

Copyright © 2017, Hortonworks, Inc. All rights reserved.

1

Lab: Storm with Kafka and HBase

Ingest Data in Real-time using Storm

About this Lab
Objective: Use Storm to ingest/process data from Kafka and write into

HBase

File locations: /labs/rtlabs/projects/storm/workshop

Successful outcome: Have successfully written data into HBase using Storm after data
from Kafka

Before you begin Complete the Word Count Topology lab

Related lesson: Streaming Workshop Use Case

Setup Kafka Topic and Log File Generator
In the sandbox host, create a new topic to hold the input data for the streaming application.
[maria_dev@sandbox ~]$ /usr/hdp/current/kafka-broker/bin/kafka-topics.sh --
create --zookeeper sandbox.hortonworks.com:2181 --replication-factor 1 --
partitions 1 --topic logs
Created topic "logs".
[maria_dev@sandbox ~]$ /usr/hdp/current/kafka-broker/bin/kafka-topics.sh --
list --zookeeper sandbox.hortonworks.com:2181
ATLAS_HOOK
__consumer_offsets
logs
mariaTopic - marked for deletion
sentences
[maria_dev@sandbox ~]$

Tail this new topic which will initially be empty.
[maria_dev@sandbox ~]$ /usr/hdp/current/kafka-broker/bin/kafka-console-
consumer.sh --bootstrap-server sandbox.hortonworks.com:6667 --topic logs --
from-beginning

Start a new Terminal and remain as the root user once logged into the original (outer) host.
Explore the usage of the log generator script.

[root@ip-172-30-0-164 ~]# cd /root/rtlabs/log-gen
[root@ip-172-30-0-164 log-gen]# python logSim.py help

Copyright © 2017, Hortonworks, Inc. All rights reserved.

2

Incorrect usage of simulator
Please pass an integer messages/sec between 1 and 10, followed by a topic
Pass help to see more information: logSim.py help
[root@ip-172-30-0-164 log-gen]#

Kick off the generator instructing it to run as slow as it can and produce records on your
previously created Kafka topic.

[root@ip-172-30-0-164 log-gen]# python logSim.py 1 logs
Starting Kafka Broker
Printing 1 messages per second. Press control-c to stop
^CTraceback (most recent call last):
 File "logSim.py", line 24, in <module>
 sleep(x)
KeyboardInterrupt
[root@ip-172-30-0-164 log-gen]#

After a few seconds, halt the script and notice that your other terminal window has outputted
the newly created records.

[maria_dev@sandbox ~]$ /usr/hdp/current/kafka-broker/bin/kafka-console-
consumer.sh --bootstrap-server sandbox.hortonworks.com:6667 --topic logs --
from-beginning
2017-06-04 15:51:38.71 48.257.926.101 INFO Generic INFO # 18
2017-06-04 15:51:39.76 32.234.242.261 DEBUG Worthless DEBUG #1
2017-06-04 15:51:40.81 31.160.9.90 WARN Generic WARN # 6
2017-06-04 15:51:41.87 57.118.219.201 INFO Generic INFO # 14
2017-06-04 15:51:42.92 35.220.141.248 ERROR BAD ERROR # 2
2017-06-04 15:51:43.97 45.226.670.309 WARN Generic WARN # 7

HINT: If only INFO message are present, run the generator a few more seconds until at least
one WARN or ERROR message is created.

You can leave this window running if you would like to leverage it later when visualizing the
entire implementation.

Setup HBase Table
Via the HBase Shell, create a table named incident that has a column family called event

which will keep up to 10 versions.
[root@ip-172-30-0-164 ~]# ssh -p 2222 root@127.0.0.1
root@127.0.0.1's password:
Last login: Sun Jun 4 15:57:44 2017 from 172.17.0.1
[root@sandbox ~]# su - maria_dev
[maria_dev@sandbox ~]$ hbase shell
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 1.1.2.2.6.0.3-8, r3307790b5a22cf93100cad0951760718dee5dec7, Sat
Apr 1 21:41:47 UTC 2017

hbase(main):001:0> create 'incident', {NAME => 'event', VERSIONS => 10}
0 row(s) in 2.4320 seconds

Copyright © 2017, Hortonworks, Inc. All rights reserved.

