mHortonworks

HDP Developer:
Apache Pig and

Student Guide

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Title HDP Developer: Pig and Hive
Version: GA
Date: March, 2015

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software Foundation.

The contents of his course and all its related materials, including lab exercises and files
are Copyright © Hortonworks, Inc. 2015 All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form by any means electronic, photocopy, recording or otherwise without prior written
permission of Hortonworks.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Table of Contents

Understanding HAdOOP ... ssssssssssssssssssssssssssasassssesesssses 11
T T 0 4 B 0] 0 1T, 11
Additional CONTENT ... —————— 11
The Three VS of BigData. ...t sssssssssssesssssssssssssssanss 12
SiXKey Hadoop Data TYPES ...occeismseismnersmsnssmssssmssstssss s sssssssssssssssssssssssssssssassssssssssssssssssssssss sasss sasssssenens 14
ADOUL USE CASES .eovrerirrrsrrsmnscsssssssmsssssssssss st s s s RS RS E RS RRRR AR R RS

Sentiment Use Case ...
Geolocation Use Case
W X0 X020 Lo & G- U 010 o 2
Relational Databases VS. HAd0OP . ssssssssssssssssssssss 23
ADOUL HAAOOP 2 oot b bbb bbb 23
LA o T 2 =T (oo o 0 N 24
I 3 e Lo o B0 D oT0 1oy £ o o o 25
The Hortonworks Data Platform (HDP)imnmnnmssnns 26
The Path t0 ROI . s AR 27
ReVIEW QUESTIONS .uceierisersssrssssssmsss s s s R R AR RS R R R AR R R R e R 28
Lab: Startan HDP 2.1 ClUSEET ..o s ssssssssssssssssasssssssss s sasssssssssssssssssmsassnsassasse s 29
Objective: Startan HDP cluster in YOoUTI VM ... sssssssssssssssssssns 29
The Hadoop Distributed File System (HDFS)
T T 0 4 0] 0 1T,
Additional CONTENT ...t ——————
Hadoop vs. RDBMS ..sssssssssssssssssssssssssssssssssssssass
An Example of Disk Read Performance
HDFS Components ...,
Understanding BloCK StOrage ...
Demonstration: Understanding BlockStorage
Objective: To understand how data is partitioned into blocks and stored in HDFS.............ccc......... 37
The NAMENOAE ..ot AR SRR RS AR R
The DataNOAES ..o SRR AR SRR R
DataNode Failure ...,
HDFS COMIMANAS .ocoiccsriisisisisisssss st ssasas s s st s s e A A SRR RS
Examples of HDFS Commands
HDFS File Permissions ...
ReVIEW QUESTIONS .uceiecirerinssrsssses s s s e R e A s AR e R R e R R R e R
Lab: Using HDFS COMMANAS ..o ssssassssssssssssssssssssssssssasassnassssssssassnssses
Objective: Become familiar with adding, removing, and viewing files in HDFS.......ccoovinnirnnes 46

Inputting Data into HDFS........sssssssssssssssssssssssssssss 47
T T 0 4 0] 0 1T, 47
Additional CONTENT ...t —————— 47

B0 ST 5 Ta (o) o R 08 1= oL 48

WebHDFS .
Overview of Flume
A Flume Example
Overview of Sqoop

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The SOOP IMPOTE TOOL ...ttt e e e ee e ettt e e enttee s ensbeaeernbeeeeenneeas 53
IMPOTHNG @ TADIE ittt e e et e e ettt e e e abaeeeennaeeeeansbeeeenseeeeenneeas 53
IMmporting SPecific COIUMMNSciiiiiiiiiiiiee et e et e e e e e e e sesbeeeenbeeeeenneeas 55
IMPOTting from @ QUETYoeiieiiiiieeiiee ettt ettt ettt e e st e e ettt e e et e e esnabee e e nbaeesansseeeennsseeeennseeeeanneeas 56
The SQOOP EXPOIt TOOL. ..ttt e e et e ettt e e e eate e e e nteeeennbaeeeenneeas 57
EXPOTrting t0 @ TaADLEocooiiiiiiiiiieee ettt e et e e e tae e e et ee e eennbeeeenbaeaeenneeas 58
ReVIEW QUESTIONISooiiiiiiiiiiiece ettt e e e e e ettt e e e e e e e ttaa e e e e e e eeetaaeeeeeeeesneraaeeeas 59
Lab: Importing RDBMS Data into HDFS..............cooiiiii et 60
Objective: Import data from a database into HDFSccccciiiiiiiiinieeeeeee e 60
Lab: Exporting HDFS Data to a RDBMS ...ttt e e e e e e 60
Objective: Export data from HDFS into a MySQL table using SQOOPcccceeeeevieeerciieeeiieeeen. 60
The MapReduce FramewoOrKccooooiiiiiiiiiicee e 61
LeSSOMN ODJECTIVESooooiiiiiiiiiiieeiee ettt e ettt e e ettt e e sentaeeesstaeesansseeesanseeeeansneaennes 61
Additional CONTENTc.c.ooiiiiiiiii ettt ettt et e st e et e ebaeesabeesabee s 61
OVerview Of MAPREAUCE.............cccooiiiiiiiie ettt e ettt e e et e e ettt e e e entteeeentaeeeeneaeaeennes 62
Understanding MapREAUCE..........ccocuiiiiiiiiieeie ettt e et e e e tte e e et e e e satteeeenbaeeeenneeas 64
The Key/Value Pairs of MAPREAUCE..........cooooiiiiiiiiiieee ettt 67
WordCount in MapREAUCEcccuviiiiiiieeeee ettt e e e et e e eentaeeeeneteaeenes 68
Demonstration: Understanding MapReducecccooiiiiiiiiiiiiiciie e 69
Objective: To understand how MapReduce WOTKScocciiiiiiiiiieiiieeeee e 69
The Map PRASE ...ttt e et e e et e e et e e ensaeeeensseaeeansseeeennneeeeas 70
The RedUCE PRASE.......cocoooiiiiiiiii ettt sttt ettt esbeesbee e 72
ReVIEW QUESTIONS ...t eaaeaa e b ararsesaesseaeaeseeeeees 74
Lab: Running a MapReduce JODccooooiiiiiiiii et e e e 75
Objective: Run a Java MapReduce JODooooiiiiiiiiiieeee e 75
INtroduction TO PIGcocoiiiiiie e et as 77
LeSSOMN ODJECTIVESooooiiiiiiiiiieeeee ettt e et e e et e e e ettt e e sentaeeessteeeeansbeaesanseeeeansseaennes 77
Additional CONTENT ..ottt ettt et e st e e tee et eesabeesabee s 77
ABOUL PR ..ottt e et e e e ettt e e ettt e e e e abteeeenbteeeansteeeensaeeeanbeeeennsaeeeanneeas 78
o3 Ve = 0 | o B P PUP RSP PPUPPPPRRIIN 79
The Grunt Shell ...ttt ettt e st e st e e 79
Demonstration: Understanding Pig.............cooooiiiiiiiiiiiiiiie et e e e e 80
Objective: To understand Pig scripts and relations...........ccceeeeiieieriiiieiiiiieceeeee e 80
Pig Latin Relation NAMIEScccooiiiiiiiiiiiiii ettt ettt e e et e e e et e e e sntaeeeeneaeeeennes 81
Pig Latin Field NAmMESccuuiiiiiiiiieeiie ettt ettt e ettt e e e tae e e enebeeeesnnbeeeenbaeeeenneeas 81

o Ve DF 1 7= T 0 TP PP PPUPPPPRRRIIN 82

Lo Vel 00) 00) 0] (o G 17 0 1= PRSPPI 83
Defining a SChE@MAoooiii ettt e e ettt e e s et ee e s nteeeeeneaeeeenes 84
Lab: Getting Started With Pig.............cccoiiiiiiii e e e e 85
Objective: Use Pig to navigate through HDFS and explore a datasetccceccuveeerciiieeniieeennnen. 85
The GROUP OPEIator.........coooiiiiiiiiiiiieeeiiieeecitee ettt e ettt e e ettt eeeeeateeeetaeeeaaaaeesansaeesanseeesansseeesnnsseenns 86
GROUP ALL ...ttt ettt ettt ettt e et esh e e eaeeea e eme e ea e eateeateemte e bt embeenbeenbeenbeesaeesneenneennes 87
Relations without @ SChema.......coc.eiiiiiiiiii e 88
The FOREACH GENERATE OPerator..........cccoiiiiiiiiiiiiiiieeiiie ettt eitee et e et eeeeteeeeeeseeeeneneeeeas 89
Specifying Ranges in FOREACHooo ittt et e e ee e et e e e et e e e enneeas 90
Field Names in @ FOREACHooooiiiiiiie ettt ettt e et e e stte e e et e e e enneeas 90

