread

thread

worker	
process

50

2	per	worker

100

thread

thread

12/16/17

98

195 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Stream Groupings
A spout or bolt is commonly run as a
set of parallel tasks.
When a tuple is sent to a bolt, to
which bolt task is it sent?
• For	example,	when	a	task	in	spout	A	needs	to	send	a	
tuple	to	bolt	A,	which	task	in	bolt	A	should	receive	it?

A developer-selectable stream
grouping defines how the tuples in a
stream should be partitioned among
a bolt’s tasks.
Storm has seven built-in stream
groupings.

spout	A

bolt	A bolt	B

bolt	C

stream	
groupings

stream	
groupings

196 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Stream Grouping Types
Shuffle	grouping:	Tuples	are	randomly	distributed	across	a	bolt’s	tasks	in	a	way	such	that	each	task	is	
guaranteed	to	get	an	equal	number	of	tuples.
All	grouping:	A	tuple	is	replicated	across	all	of	the	bolt’s	tasks.	
Global	grouping:	An	entire	stream	is	sent	to	the	bolt	task	with	the	lowest	ID	number.	(All	tasks	are	
assigned	a	unique	ID.)
None	grouping:	Currently,	none	groupings	are	equivalent	to	shuffle	groupings.	
Direct	grouping:	The	tuple	sender	decides	which	task	will	receive	the	tuple.	
Local	or	shuffle	grouping:	If	the	target	bolt	has	one	or	more	tasks	in	the	same	worker	process	as	the	
sender,	tuples	will	be	shuffled	to	just	those	in-process	tasks.	Otherwise,	this	acts	like	a	normal	shuffle	
grouping.
Fields	grouping:	Tuples	with	the	same	value	in	a	user-specified	field	are	routed	to	the	same	task.	
A	previous	page	titled	Example	Topology	Code has	an	example	of	using	a	stream	grouping.

12/16/17

99

197 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Field Groupings and Output Field Declarations

Each field in a tuple emitted by a spout or bolt is assigned a name.
• This	is	useful	because	the	fields	grouping	stream	grouping	routes	tuples	to	specific	bolt	tasks	based	on	a	specific	
tuple	field	having	a	specific	value

To assign field names, the spout or bolt program code should include the
declareOutputFields method.

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("double", "triple"));

}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));

}

“double”,		“triple”
Rajesh!!,			London!!!

“word”
my

“word”
dog

“word”
car

“word”
top

“word”
bird

“double”,		“triple”
cat!!,						glass!!!

“double”,		“triple”
print!!,					cup!!!

198 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. Responds	to	topology	administration	requests
2. Assigns	cluster	tasks
3. Provides	cluster	coordination
4. Manages	failures
5. Runs	spouts
6. Runs	bolts

a. Nimbus
b. Supervisor
c. ZooKeeper

Match the definition to the correct Storm component.

12/16/17

100

199 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Match the lettered elements in the diagram to
each of the labels listed below.
1. a Java virtual machine
2. a task
3. an executor
4. a thread
5. a worker process

Supervisor	machine

A

C

B

C

B

C

B

C

B

C

B

C

B

200 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Assuming default parallelism settings are not explicitly overridden, which
diagram correctly illustrates the following code sample?

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“my-spout”, new MySpout(), 2);

Supervisor
worker	
process

task

thread

Supervisor
worker	
process

task

thread

SupervisorSupervisor
worker	
process

task

thread

task

Supervisor
worker	
process

task

thread

task

Supervisor
worker	
process

task

thread

task

a. b. c.

12/16/17

101

201 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. Distribute	tuples	randomly	across	a	bolt’s	tasks.
2. Send	all	tuples	to	the	bolt’s	task	with	the	lowest	task	ID	

number.
3. Route	tuples	based	on	the	value	of	a	specific	field.
4. Every	tuple	is	sent	to	all	of	a	bolt’s	tasks.
5. The	sender	decides	which	bolt	task	receives	a	tuple.

a. shuffle	grouping
b. all	grouping
c. global	grouping
d. none	grouping
e. direct	grouping
f. local	or	shuffle	grouping
g. fields	grouping

Match the definition with the correct term.

202 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. Given the code sample, which statement is correct?
a. The	spout	emits	a	2-tuple	with	the	text	values	of	double	and	triple.

b. The	spout	emits	a	2-tuple	with	the	field	names	of	double	and	triple.

c. The	spout	emits	two	streams	labeled	double	and	triple.

d. The	spout	emits	one	stream	of	2-tuples	and	another	stream	of	3-tuples.

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("double", "triple"));

}

12/16/17

102

203 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

More Information About Storm

Where can you get more information about Storm components and
operation?
https://storm.apache.org/documentation/Home.html

The URL has links to:
• Manuals

• Tutorials

• FAQs

• Javadocs

• Email	support	addresses

204 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Lesson Review – Things to Remember
A	Hadoop	cluster	runs	MapReduce,	Tez,	HBase,	Solr,	Flume,	and	other	job	types	while	a	Storm	cluster	runs	
topologies.	
• Storm	and	Hadoop	can	run	on	the	same	machines
A	Storm	topology	consists	of	spouts	and	bolts.
• A	spout	ingests	data	from	a	source	and	emits	a	stream	of	tuples	to	one	or	more	bolts

• A	bolt	can	run	a	function	or	filter,	aggregate,	or	join	tuples

• Multiple	bolts	can	be	joined	together	to	perform	complex	data-processing	jobs
A	Storm	cluster	includes	a	Nimbus	master	daemon,	one	or	more	Supervisor	slaves	daemons,	and	a	
ZooKeeper ensemble	used	for	Storm	cluster	coordination.
The	Nimbus	machine	provides	cluster	management.
Each	Supervisor	machine	runs	one	or	more	spouts	and	bolts.
• Each	spouts	and	bolt	runs	as	a	task	inside	an	executor,	while	executors	run	inside	worker	processes

• A	worker	process	is	a	JVM;	an	executor	is	a	thread	running	inside	the	JVM
Stream	groupings	determine	how	tuples	are	routed	between	spout	and	bolt	tasks.

12/16/17

103

Lab	9:	Word	Count	
Topology

206 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Topology	Submission

12/16/17

104

207 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Learning Objectives

When you complete this lesson you should be able to:
• List	the	differences	between	Storm	local	mode	and	distributed	mode

• Identify	reasons	to	use	Storm	local	mode

• Given	a	JAR	file	name	and	the	package	name	of	a	topology,	build	the	storm	command	necessary	to	submit	the	
topology	to	a	cluster

• Given	an	example	of	the	submitTopologymethod,	identify	whether	the	topology	is	being	submitted	to	Storm	
local	mode	or	a	distributed	cluster

• Given	a	topology	code	example,	describe	the	spout	and	bolt	connections	in	the	topology

• Identify	the	purpose	of	the	Multilang Protocol

208 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Programming Languages and Storm

Storm itself is written in Java and Clojure.
All Storm interfaces are specified as Java interfaces.
All Storm usage must go through the Storm Java API.
• Storm	topologies,	spouts,	and	bolts	written	in	Java	execute	in	the	JVM-based	worker	processes

Topologies and individual spouts and bolts can be written in other
languages.
• For	example,	you	can	use	JavaScript,	Python,	Ruby,	Perl,	PHP,	and	others
• Spouts	and	bolts	written	in	other	languages	execute	through	special	Java	ShellSpout and	ShellBolt classes

– These	interfaces	launch	the	program	and	script	that	implement	the	spout	or	bolt	logic

12/16/17

105

209 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm Operating Modes

Storm has two operating modes:
• Distributed	and	local

Distributed mode operates as a
cluster of machines.
• This	is	the	normal	operating	mode

Local mode simulates a cluster using
a process running multiple threads
on a single machine.
• Threads	are	used	to	simulate	worker	processes	on	
Supervisor	machines.

• Local	mode	is	useful	for	topology	development	and	
testing.

Nimbus

Supervisor Supervisor Supervisor

Supervisor Supervisor Supervisor

distributed	
mode

single	machine

local	
mode

process	with	threads

N

S S S
S S S

cluster	of	machines

210 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. Useful	during	topology	development
2. The	normal	operating	mode
3. Threads	simulate	worker	processes
4. Operates	as	a	cluster	of	machines
5. Operates	as	a	single	machine
6. Has	more	scalability

a. distributed	mode
b. local	mode

Match the descriptions with the correct Storm operating mode.

12/16/17

106

211 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm Topology Development Process Overview

1. Install Storm software on the development client.
• Makes	necessary	Storm	JAR	files	available

• Enables	Storm	to	run	in	local	mode	for	testing	a	topology

2. Add the Storm JAR files to the CLASSPATH, or use a tool like Maven to
automatically add Storm dependencies to your project.

3. Develop spout and bolt program code to process the data.
4. Develop the program code that defines your topology.
5. Package all the code into a JAR file that can be submitted to Storm.
6. Submit the topology to Storm in local mode for testing and debugging.
7. Submit and run the tested topology on a distributed Storm cluster.

212 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Submitting	a	Storm	Topology	to	a	Distributed	Cluster

From	a	Storm	client,	develop	code	for	
spouts,	bolts,	and	the	topology	and	

package	it	in	a	JAR	file

Software	package

Spout	code

Bolt	tuple	processing	logic

Define	topology	and	stream	
groupings

JAR	file Nimbus

Supervisors	download	
code	from	the	Nimbus	

machine

From	the	Storm	client,	use	the	
storm jar command	to	
submit	the	JAR	file	to	Nimbus

storm jar user_code.jar user.java.package.topology_name opt_arg1 opt_arg2

Supervisor

Supervisor

Supervisor

Supervisor

Nimbus	and	the	Supervisors	store	the	JAR	
file	beneath	the	parent	directory	specified	

in	storm.yaml by	
storm.local.dir.

12/16/17

107

213 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Local Versus Distributed Storm Clusters

The topology program code submitted to Storm using storm jar is
different when submitting to local mode versus a distributed cluster.
The submitTopology method is used in both cases.
• The	difference	is	the	class	that	contains	the	submitTopologymethod.

Config conf = new Config();
LocalCluster cluster = new LocalCluster();
LocalCluster.submitTopology("mytopology", conf, topology);

Config conf = new Config();
StormSubmitter.submitTopology("mytopology", conf, topology);

Instantiate	a	local	
cluster	object.

Submit	a	topology	to	a	
local	cluster.

Submit	a	topology	to	a	
distributed	cluster.Same	method	name,	

different	classes
Same	method	name,	
different	classes.

214 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example	Topology	Code

public static main(String[] args) throws exception {

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“sentence-spout”, new RandomSentenceSpout(), 5);
builder.setBolt(“split”, new SplitSentence(), 8) .shuffleGrouping(“sentence-spout”);
builder.setBolt(“count”, new WordCount(), 12) .fieldsGrouping(“split”, new Fields(“word”));

Config conf = new Config();
conf.setDebug(true);

StormSubmitter.submitTopology(”word-count", conf, builder.createTopology());
}

This	code…

sentence-spout split count

shuffleGrouping fieldsGrouping
…builds	this	
topology.

Code	in	
RandomSentenceSpout()	
will	run	across	5	executors

Code	in	SplitSentence()	
will	run	across	8	executors

Code	in	WordCount()	will	
run	across	12	executors

12/16/17

108

215 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The Isolation Scheduler

The isolation scheduler:
• Makes	it	easy	and	safe	to	share	a	cluster	among	topologies

• Any	isolated	topology	has	its	own	dedicated	cluster	machines

• Non-isolated	topologies	share	remaining	cluster	machines

To configure it in storm.yaml:
• Configure	storm.scheduler to	

backtype.storm.scheduler.IsolationScheduler

• Configure	isolation.scheduler.machines to								
"tiny-topology": 1
"some-other-topology": 3
"my-topology”: 8

other	topologies

my-topology

some-other-topology

tiny-topology

Storm	cluster

216 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. What does this command do?
storm jar user_code.jar user.java.package.topology_name opt_arg1 opt_arg2

a. Creates	a	JAR	file	containing	both	user	and	Storm	Java	code

b. Submits	a	topology	to	Nimbus

c. Adds	Storm	JAR	files	to	the	CLASSPATH

d. Installs	a	Storm	software	development	client

12/16/17

109

217 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Does the following code submit a topology to a distributed cluster or a
local mode cluster?

Config conf = new Config();
StormSubmitter.submitTopology("mytopology", conf, builder.createTopology());

218 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Read the following code.