3

=> Hbase::Table - incident
hbase(main):002:0> describe 'incident'
Table incident is
ENABLED
incident

COLUMN FAMILIES
DESCRIPTION
{NAME => 'event', BLOOMFILTER => 'ROW', VERSIONS => '10', IN_MEMORY =>
'false',
KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL =>
'FOREVER',
COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE =>
'
65536', REPLICATION_SCOPE =>
'0'}
1 row(s) in 0.0910 seconds

hbase(main):003:0>

Add some example data and verify multiple versions can be retrieved.
hbase(main):007:0> put 'incident', '99.99.99.99', 'event:type', 'WARN'
0 row(s) in 0.0930 seconds

hbase(main):008:0> put 'incident', '99.99.99.99', 'event:details', 'a bogus
WARN message'
0 row(s) in 0.0130 seconds

hbase(main):009:0> incr 'incident', '99.99.99.99', 'event:total', 1
COUNTER VALUE = 1
0 row(s) in 0.0280 seconds

hbase(main):010:0> put 'incident', '99.99.99.99', 'event:type', 'ERROR'
0 row(s) in 0.0150 seconds

hbase(main):011:0> put 'incident', '99.99.99.99', 'event:details', 'another
made up message'
0 row(s) in 0.0090 seconds

hbase(main):012:0> incr 'incident', '99.99.99.99', 'event:total', 1
COUNTER VALUE = 2
0 row(s) in 0.0090 seconds

hbase(main):013:0> get 'incident', '99.99.99.99', {COLUMN => 'event',
VERSIONS => 10}
COLUMN CELL

 event:details timestamp=1496592238300, value=another made
up message
 event:details timestamp=1496592161652, value=a bogus WARN
message
 event:total timestamp=1496592244741,
value=\x00\x00\x00\x00\x00\x00\x0

Copyright © 2017, Hortonworks, Inc. All rights reserved.

4

 0\x02

 event:total timestamp=1496592178787,
value=\x00\x00\x00\x00\x00\x00\x0
 0\x01

 event:type timestamp=1496592210599,
value=ERROR
 event:type timestamp=1496592136822,
value=WARN
6 row(s) in 0.0350 seconds

hbase(main):014:0>

Validate Skelton Project Maven Build
Open the skeleton project within IDEA.
HINT: File > Open > /root/rtlabs/projects/storm/workshop > OK

NOTE: If you open the project in a “new window” instead of “this window”, you will be
able to easily reference the prior project which will be helpful in building this
topology.

Ensure the Maven tooling is accessible.
HINT: View > Tool Windows > Maven Projects
Build the Maven project and verify the jar file was created.
[student20@ip-172-30-0-199 target]$ pwd
/root/rtlabs/projects/storm/workshop/target
[student20@ip-172-30-0-199 target]$ ls -l
total 100260
drwxr-xr-x. 3 root root 82 Mar 11 05:58 classes
drwxr-xr-x. 2 root root 27 Mar 11 05:58 maven-archiver
drwxr-xr-x. 3 root root 34 Mar 11 05:58 maven-status
-rw-r--r--. 1 root root 6601 Mar 11 05:58 original-storm-kafka-hbase-
1.0-SNAPSHOT.jar
-rw-r--r--. 1 root root 102655598 Mar 11 05:58 storm-kafka-hbase-1.0-
SNAPSHOT.jar
[student20@ip-172-30-0-199 target]$

Create Kafka Spout
Modify the LogAnalyzerTopology class to leverage a new KafkaSpout instance that will

read from the logs topic created in an earlier step.

HINT: Review the KafkaWordCountTopology class in earlier lab.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

5

Ensure the project can be built.

Create a Log Entry Parser Bolt
Create a new subclass of BaseBasicBolt that will get the 1-tuple String emitted from the

KafkaSpout instance. This string contains five values (date, time, ip address, event type,
and event details) that are separated by tabs. Ignore the date and time fields for simplicity
and emit the other three values.

HINT: The StringUtil.split() method from the earlier lab’s SplitSentenceBolt could
be modified to take a second parameter, ‘\t’, to tokenize the full String and the resulting
array’s third through fifth elements are what we are looking for.