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

FOREACH WiIth GIOUPS c...ceiiiieiiiee ettt ettt et e ettt e e ettt e e et eeesntbeeeenbaeeeannsaeeeanseaeeenseeesanneeas 91
The FILTER OPEIAtOT ...cceiiuiiiiiiiiieeeeiiie e ettt e e ttee e eitte e ettt e e ettt eeeentteeeeatteeeensaeaeensaaesensseaeennseeeeanseeas 92
The LIMIT OPEIatoroooiiiiiiiieiiiieeeitieeeciiee e ettt e eetteeeeseaeeeesseaeeeassaeesassaeesassseesanssaeesansseeesnnsseenns 94
ReVIEW QUESTIONISooiiiiiiiiiiiiece et e e e e ettt e e e e e e e e eattaa e e e e e e eeetaaaeeeeeeeeneraseeeas 95
Lab: Exploring Data With Pig ... e 96
Objective: Use Pig to navigate through HDFS and explore a datasetccccccuveeeviiiieenieeennen. 96
Advanced Pig Programming................ccoooiieiiiiiiiiiiicieeieecie ettt eve e ne e snae e 97
LEeSSON ODJECTIVESooooiiiiiiiiiiieeee ettt e ettt e et e e e ettt e e s entaeeeestaeesansseaesanseeeeensneaeenes 97
Additional CoONEENTot ettt e ettt ettt et esbeeebee e 97
The ORDER BY OP@Iator..........ooiiiiiiiiiiiiiie et eettee ettt e ittt e et e e et ee s s st e e snaaeeeennsaeesansseeeennnseeans 98
The CASE OPEIaAtorcccuoiiiiiiiiieeiiee ettt et ee e ettt e e et e e e bbee e e sbeeeeansaeeeaassaeeeannsaeesansseaeennseeesennses 100
Parameter SUbSHIEULION ...t s 101
The DISTINCT OPEIatorcc.ooiiiiiiiiiiiiie et etee ettt e ettt e e et e e e ettt e e esstaeeesnbaeeeensaeaeennsaeesenneens 102
USING PARALLEL.oooiiiiii ettt ettt e b e bt e et sat e e et ea bt enteene e et e e bt ebeebeebeebeensean 103
The FLATTEN OPE@Tatorcc.ooiiiiiiiiiiiiiie ettt e eiieeeeiiteeestteeeebteeesssaeeeasaaeesansaeeesnsseesensseeesannses 104
Lab: SPIItting @ Dataset............ooooiiiiiiiiii ettt et e et e e e et eeennaeeean 106
Objective: Research the White House visitor data and look for members of Congress............ 106
NeESted FOREACHcocoiiiiie ettt ettt ettt ettt e be e e sbt e e st e st e ebaeenas 107
ADBOUL JOINIS ... e e et e e e e e e e ta e e e e e e e taa e e e e e e eseetaaraaaeeaans 108
Performing an INNEr JOIN.......occiii ittt et e e e ete e e eete e e e eneaeeeeneeas 108
Performing an OULET JOINcooiiii ittt et e et e e et e e e ettt e e e saeee e enbeeeeeneaeeeenneeas 110
|22 o] (=T =T I o) 1 s USSR PSR 112
The COGROUP OPEIator............ooiiiiiiieiiiiee ettt e eitteeeit e e e atee e e bteeesaaeeeesssaeeeasnsaeesansaeeeensseeesanses 113
Pig User-Defined FUNCEIONScccooiiiiiiiiiiiicce ettt sttt st ae et saae e ens 115
A UDF EXAIMPIE..niiiiiiiiiie ettt e ettt e e et e e ettt e e st e e e ntbeeeennsbeesansseeeennsseeaan 116
INVOKRING @ UDF ..ottt e ettt e e et e e e ettt e e e bae e e enbeeeeensaeeeenneeas 116
Tips for Optimizing Pig SCIiPTScooiouiiiiiiiie ettt e et e e et ee e eeaeeeenes 117
Lab: JoININg Datasets..........ccooiiiiiiiiiieiiie ettt et e e ettt e e et e e ettt e e e bt e e e atbaeeennaeeean 118
Objective: Join two datasets in Pigccccvoiiiiiiiiiiii e e 118
Lab: Preparing Data for HIVe..............ccoiiiiiiiie ettt e e e 118
Objective: Transform and export a dataset for use with Hivecccccoooeiiiiniiiiiniiiiiieeee, 118
Overview of the DataFu LIDIraryccooooiiiiiiiiiiiie et 119
Computing QUANTIIEScocuviiiiiiiee et e e et e et e e et e e e nbe e e e eaaeeeenaeas 120
Demonstration: Computing PageRankK................ccooooiiiiiiiiiiiii e 121
Objective: To understand how to use the PageRank UDF in DataFu.........c.ccccceveviiiiiininnnnnnen. 121
ReVIEW QUESTIONS ...ttt aa e e saasaeaaesaeaeaeeee 122
Lab: Analyzing Clickstream Data...............ccoooiiiiiiiiiiiieeiie ettt e e eeaeeeeeaaee s 123
Objective: Become familiar with using the DataFu library to sessionize clickstream data...... 123
Lab: Analyzing Stock Market Data using Quantiles..................ccccciiiiiiiiiniiiin e 123
Objective: Use DataFu to compute qUantiles.........ccooociiiiiiiiiieeiiiieeee e 123
Hive ProramImiigc.ooooiiiiiiiiiiiiieieciceiie ettt ettt e st e e e staeebeesaeeesseessneennaessneans 125
LeSSON ODJECTIVESoooiiiiiiiiiiieee ettt e ettt e e ettt e e e e tatee e nabeeeennsaeesansseeesnsaeeenn 125
Additional CoNEeNTottt sttt ettt st e s s 125
ADOUE HIVE.....coiiiiiiiiiii ettt et et et e ebt e e s bt e st e ettt ettt e nbteesabeesabeean 126
Comparing Hive £0 SQL ...ttt ettt e e e e ettt e e e e e e iereeeeaeeeas 127
HiIVE ATCRITECTUI ..c.uiiiiiiiiiie ettt sttt ettt s e e st e ebeeenabeesane 128

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

SUbmitting Hive QUETTIESccooouiiiiiiiie ettt ettt e et e e e aee e e eebee e e neaeeeeneeas 129
Defining a Hive-Managed Tablecccoooiiiiiiiiiiieeee ettt ens 130
Defining an EXternal Table.........oooiiiiiiiii e e et e e et e e e ee e e 130
Defining a Table LOCATIONoiiiiiiie ittt e ettt e e ettt e e e tae e e esteeeeeneaeeeenneeas 131
Loading Data into a HIVe Table.........coooiiiiiiiiece ettt 132
Performing QUETTES...........oooiiiiiiiiiie ettt et e e ettt e e ettt e e ettt eeeesteee e nsbeeeannsseesansseeesnsseenan 133
Lab: Understanding Hive Tablescccoooiiiiiiiiiiiie et 134
Objective: Understand how Hive table data is stored in HDFS................cccooiiiiiiiiiiiiiie, 134
HIVE PATTIEIONSoooiiiiiiiiii ettt ettt ettt e st e st eenbae e 135
HIVE BUCKETS ...ttt ettt et ettt ettt e s e e st ebee e sabeesaee 136
SKEWEA TaDLES.c..ueiiiiiiiiiieii et ettt sttt ettt et e sbb e st e et e ebaeenebeesane 137
Demonstration: Understanding Partitions and SKew.................ccccooiiiiiiiiiiiiniiie e 138
Objective: To understand how Hive partitioning and skewed tables workcc.ccccceeeeen. 138
SOTEING DA ...ttt ettt e e e e ettt e e e e e e ettt et e e e e e eannbtbeeeeeeeaannnee 139
USING DIStIIDULE BYeiiiiiiiieeiiee ettt et e et e e ettt e e e bae e e enbee e e e nnaeeeenneeas 139
Storing ReSUlts 10 @ File......oooiiiiiiiieee et e 141
Specifying MapRedUCE PropPerties........ccoiiiiciiiiiiiiiie ettt et e e et e e e eaaee e 141
Lab: Analyzing Big Data with HiVecooooiiiiii et 142
Objective: Analyze the White House visitor data..........ccocciiieiiiiiiiiiiiiecccceee e, 142
Lab: Understanding MapReduce in Hive..................cccooiiiiiiiiiii e 142
Objective: To understand how Hive queries get executed as MapReduce jobs 142
Hive JOIn Strate@iesottt e e e et e e e e e 143
SNUTTLE JOINS ..ottt aresanaeneneeees 143
Map (BroadCast) JOIMSccuiiiiiiiie ettt ettt e e et e e e et e e et e e e ettt e e e nbaeeeensbaeeennnaeeeenneeas 144
Sort-Merge-Bucket (SMB) JOINS ...occiiiieiiieiieieeiesitett ettt et ettt et enae e e seeneeenes 145
INVOKING @ HIVE UDF ...ooiiii ettt et e e e te e e e ete e e e eaee e eneeas 146
Computing ngrams iN HIVE ...ttt e e e 147
Demonstration: Computing NGIAIMIS ...ttt e e e e e ete e e e e e e 148
Objective: To understand how to compute ngrams using Hivecccocccvvveiiiiiniiiiiincieeeee, 148
ReVIEW QUESTIONS ...t aeeesaaeseaaesaeaeaeeee 149
Lab: Joining Datasets N HiVe..............ccooiiiiiiiiii et e e e s 150
Objective: Perform a join of two datasets in Hive.........ccocceiiiiiiiiiiniiiiccce e 150
Lab: Computing ngrams of Emails in Avro Format..................ccocooiiiiiiiiiiiii e 150
Objective: Use Hive t0 COMPULE NETAIMNS ..oeeuviiieiiiiieeeiiieeeiieeeeiieeeeeiteeeeieeeeesreeeeenaeeeeeneeeesenneeas 150
USING HCATALOE ...ttt ettt e b e taeesbeessaeesaesaaaens 151
LeSSON ODJECTIVESooooniiiiiiiiiie ettt ettt e ettt e e et e e e ettt e e e nateeeennsaeesansseeesnsaeeaan 151
Additional CONTENTocooiiiiiii ettt ettt e st e st e et e e e e seaeesaeee 151
ADOUL HCAAOG.........ooiiiiiieeee ettt e e ettt e e e ettt e e eateeeeetbeeesansaeeesnnaeaeeanes 152
HCatalog in the ECOSYSTEIM.........cc.oiiiiiiiiiiiiieeeee ettt e et e et e e e eebeeesnsaeeeas 153
Defining @ NeW SCREIMIAooooiiiiiii ettt e et e e et ee e s e sbeeesnnaeeeas 154
Using HCatLoader With Pigcooooiiiiiiiie ettt e e 154
Using HCatStorer With Pig.......ccoo oottt e e 154
The Pig SQL COMMANG ...ccutiiiiiiiiieeeiiiee ettt e ettt e e ettt e e s et e e e estteeeeneaeeesnsaeesensaeeennes 154
ReVIEW QUESTIONSoiiiiiiiiii et e e e ettt e e e e e e e etta e e e e e e esettaaaeeeeeeenennes 155
Lab: Using HCatalog With Pig.............ccciiiiiii et e 156
Objective: Use HCatalog to provide the schema for a Pig relationccooccceieniiiiiniennnen, 156

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Advanced Hive Programmingccccooviiiiiiiiiiiiciie ettt 157
LEeSSOMN ODJECTIVESoooniiiiiiiiiie ettt ettt e e ettt e e ettt e e e s att e e e nateeeennsbeesansseeesnsaeeann 157
Additional CONTENToocoiiiiiiii ettt ettt et e sab e st e st e et e e seaeesanee 157
Performing a Multi-Table /File INSETItcccooiiiiiiiiiieeeee e 158
UNAerstanding VICWS...........oooiiiiiiiiiieiiee ettt e ettt e e st e e e tae e e e abeeeeensbeaeennsaaesenneeas 160

DEfINING VIBWS ...ooiiiiiiie ettt et et e ettt e e et e e e e ttee e e abbeeeenstee e e nsaeeeensseeeennseeeeenneeas 161
USINE VIBWS .ttt ettt e e e e ettt e e e e e e bbb et e e e e e e s aabeteeeeeeeannebeeeeaaaanns 161
The TRANSFORM CLAUSEcoiiiiiiieiiiee ettt e ettt e ettt e e ettt e e s entaeeeesaaeesensaeeesanseeesansaeeennnes 162
The OVER CIAUSE....cciiiiiieiiiie ettt ettt ettt e e ettt e e et e e e eeteeesantaeeesstaeeeansaeaesansaeesenssaeennnes 163
USINZ WIIAOWS ..ottt ettt e e et e e ettt e e e bteeeeasbee e e ssaeeeensaeeeansseeeennsaeesannseas 164
Hive ANalyticsS FUNCHONSccooiiiiiieiie ettt ettt e et e e e eete e e e aeeeeeeneeas 165
Lab: Advanced Hive Programmingccoocouiiiiiiiiiiiiiiie ettt e et e e seeveeesnsaee e 166
Objective: To understand how some of the more advanced features of Hive work 166
HIVe File FOIMAScocooiiiiiiii ettt et et e e 167
HIVE SEIDES ...ttt e e ettt et e e e e ettt e e e e e e ettt eeeeeeeanbereeeeaaaanns 167
L3 2= 0 S O 35 1 U= USSR 168
Computing Table StatisStiCSccccoiiiiiiiiii e e e ree e e aaee s 169
Hive Cost Based OPtimiZationcccccoeiiiiiiiiiiee ettt et ee e et e e e eeeee e 170
VECEOTIZATION ettt e e e e e ettt e e e e e e sttt e e e e e sanbeaeeens 171
USING HIVESEIVEI2Z ...ttt ettt e e e e e ettt e e e e e ettt e e e e e eanbbeeeeaaeans 172
Understanding Hive 0N TeZcc.oooiiiiiiiiiiieiie ettt e e e aee e e aee e e ebeee e neeas 173
Using TezZ for HIVe QUETIES....c..uiiiiiiie ettt ettt e ettt e e e tte e e eetee e e neaaeeenneeas 173
Demonstration: Hive Optimizations..............ooooiiiii e 174
Objective: To become familiar with some ways to optimize Hive...........ccccoeeviieniiiiiiniinnnnen. 174
Hive OptimizZation TiPsS.........ccooiiiiiiiiiiie ettt e e et e e e ebreeeeneaeeeensaeeean 175
Hive QUETY TUNINESttt e e e e ettt e e e e e ettt e e e e e e e e nebeeeeaeaanns 176
ReVIEW QUESTIONS ...t aareraaaesessesaeeeaeeee 177
Lab: Streaming Data with Hive and Python ... 178
Objective: Use a custom reducer script to optimize a Hive qUery........cccccoeeeeiieiiiiiencieeeee, 178