Which statements are true? (choose two)
a. The	spout	must	initially	run	across	8	Supervisor	nodes.
b. Tuples	sent	between	the	filter	and	function	bolts	are	filtered	using	the	tuple	field	labeled	filter.

c. The	filter	bolt	will	initially	run	as	10	executors.
d. The	topology	named	wordsmith will	run	on	a	distributed	cluster.

public static main(String[] args) throws exception {

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“myspout”, new MySpout(), 8);
builder.setBolt(“filter”, new FilterBolt(), 10) .shuffleGrouping(“myspout”);
builder.setBolt(“function”, new FunctionBolt(), 12) .fieldsGrouping(“filter”, new Fields(“log”));

Config conf = new Config();
conf.setDebug(true);

StormSubmitter.submitTopology(”wordsmith", conf, builder.createTopology());
}

12/16/17

110

219 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Using Storm with Non-Java Languages

Non-Java languages can be used to:
• Create	topologies

• Create	individual	spouts	and	bolts

Storm topologies are just Thrift structures and Nimbus is a Thrift daemon.
• Thrift	supports	multiple	languages,	which	means	that	topologies	can	be	submitted	in	multiple	languages

• To	learn	more	about	submitting	topologies	as	a	Thrift	structure,	see	
https://github.com/apache/storm/blob/master/storm-core/src/storm.thrift.	(Requires	knowledge	of	Thrift	and	is	
outside	the	scope	of	this	course)

• The	storm shell command	submits	a	non-Java	topology.	Here	is	a	python	example:

storm shell resources/ python topology.py optional_arg1 optional_arg2 …

the	command
directory	

containing	all	
python	scripts

the	
program	
for	the	
script

the	topology	
script	defining	a	
Thrift	structure

any	optional	
command-line	
arguments

220 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm Multilang Protocol

A spout or bolt can be written in a
non-Java language.
• For	example,	PHP,	Python,	JavaScript,	and	others

• The	Supervisor	launches	a	subprocess to	run	the	non-Java	
spout	or	bolt
– Functionality	in	the	Java	classes	ShellSpout and	
ShellBolt is	used	to	help	communicate	with	the	new	
subprocess

• To	communicate	and	manage	these	subprocesses,	the	
Supervisor	uses	the	Storm	Multilang Protocol

• The	Multilang Protocol	defines	communication	using	
JSON-encoded	strings	over	standard	in	and	standard	out

• The	non-Java	spout	or	bolt	must	be	able	to	read	and	send	
JSON-encoded	messages	in	the	format	specified	by	the	
Storm	Multilang Protocol

Supervisor

subprocess started	by	Supervisor
(non-Java	spout	or	bolt	logic)

JSON	
message

(stdin)

JSON	
message

(stdout)

Multilang
Protocol	

communication

ShellSpout
/	ShellBolt

12/16/17

111

221 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Python Spout Example

Code example for creating a new wrapper Java class to communicate with
and manage a Python-based spout.
• The	new	Java	wrapper	class	must	extend	ShellSpout and	implement	IRichSpout (or	ShellBolt and	
IRichBolt for	bolts)

public class PythonWordSpout extends ShellSpout implements IRichSpout {
public PythonWordSpout(string sentence) {

super(“python”, “wordpythonscript.py”)
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields(”sentence"));
}

}

Program	and	actual	script	name	to	run.	Script	
contains	the	spout	logic.	

Spout	outputs	a	single	field	named	sentence

Java	wrapper	class

222 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Which statements are true regarding the Storm Multilang Protocol?
(choose two)
a. The	Multilang Protocol	supports	bolts	but	not	spouts.

b. The	Multilang Protocol	defines	communication	using	JSON-encoded	strings.

c. Communication	with	non-Java	spout	or	bolt	logic	occurs	over	standard	in	and	standard	out.

d. The	Multilang Protocol	defines	topologies	using	non-Java	languages.

12/16/17

112

223 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Lesson Review – Things to Remember

Storm has two operating modes: local and distributed.
• Local	mode	runs	on	a	single	machine	and	simulates	a	cluster	using	threads	running	in	a	single	process

• Local	mode	is	commonly	used	for	developing	and	testing	topologies

• Distributed	mode	runs	on	a	cluster	of	machines	and	is	the	normal	operating	mode

The storm jar command submits topologies to a local or distributed
mode cluster.
Storm topologies are just Thrift structures and Nimbus is a Thrift daemon.
• Thrift	supports	multiple	languages,	which	means	that	topologies	can	be	submitted	in	multiple	languages

A spout or bolt can be written in a non-Java language.
The Multilang Protocol defines communication with spouts or bolts using
JSON-encoded strings over standard in and standard out.

224 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Integrating	Storm	with	
Kafka

12/16/17

113

225 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Defining Topics

• Use the kafka-topics.sh script to create a topic:

• Use --alter to modify an existing topic:

226 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Viewing Topics

• Use --list to view the current topics:

12/16/17

114

227 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Sending Messages

• Use org.apache.kafka.clients.producer.KafkaProducer

228 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Consuming Messages

• Use the SimpleConsumer class in the Kafka API
• Useful	outside	of	a	Hadoop	or	Storm	environment

• Use LinkedIn’s Camus, which provides classes for piping Kafka messages
into HDFS

• Camus	may	be	a	good	solution	for	non-Storm	applications

• Use the Hortonworks-provided Kafka spout and bolt
• Useful	for	integrating	Kafka	as	part	of	a	Storm	topology

12/16/17

115

229 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The Kafka Spout

• Hortonworks provides a Kafka spout to facilitate ingesting data from Kafka
brokers into HDFS

• allows	you	to	combine	the	benefits	of	Kafka	and	Storm

• Two types of spouts
• Core	storm:	use	the	KafkaSpout class

• Trident:	use	the	TransactionalTridentKafkaSpout or	OpaqueTridentKafkaSpout classes

• There is also a storm.kafka.bolt.KafkaBolt class for publishing tuples to a
Kafka topic

230 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Creating a KafkaSpout

• The KafkaSpout object can now be used in any Storm topology

12/16/17

116

231 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Lesson Review – Things to Remember

Kafka	is	a	distributed,	partitioned,	replicated	commit	log	service comprised	of	topics,	producers,	
consumers	and	brokers.
A	topic	is	a	message	feed.
A	producer	is	a	process	that	publishes	messages	to	a	topic.
A	consumer	is	a	process	that	subscribes	to	a	topic	and	processes	its	messages.
A	broker	is	a	server	in	a	Kafka	cluster.
Messages	in	a	topic	are	divided	into	partitions.	
Messages	are	consumed	by	a	group	of	consumers,	with	a	single	consumer	processing	messages	from	the	
same	partition.	
The	producer	determines	the	partitioning	of	messages	in	a	topic.
A	Kafka	topic	can	be	a	spout	in	a	Storm	topology,	and	a	Storm	bolt	can	public	to	a	Kafka	topic.

Lab	10:	Kafka	Word	Count

12/16/17

117

233 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm	Management

234 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Learning Objectives

When you complete this lesson you should be able to:
• List	tools	to	manage	and	monitor	Storm

• Display	online	help	using	the	Storm	command-line	client
• Determine	when	it	is	appropriate	to	use	the	Storm	list,	activate,	deactivate,	rebalance,	and	kill
commands

• Identify	how	to	open	the	Storm	UI	console

• Interpret	the	metrics	displayed	in	the	Storm	UI	console

12/16/17

118

235 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Managing and Monitoring Storm

Storm includes three management and monitoring tools:
• The	Storm	UI	console

• The	Storm	command-line	client	

• The	Storm	log	files

The Storm UI console:
• Is	a	Web-based	interface

• Provides	detailed	topology	metrics

• Requires	a	running	UI	daemon

The Storm command-line client:
• Runs	on	a	Storm	client

– Can	manage	remote	Nimbus	machines

• Starts	Storm	daemons

• Submits,	kills,	lists,	and	manages	topologies

236 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Additional Monitoring Tools

Additional	tools	can	be	installed	to	monitor	Storm	operation	and	performance.
As	a	few	examples:
• JMX	– monitor	Java	applications

• VisualVM – a	JMX	client	to	display	JMX-gathered	information

• Metrics	by	Yammer	– collect	per-JVM	metrics

• Graphite	– collect	and	graph	the	metrics

• Log4j	– configure	and	monitor	log	files

• Nagios – monitor	the	hardware	and	log	files
To	enable	JMX	monitoring	in	the	storm.yaml file,	add:

worker.childopts: ”
-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.local.only=false
-Dcom.sun.management.jmxremote.port=1%ID%”

12/16/17

119

237 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The Storm Command-Line Client

The storm command is the Storm
command-line client.
The storm command includes online
help.
storm help or	storm –h
• Lists	the	available	command-line	commands

238 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Getting More Help

To get more detailed online help, type:
storm help <command>

12/16/17

120

239 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Example	Command-Line	Operations

Command Description
storm version Prints	the	Storm	version number.

storm nimbus Starts	the	Nimbus daemon.	Include	an	ampersand	(&)	to	start	in	the	background.

storm supervisor Starts	the	Supervisor	daemon.	Include an	ampersand	(&)	to	start	in	the	background.

storm ui Starts the	UI	daemon	that	enables	viewing	of	detailed	Web-based	topology	stats.	Include an	ampersand	
(&)	to	start	in	the	background.

storm drpc Starts	the	DRPC	daemon	that supports DRPC	cluster	operations.	Include an	ampersand	(&)	to	start	in	the	
background.

storm jar Submits	a	topology	to	Nimbus.

storm list Lists	running	topologies.

storm kill Gracefully shuts	down	and	removes	a	running	topology.

storm deactivate Deactivates spouts	in	a	topology.	(Pauses	Storm	data	processing)

storm activate Activates	spouts	in	a	topology.	(Resumes	Storm data	processing)

storm rebalance Used	to	redistribute	topology	worker	processes	or	change	topology	parallelism.

Use	storm help <command> to	get	additional	syntax	information.

240 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Killing a Topology

The command storm kill <topology_name> [-w wait_time_secs]
shuts down and removes a running topology.
1. First	Storm	deactivates	the	topology’s	spouts	for	30	seconds.

– Deactivated	spouts	stop	emitting	tuples

– The	30-second	delay	provides	time	for	the	topology	to	finish	processing	any	outstanding	tuples

– The	30	seconds	is	determined	by	topology.message.timeout.secs in	the	storm.yaml file

– The	30	seconds	can	be	overridden	by	adding	the	optional	–w wait_time_secs argument

2. After	30	seconds,	Storm	removes	state	information	from	local	disks	and	ZooKeeper.

3. Finally,	Storm	removes	heartbeat	information	and	topology	JAR	files	from	local	disks.

12/16/17

121

241 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Deactivating/Activating a Topology

A running topology can be deactivated and reactivated.
• It	requires	knowing	a	topology’s	name
• The	command	storm list displays	the	names	of	submitted	topologies

The command storm deactivate <topology_name> deactivates a
topology’s spouts.
• They	stop	emitting	tuples

• It	is	used	to	temporarily	suspend,	or	pause,	a	topology

A deactivated topology is reactivated using the command
storm activate <topology_name>.
• The	topology’s	spouts	begin	emitting	tuples	again

Topology_name Status Num_tasks Num_workers Uptime_secs

WordCount ACTIVE 28 2 6337

242 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Rebalancing a Cluster

Rebalancing	is	most	often	performed	after	adding	new	Supervisors	to	a	Storm	cluster.
• Adding	more	Supervisors	adds	additional	slots	for	worker	processes

• Existing	topology	worker	processes	can	be	spread	out	across	more	Supervisor	machines
– Rebalancing	accomplishes	this	without	having	to	kill	and	resubmit	a	topology

– It	might	improve	performance,	depending	on	the	source	of	a	bottleneck

The	command	syntax	is:	storm rebalance topology-name [-w wait-time-secs]
[-n new-num-workers] [-e component=parallelism]

1. Rebalancing	first	deactivates	an	active	topology.
2. Next,	it	evenly	redistributes	the	worker	processes.
3. Lastly,	it	returns	a	topology	to	its	previous	active	or	inactive	state.
The	–n and	–e options	modify	a	topology’s	number	of	worker	processes	or	executors.

• Example:	storm rebalance mytopology –n 5 –e mybolt=10 –e yourspout=5

• It	might	improve	performance,	depending	on	the	source	of	a	bottleneck

12/16/17

122

243 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. Requires a running UI daemon
2. Starts Storm daemons
3. Is a Web-based interface
4. Provides detailed Storm metrics
5. Submits topologies

a. The Storm UI console
b. The Storm command-

line client

Match the description to the correct tool.

244 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Rebalancing a cluster is useful when:
a. Adding	more	Supervisors	to	a	cluster

b. Adding	more	memory	to	cluster	machines

c. Adding	more	network	resources	to	a	cluster

d. Submitting	more	topologies	to	a	cluster

12/16/17

123

245 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm Metrics

Topology metrics are available in the Storm UI console.
Metrics are collected and aggregated by Nimbus.
They	are	counters	rather	than	rates.
They	are	made	available	by	Nimbus	for	specific	time	intervals.
They	are	not	persistent.
• Redeploying	a	topology	clears	its	metrics

Use metrics for performance monitoring and tuning.
When	tuning	Storm	or	a	topology,	make	a	single	change	at	a	time.

246 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The Storm UI Console

Each
section is
described
on the next
pages.

Nimbus	machine	IP	address	(or	hostname).	Port	set	
by	ui.port in	storm.yaml file.

Link	to	Storm	UI	landing	
page	(this	page).

Hover	the	mouse	pointer	over	any	
title	to	get	a	brief	definition.

12/16/17

124

247 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm UI – Cluster Summary Section

Useful for viewing total capacity and total workload information.

Storm	version	
installed.

Time	current	Nimbus	has	
been	running.

Number	of	Supervisor	
machines.

Total slots is	determined	by	the	slots-per-Supervisor	multiplied	by	the	
number-of-Supervisors.	Number	of	Used and	Free slots	depends	on	

number	and	size	of	running	topologies.	

Total	number	of	executors	used	by	
all	running	topologies.

Total	number	of	tasks	used	by	all	
running	topologies.

248 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Interpreting the Cluster Summary Section

Supervisor	machine
Supervisor	machine
Worker	Process

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

SlotSupervisor	machine
Worker	Process

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

Slot

12/16/17

125

249 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm UI – Supervisor Summary Section

Sortable list of Supervisors in the cluster.
(Only	a	single	Supervisor	in	this	example)

Unique	ID	assigned	by	
Storm.

Host	Supervisor	
runs	on

How	long	Supervisor	has	been	
registered	with	the	cluster.

Number	of	slots	on	Supervisor	and	
how	many	are	used.