Validate that you are properly raising the needed 3-tuple from this new bolt once you chain it to
the KafkaSpout.

Copyright © 2017, Hortonworks, Inc. All rights reserved.

6

Create an Event Filtering Bolt
For this use case, we are only concerned with log messages of type WARN or ERROR to

ultimately be persisted into HBase. Create, and wire into the topology, a bolt that will
process the tokenized log messages from the bolt constructed in the last step. This
filtering bolt just needs to emit the WARN and ERROR log messages and do nothing for
any other messages.

To assist in the next step, be sure to use the following method body is used to declare the field
names leaving this bolt. The first three are self-explanatory, but the “total” field should be
populated with a primitive int value of 1 when this 4-tuple is emitted.

 outputFieldsDeclarer.declare(new Fields(
 "ip-address", "type", "details", "total"));

Ensure the bolt is only surfacing those log messages with the needed type.

Configure an HBase Bolt

Copyright © 2017, Hortonworks, Inc. All rights reserved.

7

Review the information at https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-
2.6.0/bk_storm-component-guide/content/storm-write-to-hbase.html concerning the
SimpleHBaseMapper class that is used to identify how inbound tuple fields should be
used when writing data to HBase. Create an instance of this class that aligns with the data
being created from the log file generator presented at the beginning of this lab.

NOTE: The hard-code int value of 1 being emitted from the prior bolt will be used to
increment an HBase counter. The event column family will only keep the 10 most
recent versions by the row key of ip address, but this counter will allow a running
total of all events that were ever stored for a given server.

 SimpleHBaseMapper mapper = new SimpleHBaseMapper()
 .withRowKeyField("ip-address")
 .withColumnFields(new Fields("type", "details"))
 .withCounterFields(new Fields("total"))
 .withColumnFamily("event");

Instantiate an HBaseBolt and identify the name of the table where the data from the mapping
exercise will be stored.

 HBaseBolt hbase = new HBaseBolt("incident", mapper)

Lastly, wire up this new bolt to the event filtering one.
 builder.setBolt("hbase-bolt", hbase, 1)
 .shuffleGrouping("message-filterer");

Ensure the project can be built.
Check to see how many WARN and ERROR log messages you earlier created.

NOTE: If not at least two, then run the log generator one, or more, short times until you
do.

[maria_dev@sandbox ~]$ /usr/hdp/current/kafka-broker/bin/kafka-console-
consumer.sh --bootstrap-server sandbox.hortonworks.com:6667 --topic logs --
from-beginning
2017-06-04 15:51:38.71 48.257.926.101 INFO Generic INFO # 18
2017-06-04 15:51:39.76 32.234.242.261 DEBUG Worthless DEBUG #1
2017-06-04 15:51:40.81 31.160.9.90 WARN Generic WARN # 6
2017-06-04 15:51:41.87 57.118.219.201 INFO Generic INFO # 14
2017-06-04 15:51:42.92 35.220.141.248 ERROR BAD ERROR # 2
2017-06-04 15:51:43.97 45.226.670.309 WARN Generic WARN # 7

Execute the topology in your IDE and then verify that the number of applicable messages from
the Kafka topic were stored into your HBase table as well as the appropriate row keys.

hbase(main):003:0> count 'incident'
3 row(s) in 0.3340 seconds

=> 3
hbase(main):004:0> scan 'incident'
ROW COLUMN+CELL

 31.160.9.90 column=event:details, timestamp=1496603855549,
value=Gener

Copyright © 2017, Hortonworks, Inc. All rights reserved.

8

 ic WARN #
6
 31.160.9.90 column=event:total, timestamp=1496603855553,
value=\x00\x0
 0\x00\x00\x00\x00\x00\x01

 31.160.9.90 column=event:type, timestamp=1496603855549,
value=WARN
 35.220.141.248 column=event:details, timestamp=1496603855570,
value=BAD E
 RROR #
2
 35.220.141.248 column=event:total, timestamp=1496603855573,
value=\x00\x0
 0\x00\x00\x00\x00\x00\x01

 35.220.141.248 column=event:type, timestamp=1496603855570,
value=ERROR
 45.226.670.309 column=event:details, timestamp=1496603855576,
value=Gener
 ic WARN #
7
 45.226.670.309 column=event:total, timestamp=1496603855577,
value=\x00\x0
 0\x00\x00\x00\x00\x00\x01