Hadoop 2 and YARN ..ottt ettt ettt e e be e ta e ebeestseesseessseenseessnaans 179
LeSSOMN ODJECTIVESooooniiiiiiiiiieee ettt ettt e ettt e e ettt e e e et ee e nabeeeennsaeesansseeesnsaeeean 179
Additional CONMTENTcoiiiiiiiii ettt ettt sab e st e st e e e seaeesaeee 179
ADOUt HDFS FEA@Tationccooiiiiiiiiiiiiiiiiiiiiiceeete ettt sttt e 180

Multiple Federated NameNOAES........ccociiiiiiiiiie ettt e e et e e e eeee e e 180
MUILIPIE NAIMESPACES. ..o eiiiiieeiiiie ettt et e ettt e e et e e e et e e e e bbeeeeateeeensaeesennsaeeennseeesennseas 181
Overview of HDFS High Availability........ccoooiiiiiiiiiiiii e 181
QUOTUIM JOUTNAl MANAZETcciiiiiieiiiieeeciieeeeiee et e e ettte e et e e e et e e et ee e ettt e e enbaeeeessaeeennseaeeenneeas 182
Configuring Automatic FailoVeroocciiiiiiiiiie e 183
ADOUE YARN ...ttt et ettt e st e sttt ettt e sab e e s et e e eabeeembeeenabeesaree 184
OPen-SOUICE YARN USE CASES ..eoitiiiiiiiiieiiiie ettt ettt ettt ettt et e e bt e st e st e e sate e sbaeebaeebeesabeens 184
The Components Of YARNooooiiii ettt ettt e ettt e e ettt e e ettt e e st eesentbeeesensaeesensaeeesnnes 185
Lifecycle of a YARN APPLICAtION ...cuiiiiiiiiiiiciiiie ettt e et e e e 186
A Cluster VIeW EXamMPLeooiiiiiiiiiieee ettt e ettt e e st e e e nebeeesnnreeens 187
ReVIEW QUESTIONS ...ttt aressassseaaesaeeeaeeee 188
Lab: Running a YARN APPLIiCationcccooiiiiiiiiiiiie ettt 189
Objective: To run a YARN applicationccccoieiiiiiiiiiiiiieiie ettt 189

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Defining Workflow with Q0Zie...................c.oooiiiiiiiiii e 191
LEeSSOMN ODJECTIVESoooniiiiiiiiiie ettt ettt e e ettt e e ettt e e e s att e e e nateeeennsbeesansseeesnsaeeann 191
Additional CoNEeNTottt et sttt ettt et s s 191
OVErVIEW OF QOZI@.........ooiiiiiiiiiiiii et ettt ettt et e s e e enbae e 192

Defining an 00zie WOTKEIOWoocuiiiiiiiiiiee et e e e e e e e 193
Pag ACTIONIS ...ttt ettt e e e e ettt e e e e e ettt e e e e e e e nnereeeeaeeaas 194
HIVE ACHIONS oottt ettt e ettt e e et e e e et ee e e ntteeeensaee e e nsaeesenssaeeeanseeeeennseas 195
MAPREAUCE ACLIONS ..ottt et e e et e e e et e e e bt e e e estee e e nbaeeeensbaeeennseeeeenneeas 196
Submitting @ WOTrKEIOW JODooiiiiiieee ettt et 198
FOrK and JOIN NOAESooooiiiiii ettt aeaeaereneeees 199
Defining an 0ozie Coordinator JODcccoooiiiiiiiii e 200
Schedule a Job Based 01 TIIMIEooiiiiiiiiiiiiiiicceeeeee et e e eatar e e e e e 200
Schedule a Job Based on Data Availability..........cccccooiiiiiiiiiiiii e 201
ReVIEW QUESTIONS ...t aaeessaseseaaasaeeeaeeee 202
Lab: Defining an 00zie WOTKIIOW..............ccccooiiiiiiiiiiie et 203
Objective: Define and run an 0ozie WOTrKfIOW..............oooiiiiiiiiiiiiiii e 203

HadooPp SEreamuing..........cc.ooiiiiiiiieee ettt et 205
LeSSOMN ODJECTIVESoooniiiiiiiiiieee et ettt e ettt e e ettt e e e e tat e e e nateeeennsaeeeansseeesnsaeeean 205
HadooPp SErEAIMUIIEcueiiiiiiiie ettt ettt e e ettt e e ettt e e e e et e e eanabeeeennseeeeansseeesnsaeeens 206
Running a Hadoop Streaming JObccooiiiiiiiiiiii e e 207

Appendix A: Lesson Review QUIZ ANSWET'S.............c.coouieiieiiieniienieeieecee et sene s 209
Understanding Hadoop: REVIEW ANSWETScooiiiiiiiiiiieeeiieeeeiiieeeeiteeeeieeeeeiaeeeeneeeeseneeas 209
The Hadoop Distributed File System (HDFS): Review ANSWErScccceccvvieeiiiieeeniieeeennnen. 210
Inputting Data into HDFS: ReVIeW ANSWET'S.........ccooiiiiiiiiiiiiiteee ettt 211
The MapReduce FrameworKk: ReVIEW ANSWET'S............ccccuiiiiiiiiieiiiieeeiiee et eeeeeeeeeee e 212
Introduction to Pig: REVIEW ANSWETScooiiiiiiiiiiiieeiiiieeeiiteeeeitee e et e e e ateeeeeeeeesesraeesnnaeeeas 213
Advanced Pig Programming: ReVIEW ANSWET'S............ccccocuiiiiiiiiieeiiieeeeiieeeeiteeeeieeeeeeeee e 215
Hive Programming: REVIEW ANSWET'Scccooiiiiiiiiiiieiiiitie ettt e e e ettt e e e e e e eibeeteeaeeeenaeeee 217
Using HCatalog: REVIEW ANSWETSooiiiiiiiiiiiiieeeiieeeeiite e ettt e e et e e eesbteeeeebaeeeensaeeeennreeesenneeas 219
Advanced Hive Programming: ReVIEW ANSWETISccccuiiiiiiiiieeiiiieeeieeeeeiieeeeieeeeseeee e 220
Hadoop 2 and YARN: REVIEW ANSWET'Scccccuiiiiiiiiieeiiiieeeiiieeeiiteeeesiteeeesieeeeenseeesesseeesnnsaeeens 221
Defining Workflow with Oozie: REVIEW ANSWETSccooiiiiiiiiiiiieiiiee ettt 222

10

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Understanding Hadoop

Lesson Objectives

This lesson covers an overview of big data, Hadoop, and the Hortonworks Data Platform.
After completing this lesson, students should be ableto:

* Describe the Three Vs of Big Data

* Describe the Six Key Hadoop Data Types

* Describe Use Cases

* Describe Hadoop

* Describe the Hortonworks Data Platform (HDP)

* Describe the Path to ROI

Additional Content

* Quiz: Lesson Review
e Lab: Start an HDP 2.3 Cluster

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The Three Vs of Big Data

Big data is a common buzzword in the world of IT nowadays, and it is important to understand
what the term means.

Big data describes the realization of greater business intelligence by storing, processing, and
analyzing data that was previously ignored or siloed due to the limitations of traditional data-
management technologies.

Notice from this definition that there is more to big data than just a lot of data, and there is
more to big data than just storing it.

Processing If you are just storing a lot of data, then you probably do nothave a
use case for big data. Big data is data that you want to be able to
process and use as part of a business application

Analyzing In addition to making the data a part of your applications, big data
is also data that you want to analyze (i.e. mine the data) to find

information that was otherwise unknown

The characteristics of big data are often defined as the threeVs:

Variety Any type of structured or unstructured data

Volume Terabytes and petabytes (and even exabytes) of data

Velocity Data flows in to your organization at increasingrates
,‘ Note: A common aspect of big data is that it is often data that was otherwise
o ignored in your business because you did not have the capability to store,

process, and analyze it.

For example, your customers’ personal information stored in an RDBMS and
used in online transactions is not big data. However,the three terabytes of web-
log files from millions of visits to your website over the last ten years is probably
big data.

10 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Big data includes all types of data:

Structured The data has a schema, or a schema can be easily assigned toit

Semi-structured Has some structure, but typically columns are oftenmissing or
rows have their own unique columns

Unstructured Data that has no structure, like JPGs, PDF files, audioand video
files, etc.

Big data also has two inherent characteristics:

Time based A piece of data is something known at a certain momentin time,
and that time is an important element. For example, you mightlive
in San Francisco and tweet about a restaurant that you enjoy. If
you later move to New York, the fact that you once liked a
restaurant in San Francisco does not change

Immutable Because of its connection to a point in time, the truthfulness of the

data does not change. We look at changes in big data as new
entries, not updates of existing entries

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Six Key Hadoop Data Types

w

Sentiment
How your customers feel

Clickstream
Website visitors’ data

Sensor/Machine
Data from remote sensors and machines

Geographic
Location-based data

Server Logs

Text
Millions of web pages, emails, and documents

6 Key Hadoop Data Types

Value

The type of big data that ends up in Hadoop typically fits into one of the following categories:

Sentiment

Clickstream

Sensor/Machine

Geographic

Server Logs

Text

14

Understand how your customers feel about your brand and

products right now

Capture and analyze website visitors’ data trails and optimize your

website

Discover patterns in data streaming automatically from remote

sensors and machines

Analyze location-based data to manage operations where they

occur

Research log files to diagnose and process failures and prevent

security breaches

Understand patterns in text across millions of web pages, emails,

and documents

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

About Use Cases

Sentiment Use Case

* Analyze customer sentiment on
the days leading up to and
following the release of the
movie Iron Man 3.

* Questions to answer:

* How did the public feel
about the debut?

* How might the sentiment
data have been used to
better promote the launch
of the movie?