250 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm UI – Nimbus Configuration Section

The configuration section displays a read-only list of the current cluster
configuration settings.
• These	settings	can	be	changed	by	modifying	the	storm.yaml file

• Configuration	changes	require	restarting	Storm	daemons

Sortable	on	either	the	
Key or	Value column.

12/16/17

126

251 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm UI Console with a Running Topology

The following command was used to submit a topology:
/usr/bin/storm jar storm-starter-0.0.1-storm-0.9.0.1.jar storm.starter.WordCountTopology
WordCount -c storm.starter.WordCountTopology WordCount -c
nimbus.host=sandbox.hortonworks.com

Name	of	the	topology	
and	a	hyperlink	to	the	
topology	details	page.

252 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm UI – Topology Page

This	page	is	the	result	of	
clicking	the	topology	
name	hypertext	link	on	
the	Storm	UI	landing	
page.
It	displays	detailed	
information	and	metrics	
about	the	topology.
It	also	provides	links	to	
pages	with	more	per-
spout	and	per-bolt	
details.

12/16/17

127

253 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Topology Page – Topology Summary Section

The	Topology	summary section	here	is	the	same	as	the	Topology	summary section	on	the	Storm	UI	
console	landing	page.

Worker	Process

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

Worker	Process

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

ID	assigned	
by	Nimbus.

Topology	
status.

How	long	since	topology	
was	submitted.

Resources	consumed	by	
topology.

254 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Topology Page – Topology Actions Section

Topology actions enable modification of a topology’s state.
• A	newly	submitted	topology	will	be	active

• Deactivate stops	an	active	topology

• Activate restarts	an	inactive	topology

• Rebalance evenly	redistributes	worker	processes	across	Supervisor	machines

• Kill shuts	down	and	removes	a	topology

12/16/17

128

255 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Topology	Page	– Topology	Stats	Section

Click	links	to	
update	the	display.

Number	of	times	the	
emitmethod	has	

been	called.

Number	of	tuples	
sent	to	all	bolt	

tasks.

Time	between	spout	
tuple	being	emitted	and	

being	ack’d.

Spout	tuples	ack’d.	(zero	
for	an	unreliable	topology)

Spout	tuples	failed	by	calling	
failmethod	or	by	timing	out.

256 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Topology Page – Topology Configuration Section

Displays a read-only list of the topology’s current configuration, set by:
• The	storm.yaml file

• submitTopology,	setSpout,	and	setBoltmethods	in	the	source	code

12/16/17

129

257 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Topology	Page	– Spouts	(All	time)	Section

List	of	spouts	in	the	
topology	and	link	to	spout	
details	page	(shown	on	

next	page).

Number	of	
executors	
running	the	

spout.

Number	of	
tasks	running	
the	spout.

Number	of	times	
the	emitmethod	
has	been	called.

Number	of	
tuples	sent	to	
all	bolt	tasks.

Time	between	spout	
tuple	being	emitted	
and	being	ack’d.

Spout	tuples	ack’d.	
(zero	for	an	

unreliable	topology)

Spout	tuples	failed	by	calling	
failmethod	or	by	timing	

out.

Last	error,	if	any,	
reported	by	the	

spout.

258 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spout Details Page

Displays	detailed	spout	
metrics.
Most	of	these	metrics	have	
been	described	earlier.
This	spout	emits	two	
streams:	_metrics and	
default.
• default is	the	stream	of	
tuples	processed	by	the	
WordCount topology

• _metrics is	a	stream	that	
supports	Storm	operation

12/16/17

130

259 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Topology	Page	– Bolts	(All	time)	Section

List	of	bolts	in	the	
topology	and	links	to	bolt	
details	page	(shown	on	

next	page).

Number	of	
executors	
running	the	

bolt.

Number	of	
tasks	running	
the	spout.

Time	spent	
running	the	
execute
method.

%	of	time	in	last	10	
minutes	that	bolt	was	
executing	tuples.

Spout	tuples	failed	by	
calling	failmethod	or	by	

timing	out.

Bolt	tuples	
ack’d.	

Number	of	times	
the	emit
method	has	
been	called.

Number	of	
tuples	sent	to	
all	bolt	tasks.

Number	of	times	
the	execute

method	has	been	
called.

Time	between	when	
execute is	passed	
tuple	and	ack is	

called.

260 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Bolt Details Page

Displays	detailed	bolt	
metrics.
• All	of	these	metrics	have	
been	described	earlier	in	
this	lesson

This	bolt	emits	three	
streams: _metrics,	
_system,	and	default.
• _metrics	and _system	are	
automatically	created	to	
support	Storm	operation

• default is	the	stream	of	
tuples	processed	by	the	
WordCount topology

12/16/17

131

261 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The System Stats Button

System	stats	are	for	tuples	
sent	on	streams	other	than	
the	ones	that	you	have	
defined.

Example:	The	_metrics	
stream	used	by	acker	tasks	
to	track	tuples	though	the	
tuple	tree.

Show	or	hide	
system	stats.

262 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Which diagram
accurately depicts
the metric
information?

Supervisor
Supervisor	machine
Worker	Process

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

SlotSupervisor	machine
Worker	Process

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

Slot

Supervisor
Supervisor	machine
Worker	Process

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

Slot
Supervisor

Supervisor	machine
Worker	Process

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

Slot

Supervisor
Supervisor	machine
Worker	Process

E
T

T

T

Slot

T

T

T

T

T

T

T

T

T

T

T

T

Supervisor	machine
Worker	Process

E
T

T

T

Slot

T

T

T

T

T

T

T

T

T

T

T

T

Supervisor
Supervisor	machine
Worker	Process

E
T

T

T

Slot

T

T

T

T

T

T

T

T

T

T

T

T

Supervisor
Supervisor	machine
Worker	Process

E
T

T

T

Slot

T

T

T

T

T

T

T

T

T

T

T

T

a. b.

c. d.

12/16/17

132

263 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Lesson Review – Things to Remember

Storm	includes	three	management	and	monitoring	tools:	the	Storm	UI	console,	the	command-line	client,	
and	the	Storm	logs.
The	storm kill command	shuts	down	and	removes	a	topology.
The	storm deactivate and	activate commands	pause	and	resume	the	spouts	in	a	topology.
The	storm rebalance command	is	most	often	used	after	adding	new	Supervisors	to	a	Storm	cluster.	It	
redistributes	topology	tasks	across	Supervisor	machines.
The	storm rebalance command	is	also	used	to	change	the	parallelism	of	spouts	and	bolts.
Storm	metrics	are	counters	rather	than	rates.
Storm	metrics	are	not	persistent;	they	are	reset	if	you	redeploy	a	topology.
The	storm ui command	must	be	run	before	the	Storm	UI	console	is	available.

264 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm	Reliability

12/16/17

133

265 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Learning Objectives

When you complete this lesson you should be able to:
• Identify	the	differences	between	reliable	and	unreliable	operation

• Diagram	a	tuple	tree	and	identify	its	branches

• List	the	two	requirements	for	reliable	operation

• Given	a	diagram,	describe	the	operation	of	an	acker	task

• Describe	the	response	to	various	Storm	component	failures

• List	three	methods	to	disable	reliable	operation

266 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Unreliable or Reliable Operation

Spouts can be configured for unreliable or reliable operation.
• Unreliable	means	that	each	tuple	emitted	by	a	spout	might	not	be	fully	processed

• Reliable	means	that	each	tuple	emitted	by	a	spout	will	be	fully	processed
– Spout	tuples	not	fully	processed	will	be	replayed

• This	means	that	Storm	can	guarantee	at-least-once	processing

What does fully processed mean?
• A	spout	tuple	is	not	fully	processed	until	all	tuples	in	the	tuple	tree	have	been	completed

• If	a	tuple	tree	is	not	completed	in	a	specified	timeout,	the	spout	tuple	is	replayed
– Timeout	set	in	storm.yaml by	topology.message.timeout.secs,	default	is	30	seconds

• Also,	spouts	and	bolts	each	have	a	failmethod	that	can	used	by	Storm	to	immediately	force	the	replay	of	a	spout	
tuple

So what is a tuple tree?

12/16/17

134

267 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

A Tuple Tree

A	tuple	emitted	from	a	spout	is	a	spout	tuple.
Each	spout	tuple	can	trigger	hundreds	of	additional	tuples	that	traverse	different	branches	of	the	
topology.
A	tuple	tree	is	formed	by	the	architecture	and	operation	of	a	topology.
A	tuple	tree	might	have	few	or	many	branches,	or	even	be	a	directed	acyclic	graph	(DAG).

spout	
tuple

tuple tree	
branch

tree	
branch

tuple	
tree

268 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Reliable Operation

In reliable operation, Storm ensures each spout tuple is fully processed.
• For	each	spout	tuple	that	is	emitted,	every	branch	in	the	tuple	tree	must	complete	the	processing	of	any	resulting	
tuples

Reliable operation has two requirements:
• Storm	must	be	made	aware	of	each	tuple	tree	branch	and	its	associated	spout-to-bolt or	bolt-to-bolt	connections

– This	is	accomplished	by	anchoring.	Anchoring	is	achieved:
- In	spouts,	by	including	message	IDs	when	emitting	spout	tuples	(detail	on	a	later	page)	

- In	bolts,	by	including	spout	tuple	message	IDs	when	emitting	subsequent	tuples

• Storm	must	have	an	acknowledgement	mechanism	to	inform	Storm	whenever	an	individual	tuple	has	been	
processed
– Achieved	using	the	ack and	failmethods	on	spouts	and	bolts

– A	special	acker	task	is	used	to	track	tuple	processing
- An	acker	task	will	run	out	of	memory	if	every	tuple	is	not	acked or	failed

12/16/17

135

269 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Tracking	and	Acknowledging	Tuples

acker	task
• An	acker	task	tracks	spout	tuples	through	a	
topology	using	messageIDs.

• Acker	tasks	use	a	spout	tuple	messageID to	ack
the	correct	originating	spout	task.

• If	a	tuple	processing	is	not	completed	within	a	
specified	timeout	period,	the	acker	task	sends	a	
fail to	the	spout	task	and	the	spout	task	replays	
the	tuple.

tupleID1 tupleID3 ID1 ID2 tupleID4 ID1 ID2

spout	tuple	
message	IDs	

copied

spout	tuple	
message	IDs	

copied

ack the	
originating		
spout	tasks

inform	acker	ID1,	
ID2	tuples	
processed

DB

inform	acker	ID1,	
ID2	tuples	
processed

1

2

3

bolt	ack’d4

5 9

10

tuples	sent	
with	

messageIDs

tuple	sent 7 tuple	sent

bolt	ack’d8

6

270 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spouts and Reliability

Reliability on a spout is configured
differently than on a bolt.
Reliability can be configured on a stream-
by-stream basis.
• Spout	code	includes	the	SpoutOutputCollector class

– This	class	includes	the	emitmethod	used	to	send	tuples	to	bolts

• The emit method	supports	different	argument	list	formats
– Reliability	is	possible	only	if	a	messageID is	included	as	an									emit
argument

• For	code	detail,	see	
http://storm.apache.org/apidocs/backtype/storm/spout/SpoutO
utputCollector.html

tuplemessageID

trackable by	
acker	tasks

Method	Summary
emit(tuple)
emit(tuple, messageID)
emit(streamID, tuple)
emit(streamID, tuple, messageID)

reliablereliable
unreliableunreliable

12/16/17

136

271 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Bolts – Anchoring Using BaseRichBolt

If using a BaseRichBolt and its OutputCollector you must explicitly
add the tuple to the first argument of the emit method.

public class SplitSentence extends BaseRichBolt {
OutputCollector _collector;

public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
_collector = collector;

}

public void execute(Tuple tuple) {
String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {

_collector.emit(tuple, new Values(word));
}
_collector.ack(tuple);

}
}

Explicitly	add	the	tuple as	the	first	
argument	of	the	emitmethod.

BaseBasicBolt with	
BasicOutputCollector

BaseRichBolt with	
OutputCollector

The	tuple	is	unanchored	if	the	tuple
argument	is	not	added.

272 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Bolts – Anchoring Using BaseBasicBolt

If using a BaseBasicBolt and its BasicOutputCollector, anchoring is
automatic and you do not have to explicitly add the tuple as an argument
of the emit method.

public class SplitSentence extends BaseBasicBolt {
OutputCollector _collector;

public void prepare(Map conf, TopologyContext context, BasicOutputCollector collector) {
_collector = collector;

}

public void execute(Tuple tuple) {
String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {

_collector.emit(new Values(word));
}
_collector.ack(tuple);

}
}

No	explicit	tuple	argument.