 45.226.670.309 column=event:type, timestamp=1496603855576,
value=WARN
3 row(s) in 0.0610 seconds

hbase(main):005:0>

Run the topology again and notice that the count stayed the same despite the data being
processed twice.

hbase(main):005:0> count 'incident'
3 row(s) in 0.0080 seconds

=> 3
hbase(main):006:0>

Despite the fact that the data is duplicated, notice there are two distinct versions of all the
column identifiers; even the counter.

hbase(main):006:0> get 'incident', '45.226.670.309', {COLUMN => 'event',
VERSIONS => 10}
COLUMN CELL

 event:details timestamp=1496603985605, value=Generic WARN #
7
 event:details timestamp=1496603855576, value=Generic WARN #
7
 event:total timestamp=1496603985608,
value=\x00\x00\x00\x00\x00\x00\x0
 0\x02

Copyright © 2017, Hortonworks, Inc. All rights reserved.

9

 event:total timestamp=1496603855577,
value=\x00\x00\x00\x00\x00\x00\x0
 0\x01

 event:type timestamp=1496603985605,
value=WARN
 event:type timestamp=1496603855576,
value=WARN
6 row(s) in 0.0850 seconds

hbase(main):007:0>

This will be more interesting once multiple events for a given server are stored in HBase.
Again, we will maintain the most recent 10 version of the type and details column identifiers
and the most recent version of event:total will be the running total of all rows added for
the particular server identified by the row key.

Ensure you have a kafka-console-consumer.sh script running.
[maria_dev@sandbox ~]$ /usr/hdp/current/kafka-broker/bin/kafka-console-
consumer.sh --bootstrap-server sandbox.hortonworks.com:6667 --topic logs --
from-beginning
2017-06-04 15:51:38.71 48.257.926.101 INFO Generic INFO # 18
2017-06-04 15:51:39.76 32.234.242.261 DEBUG Worthless DEBUG #1
2017-06-04 15:51:40.81 31.160.9.90 WARN Generic WARN # 6
2017-06-04 15:51:41.87 57.118.219.201 INFO Generic INFO # 14
2017-06-04 15:51:42.92 35.220.141.248 ERROR BAD ERROR # 2
2017-06-04 15:51:43.97 45.226.670.309 WARN Generic WARN # 7

Back in the Terminal window on the host where the desktop UI runs, kick off the log generator
again at the rate of five new messages per second and notice the records being added to
the topic.

[root@ip-172-30-0-164 log-gen]# pwd
/root/rtlabs/log-gen
[root@ip-172-30-0-164 log-gen]# ls
logData.txt logSim.py logSim.py.orig
[root@ip-172-30-0-164 log-gen]# python logSim.py 5 logs
Starting Kafka Broker
Printing 5 messages per second. Press control-c to stop

Verify that the number of rows in the HBase table are growing, too.
hbase(main):031:0> count 'incident'
162 row(s) in 0.0280 seconds

=> 162
hbase(main):032:0>

After you stop the topology from running within IntelliJ, be sure to halt the log generator as
well.

[root@ip-172-30-0-164 log-gen]# python logSim.py 5 logs
Starting Kafka Broker
Printing 5 messages per second. Press control-c to stop
^CTraceback (most recent call last):
 File "logSim.py", line 24, in <module>

Copyright © 2017, Hortonworks, Inc. All rights reserved.

10

 sleep(x)
KeyboardInterrupt
[root@ip-172-30-0-164 log-gen]#

“Extra Credit”
Add a KafkaBolt to your topology and publish the tuples emitted from the Log Filtering Bolt

created earlier.
HINT: Visit “Apache Kafka Integration” page on the http://storm.apache.org Documentaiton

page as well as visiting http://docs.hortonworks.com and drilling down into the “Streaming
Data into Kafka” section of the “Apache Storm Component Guide”.

Summary
You have successful built, and tested, a Storm topology in the IDE that consumes data from

Kafka and persists it in HBase.
A complete solution to this lab can be found in /root/rtlabs/proj-

solns/storm/workshop.