Sentiment Use Cases

The goal was to determine how the public felt about the debut of the Iron Man 3 movie using
Twitter, and how the movie company might better promote the movie based on the initial
feedback. Here are the steps that were performed:

1)
2)
3)
4)
5)

Use rlume to get the Twitter feeds into HDFS.

Use HCatalogto define a shareable schema for the data.
Use Hive to determine sentiment.

Use an Excel bar graph to visualize the volume oftweets.

Use MS PowerView to view sentiment by country on amap.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 15

HDP Developer: Apache Pig and Hive

Flume Agent

* Iron Man 3 was awesome. | want to go see it again!

* lIron Man 3 = 7.7 stars

» Tony Stark has 42 different Iron Man suits in Iron Man 3
* Wow as good as or better than the first two

* Thor was way better than Iron Man 3

Flume is a tool for streaming data ‘ sEEE EEEm
it HadBoh, ,h‘ FEEHEH

Hadoop cluster

Getting Twitter Feeds into Hadoop

Flume was used to input the Twitter feeds into Hadoop. Once the data was in HDFS, HCatalog
was used to define a schema:

CREATE EXTERNAL TABLE tweets_raw (
id BIGINT,
created_at STRING,
source STRING,
favorited BOOLEAN,
retweet_ count INT,
text STRING

)

There were a lot of Hive queries used to create the final result. Hive looks like SQL. For
example:

CREATE TABLE tweetsbi
STORED AS RCFile
AS
SELECT
B9y
case s.sentiment
when 'positive' then 2
when 'neutral' then 1
when 'negative' then 0
end as sentiment
FROM tweets_clean t LEFT OUTER JOIN tweets_sentiment s on t.id = s.id;

16 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The result was imported into Power View. The following graph shows the volume of tweets
over the opening weekend of the movie:

ke

Notice a large spike in tweets around the Thursday midnight opening, and
spikes around the Friday evening, Saturday afternoon and Saturday
evening showings.

b s
<
-

o m

se1ve

¢¢¢¢¢

View Spikes in Tweet Volume

The sentiment of the tweets was graphed by country:

Viewing the tweets on a map shows the sentiment of the movie by
country. For example, Ireland had 50% positive tweets, while 67% of
tweets from Mexico were neutral.

View Sentiment by Country

Reference: Visit http://hortonworks.com/hadoop-tutorial/how-to-refine-and-

Copyright © 2015, Hortonworks, Inc. All rights reserved.

visualize-sentiment-data/ to watch a video that walks through the stepsabove.

17

HDP Developer: Apache Pig and Hive

Geolocation Use Case

A trucking company collects sensor data from its trucks based on GPS coordinates and logs
driving events like speed, acceleration, stopping too quickly, driving too close to other
vehicles, and so on. These events get collected and put into Hadoop for analysis. The goal of
the trucking company is to reduce fuel costs and improve driver safety by recognizing high-risk
drivers.

* Flume is used to get the raw sensor data into Hadoop
* Sqoop is used to get the data about each vehicle from an RDBMS into Hadoop

* HCatalogcontains all of the schema definitions

* Hive is used to analyze the gas mileage oftrucks
* Pigis used to compute a risk factor for each truck driver based on his/her events

* Excel is used to create bar graphs and maps showing where and how often events are
occurring

e’ %
ornia 3310 . x

Flume Agent

Flume is a tool for streaming data
into Hadoop.

Hadoop cluster

Getting the Raw Data into Hadoop

Flume was used to input the data into HDFS. The data collected from the trucks looks like:

truckid

driverid

event

latitude

longitude

city

state

velocity

event_indicator (0 or 1)
idling_indicator (0 or 1)

18 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

For example:

A5 A5 unsafe following distance 41.526509 -124.038407 Klamath California 33 1 O
A54 A54 normal 35.373292 -119.018712 Bakersfield California 19 0 O
A48 A48 overspeed 38.752124 -121.288006 Roseville California 77 1 O

The details of the trucks and drivers are stored in a relational database. Sqoop was used to

import the relational data into HDFS, and HCcatalog was used to define schemas for this data:

create table trucks (
driverid string,
truckid string,
model string,
monthyear miles int,
monthyear gas int,
total miles int,
total_gas double,
mileage double

)

A Sqoop job

A table in RDBMS
containing the info on
the fleet of trucks.

Sqoop is a tool for transferring data
between a RDBMS and Hadoop.

“ EEEE EEER
- o EEEn
EEER EEEN

.l .\ “ Hadoop cluster

Getting the Truck Data into Hadoop

Copyright © 2015, Hortonworks, Inc. All rights reserved.

19

HDP Developer: Apache Pig and Hive

Lots of Hive queries were used to evaluate the data. Hive looks like SQL:

CREATE TABLE truck_mileage AS

SELECT truckid, rdate, miles, gas,

miles/gas mpg

FROM trucks

LATERAL VIEW stack (54,
'junl3',junl3 miles, junl3 gas, 'mayl3' , mayl3 miles,mayl3 gas, 'aprl3',aprl3 miles,aprl3_
gas, ...
) dummyalias AS rdate, miles, gas;

Pig is a scripting language that has an SQL-like look to it. Pig was used to compute the risk
factor of each driver:

a = LOAD 'events'

using org.apache.hive.hcatalog.pig.HCatLoader () ;
b = filter a by event !'= 'Normal';
c = foreach b

generate driverid, event, (int) 'l' as occurance;
d = group c by driverid;
e = foreach d generate group as driverid,
SUM(c.occurance) as t_occ;

f = LOAD 'trucks'

using org.apache.hive.hcatalog.pig.HCatLoader () ;
g = foreach f generate driverid,

((int) apr09 miles + (int) aprlO_miles) as t miles;
join_d = join e by (driverid), g by (driverid);
final data = foreach join_d generate
$0 as driverid, (float) $1/$3*1000 as riskfactor;

store final data into 'riskfactor'

using org.apache.hive.hcatalog.pig.HCatStorer() ;

20 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Using Power View, the risks were displayed in a bargraph:

Risk Factors Viewed in a Graph

The risk factors were also plotted on amap:

" 4
[T -

Risk Factors Viewed on a Map

O Reference: Visit http://hortonworks.com/hadoop-tutorial/geolocation-data-profit-
from-predictive-analytics/ to view a video of the trucking company geolocation

usecase.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 1

HDP Developer: Apache Pig and Hive

About Hadoop

Apache Hadoop, http://hadoop.apache.org/, is one such system. Hadoop ties together a cluster
of commodity machines with local storage using free and open-source software to store and
process vast amounts of data at a fraction of the cost of any other system.

Framework for
solving data-intensive
processes

Designed to scale
massively

Hadoop is very fast
for big jobs

Variety of processing
engines

Designed for
hardware and
software failures

Meaning the bottleneck was waiting to read data from the disk.
The potential bottlenecks in a computing system are CPU, RAM,
network, and disk 10. Hadoop was designed to solve the problem
of disk 10

To scale massively, it is important things are as simple aspossible,
provide redundancy, and avoid the need for any sharing of a single
system, such as locking files for operations. To meet these goals,
the Hadoop file system is “write once” and files areimmutable

Hadoop does scale. A 20-node cluster with 10 disks per machine
running a large MapReduce job will have close to 200 disks
reading and processing data all at once. The relative speed of work
done in parallel when compared to a non-parallel system will be
significant

Big data on Hadoop can be processed using multiple different
processing engines, including Tez, Spark and Storm.

Which is accomplished by “sharing nothing.” Core Hadoop
systems are designed to share as little information about stateas
possible. bataNodes do not know what file a block belongs to. A
map task writes to a temporary directory, and that data is thrown
away at failure. A task is either running to success or it fails
completely, and subsequent attempts do not acquire state from
the failed task

All of these features put together create a powerful data processing framework that not only
stores large amounts of data but also processes large amounts of data in a relatively short

amount of time.

22

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Relational Databases vs. Hadoop

Relational

Required on write

Reads are fast

Standards and structured
Limited, no data processing

Structured

Interactive OLAP Analytics
C lex ACID Ti tions

P

Operational Data Store

schema
speed
governance
processing

data types

best fit use

Hadoop

Required on read

Writes are fast

Loosely structured
Processing coupled with data

Multi and unstructured

Data Discovery
Processing unstructured data
Massive Storage/Processing

Relational Database vs. Hadoop

Understanding how schemas work in Hadoop might help you better understand how Hadoop
is different from relational databases:

* With arelational database, a schema must exist before the data is written to the database,

which forces the data to fit into a particular model

* With Hadoop, data is input into HDFS in its raw format without any schema. When data is
retrieved from HDFS, a schema can be applied then to fit the specific use case andneeds

of your application

Important: Hadoop is not meant to replace your relational database. Hadoop is
for storing big data, which is often the type of data that you would otherwise not
store in a database due to size or cost constraints. You will still have your

database for relational, transactional data.

About Hadoop 2

Hadoop 2.x refers to the next generation of Hadoop. As expected, the Hadoop framework has
grown to meet the demands of its own popularity and usage, and 2.x reflects the natural
maturing of the open-source project.

The Apache Hadoop 2.x project (the open-source version number) consists of the following

modules:

Hadoop Common
HDFS

YARN

MapReduce

The utilities that provide support for the other Hadoop modules

The Hadoop Distributed File System

A framework for job scheduling and cluster resource management

For processing large data sets in a scalable and parallelfashion

Copyright © 2015, Hortonworks, Inc. All rights reserved.

23

HDP Developer: Apache Pig and Hive

New in Hadoop 2.x

HADOOP 1.x HADOOP 2.x
MapReduce% Others}
(data*processing)* (data*processing)*
MapReduce%
(cluster*:zurcee*r:‘aﬁ:e;ent* YARN%

*&*data*processing)* (cluster*resource*management)*

What’s New in Hadoop 2.x?

There are two exciting and significant additions to the Hadoop framework:

HDFS HA and Provides a name service that is scalable andreliable
Federation
YARN Stands for Yet Another Resource Negotiator. It dividesthe two

major functions of the JobTracker (resource management and job
lifecycle management) into separate components

A key issue with Hadoop 1.x was providing a NameNode that was highly available. Hadoop 2.x
provides an HA NameNode.

Federation provides the ability to configure multiple NameNodes, and therefore multiple
namespaces, to provide a distribution of workloads since the NameNodes can now scale
horizontally.