BaseBasicBolt with	
BasicOutputCollector
BaseBasicBolt with	
BasicOutputCollector

12/16/17

137

273 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Failure Responses
If	a	spout	task	dies:

– The	message	source	is	responsible	for	replaying	any	messages	unacknowledged	by	a	spout

If	a	bolt	task	dies:
– The	spout	task	will	time	out	and	the	spout	tuple	is	replayed

If	an	acker	task	dies:
– All	spout	tuples	tracked	by	the	acker	task	will	time	out	and	be	replayed	by	a	spout

If	a	worker	process	dies:
– The	Supervisor	daemon	restarts	it

If	a	Supervisor	machine	fails:
– Nimbus	reassigns	its	tasks	to	other	machines

If	the	Nimbus	machine	fails:
– Existing	topologies	continue	to	run,	new	topologies	cannot	be	submitted

If	Nimbus	or	a	Supervisor	daemon	dies:
– They	are	restarted	by	the	configured	supervisory	program	(like	daemontools or	monit)

274 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Disabling Reliable Operation

Reliable operation can be disabled if the application is tolerant to losing
spout tuples.
There are three ways to disable reliable operation:
• In	the	storm.yaml file:

– Configure	TOPOLOGY_ACKER_EXECUTORS to	0

– A	spout	is	immediately	ack’d following	the	release	of	a	tuple

• On	a	spout:
– Do	not	include	a	messageID as	an	argument	for	the	SpoutOutputCollector.emitmethod

• On	a	bolt:
– Do	not	anchor	tuples	emitted	by	a	bolt

12/16/17

138

275 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. Storm	has	two	requirements	for	achieving	reliable	operation.	They	are:	(choose	two)
a. Tuples	must	be	anchored

b. Tuples	must	be	acknowledged

c. Tuples	must	be	checksummed

d. Tuples	must	be	redundant
2. Reliable	operation	ensures	that	a	spout	tuple	is	fully	processed.	What	does	fully	processed	mean?
a. All	tuples	in	the	tuple	tree	are	safely	cached

b. All	tuples	in	the	tuple	tree	are	written	to	storage

c. All	tuples	in	the	tuple	tree	are	completed

d. All	tuples	in	the	tuple	tree	are	checksummed

276 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Given this topology, how many branches are in the tuple tree?
a. 1

b. 2

c. 3

d. 4

12/16/17

139

277 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

True or False: Given this spout code segment, reliable operation is
possible.

public class RandomSentenceSpout extends BaseRichSpout {
SpoutOutputCollector _collector;
Random _rand;

@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {

_collector = collector;
_rand = new Random();

}
@Override
public void nextTuple() {

Utils.sleep(100);
String[] sentences = new String[]{ "the cow jumped over the moon", "an apple a day keeps

the doctor away", "four score and seven years ago", "snow white and the seven dwarfs",
"i am at two with nature" };

String sentence = sentences[_rand.nextInt(sentences.length)];
_collector.emit(new Values(sentence));

}
}

278 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

True or False: Given this bolt code segment, reliable operation is possible.

public class SplitSentence extends BaseRichBolt {
OutputCollector _collector;

public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
_collector = collector;

}

public void execute(Tuple tuple) {
String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {

_collector.emit(tuple, new Values(word));
}
_collector.ack(tuple);

}
}

12/16/17

140

279 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Lesson Review – Things to Remember

Spouts	and	bolts	can	be	configured	for	unreliable	or	reliable	operation.
A	spout	tuple	is	not	fully	processed	until	all	tuples	in	the	tuple	tree	have	been	completed.
A	tuple	tree	is	formed	by	the	architecture	and	operation	of	a	topology.
Reliable	operation	has	two	requirements:
• Storm	must	be	made	aware	of	each	tuple	tree	branch	and	its	associated	spout-to-bolt	or	bolt-to-bolt	connections.	
This	is	achieved	through	anchoring

• Storm	must	have	an	acknowledgement	mechanism	to	inform	Storm	whenever	an	individual	tuple	has	been	
processed

An	acker	task	tracks	spout	tuples	through	a	topology	using	message	IDs.
Storm	uses	redundancy,	along	with	fail-fast,	stateless	operation	to	provide	fault	tolerance.

280 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident	Introduction

12/16/17

141

281 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Learning Objectives

When you complete this lesson you should be able to:
• List	differences	between	core	Storm	and	Trident

• List	characteristics	of	a	Trident	topology

• Describe	a	Trident	tuple

• Describe	a	Trident	stream

• Describe	a	batch

• List	the	benefits	of	batch	processing

• Describe	a	partition

• Diagram	the	relationship	between	a	stream,	a	batch,	and	a	partition

• List	differences	between	a	Storm	spout	and	a	Trident	spout

• Explain	why	Trident	requires	a	ZooKeeper cluster

• Recognize	Trident	code	used	to	create	a	topology	and	a	stream

282 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident

Trident	is	a	high-level	abstraction	for	doing	stateful,	real-time	stream	processing	on	top	of	Storm.
• Trident	enables	transactional	processing,	but	it	abstracts	the	details	of	transactional	processing	and	state	
management
– A	developer	does	not	have	to	write	code	to	manage	the	details	of	low-level	state	information

• It	is	similar	to	the	way	Apache	Hive	or	Apache	Pig	layers	over	MapReduce and	abstracts	the	details	of	MapReduce
Use	Trident	anytime	that	stateful stream	processing	is	required.
Use	Trident	anytime	that	exactly	once	processing	semantics	are	required.
Trident	was	released	starting	with	Storm	0.8.x.
Trident	supersedes	both	the	Storm	LinearDRPCTopologyBuilder class	and	transactional	
topologies.
• However,	these	technologies	are	still	described	in	the	current	Trident	documentation		

12/16/17

142

283 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Beyond Spouts and Bolts

Core Storm and Trident compared.

Core	Storm Trident
Is	a	stateless,	stream-processing	
framework

Is	a	stateful,	stream-processing	
framework

Offers	only at-least-once	tuple-
processing	semantics

Offers	at-least-once	and	exactly once	
tuple-processing	semantics

Uses	Storm	spouts	as	the	source	of	
tuples

Uses	Trident	spouts	as	the	source of	
tuples

Developers use	bolts	to	implement	
data-processing	logic

Developers use	higher-level
operations	to	implement	data-
processing	logic

Processes	tuples one	at	a	time Processes	batches	of	tuples

284 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident Topologies

Trident	works	with	streams	of	data	flowing	through	various	operations.
• The	stream	operations	include	filters,	functions,	aggregations,	merges,	and	joins.
Trident	topologies	are	used	for	performing:
• Real-time	data	processing

• Distributed	remote	procedure	calls	(DRPC)

operation operation state

operation operation

operation

core	Storm	
topology Trident	topology

12/16/17

143

285 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Conversion to a Storm Topology
A	Trident	topology	compiles	into	a	Storm	topology.
• The	compilation	is	automatic	and	creates	an	efficient-as-possible	Storm	topology

• Tuples	are	sent	over	the	network	between	cluster	nodes	only	during	repartitioning	operations

Trident	
topology

state
persistent
Aggregateeach partitionBy

stateQuery
each partitionBy

state
persistent
Aggregateeach partitionBy

stateQuery
each partitionBy

bolt

bolt bolt

Trident	
topology	

compiled	into	
Storm	bolts

Operations	are	
performed	locally	on	a	
single	cluster	node	in	a	
single	bolt	whenever	

possible.

network	transfer

node

node
node

286 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Creating a Topology

Use the TridentTopology class to create a new instance of a topology.
• TridentTopology provides	methods	to	declare	and	work	on	streams	of	data

• The	other	operations	in	this	code	sample	are	described	later

TridentTopology topology = new TridentTopology();

TridentState wordCounts = topology.newStream("spout1", spout)
.each(new Fields("sentence"), new Split(), new Fields("word"))
.groupBy(new Fields("word"))
.persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))
.parallelismHint(6);

Creates	a	new	Trident	topology	
named	topology.

12/16/17

144

287 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. Is	a	stateless,	stream	processing	framework
2. Offers	at-least-once	and	exactly	once	tuple-

processing	semantics
3. Developers	use	bolts	to	implement	data-

processing	logic
4. Developers	use	higher-level	operations	to	

implement	data-processing	logic
5. Processes	batches	of	tuples
6. Supersedes	the	

LinearDRPCTopologyBuilder class	

a. Storm
b. Trident

Match the description to the correct name.

288 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Fill in the blank:

1. Tuples	are	transferred	over	the	network	between	cluster	nodes	only	during	____________________	operations

2. The	__________________	class	provides	methods	to	declare	and	work	on	streams	of	data.

12/16/17

145

289 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident Tuples

A Trident tuple is the same as a Storm tuple.
• It	is	still	a	unit	of	work	to	process

How tuples are processed in a Trident topology is different.
• Trident	processes	tuples	in	batches

• Different	Trident	operations	have	different	rules	for	how	and	when	to	emit	tuples
– These	rules	are	described	later

5,	10,	7,	35,	6

Rajesh,	3,	London
“some_binary_data”,	
5

These	are	all	examples	of	
valid	tuples.

290 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident Streams

The	core	data	model	in	Trident	is	the	stream.
A	stream	is	an	unbounded	sequence	of	tuples.

A	stream	is	the	flow	of	data	through	a	Trident	topology.
Operations	performed	on	a	stream	can	create	additional	streams.
Trident	includes	two	types	of	streams;	the	difference	is	how	the	tuples	are	organized:
• Stream

• GroupedStream
– A	GroupedStream is	the	result	of	a	groupBy operation

– The	groupBy operation	is	described	later

tuple tuple tuple tupletupletupletupletuple

12/16/17

146

291 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Working with Streams

Data	is	transformed	and	analyzed	by	first	creating	a	Stream	object.

• The	TridentTopology and	Stream objects	expose	the	interfaces	for	constructing	Trident	operations
– Trident	operations	are	implemented	by	Java	methods

• The	newStream method	creates	the	s1 and	s2 Stream	objects

• Stream	s1 comes	from	myspout1 and	stream	s2 comes	from	myspout2

• Trident	keeps	a	small	amount	of	state	information	for	each	spout
– The	state	information	is	called	spout	metadata

– The	metadata	keeps	track	of	what	data	a	spout	has	consumed	from	its	data	source

– The	metadata	is	referenced	when	data	must	be	replayed	by	a	spout	following	a	failure

– “spout1” and	“spout2” are	the	names	of	the	ZooKeeper directory	nodes	created	by	Trident	to	hold	the	metadata

TridentTopology topology = new TridentTopology();
Stream s1 = topology.newStream(“spout1”, myspout1);
Stream s2 = topology.newStream(“spout2”, myspout2);

292 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Batches

Trident	processes	a	stream	as	a	series	of	batches.
A	batch	is	a	group	of	tuples.

Each	batch	is	assigned	a	transaction	ID	to	track	its	progress.
The	default	is	to	process	a	single	batch	at	a	time.
• A	batch	must	succeed	or	fail	before	trying	another	batch
A	batch	pipeline	processes	multiple	batches	simultaneously.
• Pipelines	increase	overall	throughput	and	lower	overall	processing	latency
• The	parameter	topology.max.spout.pending in	the	storm.yaml file	controls	how	many	batches	can	
be	simultaneously	processed
– The	parameter	is	a	number

tuple tupletuple

transaction	ID

tuple tupletuple

transaction	ID

tuple tupletuple

transaction	ID

12/16/17

147

293 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Why Batch Processing?

Batch	processing	is	more	efficient	because:
• It	results	in	fewer	acknowledgements	than	acknowledging	a	single	tuple	at	a	time

– Storm	can	acknowledge	all	tuples	in	a	batch	with	a	single	ack

• It	results	in	fewer	I/O	operations	when	writing	to,	or	reading	from,	storage
– Multiple	read	or	write	requests	are	grouped	together	as	a	single	request	to	storage

Batch	processing	slightly	increases	processing	latency.
• Batch	size	affects	latency

• Recommendation:	Start	small	and	increase	while	monitoring	performance

294 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Partitions

Operations	on	a	batch	are	commonly	performed	in	parallel	across	multiple	cluster	nodes.
A	partition	is	the	subset	of	a	batch	that	resides	on	a	single	cluster	node.

Some	Trident	operations	repartition	batches	across	cluster	nodes.
• Local	partition	processing	is	faster	because	the	data	is	local	to	the	processing	resources

• Repartitioning	operations	are	slower	because	of	the	network	data	transfer	between	cluster	nodes

3	partitions

batch	with	txid

data	source	
C tupletuple

cluster	
node

spout	with	3		
tasks

data	source	
B tupletuple

cluster	
node

data	source	
A tupletuple

cluster	
node

12/16/17

148

295 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident Spouts

Trident	spouts	source	streams	of	tuples	just	like	core	Storm	spouts.
• However,	the	Trident	API	exposes	additional	features	for	creating	more	sophisticated	spouts
Trident	spouts	are	implemented	differently	than	Storm	spouts.
• Trident	spouts	are	implemented	as	Storm	bolts	and	appear	in	the	Storm	UI	as	a	mastercoord-bg<N> bolt	
and	one	or	more	spoutcoord-spout<N> bolts
– The	Master	Batch	Coordinator	(MBC)	and	Spout	Coordinators

Master	Batch	Coordinator Spout	Coordinator

Generic and	the	same for	every	Trident	topology Different for	every	specific	Trident	spout	type

Performs batch	management	using	ZooKeeper metadata Coordinates	the	tuples	emitted	into	a	topology	by	multiple	
spouts	from	multiple	data	sources

Sends	a	seed	tuple	and	batch	number	to	the	Spout	
Coordinator

Passes	a	seed	tuple and	offset	range	information	to	spout	
tasks,	which	read	the	data	sources	and	emit	batches

296 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spout Identity

Each	Trident	spout	in	a	topology	must	be	assigned	a	unique	identifier.	

The	identifier:
• Defines	the	name	of	the	ZooKeeper directory	node	holding	the	metadata	information

• Is	used	to	track	tuple	completion

• Must	be	unique	across	all	Trident	topologies
Trident	spouts	require	a	ZooKeeper cluster.
• The	ZooKeeper configuration	settings	are	in	the	storm.yaml file:

– transactional.zookeeper.servers: - list	of	ZooKeeper server	host	names

– transactional.zookeeper.port:	 - port	number	of	the	ZooKeeper cluster

– transactional.zookeeper.root:	 - root	directory	for	the	metadata	directory	nodes

topology.newStream("myspoutid", MyTridentSpout);

12/16/17

149

297 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident Spout Classes

Trident	spouts	implement	the	following	base	interfaces:
• IBatchSpout – a	non-transactional	Trident	spout	that	emits	batches	of	tuples

• ITridentSpout – the	most	generic	spout	API
– It	supports	transactional	or	opaque	semantics.

