AN

Hortonworks

Sp m Classification with Mllib LAB

ooooooooooooooooooo



Title: LAB GUIDE: Data Science for the Hortonworks Data Platform
Revision 2

Copyright © 2015 Hortonworks Inc 2015 All rights reserved.

All Rights Reserved. Hadoop and the Hadoop elephant logo are trademarks of the Apache Software Foundation.

The contents of this course and all its related materials, including lab exercises and files, are Copyright © 2015
Hortonworks Inc.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of
Hortonworks Inc.

2 Copyright © 2015, Hortonworks, Inc. All rights reserved.



Lab: Spam Classifier using Spark MLlib

Objective: | Become familiar with using Spark MLIib to run data science
algorithms on a Hadoop cluster.

Successful Outcome: | You will have created a spam classifier with MLlib.

Before You Begin: | Your HDP cluster should be up and running in the classroom
VM.

1.1. Before we can begin this lab, we need to set up our environment. Run the
following commands from the terminal:

>>> sudo yum install numpy
>>> wget https://www.dropbox.com/s/wpfpl92wrwj5800/SPAMTrain.txt?dl=1
>>> mv file\?d\=1 spark/data/spamEmail/SPAMTrain.txt

1.2. Exit your current pyspark instance and restart a new pyspark instance with
the following command, this will ensure we have the right amount of resources
available for this job:

>>>pyspark --master yarn-client --executor-memory 2g --num-executors 2
--driver-memory 1g

1.3. The labeled data is in your VM locally at
/root/spark/data/spamEmail

The files themselves are not labeled as either spam or not, but there is a separate
file, SPAMTrain.txt, that has the label 1 for spam, 0 for not-spam for each
filename. Itis in the directory "label" at the same path.

Create empty lists to hold the spam/non-spam file names.

spamFiles = []
notSpamFiles = []

Copyright © 2015, Hortonworks, Inc. All rights reserved 3




1.4. Read the SPAMTrain.txt file to find out if the file in question is labeled spam
or not: spam islabeled 0, non-spam is labeled 1

Add this code creating the spamFiles and notSpamfFiles lists

spamFiles=[]
notSpamFiles=1[]
f=open ('/root/spark/data/spamEmail/SPAMTrain.txt', 'r'")
for line in f:
if int(line[0]) == 1:
r = line[2:]
notSpamFiles.append('/root/spark/data/spamEmail/"'+zr.
rstrip('\n'"))
elif int(line[0]) == O0:
r = line[2:]
spamFiles.append ('/root/spark/data/spamEmail/"+r.rst
rip('\n"))
print len (notSpamFiles)
print len (spamFiles)

2949
1378

1.5. Create a list with the contents of the files in spamFiles, and for the
nonSpamFiles

spams = []
for file in spamFiles:
f = open(file,"r")
spams.append (f.read())
print len (spams)

notSpams = []
for file in notSpamFiles:
g = open(file,"xr")
notSpams.append (g.read() )
print len (notSpams)

Step 1: Import MLIlib modules to do Logistic Regression as our classifier. Logistic
regression requires as input a labeled training set in the form of a vector of
doubles. We'll also make use of the regression library's "LabeledPoint" to
prepare our data in this format.

4 Copyright © 2015, Hortonworks, Inc. All rights reserved.



from pyspark import SparkContext, SparkConf

from pyspark.mllib.regression import LabeledPoint

from pyspark.mllib.feature import HashingTF

from pyspark.mllib.classification import
LogisticRegressionWithSGD

Step 2: Create training data RDDs

2.1. Create a spam emails object

spams = sc.parallelize (spams)

2.1. And create a non-spam/normal emails object

nonspams = sc.parallelize (notSpams)

Step 3: Create a HashingTF instance that we will use to map the email text to uniformly
length vectors all with 1,000,000 features (i.e. S =1000000)

HTF = HashingTF (numFeatures = 1000000)

Step 4: Each email is split into words, and each word is mapped to one feature, either
spam or normal.

spamHTF = spams.map (lambda x: HTF.transform(x.split (" ")))
nonspamHTF = nonspams.map (lambda x: HTF.transform(x.split ("

"))

Step 5: Create LabeledPoint datasets for positive (spam) and negative (normal)
examples.

5.1. The positive and negative LabeledPoint objects are key/value

positives = spamHTF.map (lambda x: LabeledPoint (1, x))

negatives = nonspamHTF.map (lambda x: LabeledPoint (0, x))

5.2. Union the datasets together into our labeled training data

trainingSet = positivs.union (negatives)

The last lined is cached since Logistic Regression is an iterative algorithm.

trainingSet.take (1)

Copyright © 2015, Hortonworks, Inc. All rights reserved




Your result should look something like

[LabeledPoint(1.0, (1000000,[5145,8599,17324,28104,28831,28863,28906,28923,28945,28991,31271,33519,335
70,33779,37344,40616,42639, 52544, 5661257751, 61882, 66271, 70658, 75935, 81559, 83163, 83901, 84397, 86869, 878
61,89421,89991,92716,93676,94330,95543,95817, 98176, 98178, 98197, 98205, 98336, 100050, 108076, 111948, 111954
,112360,113217,113245,115378, 115521, 115952, 116671, 116714, 118226, 118221, 118233, 118243, 118285, 118425, 118
570,118872,120207,121162,121165, 121175, 121183, 124976, 125191, 125984, 126012, 127015, 128289, 128297, 128317,
132916, 133937, 135213, 142758, 153983, 156479, 161885, 164701, 164751, 165666, 167169, 174767, 180391, 183777, 1848
67,185729,191870, 193699, 199901, 201225, 201258, 203215, 207581, 207619, 207923, 208345, 208547 , 208900, 2091606, 2
16292,216334, 216479, 216518, 216587, 226492, 229656, 231106, 231285, 231304, 234566, 235357, 237100, 237798, 23872
9,239238,240846, 242219, 247650, 250447, 257615, 272370, 275543, 277230, 280718, 281190, 285491, 287671, 291516, 29
2448,301000,301080,301344,303417, 305748, 305754, 305829, 309097, 309179, 323172, 324276,325107,326918,333218
,340374, 345688, 346507 , 348857, 350893, 350901, 351024, 351034, 351589, 356233, 363588, 370868, 373646,377210,379

Step 6: Run Logistic Regression using the SGD algorithm. Create a model trained on the
prepared dataset.

classifier = LogisticRegressionWithSGD.train (trainingSet)

Step 7: Test on a positive example (spam) and a negative one (normal). We first apply
the same HashingTF feature transformation to get vectors (i.e. tf.transform),
then apply the model (i.e. model.predict).

positiveResult = HTF.transform("Poker for money against real
playersGet your favorite Poker action!".split (™ "))

negativeRessult = HTF.transform("Please report to
principal's office...".split ("™ "))

print " Positive test prediction: %g" %
classifier.predict (positiveResult)

print " Negative test prediction: %g" %
classifier.predict (negativeResult)

6 Copyright © 2015, Hortonworks, Inc. All rights reserved.