YARN provides a logical separation of duties for negotiating and executing jobs across a
Hadoop cluster. The end result of YARN is a new, more generic resource-management
framework that works with more than just MapReduce jobs.

o4 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The Hadoop Ecosystem

ﬁ‘ 0 e (tPachE Faicon

g ive 'h‘\ . ,

FEEE Hadoop Solr -~
3CCUrMULO J 2 [1
A » Jhie

The Hadoop Ecosystem

Hadoop is more than HDFS and MapReduce. There is a large group of technologies and
frameworks that are associated with Hadoop, including:

Pig

Hive
HBase

Accumulo

Ambari
Sqgoop

Falcon

Oozie
Solr
Flume

ZooKeeper

Mahout

Storm

Spark

A scripting language that simplifies the creation of MapReduce
jobs, and excels at exploring and transforming data

Provides SQL-like access to your bigdata
A Hadoop database

A robust, scalable, high-performance data-storage and retrieval
system, built on Hadoop and Zookeeper

Provisioning, managing, and monitoring Apache Hadoop clusters
Efficiently transfers bulk data between Hadoop and RDBMS

A data processing and management solution, designed forpipeline
coordination, lifecycle management, and datadiscovery

A workflow scheduler system to manage Apache Hadoopjobs
A standalone enterprise search server with a rREsT-like API
Efficiently collects, aggregates, and moves logdata

An open-source server that enables highly reliable distributed
coordination

An Apache project whose goal is to build scalable-machine
learning libraries

Framework that provides real-time processing of streams ofdata

A fast and general engine for large-scale data processing

Copyright © 2015, Hortonworks, Inc. All rights reserved.

25

HDP Developer: Apache Pig and Hive

The Hortonworks Data Platform (HDP)

Hortonworks Data Platform e

NosQL Stream Search = Others

i uthenticatiol
ot Hiv uthorization
educe a ccountin,
ata Pr ion
Ambar
YARN : Data Operating System e: HD aokeepas
es Ri
c
HDFS P Scheduling
(Hadoop Distributed File System) o % o
Dozie

DATA MANAGEMENT

The Hortonworks Data Platform (HDP)

The Hortonworks Data Platform, or HDP for short, is the only 100% open-source data-
management platform for Apache Hadoop and is the most stable and reliable Apache Hadoop
distributor. It delivers the cost effectiveness of Hadoop and the advanced services required for
enterprise deployments.

The key features of HDP include:

High Availability HA is now achievable in HDP 2.x without the use ofan outside
technology

Open-Source Cluster HDP includes Apache Ambari, the only open-source operations
Management tool that allows you to provision, manage, and monitor aHadoop
cluster of any size

Metadata Services & HCatalog provides metadata services and a rResT interface that

HCatalog provides an additional SQL-like interface toHadoop

Data Integration Including Sqoop, Flume, and WebHDFS

Services

ODBC Done Right Hive has a free high-performance ODBC driver thatincludes an

SQL engine so you can interact with nearly every Bl tool,including
all SQL-92 interfaces

architecture as a complement to existing data-managementsystems.
Accordingly, HDP is designed to easily inter-operate so you can extendyour
existing investments in applications, tools, and processes with Hadoop.

Q] Note: Apache Hadoop has become a core component of the enterprisedata
»

26 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The Path to ROI

Tk
Raw 2T Hadoop Distributed @
Data > File System
1. Put the data into HDFS
in its raw format

2. Use Pig to explore and
(\/ transform

IVE

3. Data Analysts use Hive to
query the data

Hidden gems = $$
4. Data Scientists use MapReduce, R

and Mahout to mine the data

The Path to ROI

Along with the tools and frameworks in the Hadoop ecosystem, there are also the individuals
who must push the data through Hadoop, answer questions, and find hidden gems within the
big data. The path to ROI in Hadoop involves several steps and roles, including:

Put the data into Because you do not need to apply a schema to the data, it is best

HDFS to keep it in its raw format and to try not to force a structure on the
data that may only fit a few use cases. By keeping all of theoriginal
raw data, you leave the door open for answers to future questions
that you may not have thought to ask yet

Explore and Often the raw data needs to be transformed. Pig is an excellent
Transform tool for exploring the raw data and transforming it into astructure
more suitable for your specific use case

Answer questions Hive is a great tool for performing queries on structured data. The
Hive query language is essentially SQL, so it is familiar and
comfortable to use for data analysts

Find hidden gems The real ROl comes from mining the data, a task that fitsunder the
moniker of data science. The data scientist uses a variety of tools
and frameworks, including Java, MapReduce, R, Mahout, Python,
and other tools and scripting languages

might flow through Hadoop and how the various elements of the Hadoop
ecosystem are typically used. There are certainly many other scenarios and use
cases, along with many other tools available for answering questions and mining
big data.

B] Note: The diagram above is meant only to show a typical use case of how data
»

Copyright © 2015, Hortonworks, Inc. All rights reserved.

27

HDP Developer: Apache Pig and Hive

Review Questions
1) What are 1,024 petabytes known as?

2) What are 1,024 exabytes known as?
3) List the three Vs of big data:

4) Sentiment is one of the six key types of big data. List the other five:

5) What technology might you use to stream Twitter feeds intoHadoop?

6) What technology might you use to define, store, and share the schemas of your big data
stored in Hadoop?

7) What are the two main new components in Hadoop 2.x?

o8 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Lab: Start an HDP 2.3 Cluster

Objective: Start an HDP cluster in your VM
See page 7 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

29

HDP Developer: Apache Pig and Hive

30

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The Hadoop Distributed File System (HDFS)

Lesson Objectives

This lesson covers the details of how files are stored and maintained in the Hadoop Distributed
File System (HDFS).

After completing this lesson, students should be ableto:

Describe HDFS

Describe How to Understand Block Storage
Describe the NameNode

Describe the DataNodes

Describe HDFS Commands

Additional Content

Demonstration: Understanding Block Storage

Quiz: Lesson Review

Lab: Using HDFS Commands

Copyright © 2015, Hortonworks, Inc. All rights reserved.

31

HDP Developer: Apache Pig and Hive

About HDFS

“l' have a 200 TB
file that | need to
store.”

“Wow - that is big
data! | will need to
distribute that across
a cluster”

)

Hadoop Client

“Sounds risky!
What happens if a
drive fails?”

“No need to worry! |
am designed for
failover.”

What is HDFS?

Data in Hadoop is stored on a filesystem referred to as HDFS or the Hadoop Distributed File
System. With HDFS, data is broken down into chunks and distributed across a cluster of
machines.

HDFS has the following characteristics:
* Primary storage system for Hadoop: it stores large files as small blocks
* Designed to be deployed on low-cost hardware

* Designed to scale easily and effectively (adding more nodes increases both storage space
and computing throughput)

* Reliability: data is replicated so that disk failover is not only acceptable but expected and
handled seamlessly

" Note: HDFS is the data-storage mechanism for Hadoop. In Hadoop 2.x, YARN is
» referred to as the data operating system.

32 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Hadoop vs. RDBMS

Hadoop

* Assumes a task will require reading a
significant amount of data off of a disk

* It does not maintain any data structure

* Simply reads the entire file

* Scales well (increase the cluster size to
decrease the read time of each task)

- 2,000 blocks of size 256MB

- 1.9 seconds of disk read for
each block

- Ona40node cluster with 8
disks on each node, it would
take about 14 seconds to
read the entire 500 GB

RDBMS

Uses indexes to avoid reading an entire
file (very fast lookups)

Maintains a data structure in order to
provide a fast execution layer

Works well as long as the index fits in
RAM

61 minutes to read this data
off of a disk (assuming a
transfer rate of 1,030 Mbps)

Hadoop vs. RDBMS

To help better understand how Hadoop works, let’s compare it to something you may be very
familiar with: a relational database. From a very high level, the difference between Hadoop and

RDBMS is:

* Arelational database uses complex in-memory data structures to avoid the expense of disk

access

* Hadoop uses a collection of disks to parallelize the expense of disk access

Using indexes optimizes a relational database’s performance by avoiding disk access. In order
to store a lot of data and access it efficiently, RDBMS uses a smaller, organized representation
of the data (an index) that can be loaded into memory and can allow a lightning-fast lookup as
to whether or not a disk seek and read is needed. This works very well up to the point that your

index no longer fits in RAM or up to the point that your final result set, or the operations

performed while generating this result set, require a lot of disk access.

Hadoop looks at this problem in another way. Hadoop assumes that the operation will require
reading a significant amount of data off of disk. To avoid seeks, Hadoop simply reads the

entire file.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

33

HDP Developer: Apache Pig and Hive

An Example of Disk Read Performance

Suppose a RDBMS had to process a 500G data file. The time it takes to read this data off of
disk would be 61 minutes. This assumes a transfer rate of 1080Mbps. (Source:
http://www.calctool.org/CALC/prof/computing/transfer_time). Typically you would look at your
queries, add some indexes, and try to optimize the access to avoid this disk seek.

In Hadoop, this file could be stored as 2,000 256Mb chunks. If we processed it in Hadoop
doing a single search for records matching a pattern, then Hadoop would perform 2,000
individual file reads. Each of these 2,000 tasks will require 1.9 seconds of disk read. A cluster
of 40 pataNodes with eight disks each (so a total of 320 disks) will get an average six or seven
of these file chunk reads, for a total transfer time of 14 seconds. The bottleneck of processing
this 500G file has been taken from 60 minutes to seven times 1.9 seconds, or roughly 14
seconds.

This example is ignoring the overhead of both MapReduce and RDBMS and is
only comparing the amount of time spent reading from disk. Regardless of the
overhead, this demonstrates how Hadoop reads large amounts of data in an
extremely efficient manner.

C’] Note: This doesn’t mean the overall MapReduce job would take 14 seconds.
»

34 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

HDFS Components

A Hadoop instance consists of a cluster of HDFS machines often referred to as the Hadoop
cluster or the HDFS cluster. There are two main components of an HDFScluster:

NameNode The “master” node of HDFS that manages the data (without

actually storing it) by determining and maintaining how the chunks
of data are distributed across the pataNodes.

DataNode Stores the chunks of data and is responsible forreplicating the

chunks across other bataNodes.

The NameNode and DataNode are daemon processes running in the cluster. Some important
concepts involving the NameNode and DataNodes:

A NameNode represents a single namespace. A cluster can have multiple NameNodes if
multiple namespaces are desired

Data never resides on or passes through the NameNode. Your big data only resides on
DataNodes

DataNodes are referred to as “slave” daemons to the NameNode and are constantly
communicating their state with the NameNode

The NameNode keeps track of how the data is broken down into chunks on the pataNodes

The default chunk size is 128MB (but is configurable)

The default replication factor is three (and is also configurable), which means each chunk of
data is replicated across three bataNodes

DataNodes communicate with other bataNodes (through commands from the NameNode) to
achieve data replication

application can create directories and store files inside these directories.

C'] Note: HDFS supports a traditional hierarchical file organization. A user or an
>

Copyright © 2015, Hortonworks, Inc. All rights reserved. 35

HDP Developer: Apache Pig and Hive

Understanding Block Storage

1. Client sends a request
to the NameNode to

Big Data add a file to HDFS
[i Q NameNode
B e B 2. NameNode tells client how
and where to distribute the
blocks

3. Client breaks the data into blocks and
writes each block to a DataNode.

DataNode 3

DataNode 1 DataNode 2

4. The DataNode replicates each block to two other DataNodes (as chosen by
the NameNode).

Understand Block Storage

Putting a file into HDFS involves the following steps:

1) A client application sends a request to the NameNode that specifies where they want to put
the file in the filesystem.

2) The NameNode determines how the data is broken down into blocks and which pataNodes
will be used to store those blocks. That information is given to the client application.

3) The client application communicates directly with each pataNode, writing the blocks onto
the DataNodes.

4) The pataNodes replicate the newly created blocks based on instructions from the

NameNode.