– However,	it	is	more	common	to	use	one	of	the	partitioned	spouts	shown	below.

• IPartitionedTridentSpout – a	transactional	spout	that	reads	from	partitioned	data	sources,	like	Kafka

• IOpaquePartitionedTridentSpout – an	opaque	transactional	spout	that	reads	from	a	partitioned	data	source

Non-transactional,	transactional,	and	opaque	transactional	spouts	are	described	in	the	Trident	State	lesson.

298 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spout Interfaces

Each	of	the	spout	classes	listed	on	the	previous	page	include	two	interfaces:
• Coordinator
• Emitter
The	Coordinator interface	methods	create	the	ZooKeeper metadata	for	new	batches	of	tuples.
• The	metadata	should	contain	whatever	is	necessary	to	be	able	to	replay	a	batch.

• The	Coordinatormethods	and	metadata	vary	based	on	the	type	of	spout	and	data	input	source.
– Non-transactional,	transactional,	or	opaque	transactional	spouts	and	partitioned	versus	non-partitioned	input	sources

The	Emitter interface	methods	emit	a	batch	of	tuples.
• The	Emittermethods	vary	based	on	the	type	of	spout	and	data	input	source.

– Non-transactional,	transactional,	or	opaque	transactional	spouts	and	partitioned	versus	non-partitioned	input	sources

12/16/17

150

299 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spout Methods

Each	of	the	spout	classes	include	four	primary	methods:

Method Description
getCoordinator Enables	a	spout	to	work	with	the	Coordinator
getEmitter Enables	a	spout	to	work	with	the	Emitter
getComponentConfigura
tion

Declares	any	configuration	specific	to	a	spout

getOutputFields Declares	the	output	schema	for	streams	emitted	by	a	
spout	

300 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Tuple Field Identities

Trident	spouts	are	implemented	using	Java	methods	contained	in	a	Trident	spout	class.
Storm	ships	with	several	different	Trident	spout	classes.
• Classes	are	listed	on	the	next	page
Each	Trident	spout	class	includes	the	getOutputFieldsmethod.
• This	method	declares	the	tuple	field	names	emitted	by	a	spout

public Fields getOutputFields() {
return new Fields(“id”, “location”, “building”, “energy”); }

tuple	field	names

12/16/17

151

301 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Answer the questions about the following code sample:

1. What	is	the	name	of	the	TridentTopology object?
2. What	is	the	name	of	the	first	spout?
3. What	is	the	name	of	the	ZooKeeper directory	node	for	the	first	spout?

TridentTopology topology = new TridentTopology();
Stream s1 = topology.newStream(“spout1”, myspout1);
Stream s2 = topology.newStream(“spout2”, myspout2);

302 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Use the diagram to fill in the blanks.
Number	1	in	the	diagram	points	to	a	_________,	while	number	2	points	to	a	___________.

Choices:	stream,	topology,	tuple,	batch,	partition,	transaction	

data	source	
C tupletuple

cluster	
node

data	source	
B tupletuple

cluster	
node

data	source	
A tupletuple

cluster	
node

1 2

12/16/17

152

303 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident Operations

Unlike	Storm,	developers	do	not	define	bolts	in	a	Trident	topology.
Instead,	a	developer	defines	operations	on	a	data	flow.
Operations	are	a	higher-level	abstraction	than	bolts.
Operations	are	the	programming	logic	that	perform	the	data	processing.
• Trident	operations	take	place	inside	Storm	bolts
Trident	operation	types	include:
• Filters

• Functions

• Aggregations

• Joins

• Merges

304 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Stream and TridentTopology Classes

Operations	are	performed	by	invoking	methods	on	a	Stream object.

List	available	methods	by	displaying	the	Stream and	TridentTopology classes.

Method Class Method Class
aggregate Stream partitionAggregate Stream

applyAssembly Stream partitionBy Stream

batchGlobal Stream partitionPersist Stream

broadcast Stream persistentAggregate Stream

chainedAgg Stream project Stream

each Stream shuffle Stream

getOutputFields Stream stateQuery Stream

global Stream toStream Stream

identityPartition Stream join TridentTopology

parallelismHint Stream merge TridentTopology

partition Stream

12/16/17

153

305 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

The five types of Trident operations include __________, __________,
_________, ___________, and __________.

306 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Lesson Review – Things to Remember

Trident	is	a	high-level	abstraction	for	doing	stateful,	real-time	stream	processing	on	top	of	Storm.
Trident	supersedes	the	Storm	LinearDRPCTopologyBuilder and	transactional	topologies	explained	
in	the	online	documentation.
Trident	topologies	are	used	for	performing	real-time	data	processing	and	distributed	RPC.
Trident	works	with	streams	of	data	flowing	through	various	operations.
Operations	include	filters,	functions,	aggregations,	joins,	and	merges.
Trident	processes	tuples	in	batches,	and	each	batch	is	assigned	a	unique	transaction	ID.
A	partition	is	the	subset	of	a	batch	that	resides	on	a	single	cluster	node.
Trident	spouts	are	implemented	as	Storm	bolts.
Trident	uses	ZooKeeper to	hold	the	metadata	information	used	to	track	which	source	data	has	been	
consumed	by	a	spout.

12/16/17

154

307 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident	Operations

308 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Learning Objectives

When you complete this lesson you should be able to:
• Describe	the	purpose	and	operation	of	the	eachmethod

• Describe	the	purpose	and	operation	of	a	Trident	filter

• Describe	the	purpose	and	operation	of	a	Trident	function

• Describe	parallelism	and	the	operation	of	a	parallelism	hint

• Describe	the	operation	of	repartitioning	operations

• Describe	the	types	of	aggregation	operations

• Describe	the	differences	between	an	aggregation	method	and	an	aggregator	interface

• Describe	chaining

• Describe	the	operation	and	differences	between	a	merge	and	a	join	operation

12/16/17

155

309 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The each Method

The	eachmethod	is	fundamental	to	Trident	topologies.
It	reads	each	tuple,	which	enables	the	processing	of	each	tuple.
It	includes	one	or	more	input	field	selectors.

TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout)
.each(new Fields("sentence"), new Split(), new Fields("word"))

Read	all	tuples	and	send	
their	“sentence”	field	
values	to	the	Split

function.

Split	the	“sentence”	
field	into	words	and	

emit	new	tuples	with	a	
“word”	field	appended	

to	the	end	of	each	
tuple.	

Tuples	with	the	“word”	
field	can	be	sent	to	the	next	
operation	defined	in	the	

topology	(not	shown	here).	

310 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The each Method with Two Input Field Selectors

Multiple	input	field	selectors	are	treated	as	an	array	with	positions	0	through	x.

The	following	line	of	code	in	MyFilter would	access	the	value	in	the	“day”	tuple	field.

Why?	Because	tuple.getString(0) refers	to	“time”	while	tuple.getString(1) refers	to	
“day”.

TridentTopology topology = new TridentTopology();
topology.newStream("spout1", spout1)
.each(new Fields("time", "day"), new MyFilter(“Monday"))

tuple.getString(1).equals(day);

Read	all	tuples	and	send	
their	“time”	and	“day”	

fields	values	to	the	
MyFilter function.

Forward	only	tuples	
whose	“day”	field	
equals	Monday.

12/16/17

156

311 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident Filters

A	filter	evaluates	an	input	tuple	and	determines	whether	to	forward	it	to	downstream	operations.

Each	tuple	is	read	using	the	eachmethod.
A	filter	examines	one	or	more	developer-defined	tuple	fields.
• Defined	using	the	eachmethod’s	input	field	selector

TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout)
.each(new Fields(“event”), new TimeFilter(), new Fields(“day”))

Read	all	tuples	and	send	
their	“event”	field	values	

to	the	TimeFilter
function.

If	the	conditions	in	the	
filter	evaluate	to	true,	emit	
new	tuples	with	a	tuple	
field	named	“day”.

input	tuples

tuple

output	tuple

tuple

MyFilter

tuple

312 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Writing Filters

Filters	are	written	as	a	subclass	of	BaseFilter,	which	implements	the	Filter interface.

The	primary	method	in	a	filter	is	the	boolean isKeep.
• If	the	conditions	in	the	filter	evaluate	to	true	then	a	tuple	is	forwarded	downstream

• If	the	conditions	in	the	filter	evaluate	to	false	then	the	input	tuple	is	dropped
An	example	of	a	built-in	Trident	filter	is	available	by	reviewing	the	Equals class.

public class TimeFilter extends BaseFilter {
public boolean isKeep(TridentTuple tuple) {
return tuple.getInteger(0) < 10;
}

}
If	the	value	in	the	input	array	
in	position	0	is	less	than	10,	
the	boolean isKeep is	true	

and	a	tuple	is	emitted	
downstream.

12/16/17

157

313 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident Functions

Trident	functions	have	some	similarity	to	Storm	bolts.
• They	receive	and	process	tuples	and	optionally	emit	new	tuples

– If	a	function	does	not	emit	a	tuple,	it	operates	like	a	filter

• They	implement	data-processing	logic
Trident	functions	are	also	different	from	Storm	bolts.
• The	output	of	functions	is	additive.	They	append	tuple	fields	and	values	to	the	ends	of	input	tuples

– They	do	not	remove	or	modify	input	tuple	fields	or	values

The	number	of	function	fields	declared	in	the	Trident	topology	must	match	the	number	of	fields	emitted	by	the	
function.

input	tuple

“name”,	“num”,	“city”

MyFunction output	tuple

“name”,	“num”,	“city”,	
“month”

.each(new Fields(“name”), new MyFunction(), new Fields(“month”))

314 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Writing Functions

Functions	are	written	as	an	extension	of	the	BaseFunction class.

The	primary	method	in	a	function	is	execute.
• The	executemethod	contains	the	logic	to	either	filter	the	input	tuple	or	append	tuple	fields	to	an	output	tuple

• It	takes	an	input	tuple	and	a	collector	as	arguments
– The	input	tuple	is	processed	while	the	collector	is	used	to	emit	new	tuples

public class Split extends BaseFunction {
public void execute(TridentTuple tuple, TridentCollector collector) {

String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {
collector.emit(new Values(word));
}

}
}

12/16/17

158

315 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Modifying Streams Using Projection

Trident	includes	a	projectmethod	that	enables	projection	operations.
A	projection	operation	enables	a	topology	developer	to	remove	fields	from	input	tuples	and	forward	the	
modified	tuples	to	downstream	operations.

input	tuple

“name”,	“num”,	“city”
.project output	tuple

“name”,	“num”

.project(new Fields(“name”, “num”)

316 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. Enables	the	processing	of	each	tuple
2. Its	primary	method	is	execute
3. Its	primary	method	is	isKeep
4. Includes	one	or	more	input	field	selectors
5. Removes	fields	from	input	tuples
6. Appends	tuple	fields	to	output	tuples
7. Drops	input	tuples	(choose	two)

a. eachmethod
b. Trident	filter
c. Trident	function
d. Trident	projection

Based on the lecture content to this point, match the description with the
correct operation.

12/16/17

159

317 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Given the following topology code, answer the question:

1. myFilter contains	an	entry	tuple.getString(1) which	is	used	to	read	input	from	the	each
method.	What	will	it	read?

a. The	transaction	ID	from	spout1

b. The	value	of	the	“time“	tuple	field

c. The	value	of	the	“day“	tuple	field

d. The	value	of	the	“Monday“	tuple	field	

TridentTopology topology = new TridentTopology();
topology.newStream("spout1", spout1)
.each(new Fields("time", "day"), new MyFilter(“Monday"))

318 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

True or False?

1. Trident	functions	do	not	remove	or	modify	input	tuple	fields	or	values.	

2. Trident	functions	always	emit	output	tuples.

3. The	following	diagram	illustrates	projection.

input	tuple

“name”,	“num”,	“city”
output	tuple

“name”,	“num”

12/16/17

160

319 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Parallelism

A	batch	of	tuples	is	normally	processed	in	parallel	across	multiple	cluster	nodes.
• This	enables	a	cluster	to	process	larger	amounts	of	data	more	quickly

• The	degree	of	parallelism	for	different	operations	in	a	topology	can	be	controlled
– By	using	one	or	more	parallelism	hints

spout operation1 operation2 operation3 finish
no	parallelism,	
small	“pipe”	
throughout

spout operation1 operation2 operation3 finish

spout operation1 operation2 operation3 finish

full	parallelism,	
larger	“pipe”	
throughout

spout
operation1 operation2 operation3

finish
operation1 operation2 operation3different	degrees	

of	parallelism,	
“pipe”	size	varies

320 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Parallelism Hints

The	degree	of	parallelism	is	controlled	by	providing	a	parallelismHint.
A	parallelismHint applies	a	specific	degree	of	parallelism	to	all	operations	listed	before	it	until	there	
is	a	repartitioning	operation	or	another	parallelismHint.
Different	topology	operations	can	run	with	different	degrees	of	parallelism.
The	number	of	partitions	can	also	change	as	a	result	of	repartitioning.

topology.newStream("spout", spout)
.parallelismHint(2)
.shuffle()
.each(new Fields(”location", ”month"), new PerMonthFilter(”March"))
.parallelismHint(5)

Spout	runs	as	two	tasks.

applies

applies Repartitioning	operation	“resets”	the	
subsequent	parallelismHint.