You can specify the block size for each file using the dfs.blocksize property. If you do not
specify a block size at the file level, the global value of dfs.blocksize defined in hdfs-
site.xml is used.

The client program that is uploading the data into HDFS performs I/O directly
with the bataNodes. The NameNode only stores the metadata of the filesystem,

but is not responsible for storing or transferring the data.

/\ Important: Notice that the data never actually passes through the NameNode.

36 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Demonstration: Understanding Block Storage

Objective: To understand how data is partitioned into blocks and stored in HDFS

See page 15 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 37

HDP Developer: Apache Pig and Hive

The NameNode

1. When the NameNode starts, it reads the
fsimage_N and edits_N files.

2. The transactions in edits_N are merged The NameNode will be in safemode.
with fsimage_N. a read-only mode.

3. Anewly-created fsimage_N+1 is written to
disk, and a new, empty edits_N+1 is

created. 3 B %
4. Now a client application can

edits create a new file in HDFS.

fsimage

‘ Namespace
‘ Metadata

Q NameNode

| Journaling 5. The NameNode journals that
create transaction in the
edits_N+1 file.

The NameNode

HDFS has a master/slave architecture. An HDFS cluster consists of a single NameNode, which is
a master server that manages the filesystem namespace and regulates access to files by
clients.

The NameNode has the following characteristics:
* Acts as the master of the DataNodes

* Executes filesystem namespace operations, like opening, closing, and renaming files and
directories

* Determines the mapping of blocks to bataNodes
* Maintains the filesystem namespace
The NameNode performs these tasks by maintaining two files:

fsimage N Contains the entire filesystem namespace, including the mapping of
blocks to files and filesystem properties

edits_N A transaction log that persistently records every change that
occurs to filesystem metadata

When the NameNode starts up, it enters safemode (a read-only mode). It loads the fsimage N
and edits N from disk, applies all the transactions from the edits N to the in-memory
representation of the fsimage N, and flushes out this new version into a new fsimage N+1 on
disk.

38 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

For example, initially you will have an fsimage 0 file and an edits inprogress 1 file. When
the merging occurs, the transactions in edits 1 are merged with fsimage 0 and a new
fsimage 1 file is created. In addition, a new empty edits 2 file is created for all future
transactions that occur after the creation of £simage 1.

This process is called a checkpoint. Once the NameNode has successfully checkpointed, it will
leave safemode, thus enabling writes.

" Note: On your classroom VM, you can view the fsimage and edit files in the
> /hadoop/hdfs/namenode/current folder on the namenode machine:

Copyright © 2015, Hortonworks, Inc. All rights reserved.

39

HDP Developer: Apache Pig and Hive

The DataNodes

Q NameNode

“Replicate block 123
RS s “I'm here too! And

“I'm still here! This to DataNode 1.” 2
. here is my latest
is my latest. Blockreport.”
Blockreport.” y
DataNode 1 DataNode 2 DataNode 3 DataNode 4

6 d ol

The DataNodes

HDFS exposes a filesystem namespace and allows user data to be stored in files. Internally, a
file is split into one or more blocks and these blocks are stored in a set of bataNodes.

The NameNode determines the mapping of blocks to DataNodes. The DataNodes are
responsible for:

* Handling read and write requests from application clients

* Performing block creation, deletion, and replication upon instruction from the NameNode
(The NnameNode makes all decisions regarding replication of blocks)

* Sending heartbeats to the NameNode
* Sending a Blockreport to the NameNode

The NameNode periodically receives a Heartbeat and a Blockreport from each of the
DataNodes in the cluster. Receipt of a Heartbeat implies that the DataNode is functioning
properly. A Blockreport contains a list of all blocks on a pataNode.

DataNodes have the following characteristics:
* The pataNode has no knowledge about HDFS files

* |t stores each block of HDFS data in a separate file on its local filesystem

* The pataNode does not create all files in the same local directory. Instead, it uses a
discovery technique to determine the optimal number of files per directory and creates
subdirectories appropriately

* When a pataNode starts up, it scans through its local file system, generates a list of all

HDFS data blocks that correspond to each of these local files, and then sends this
information to the NameNode (as a Blockreport)

40 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Reference: For tips on configuring a network for a Hadoop cluster, visit
http://hortonworks.com/kb/best-practices-for-cluster-network-configuration/.

DataNode Failure

“Sorry, DataNode 3,
Q NameNode but I’'m going to

assume you are

i

Heartbeat & Heartbeat & Heartbeat &
Blockreport Blockreport Blockreport

DataNode 2 DataNode 3 DataNode 4

DataNode Failure

DataNode 1

The primary objective of HDFS is to store data reliably even in the presence of failures. Hadoop
is designed to recover gracefully from a disk failure or the network failure of a DataNode:

e |f a DataNode fails to send a Heartbeat to the NameNode, that bataNode is labeled as dead
* Any data that was registered to a dead pDataNode is not available to HDFS anymore

* The NameNode does not send new I/O requests to a dead pataNode, and its blocks are
replicated to live DataNodes

DataNode death typically causes the replication factor of some blocks to fall below their
specified value. The NameNode constantly tracks which blocks need to be replicated and
initiates replication whenevernecessary.

corrupted, either from a disk failure or network error. HDFS implements
checksum checking on the contents of HDFS files. When a client creates an
HDFS file, it computes a checksum of each block of the file and stores these
checksums in a separate hidden file in the same HDFS namespace. When a client
retrieves file contents, it verifies that the data it received from each pataNode
matches the checksum stored in the associated checksum file. If not, then the
client can opt to retrieve that block from another pataNode that has a replica of
that block.

C'] Note: It is possible that a block of data fetched from a pataNode arrives
»

Copyright © 2015, Hortonworks, Inc. All rights reserved. 41

HDP Developer: Apache Pig and Hive

HDFS Commands

The hdfs application is a Hadoop client application that allows you to issue commands to

HDFS from a command line. The hdfsapplication has the following syntax:

hdfs dfs -command <args>

A command is one of the following:

hdfs dfs

Usage: hadoop fs [generic options]
[-appendToFile <localsrc> ... <dst>]
[-cat [-ignoreCrc] <src> ...]
[-checksum <src> ...]
[-chgrp [-R] GROUP PATH...]
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER] [: [GROUP]] PATH...]
[-copyFromLocal [-f] [-p] <localsrc> ... <dst>]
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src>...<localdst>]
[-count [-gq] <path> ...]
[-cp [-f] [-pP] <src> ... <dst>]
[-createSnapshot <snapshotDir> [<snapshotName>]]
[-deleteSnapshot <snapshotDir> <snapshotName>]
[-df [-h] [<path> ...]]
[-du [-s] [-h] <path> ...]
[-expunge]
[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-getfacl [-R] <path>]
[-getmerge [-nl] <src> <localdst>]

[-help [cmd ...]]

[-1s [-d] [-h] [-R] [<path> ...]]

[-mkdir [-p] <path> ...]

[-moveFromLocal <localsrc> ... <dst>]

[-moveToLocal <src> <localdst>]

[-mv <src> ... <dst>]

[-put [-f] [-p] <localsrc> ... <dst>]
[-renameSnapshot <snapshotDir> <oldName> <newName>]
[-rm [-f] [-r|-R] [-skipTrash] <src> ...]

[-rmdir [--ignore-fail-on-non-empty] <dir> ...]
[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]
[-setrep [-R] [-w] <rep> <path> ...]

[-stat [format] <path> ...]

[-tail [-f] <file>]

[-test -[defsz] <path>]

[-text [-ignoreCrc] <src> ...]
[-touchz <path> ...]

[-usage [cmd ...]]

Use the help option for a description of a command. Forexample:

hdfs dfs -help put

-put [-f] [-p] <localsrc> ... <dst>: Copy files from the local file system

into fs. Copying fails if the file already
exists, unless the -f flag is given. Passing
-p preserves access and modification times,
ownership and the mode. Passing -f overwrites
the destination if it already exists.

42 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Examples of HDFS Commands

The following mkdir command makes a new directory named mydata:
hdfs dfs -mkdir mydata

This put command copies a local file named numbers . txt into mydata in HDFS:
hdfs dfs -put numbers.txt mydata/

Use the 1s command to view the contents of the mydata folder:

hdfs dfs -1ls mydata
Found 1 items

-rw-r--r-- 3 root root 2549 2013-08-29 mydata/numbers.txt

" Note: The logs for HDFS are, by default, in the /var/log/hadoop/hdfsfolder.
F Hadoop uses 10g47 via the Apache Commons Logging framework for logging.

'\ Note: The hdfs dfscommand is the same command as hadoop fs, and you
» may see the two used interchangeably.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

43

HDP Developer: Apache Pig and Hive

HDFS File Permissions

* File and directories have owners and groups

* r=read

* W =write

* X =permission to access the contents of a directory

hue 0 2013-08-27 23:00 /user/hue/oozie/workspaces/unmanaged/shell

hue 77 2013-88-27 23:80 /user/hue/oozie/workspaces/unmanaged/shell/hello.py
hue 0 2013-08-27 23:00 /user/hue/oozie/workspaces/unmanaged/sleep

hue 0 2013-08-27 23:00 /user/hue/oozie/workspaces/unmanaged/sleep/enpty
hue 0 2013-08-27 23:00 /user/hue/oozie/workspaces/unmanaged/sqoop

hue 7175 2013-08-27 23:00 /user/hue/oozie/
hue 420 2013-08-27 23:00 /user/hue/oozie/
hue 276 2013-08-27 23:00 /user/hue/oozie/
hue 0 2013-08-27 23:00 /user/hue/oozie/

p/TT. java
op/db.hsqldb.properties
0p/db.hsqldb. script

hue 0 2013-08-27 23:00 /user/hue

root 0 2013-08-29 03:22 /

root 0 2013-08-29 03:23 /user/root/mydata

root 2549 2013-88-29 03:23 /user/root/mydata/numbers.txt
root 3613198 2013-88-28 21:55 /user/root/stocks.csv

HDFS File Permissions

HDFS implements a permissions model for files and directories that shares much of the pos1x

model:

* Each file and directory is associated with an owner and agroup

The file or directory has separate permissions for the user that is the owner, for other users

that are members of the group, and for all other users

* For files, the r permission is required to read the file and the w permission is required to
write or append to thefile

For directories, the r permission is required to list the contents of the directory, the w

permission is required to create or delete files or directories, and the x permission is
required to access a child of the directory

The output of the 1s and 1s -rR commands shows the file permissions:

drwxr-xr-x
-rw-r--r--
-rw-r--r--

4

44

- root root 0 2013-08-29 03:23 /user/root/mydata
3 root root 2549 2013-08-29 03:23 /user/root/mydata/numbers.txt
3 root root 3613198 2013-08-28 21:55 /user/root/stocks.csv

Note:HDFS also supports ACLs, which provide even finer-grained authorization
capabilities.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Review Questions

1) Which component of HDFS is responsible for maintaining the namespace of the distributed
filesystem?

2) What is the default file-replication factor inHDFS?

3) True or False: To input a file into HDFS, the client application passes the data to the
NameNode, Which then divides the data into blocks and passes the blocks to the

DataNodes.