PerMonthFilter runs	as	five	tasks.

12/16/17

161

321 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Repartitioning

Repartitioning	operations	use	network	transfers	to	move	tuples	from	one	cluster	node	to	another.
• Repartitioning	is	commonly	done	to	reorganize	the	data	across	cluster	nodes
There	are	multiple	types	of	repartitioning	operations,	and	each	specifies	how	tuples	should	be	routed	to	
the	next	cluster	node.

3	partitions

tupletuple
cluster	
node

tupletuple
cluster	
node

tupletuple
cluster	
node

tupletuple
cluster	
node

tupletuple cluster	
node

tupletuple
cluster	
node

repartitioning
(groupBy)

The	
number	of	
partitions	
can	be	

different.

322 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Repartitioning	Operations

The	aggregate and	persistentAggregatemethods	can	also	force	repartitioning.		
Aggregation	is	described	in	the	next	section	of	this	lesson.

Method Description
shuffle
(illustrated	next	
page)

Performs	random	routing		
• It	uses	a	random,	round-robin	algorithm	to	evenly	redistribute	tuples	across	all	target	
partitions

partitionBy
(illustrated next	
page)

Uses	a	set	of	developer-defined	tuple	fields	to	perform	semantic	partitioning	
• The	tuple	fields	are	hashed	and	modded by	the	number	of	target	partitions	to	select	the	target	
partition

• It	guarantees	that	the	same	set	of	fields	always	goes	to	the	same	target	partition
global Sends	all	tuples	in	the	stream	to	the	same	partition	

• The	same	partition	is	chosen	for	all	batches	in	the	stream
batchGlobal Sends	all	tuples	in	a	batch	to	the	same	partition	

• Different	batches	in	the	same	stream	might	go	to	different	partitions
partition Used	to	implement	a	custom,	site-specific	partitioning	scheme	

12/16/17

162

323 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

shuffle and	partitionBy Examples

TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout)
.parallelismHint(1);
.shuffle()
.each(new Fields(”word"), new PrintPartition())
.parallelismHint(4);

TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout)
.parallelismHint(1);
.partitionBy(new Fields(“word”))
.each(new Fields(”word"), new PrintPartition())
.parallelismHint(4);

cat,	dog,	pig,	bee,	
bird,	cat,	snake,	
pig,	bee

cat,	dog,	bird partition	1

pig,	bee partition	2

bee,	snake partition	3

cat,	pig partition	4

cat,	dog,	pig,	bee,	
bird,	cat,	snake,	
pig,	bee

cat,	cat,	bird partition	1

pig,	pig partition	2

bee,	bee partition	3

snake,	dog partition	4

shuffle() example

partitionBy() example

324 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Use the code sample to answer the following question.

1. Which	of	the	following	statements	are	correct?
a. The	SensorSpout runs	as	two	parallel	tasks.

b. The	HeatFilter runs	as	two	parallel	tasks.

c. The	CelsiusToFahrenheit function	runs	as	two	parallel	tasks.

d. The	Save function	runs	as	four	tasks.

TridentTopology topology = new TridentTopology();
topology.newStream(”sensorData", SensorSpout)
.shuffle()
.each(new Fields(”Heat"), new HeatFilter(”Validate”))
.parallelismHint(2)
.each(new Fields(”Heat"), new CelsiusToFahrenheit(), new Fields(”Fahrenheit"))
.each(new Fields(”Fahrenheit"), new CalcChange(), new Fields(”Change"))
.parallelismHint(4)
.aggregate(new Fields(”Change"), new Save(), new Fields(”saved"));

12/16/17

163

325 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. Uses	a	set	of	developer-defined	tuple	fields	to	perform	
semantic	partitioning

2. Sends	all	tuples	in	the	stream	to	the	same	partition	
3. Performs	random	routing		
4. Sends	all	tuples	in	a	batch	to	the	same	partition	
5. Used	to	implement	a	custom,	site-specific	partitioning	

scheme	

a. shuffle

b. partitionBy

c. global

d. batchGlobal

e. partition

Match the description with the correct repartitioning operation.

326 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Aggregation

Aggregation	in	Trident	is	a	broad	concept	that	means	performing	computations	on	tuples.
Aggregation	operations	enable	a	topology	to	combine	tuple	values	in	a	partition,	in	a	batch,	or	across	an	
entire	stream.
Aggregation	is	used	for	such	operations	as:
• Summing	tuple	values

• Averaging	tuple	values

• Multiplying	tuple	values	(finding	the	product)

• Finding	the	minimum	value

• Finding	the	maximum	value

12/16/17

164

327 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Aggregation and Output Tuples

Aggregation	operations	replace	input	tuple	fields	and	values	with	new	fields	and	values.		

.aggregate(new Fields(“val2”), new Sum(), new Fields(“sum”))

Read	all	tuples	and	
send	their	“val2”	field	

values	to	the	Sum
function.

Emit	a	single,	new	
tuple	with	only	a	

“sum”	field	and	value.

input	tuples aggregation
Sum()

output	tuple

“sum”

“val1”,	“val2”

“val1”,	“val2”

“val1”,	“val2”

328 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Aggregation Methods and Interfaces

Trident	has	both	aggregation	methods and	interfaces.
• Aggregation	methods	and	aggregator	interfaces	are	different
Aggregation	methods	include:
• aggregate
• partitionAggregate
• persistentAggregate
The	aggregation	interfaces	include	the:
• CombinerAggregator
• ReducerAggregator
• Aggregator
The	topology	developer	specifies	which	aggregation	interface	to	use	when	performing	an	aggregation	
operation	using	an	aggregation	method.

12/16/17

165

329 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The aggregate Method

The	aggregatemethod	aggregates	all	the	tuples	in	a	single	batch.
• Batches	in	a	stream	are	aggregated	independently
The	aggregatemethod	is	a	repartitioning	operation.
• Information	from	all	the	batch’s	partitions	must	be	transferred	to	a	single	partition

The	aggregatemethod	can	be	used	with	the	ReducerAggregator,		Aggregator,	or	
CombinerAggregator interfaces.
• Which	interface	is	used	is	determined	by	which	one	the	Sum() function	utilizes

• Which	interface	is	chosen	affects	how	much	data	is	transferred	over	the	network

.aggregate(new Fields("count"), new Sum(), new Fields("sum"));

Read	all	tuples	in	a	
batch	and	send	their	
“count”	field	values	
to	the	Sum function.

Emit	a	single,	new	
tuple	with	only	a	

“sum”	field	and	value.

330 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The aggregate Method Illustrated

If	the	aggregatemethod	is	used	with	a	
ReducerAggregator or	Aggregator interface	then:
• All	the	data	from	all	partitions	in	a	batch	is	transferred	to	a	single	
partition

• All	aggregation	is	performed	in	a	single	partition

If	the	aggregatemethod	is	used	with	a	
CombinerAggregator interface	then:
• Trident	computes	partial	aggregations	in	each	partition	in	a	batch

• Trident	transfers	only	the	partial	aggregations	to	a	single	partition

• The	partial	aggregations	are	combined	into	a	final	result
The	CombinerAggregator interface	is	more	efficient	and	
should	be	used	whenever	possible.

data
data
data

partial	
agg

data
data
data

partial	
agg

data
data
data

final	
agg

partial	
agg

CombinerAggregator

data
data
data

final	
agg

Aggregator/	
ReducerAggregator

data
data
data

data
data
data

12/16/17

166

331 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The partitionAggregate Method

The	partitionAggregatemethod:
• Operates	on	a	batch	of	tuples

• Aggregates	tuples	only	within	individual	partitions

• Is	not	a	repartitioning	operation

The	partitionAggregatemethod	can	be	used	with	the	CombinerAggregator,		
ReducerAggregator,	or	Aggregator interfaces.
• Which	interface	is	used	is	determined	by	which	one	the	Sum() function	utilizes

• Because	there	is	no	repartitioning,	there	is	limited	benefit	to	using	a	CombinerAggregator

.partitionAggregate(new Fields(”count"), new Sum(), new Fields(”sum"))

Read	all	tuples	in	a	
partition	and	send	their	
“count”	field	values	
to	the	Sum function.

Emit	a	single,	new	
tuple	with	only	a	
“sum”	field	and	

value.

332 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The partitionAggregate Method Illustrated

The	partitionAggregatemethod	
performs	per-partition aggregation	per	
batch.
It	is	not	a	repartitioning	operation.

data
data
data

data
data
data

final	
agg

final	
agg

data
data
data

data
data
data

final	
agg

final	
agg

batch

partition

partition

partition

partition

12/16/17

167

333 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The persistentAggregate Method

The	persistentAggregatemethod:
• Operates	across	batches	of	tuples

– It	is	a	stream	aggregator	whose	values	represent	the	aggregation	of	all	tuples	across	all	batches	in	a	stream

• Stores	aggregations	in	a	source	of	state
– Memory,	Memcached,	Cassandra,	HDFS,	or	some	other	store

• Is	a	repartitioning	operation

The	persistentAggregatemethod	can	be	used	with	the	CombinerAggregator or	
ReducerAggregator interfaces.

.persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))

Read	all	tuples	in	a	
stream	and	use	the	
Count function	to	
count	the	number	of	

tuples.

Emit	a	single,	new	
tuple	with	only	a	
“count”	field	and	

value.

Update	the	source	of	
state	with	the	current	

count	value.

334 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The persistentAggregate Method Illustrated

If	the	persistenAggregatemethod	employs	a	
ReducerAggregator interface	then:
• All	the	data	in	a	stream	is	transferred	to	a	single	partition

• All	aggregation	is	performed	in	a	single	partition	and	the	
results	are	sent	to	the	source	of	state

If	the	persistentAggregatemethod	employs	the	
CombinerAggregator interface	then:
• Trident	computes	partial	aggregations	in	each	partition	in	a	
batch

• Trident	transfers	only	the	partial	aggregations	to	a	single	
partition

• The	partial	aggregations	are	combined	into	a	final	result

• The	results	are	sent	to	the	source	of	state

data
data
data

data
data
data

final	
agg

ReducerAggregator

state

data
data
data

partial	
agg

data
data
data

partial	
agg

data
data
data

final	
agg

partial	
agg

CombinerAggregator

state

data
data
data

12/16/17

168

335 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The groupByMethod	and	Aggregators

The	groupBymethod	converts	a	Stream	into	a	GroupedStream.		
The	groupBymethod	is	commonly	used	with	an	aggregation	method.	For	example:

A	groupBymodifies	the	behavior	of	a	subsequent	aggregation	operation.
• A	groupBy followed	by	an	aggregate operation	results	in	repartitioning	and	an	aggregation	for	each	
individual	group	rather	than	a	whole	batch

• A	groupBy followed	by	an	persistentAggregate operation	results	in	repartitioning	and	an	aggregation	for	
each	individual	group	rather	than	the	entire	stream
– A persistentAggregate operation	will	also	store	the	results	in	a	source	of	state	with	the	key	being	the	grouping	fields

• A	groupBy followed	by	partitionAggregate results	in	an	aggregation	for	each	individual	group,	within	
each	individual	partition
– There	is	no	repartitioning

topology.newStream("spout", spout)
.groupBy(new Fields("location"))
.aggregate(new Fields("location"), new Count(), new Fields("count"))

336 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

aggregate and groupBy Illustrated

With	GroupedStreams,	the	output	tuple	contains	the	grouping	fields	followed	by	the	fields	emitted	by	the	
aggregator.

• Example	of	obtaining	a	count	of	the	number	of	temperature	sensors	in	each	city
- Input	tuple	fields	are	“location”	and	“currTemp”

- The	Count function	counts	the	number	of	tuples

topology.newStream("spout", spout)
.groupBy(new Fields("location"))
.aggregate(new Fields("location"), new Count(), new Fields("count"))
.each(new Fields(“location”, “count”), new PrintResults());

aggregationbatch	of	input	tuples

Tokyo,	26

Bangalore,	30

Tokyo,25

London,	22

New	York,	24 London,	23

New	York,	23

London,	23

output	tuples

Tokyo,	2

Bangalore,	1

New	York,	2

London,	3 Because	of	the	addition	
of	groupBy,	the	result	
is	a	count	of	tuples	for	

each	location	rather	than	
a	count	of	all	tuples	in	

the	batch.

12/16/17

169

337 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Chaining

Chaining	enables	Storm	to	execute	multiple	aggregators	in	a	single	operation.
• Chaining	is	implemented	using	the	chainedAgg and	chainEndmethods

This	code	runs	the	Count and	Sum aggregators	on	each	partition	at	the	same	time.	
The	output	for	each	partition	will	be	a	single	tuple	with	the	fields	"count”	and	"sum”.

Note:	The	Count and	Sum aggregators	download	with	Trident.	They	are	optimized	to	use	the	CombinerAggregator interface.	
Because	partitionAggregate was	used,	little	to	no	benefit	is	gained	by	the	use	of	the	CombinerAggregator interface.	

.chainedAgg()
.partitionAggregate(new Count(), new Fields("count"))
.partitionAggregate(new Fields("b"), new Sum(), new Fields("sum"))
.chainEnd()

338 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

1. aggregate

2. ReducerAggregator

3. CombinerAggregator

4. persistentAggregate

5. Aggregator

6. partitionAggregate

a. aggregation	method
b. aggregator	interface

Match the name on the left with the correct type on the right.

12/16/17

170

339 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Use the following code sample to answer the question:

1. Where	would	an	aggregator	interface	be	implemented?
a. In	the	partitionAggregatemethod

b. In	the	first	Fields function

c. In	the	Sum function

d. In	the	last	Fields function

.partitionAggregate(new Fields(”count"), new Sum(), new Fields(”sum"))

340 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

True or False?