4) Which property is used to specify the block size of a file stored in HDFS?

5) The NameNode maintains the namespace of the filesystem using which two sets of files?

6) What does the following command do?

hdfs dfs -1ls -R /user/thomas/

7) What does the following command do?

hdfs dfs -1ls /user/thomas/

Copyright © 2015, Hortonworks, Inc. All rights reserved.

45

HDP Developer: Apache Pig and Hive

Lab: Using HDFS Commands

Objective: Become familiar with adding, removing, and viewing files in HDFS

See page 19 of the HDP Developer: Apache Pig and Hive Lab Booklet.

46 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Inputting Data into HDFS

Lesson Objectives

This lesson covers the various ways to input data into the Hadoop Distributed File System,
including the Sqoop and Flume frameworks.

After completing this lesson, students should be ableto:
* Describe the Options for Data Input

* Describe Flume

* Describe Sqoop

* Use Sqoop to transfer data between HDFS and a relationaldatabase

Additional Content

* Quiz: Lesson Review

* Lab: Importing RDBMS Data into HDFS

* Lab: Exporting HDFS Data to a RDBMS

* Lab: Importing Log Data into HDFS using Flume

Copyright © 2015, Hortonworks, Inc. All rights reserved.

47

HDP Developer: Apache Pig and Hive

Options for Data Input

f’Q'T APACHE
I < Cne'd é}) STORM"
SpOflzZ (& fi
Streaming .
hdfs dfs -put
MapReduce
P Connectors|to RoBMs WePHDFS

—

—

—

Oracle, Teradata,
SQL Server, et al.

%
£
3

Options for Data Input

Typically the first task in using a Hadoop cluster is getting your big data into HDFS. You have
several options to choose from, and typically you may need to use more than one tool
depending on the sources of your big data.

In this unit, we will discuss some of the common techniques for inputting data into a Hadoop

cluster.

essentials of Hadoop: no schema is applied when the data goes in. In other

' Best Practice: When putting data into Hadoop, do not forget one of the

words, keep your big data in its raw format and worry about applyingstructure
and schema to it later when you transform and analyze the data.

The Hadoop Client

As you have already seen, the hadoop client works well for inputting files from a local file

48

Copyright © 2015, Hortonworks, Inc. All rights reserved.

system into HDFS.

Usage: hdfs dfs -put <localsrc> ... <dst>

HUF DEeveloper: Apacne Fig ana Hive

want to store into HDFS, but the put command is still an extremely useful tool that you will use
on a regular basis when doing development.

'\ Note: The put command also reads input from stdin and writes to a specified
F file in HDFS. Just use a dash “-"for the 1ocalsrc:

hdfs dfs -put - myinput.txt

Copyright © 2015, Hortonworks, Inc. All rights reserved. 49

HDP Developer: Apache Pig and Hive

WebHDFS

WebHDFS is a REST API for accessing all of the HDFS file system interfaces. webHDFS supports
all HDFS user operations, including reading files, writing to files, making directories, changing
permissions, and renaming. With webHDFS, you can use common tools, like curl, wget, or any
web services client, to access the files in a Hadoop cluster.

Some of the features of webHDFS include:

Secure Uses Kerberos (SPNEGO) and Hadoop delegation tokens for
Authentication authentication
Data Locality Redirects the file read and file write calls tothe corresponding

Datanodes. It uses the full bandwidth of the Hadoop clusterfor
streaming data

Built into Hadoop Runs inside NameNode and DataNodes, SO there are no additional
servers to install

The syntax for an HTTP request looks like:

http://host:port/webhdfs/v1/<PATH>?0op=. ..

For example, the following GETrequest reads a file named /test/mydata.txt:
http://host:port/webhdfs/vl1/test/mydata. txt?op=OPEN

The following puTrequest makes a new directory in HDFS named /user/root/data:
http://host:port/webhdfs/vl/user/root/data?op=MKDIRS

The following is a posTrequest that appends the posted data to the file named
/test/mydata.txt:

http://host:port/webhdfs/vl/test/mydata. txt?op=APPEND

50 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Overview of Flume

Channel

Log
Event Data
Social Media || | IS | Source Sink

Flume Agent
\ &

Flume uses a Channel between the
Source and Sink to decouple the
processing of events from the
storing of events (the producer-

consumer model). EEEE EEEE
SEEE EEEN
EEER EEEn

Hadoop cluster
Overview of Flume
Flume is an open-source Apache project that is a system for efficiently collecting, aggregating,
and moving large amounts of log data from many different sources into HDFS. You can also

customize Flume to work with network traffic data, social-media-generated data, email
messages, and pretty much any data source possible.

Flume uses a producer-consumer model for handling events where the Source is the producer
and the Sink is the consumer of the events. Examples of a Sourceinclude:

* System log files

* Network traffic log files

* Website traffic logs

* Twitter feeds and other social media sources

The events travel through an asynchronous channel to a sink. Examples of a sink include:
* HDFS

* HBase

A channel drains into a sink, but because it is asynchronous the channel is not required to
send events to the sink at the same rate that it receives them from the Source. This allows for
a Source to not have to wait for Flume to store the event in its final destination, which can
improve performance by decoupling the sinkfrom the Source.

and sink. You can have multiple agents that aggregate data from multiple
Sources, and you can configure multiple sinks that output events to different
destinations.

C'] Note: A Flume process can consist of more than one agent with a single Source
»

Copyright © 2015, Hortonworks, Inc. All rights reserved. 51

HDP Developer: Apache Pig and Hive

A Flume Example

To use Flume, you start an Agent. An Agent has a configuration file associated with it that
defines its Sources and sinks. The command to start an Agentlooks like:

flume-ng agent -n my agent -c conf -f myagent.conf

The code myagent . conf is the configuration file.

The following agent config file demonstrates streaming a web server’s log file into HDFS as a
sequence file:

my_agent.sources = webserver
my agent.channels = memoryChannel
my agent.sinks = mycluster

my agent.sources.webserver.type = exec
my agent.sources.webserver.command = tail -F

/var/log/hadoop/hdfs/hdfs-audit. log

my agent.sources.webserver.batchSize =1
my agent.sources.webserver.channels = memoryChannel

my agent.channels.memoryChannel.type = memory
my agent.channels.memoryChannel.capacity = 10000

my agent.sinks.mycluster.type = hdfs
my agent.sinks.mycluster.channel = memoryChannel
my agent.sinks.mycluster.hdfs.path =

52

hdfs://127.0.0.1:8020/hdfsaudit/
The name of the Agent is my agent
The names of the sink, Source, and channel are arbitrary
This Flume Agent has one Source named webserver

The webserver Source is of type exec, which means it executes a given Unix command. In
this example, it executes the tail command on the httpd access log file

The Agent has one sink named mycluster, which sends the events to a sequence file in a
specified folder in HDFS

The Agent has one Channel hamed memoryChannel

The memoryChannel is configured with a memory type, which means it stores the events in

memory. Notice that it is configured with a capacity of 10,000. No more than 10,000 events
can fit in this Channel

Other options for a channel include a database, a file, or you can define your own custom
Channel

Other options for a sink include a system log (as INFO events), an TRC destination, local
files, HBase, and Elastic Search

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Overview of Sqoop

D Relational Enterprise Document-based

Database Data Warehouse Systems

| \ [/

1. Client executes a sqoop 3. Plugins provide connectivity to various
command data sources

| \ / | / /
2. Sqoop executes the / QQ Map Hadoop Cluster
command as a MapReduce __— Q tasks

job on the cluster (using
Map-only tasks)

Overview of Sqoop

Sqgoop is a tool designed to transfer data between Hadoop and external structured
datastores like RDBMS and data warehouses. Using Sqoop, you can provision the data from
an external system into HDFS. Sqoop uses a connector-based architecture that supports
plugins that provide connectivity to additional externalsystems.

As you can see in the diagram, Sqoop uses MapReduce to distribute its work across the
Hadoop cluster:

* The sqgoop command line executes a Sqoop job

* Maptasks (4 by default) execute the command in Sqoop

* Plugins are used to communicate with the outside data source. The data source provides
the schema, and Sqoop generates and executes SQL statements using JDBC or other
connectors

'\ Note: Using MapReduce to perform Sqoop commands provides parallel
D operation as well as fault tolerance.

HDP provides the following connectors for Sqoop:
* Teradata

« MySQL

* Oracle JDBC connector

* Netezza

A Sgoop connector for the SQL Server is also available from Microsoft: SQL Server R2
connector

Copyright © 2015, Hortonworks, Inc. All rights reserved. 53

HDP Developer: Apache Pig and Hive

The Sqoop Import Tool
With Sqoop, you can import data from a relational database system into HDFS:

* The input to the import process is a databasetable

* Sqgoop will read the table row by row into HDFS. The output of this import process is a set
of files containing a copy of the imported table

* The import process is performed in parallel. For this reason, the output will be in multiple
files

* These files may be delimited text files (for example, with commas or tabs separating each
field) or binary Avro or sequenceFiles containing serialized record data

The import command looks like:

sqgqoop import (generic-args) (import-args)

The import command has the following requirements:

* Must specify a connect string using the --connect argument

* Can include credentials in the connect string, using the --username and --password
arguments

* Must specify either a table to import using --table or the result of an SQL query using --
query
Importing a Table

The following Sqoop command imports a database table named stockPrices into a folder in
HDFS named /data/stockprices:

sqoop import
--connect jdbc:mysql://host/nyse
--table StockPrices
--target-dir /data/stockprice/
-—-as-textfile
Based on the import command above:
* The connect string in this example is for Myso1. The database name is nyse
* The --table argument is the name of the table in the nysE database
* The --target-diris where the data will be imported into HDFS

* The default number of map tasks for Sqoop is four, so the result of this import will be in four
files

* The --as-textfileargument imports the data as plain text

'\ Note: You can use --as-avrodatafile to import the data to avro files and use
F --as-sequencefileto import the data to sequence files.

54 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Other useful import arguments include:

--columns A comma-separated list of the columns in the table toimport (as
opposed to importing all columns, which is the defaultbehavior)

-—fields- Specify the delimiter. Sqoop uses a comma by default
terminated-by

--append The data is appended to an existing dataset inHDFS

--split-by The column used to determine how the data is split between
mappers. If you do not specify a split-by column, then the
primary key column is used

-m The number of map tasks to use

--query Use instead of -table. The imported data are theresulting records
from the given SQL query

—-compress Enables compression

--direct Sqoop will attempt the direct import channel, which may be higher
performance than using JDBC

Note: The import command shown here looks like it was entered over multiple
lines, but you have to enter this entire Sqoop command on a single command line.

R

O Reference: Visit
Q\E‘ http://sqoop.apache.org/docs/1.4.6/SqgoopUserGuide.html for a list of all
— arguments available for the import command.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 55

HDP Developer: Apache Pig and Hive

Importing Specific Columns

Use the --columns argument to specify which columns from the table to import. For example:

sqoop import
--connect jdbc:mysql://host/nyse
--table StockPrices
--columns StockSymbol,Volume, High,ClosingPrice
--target-dir /data/dailyhighs/
--as-textfile
--split-by StockSymbol
-m 10

Based on the import command above:

How many columns will be in imported?