1. Aggregation	operations	replace	input	tuple	fields	and	values	with	new	fields	and	values.	

2. The	persistentAggregatemethod	is	a	stream	aggregator	whose	values	represent	the	aggregation	of	all	tuples	across	
all	batches	in	a	stream.

3. The	partitionAggregatemethod	aggregates	all	tuples	across	all	partitions	in	a	batch.

12/16/17

171

341 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Use the diagram to answer the question.

1. What	type	of	aggregation	or	aggregation	interface	
would	operate	as	depicted	in	the	diagram?

a. partitionAggregate

b. CombinerAggregator

c. ReducerAggregator

d. chainedAgg

data
data
data

final	
agg

partition

data
data
data

data
data
data partition

partition

342 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Use the following code sample to answer the question:

1. Which	tuples	fields	will	be	in	the	output	tuple?
a. total

b. units and	sum

c. sum

d. total and	sum

.chainedAgg()
.partitionAggregate(new Count(), new Fields(”total"))
.partitionAggregate(new Fields(“units"), new Sum(), new Fields("sum"))
.chainEnd()

12/16/17

172

343 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The Aggregator Interfaces

Topology	developers	may	use	three	different	Trident	interfaces	for	writing	aggregator	functions:
• CombinerAggregator
• ReducerAggregator
• Aggregator
Each	of	these	are	described	next.

344 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

CombinerAggregator Interface

The	CombinerAggregator interface	includes	three	methods	and:
• Combines	a	set	of	tuple	field	values	into	a	single	value

• Maximizes	network	efficiency	by	performing	per-partition	partial	aggregations
Example	of	a	Count function	implemented	as	a	CombinerAggregator:

To	maximize	the	benefit	of	a	CombinerAggregator interface,	use	it	with	the	aggregate or	
persistentAggregatemethods	rather	than	the	partitionAggregatemethod.

public class Count implements CombinerAggregator<Long> {
public Long init(TridentTuple tuple) {
return 1L;
}
public Long combine(Long val1, Long val2) {
return val1 + val2;
}
public Long zero() {
return 0L;
}

}

Storm	calls	the	initmethod	for	each	tuple.

The	combinemethod	is	called	until	all	tuples	in	
the	partition	have	been	processed.

The	zeromethod	is	called	to	emit	a	zero	if	there	
are	no	tuples	in	the	partition.

12/16/17

173

345 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

ReducerAggregator Interface

The	ReducerAggregator interface	includes	two	methods	that	take	a	prior	result,	along	with	a	set	of	
new	records,	and	return	a	new	result.
• This	is	useful	in	situations	where	more	input	values	make	an	answer	more	accurate	or	more	true	
Example	of	a	Count function	implemented	as	a	ReducerAggregator:

public class Count implements ReducerAggregator<Long> {
public Long init() {
return 0L;

}
public Long reduce(Long curr, TridentTuple tuple) {

return curr + 1;
}

}

The	initmethod	produces	an	initial	value.

The	reduce method	iterates	on	the	value	as	
each	new	tuple	is	read.

346 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Aggregator Interface

The	Aggregator is	the	most	generic	of	the	three	interfaces.
It	includes	three	methods	that	aggregate	a	set	of	tuples	and	can	emit	a	result	at	any	time.
Example	of	a	Count function	implemented	as	an	Aggregator:

public class CountAgg extends BaseAggregator<CountState> {
static class CountState {

long count = 0;
}
public CountState init(Object batchId, TridentCollector collector) {

return new CountState();
}
public void aggregate(CountState state, TridentTuple tuple, TridentCollector collector) {

state.count+=1;
}
public void complete(CountState state, TridentCollector collector) {

collector.emit(new Values(state.count));
}

}

The	initmethod	is	called	at	the	beginning	of	
each	batch.	It	returns	an	object	that	represents	

the	state	of	the	aggregation.

The	aggregatemethod	is	called	
for	each	tuple	in	the	batch	partition.		

It	can	update	state,	if	state	is	
maintained,	and	also	emit	tuples.

The	completemethod	is	called	when	all	tuples	in	
the	batch	partition	have	been	processed.

12/16/17

174

347 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Merges and Joins

The	Trident	API	includes	operations	that	combine	streams.
Streams	can	be	merged	or	joined.
The	Trident	class	TridentTopology includes	the	merge and	joinmethods.

348 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The merge Method

The	simplest	way	to	combine	streams	is	to	merge	them	into	a	single	stream.	
• The	mergemethod	merges	all tuples	from	two	or	more	streams

• The	streams	must	have	the	same number	of	tuple	fields

The	tuple	fields	of	the	output	stream	are	given	the	names	of	tuple	fields	in	the	first	stream.	

Stream s1 = topology.newStream(“spout1”, spout1);
Stream s2 = topology.newStream(“spout2”, spout2);
topology.merge(s1, s2);

“val1”,	“val2”
1,							7

“val1”,	“val2”
3,							6

“vala”,	“valb”
2,							8

“vala”,	“valb”
2,							4

Stream	s1

Stream	s2

“val1”,	“val2”
1,							7

“val1”,	“val2”
3,							6

“val1”,	“val2”
2,							8

“val1”,	“val2”
2,							4

12/16/17

175

349 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The join Method

The	joinmethod	provides	a	way	to	combine	only	selected tuples	from	different	streams.	
The	join	operation	is	performed	per	batch.

Assuming	that	streams	from	two	spouts	are	joined,	Storm	synchronizes	the	spouts	to	emit	the	same	batch	
size.

Stream s1 = topology.newStream(“spout1”, spout1);
Stream s2 = topology.newStream(“spout2”, spout2);
topology.join(stream1, new Fields("key"), stream2, new Fields("x"), new Fields("key", "a", "b", "c"));

“key”,	“val1”,	“val2”
1,							7,								2

“x”,		“y”
1,				8

Stream	s1

Stream	s2

join	if	equal joined “key”,	“a”,	“b”,	“c”
1,					7					2,			8

Join	if	values	in	“key”	and	“x”	are	equal.
• All	output	tuple	fields	must	be	named.
• Fields	“a”,	“b”,	and	“c”	are	non-join	fields.
• “a”	and	“b”	are	“val1”	and	“val2”	from	s1.
• “c”	is	“y”	from	s2.

350 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

True or false?

1. The	join method	merges	all tuples	from	two	or	more	streams.

2. The	merge method	provides	a	way	to	combine	only	selected tuples	from	different	streams.	

12/16/17

176

351 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Lesson Review – Things to Remember

The	eachmethod	is	fundamental	to	Trident	topologies	and	enables	the	reading	and	processing	of	each	tuple	in	a	batch.

Trident	filters	evaluate	input	tuples	and	determine	whether	to	forward	them	to	downstream	operations.

Trident	functions	implement	data-processing	logic.

Different	topology	operations	can	run	with	different	degrees	of	parallelism.

Repartitioning	operations	use	network	transfers	to	move	tuples	from	one	cluster	node	to	another.

Aggregation	operations	enable	a	topology	to	combine	tuple	values	in	a	partition,	in	a	batch,	or	across	an	entire	stream

Chaining	enables	Storm	to	execute	multiple	aggregators	in	a	single	operation.

Streams	can	be	merged;	tuples	can	be	joined.

352 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident	State

12/16/17

177

353 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Learning Objectives

When you complete this lesson you should be able to:
• List	the	three	types	of	Trident	states

• List	the	three	types	of	Trident	spouts

• Recall	which	Trident	states	and	spouts	support	at-most-once,	at-least-one,	and	exactly	once	processing	semantics

• Paraphrase	how	each	type	of	Trident	spout	and	state	operates

• Describe	how	an	opaque	transactional	spout	is	more	fault	tolerant	than	a	transactional	spout
• Recognize	the	operation	of	the	state-based	partitionPersist, persistentAggregate,	and	
stateQuery methods

354 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident State

In	a	distributed,	real-time	computation	system,	failures	are	inevitable	and	batches	will	be	retried.
The	problem	is:
• How	to	retry	a	batch	after	a	failure	but	make	it	appear	that	each	tuple	was	processed	only	once
The	problem	is	solved	by	maintaining	state	information	for	each	batch.
State	information	can	be	stored	and	updated	using	different	strategies:
• The	state	database	can	be	internal	to	the	topology

– In-memory

– In-memory	but	backed	by	HDFS

• The	state	database	can	be	an	external	database
– Like	Memcached or	Cassandra

12/16/17

178

355 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident and a State Database

Trident	assumes	nothing	about	how	a	state	
database	operates.
It	does	not	assume:
• What	kinds	of	methods	exist	to	update	it

• What	kind	of	methods	exist	to	read	it

• How	long	data	is	retained	in	it
– State	can	be	retained	for	a	limited	amount	of	time	or	
forever

The	lack	of	assumptions	provides	the	freedom	to	
use	a	variety	of	databases	as	the	source	of	state.

state

update?

query?
retention?

356 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Types of Trident State

There	are	three	types	of	state	in	Trident.

The	type	of	Trident	spout	used	determines	the	level	of	fault	tolerance	possible.

State Corresponding	Spout Processing	Semantics
Transactional Transactional	spout Enables	exactly once	

processing	semantics
Opaque	transactional Opaque	transactional	spout Enables	exactly once	

processing	semantics
Non-transactional Non-transactional spout No exactly	once	processing	

semantics,	only	at-most-
once	or	at-least-once

12/16/17

179

357 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

True or false?

1. In	a	distributed,	real-time	computation	system,	batches	cannot	be	retried.

2. Trident	state	cannot	be	maintained	in	memory.

3. Trident	must	be	aware	of	how	long	state	is	retained	in	a	database.

358 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Support for Transactional States

Trident	enables	the	transactional	states	by	adding	two	fundamental	primitives	to	its	batch	processing:
• Each	batch	is	assigned	a	transaction	ID

– If	a	batch	is	retried,	it	must	use	the	same	transaction	ID

• State	updates	must	be	ordered	among	transaction	IDs
– For	example,	updates	for	batch	ID	2	are	applied	before	updates	for	batch	ID	3

These	primitives	are	part	of	the	Trident	State	abstractions.
• A	developer	never	has	to	manually	write	code	to	store	or	compare	transaction	IDs	in	a	state	database
If	exactly once	processing	behavior	is	not	required	then	stateless	operation	is	possible.
• Stateless	operation	eliminates	a	small	amount	of	CPU,	memory,	I/O,	and	storage	overhead

• Trident	still	provides	the	benefit	of	a	higher	level	of	abstraction	than	writing	real-time	processing	pipelines	using	
Storm

12/16/17

180

359 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Transactional Spouts

Transactional	spouts	guarantee	the	composition	of	batches.
• A	retried	batch	must	contain	the	exact	same	tuples

• The	same	tuple	will	never	appear	in	two	different	batches
Transactional	spouts	support	the	transactional	state.
• They	enable	exactly once	processing	semantics

• They	enable	idempotent	operation
Trident	IPartitionedTridentSpout is	a	transactional	spout	class.
• It	is	available	to	topology	developers	for	building	transactional	spouts

360 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Transactional Spout Operation

• The	state	database	for	a	transactional	spout	stores:
– The	current	state	value

– The	last	successfully	completed	transaction	ID

cat-> [count=4,txid=6]
dog-> [count=3,txid=6]
mouse-> [count=7,txid=6]
bird-> [count=4,txid=6]

txid 6
cat
dog
mouse
bird

new	partial	
count	from	

batch

cat-> [count=3,txid=5]
dog-> [count=2,txid=5]
mouse-> [count=7,txid=6]
bird-> [count=3,txid=3]

current	state	
database

updated	
state	

database

Is	the	
batch	
txid

higher?

Compare	batch	txid to	
database	txid

Update	count	and	txid
in	database

Do	nothing	in	database

yesno

State	database	update	example
Transactional	state	update	logic

12/16/17

181

361 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Transactional Spout Fault Tolerance

Transactional	spouts	are	not	fault	tolerant	when	reading	from	partitioned	input	sources.
• If	one	of	the	partitioned	input	sources	fails,	a	batch	cannot	contain	the	exact	same	tuples

• Because	it	is	impossible	to	retry	the	exact	same	batch	again,	Trident	cannot	continue	processing
– Because	of	strict	batch	transaction	ID	ordering

input	
source

tuple tuple

input	
source

tuple tuple

input	
source

tuple tuple

batch	with	txid

3	spout	
tasks

some
downstream	

failure

first	try	with	a	downstream	failure

input	
source

tuple tuple

input	
source

tuple tuple

input	
source

tuple tuple

batch	with	txid

3	spout	
tasks

batch	fails	
because	

original	tuples	
no	longer	
available

second	try	after	input	source	failure

X X X

362 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Opaque Transactional Spouts

Opaque	transactional	spouts	cannot	guarantee	that	the	composition	of	a	batch	remains	constant.
• A	retried	batch	might	not	contain	the	exact	same	tuples

• However,	the	same	tuple	will	never	be	successfully completed	in	two	different	batches
Opaque	transactional	spouts	support	the	opaque	transactional	state.
• They	enable	exactly once	processing	semantics

• They	enable	idempotent	operation
Trident	IOpaquePartitionedTridentSpout is	an	opaque	transactional	spout	class	and	is	available	
to	topology	developers	for	building	transactional	spouts.

12/16/17

182

363 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Opaque Transactional Spout Operation

• Opaque	transactional	spouts	support	the	
opaque	transactional	state	by	storing	more	state	
information	in	the	state	database

• Opaque	transaction	spouts	store:
– The	current	state	value

– The	previous	state	value

– The	last	successfully	completed	transaction	ID

• In	the	example,	each	word	has	a	current	count,	
a	previous	count,	and	a	transaction	ID	number

cat-> [count=3,prevCount=1,txid=5]
dog-> [count=2,prevCount=1,txid=5]
mouse-> [count=7,prevCount=6,txid=6]
bird-> [count=3,prevCount=2,txid=3]

Compare	batch	
txid to	

database	txid

1. Do	not	update	the	
prevCount value.

2. Update	the	current	count	
value	by	adding	together	
the	partial	count	value	from	
the	batch	and	the	
prevCount value.

3. Do	not	update	the	txid.

n
o yes

1. Update	the	prevCount value	
to	equal	to	the	current	
count	value.

2. Update	the	current	count	
value	by	adding	to	it	the	
partial	count	value	from	the	
batch.

3. Update	the	txid.

Is	the	batch	
txid higher?

Opaque	
transactional	

state	update	logic

364 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Opaque	Transactional	Spout	Update	Example

cat-> [count=4,prevCount=3,txid=6]
dog-> [count=3,prevCount=2,txid=6]
mouse-> [count=8,prevCount=6,txid=6]
bird-> [count=4,prevCount=3,txid=6]

txid 6
cat
dog
mouse
bird

cat-> [count=3,prevCount=1,txid=5]
dog-> [count=2,prevCount=1,txid=5]
mouse-> [count=7,prevCount=6,txid=6]
bird-> [count=3,prevCount=2,txid=3]

current	state	
database

updated	state	
database

new	partial	
count	from	

batch

12/16/17

183

365 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Opaque Transactional Spout Fault Tolerance

Opaque	transactional	spouts	are	fault	tolerant	when	reading	from	partitioned	input	sources.
• If	one	of	the	partitioned	input	sources	fails,	a	batch	can	be	replayed	without	the	missing	tuples

• Trident	will	continue	processing

input	
source

tuple tuple

input	
source

tuple tuple

input	
source

tuple tuple

batch	with	txid

3	spout	
tasks

some
downstream	

failure

first	try	with	a	downstream	failure

input	
source

tuple tuple

input	
source

tuple tuple

input	
source

tuple tuple

batch	with	txid

3	spout	
tasks

batch	
successfully	
replayed	

without	the	
missing	tuples

second	try	after	input	source	failure

X X X

366 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Non-Transactional Spouts

Non-transactional	spouts	provide	no	guarantees	on	the	composition	of	batches.
• The	same	tuples	could	be	repeated	in	different	batches
Non-transactional	spouts	support	the	non-transactional	state.
• They	do	not	provide	any	guarantees	about	what	is	in	each	batch

• They	might	have	at-most-once	or	at-least-once	processing	semantics

• They	do	not	enable	idempotent	operation
Trident	IBatchSpout is	a	non-transactional	spout	interface	and	is	available	to	topology	developers	for	
building	non-transactional	spouts.
Core	Storm	spouts	are	also	non-transactional.
• They	are	based	on	the	IRichSpout interface	and	not	recommended	for	use	in	Trident

Non-transactional	spouts	store	only	the	current	value	in	the	state	database.
• They	do	not	store	the	transaction	ID	or	previous	value	information
Non-transactional	spouts	are	fault	tolerant	when	reading	from	partitioned	input	sources.

12/16/17

184

367 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

a. Transactional	spout
b. Opaque	transactional	spout
c. Non-transactional	spout

1. Enables	at-most-once	processing	semantics
2. Enables	at-least-once	processing	semantics
3. Enables	exactly	once	processing	semantics
4. Enables	idempotent	operation

5. Fault	tolerant	to	partitioned	input	source	failures
6. Not	fault	tolerant	to	partitioned	input	source	failures

Match the description with the correct term. There might be more than
one correct match.

368 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

a. Transactional	state
b. Opaque	transactional	state
c. Non-transactional	state

1. State	database	stores	only	the	current	state	value
2. State	database	stores	the	current	state	value	and	a	

transaction	ID
3. State	database	stores	the	current	state	value,	the	previous	

state	value,	and	a	transactions	ID
4. Enables	idempotent	operation
5. Replayed	batches	must	contain	the	exact	same	tuples
6. The	same	tuples	could	be	repeated	in	different	batches

Match the description with the correct term. There might be more than
one correct match.

12/16/17

185

369 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Trident State-Based Operations

Trident	includes	three	methods	that	support	state-based	operations.
• partitionPersist
• persistentAggregate
• stateQuery

370 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The partitionPersist Method

The	partitionPersistmethod	updates	a	source	of	state.
It	persists	state	for	each	partition	without	coordination	with	other	partitions.

• The	LocationDBFactory is	shown	on	the	next	page

• The	LocationUpdater is	shown	on	a	later	page

TridentTopology topology = new TridentTopology();
TridentState locations = topology.newStream("locations", locationsSpout)
.partitionPersist(new LocationDBFactory(), new Fields("userid", "location"), new LocationUpdater())

Persist	the	“userid”	and	
“location”	values	for	each	
partition	to	the	statefactory

defined	by	
LocationDBFactory.

Get	the	“userid”	
and	“location”	
field	values	from	the	

input	tuples.

12/16/17

186

371 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

LocationDBFactory Example

Trident	uses	a	StateFactory interface	to	create	instances	of	the	State object	that	are	usable	by	each	
task	in	a	Trident	topology.
• Storm	uses	these	instances	to	persist	information	
• State is	executed	at	the	level	of	a	single	cluster	node

– It	just	updates	the	state	database	for	each	partition	of	a	batch

To	access	an	external	database,	a	topology	developer	must	write	a	state	factory	based	on	the	Trident	
StateFactory class.
• Here	is	an	example	from	the	Trident	online	documentation:

The	LocationDB function	is	shown	on	the	next	page.

public class LocationDBFactory implements StateFactory {
public State makeState(Map conf, int partitionIndex, int numPartitions) {

return new LocationDB();
}

}

372 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The LocationDB Function

Trident	can	use	a	state	database	that	is	internal	to	the	topology—kept	in	memory—or	external	to	the	
topology.
Methods	to	update	a	state	database	are	provided	by	developing	a	class	based	on	the	Trident	State class.	
Here	is	an	example	from	the	Trident	online	documentation:

public class LocationDB implements State {
public void beginCommit(Long txid) {

}
public void commit(Long txid) {

}
public void setLocationsBulk(List<Long> userIds, List<String> locations) {

// set locations in bulk }
public List<String> bulkGetLocations(List<Long> userIds) {
// get locations in bulk

}
}

12/16/17

187

373 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The LocationUpdater Function

The	LocationUpdater function	was	part	of	the	topology	code	shown	earlier.
The	example	LocationUpdater function	is	an	extension	of	the	Trident	BaseStateUpdate class.
• It	is	shown	as	an	example	of	how	state	can	be	implemented	and	used

• This	example	is	part	of	the	Trident	online	documentation

public class LocationUpdater extends BaseStateUpdater<LocationDB> {
public void updateState(LocationDB state, List<TridentTuple> tuples, TridentCollector collector) {

List<Long> ids = new ArrayList<Long>();
List<String> locations = new ArrayList<String>();
for(TridentTuple t: tuples) {

ids.add(t.getLong(0));
locations.add(t.getString(1));

}
state.setLocationsBulk(ids, locations);

}
}

374 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The persistentAggregate Method

The	persistentAggregatemethod	is	an	additional	abstraction	built	on	top	of	the	
partitionPersistmethod.
The	values	stored	by	persistentAggregate represents	the	aggregation	of	all	tuples	across	all	
batches	in	a	stream.
• It	knows	how	to	use	a	Trident	aggregator	and	apply	the	latest	result	to	a	source	of	state
Trident	automatically	batches	operations	that	write	to,	or	read	from,	a	source	of	state.
• For	example,	a	batch	requiring	15	updates	to	a	database	would	result	in	1	write	request	to	state

batch batch batch batch batch

state

stream

update	
state

update	
state

update	
state

update	
state

update	
state

12/16/17

188

375 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Using the persistentAggregate Method

The	persistentAggregatemethod	is	often	run	on	a	GroupedStream.
• The	results	are	stored	in	a	MapState with	the	key	being	the	grouping	fields

The	persistentAggregatemethod	transforms	this	stream	into	a	TridentState object.
• In	this	example,	the	TridentState object	represents	a	count	of	all	the	words	in	the	stream

• A	TridentState object	can	be	read	by	the	stateQuerymethod

TridentTopology topology = new TridentTopology();
TridentState wordCounts = topology.newStream("spout1", spout)
.each(new Fields("sentence"), new Split(), new Fields("word"))
.groupBy(new Fields("word"))
.persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))

cat	->		count=3
dog	->	count=2
bird	->	count=3

MapState

stateQuery methodread

376 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Partitioning State

State	can	be	partitioned	across	multiple	Storm	cluster	nodes.
Use	the	parallelismHintmethod	to	partition	a	state	database.

The	example	code	would	partition	the	state	information	across	10	nodes	by	the	word field.

TridentTopology topology = new TridentTopology();
TridentState wordCounts = topology.newStream("spout1", spout)
.each(new Fields("sentence"), new Split(), new Fields("word"))
.groupBy(new Fields("word"))
.persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))
.parallelismHint(10)

Added	parallelismHint

12/16/17

189

377 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The stateQuery Method

The	stateQuerymethod	queries	a	source	of	state	and	creates	of	a	stream	of	tuples	from	the	state	
information.
• Example	from	the	Trident	online	documentation:

topology.newDRPCStream("words")
.each(new Fields("args"), new Split(), new Fields("word"))
.groupBy(new Fields("word"))
.stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count"))
.each(new Fields("count"), new FilterNull())
.aggregate(new Fields("count"), new Sum(), new Fields("sum"));

DRPCClient client = new DRPCClient("drpc.server.location", 3772);
System.out.println(client.execute("words", "cat dog the man");

Makes	a	
distributed	
RPC	request	
to	the	Storm	

cluster.	

DRPC	service	started	by	
storm drpc command.	

Make	a	query	by	
using	MapGet on	
the	wordCounts

state	object.	 Return	the	current	word	
counts	to	the	DRPC	client.	

invoke	the	words	
function get	word	counts	

for	these	words

378 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The broadcast Method

The	broadcastmethod	replicates	every	tuple	in	a	stream	to	all	partitions.
This	can	be	useful	during	DRPC	if	you	need	to	send	every	tuple	of	the	query	to	every	state	database	
partition.
For	example:

topology.newStream(”queries”, querySpout).broadcast()
.stateQuery(state, new Fields(”sentence"), new QueryState(), new

Fields(”matches"))
.each(new Fields(”matches"), new DebugAction())

Spout	emits	queries The	query	tuples	are	broadcast	
(replicated)	to	each	state	partition.

12/16/17

190

379 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

True or false?

1. The	partitionPersistmethod	persists	state	for	each	partition	without	coordination	with	other	
partitions.

2. The	values	stored	by	persistentAggregate represents	the	aggregation	of	all	tuples	across	all	
batches	in	a	stream.

3. The	stateQuerymethod	queries	a	source	of	state	and	creates	a	stream	of	tuples	from	the	state	
information.

380 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Knowledge Check

Given the following code segments, choose the correct answer to the
question.

1. What	argument	should	replace	the	placeholder	“???”	in	the	first	code	segment?
a. args

b. word

c. words

d. count

e. sum

DRPCClient client = new DRPCClient("drpc.server.location", 3772);
System.out.println(client.execute(”???", "cat dog the man");

topology.newDRPCStream("words")
.each(new Fields("args"), new Split(), new Fields("word"))
.groupBy(new Fields("word"))
.stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count"))
.each(new Fields("count"), new FilterNull())
.aggregate(new Fields("count"), new Sum(), new Fields("sum"));

12/16/17

191

381 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Lesson Review – Things to Remember

In	a	distributed,	real-time	computation	system,	failures	are	inevitable	and	batches	will	be	retried.
Trident	can	maintain	enough	state	information	about	each	batch	to	make	it	appear	that	a	tuple	was	
processed	only	once.
State	information	can	be	stored	and	updated	using	different	strategies.
Trident	has	transactional,	opaque	transactional,	and	non-transactional	states	with	corresponding	
transactional,	opaque	transactional,	and	non-transactional	spouts.
The	transactional	and	opaque	transactional	states	enable	exactly once,	at-least-once,	and	at-most-once	
processing	semantics.	
The	non-transactional	state	enables	only	at-least-once	and	at-most-once	processing	semantics.
The	opaque	transactional	and	non-transactional	states	have	more	fault	tolerance	to	partitioned	input	
source	failures	than	the	transactional	state.
The	Trident	partitionPersist, persistentAggregate,	and	stateQuery methods	support	
state-based	operations.

382 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Storm	Workshop

12/16/17

192

383 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Kafka > Storm > HBase Workshop

Requirements:
• Land	simulated	server	logs	into	Kafka

• Configure	a	Kafka	Bolt	to	consume	the	server	log	messages

• Ignore	all	messages	that	are	not	either	WARN	or	ERROR

• Persist	WARN	and	ERROR	messages	into	HBase
– Keep	10	most	recent	messages	for	each	server	

– Maintain	a	running	total	of	these	concerning	messages

• OPTIONALLY,	publish	these	messages	back	to	Kafka

Kafka

Kafka

Kafka Parse Filter
HBase

HBase

Kafka

Lab	11:	Storm	with	
Kafka	and	HBase