How many files will be created in /data/dailyhighs/?

Which column will Sqoop use to split the data up between themappers?

Answer: The stockSymbol column.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

56

HDP Developer: Apache Pig and Hive

Importing from a Query

Use the --query argument to specify which rows to select from a table. For example:

sqoop import
--connect jdbc:mysql://host/nyse
-—query "SELECT * FROM StockPrices s
WHERE s.Volume >= 1000000

AND \$CONDITIONS"

--target-dir /data/highvolume/
-—-as-textfile

--split-by StockSymbol

Based on the command above:
* Only rows whose volumecolumn is greater than 1,000,000 will be imported

* The sconDpITIONS token must appear somewhere in the wHERE clause of your SQL query
so that the data can be split between mappers

* If you use --query, then you must also specify a --split-by column or the Sqoop
command will fail to execute

projections and no or conditions in the wHERE clause. Use of complex queries
(such as queries that have sub-queries or joins leading to ambiguous projections)
can lead to unexpected results.

C'] Note: Using --query is limited to simple queries where there are no ambiguous
»

Important: You either use --queryor --table, but attempting to define both
results in an error.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

57

HDP Developer: Apache Pig and Hive

The Sqoop Export Tool

Sqgoop’s export process will read a set of delimited text files from HDFS in parallel, parse them
into records, and insert them as new rows in a target database table. The syntax for the export
command is:

sqoop export (generic-args) (export-args)

The Sqgoop export tool runs in three modes:

Insert Mode The records being exported are inserted into the table using an
SQL 1NsSERT statement

Update Mode An upDATE SQL statement is executed for existing rows, and an
INSERT can be used for new rows

Call Mode A stored procedure is invoked for each record

The mode used is determined by the arguments specified:

--table The table to populate in the database. This table must already exist
in the database. If no --update-key is defined, the command is
executed in Insert Mode

--update-key The primary key column for supporting updates. If youdefine this
argument, the Update Mode is used and existing rows are updated
with the exported data

--call Invokes a stored procedure for every record, thereby using Call
Mode. If you define --cal1, do not define the --tableargument
or an error will occur

The following are sqoop export arguments:
-—export-dir The directory in HDFS that contains the data to export

-—input-fields- The input field delimiter. A comma is the default
terminated-by

--update-mode Specifies how updates are performed when new rows are found
with non-matching keys in the database. valuesare updateonly
(the default) and allowinsert

58 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Exporting to a Table

The following Sqoop command exports the data in the /data/logfiles/ folder in HDFS to a

table named Logbata:

sqoop export

--connect jdbc:mysql://host/mylogs
--table LogData

--export-dir /data/logfiles/
--input-fields-terminated-by "\t"

Based on the command above:

* The table Logbata needs to already exist in the mylogs database

* The column values are determined by the delimiter, which is a tab in this example
* Allfilesinthe /data/logfiles/directory will be exported

* Sqoop will perform this job using four mappers, but you can specify the number to use with
the -m argument

Copyright © 2015, Hortonworks, Inc. All rights reserved. 59

HDP Developer: Apache Pig and Hive

Review Questions

1) What tool would work best for importing data from a relational database into HDFS?

2) What tool would work best for putting a file on your local filesystem into HDFS?

3) List the three main components of a typical F1ume agent:

4) What is the default number of map tasks for a Sqoopjob?

5) How do you specify a different number of mappersin a Sqoop job?

6) What is the purpose of the sconpITIONS Vvalue in the wHERE clause of a Sqoop query?

60 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Lab: Importing RDBMS Data into HDFS

Objective: Import data from a database into HDFS
See page 25 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Lab: Exporting HDFS Data to a RDBMS

Objective: Export data from HDFS into a MySQL table using Sqoop
See page 29 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Lab: Importing Log Data into HDFS using Flume

Objective: Import data from a log file into HDFS using Flume
See page 29 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

61

HDP Developer: Apache Pig and Hive

The MapReduce Framework

Lesson Objectives

This lesson covers the details of the MapReduce programming paradigm.
After completing this lesson, students should be ableto:

* Describe MapReduce

* Describe the Map Phase

e Describe the Reduce Phase

Additional Content
* Demo: Understanding MapReduce
e Quiz: Lesson Review

* Lab: Running a MapReduce Job

62 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Overview of MapReduce

Map Phase

Shuffle/Sort

Reduce Phase

NodeManager

&

&

@

NodeManager

&

o

NodeManager

4

7

Data is shuffled
‘ across the network

and sorted

N

Overview of MapReduce

NodeManager
o

&9

3

~ NodeManager

&

e

NodeManager
52

Y

MapReduce is a software framework for developing applications that process large amounts of

data in parallel across a distributed environment. As its name implies, a MapReduce program

consists of two main phases: a map phase and a reduce phase:

Map phase

Reduce phase

To write a MapReduce program, you define a mapper class to handle the map phase and a

Data is input into the mapper, where it is transformed and prepared

for the reducer

Retrieves the data from the mapper and performs the desired

computations or analyses

reducer class to handle the reduce phase.

'\ Note: The shuffle/sort phase of MapReduce is a part of the framework, so it
o does not require any programming on your part.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

63

HDP Developer: Apache Pig and Hive

Some important concepts to understand about MapReduce:

64

The map and reduce tasks run in their own JVM on the bataNodes

The mapper inputs key/value pairs from HDFS files and outputs intermediate key/value
pairs. The data types of the input and output pairs can bedifferent

After all of the mappers finish executing, the intermediate key/value pairs go through a
shuffle-and-sort phase where all of the values that share a xey are combined and sent
to the same reducer

The reducer inputs the intermediate <key, value> pairs and outputs its own <key,
value> pairs, which are typically written to HDFS

The number of mappers is determined by the input format
The number of reducersis determined by the MapReduce job configuration
A partitioner is used to determine which <key, value> pairs are sent to which reducer

A combiner can be optionally configured to combine the output of the mapper, which can
increase performance by decreasing the network traffic of the shuffle and sort phase

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Understanding MapReduce

1. Suppose a file is the input to a MapReduce job. That file is
broken down into blocks stored on DataNodes across the
Hadoop cluster.

DataNode/NodeManager DataNode/NodeManager DataNode/NodeManager DataNode/NodeManager

2. During the Map phase, map tasks process the input of
the MapReduce job, with a map task assigned to each
Input Split. The map tasks are Java processes that ideally
run on the DataNodes where the blocks are stored.

Understanding MapReduce

The map phase involves running map tasks on NodeManagers. The main purpose of the map
phase is to read all of the input data. The goal (in order to gain the best performance) is to
achieve data locality, where a map task runs on a bataNode where its Input Split (or at least
most of the sp1it) is stored.

* A block of data rarely maps exactly to an Input split, but it is often close, especially
when processing text data. Records that spill over to a subsequent block have to be pulled
over the network so the map task can process the entire record, but this is normally an
acceptable overhead

* The number of maptasks in a MapReduce job is based on the number of Input sSplits

* If no NodeManager is available where a specific block resides, then you lose data locality
and the block has to be pulled across the network

Copyright © 2015, Hortonworks, Inc. All rights reserved. 65

HDP Developer: Apache Pig and Hive

66

3. Each map tasks processes its Input Split and outputs
records of <key, value> pairs.

Data Node/NodeManag.r DataNode ‘NodeManager

DataNode/NodeManape Datinode/NodeMan sger

<keyl, value> || <key2, value> || <keyl, value> || <key7, value> || <keyd, value> || <keyS, value> || <key6, value>
<key2, value> <key3, value> <key4, value> <key9, value> <key2, value> <keyb, value> <keyl, value>
<keys5, value> <key2, value> <key4, value> <key9, value> <key2, value> <key9, value>

<key9, value> <key8, value> <key4, value> <keyb, value> <key9, value>
<keyl, value> | | <key3, value>

4. The <key,value> pairs go through a shuffle/sort phase, where records
with the same key end up at the same reducer. The specific pairs sent to a
reducer are sorted by key, and the values are aggregated into a collection.

Understanding MapReduce - continued

Map tasks output <key, value> pairs, which are written to a temporary file on the local
filesystem

When a map task finishes, its output becomes immediately available to the reduce tasks.
Each reducer asks each mapper for the <key, value> pairs designated for that reducer.
This designating of records is called partitioning

As a reducer reads-in its <key, value> pairs, the values are aggregated into a collection
and the entire input to the reducer is sorted by keys. This is referred to as the
shuffle/sort phase

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

5. Reduce tasks run on a NodeManager as a Java process.
Each Reducer processes its input and outputs <key,value>
pairs that are typically written to a file in HDFS.

<keyl, (value,value,value,value)> <key2, (value,value,value,value,value)>
<key3, (value,value)> Output from the mappers <key4, (value,value,value,value)>
<key5, (value,value)> after beu.\g shuffled and <key7,(value)>
<key6, (value,value,value)> sorted = input of the <key8, (value)>

reducers. <key9,(value,value,value,value,value)>

NodeManager

NodeManager

<key, value> <key, value>

<key, value> <key, value>

<key, value> <key, value>
11

Understanding MapReduce - continued

The main purpose of the reduce phase is typically business logic: going through the data
output by the mappers and answering a question or solving a problem. The <key, value>
pairs coming into the reducer are combined by key, meaning each key is presented once to
the reduceralong with all of the values that belong to that key.

* Reducers also output <key, value> pairs

The output of a reducer is typically a file in HDFS. For example, if you have five
reducers, the output will be five different files

The number of reduce tasks in a MapReduce job is a setting that you get to choose

Copyright © 2015, Hortonworks, Inc. All rights reserved.

67

HDP Developer: Apache Pig and Hive

The Key/Value Pairs of MapReduce

<K1, V1>

| - <K2, V2> (

pp L Shuffle/Sort]

<K3, V3> —— Reducer <

<K2, (V2,V2,V2,V2)>

The Key/Value Pairs of MapReduce
The data types of the <key, value>pairs in a MapReduce job look like:
<K1, V1> Input to the mapper
<Kz, V2> Output from the mapper

<K2, Iterable<v2>> Input to the reducer

<K3, V3> Output from the reducer
" Note: Keysare constantly being compared and sorted in MapReduce, and both
F keys and values get serialized and deserialized between the map and reduce
phases.

68 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

WordCount in MapReduce

constitution.txt

HDFS

The mappers read the
file’s blocks from HDFS
line-by-line

_
We the people, in order to form a...

he reducers add up

Q the “1’s” and output

the word and its count

!

<We,4>
<the, 265>
<people,5>

HDFS <form,1>

S
<We, (1,1,1,1)>

<the, (1,1,1,1,1,1,1,...)>
<people,(1,1,1,1,1)>
<form, (1)>

The lines of text are

output to the reducers

split into words and Q

<We, 1> <order, 1>
<the,1> <to,1>
<people,1> <form,1>
<in,1> <a,1>

The shuffle/sort phase
combines pairs with the
same key

WordCount in MapReduce

0]

The “Hello, World” of Hadoop programming is the word-count application, which reads in a
text file and counts the number of occurrences of each distinctword.

The diagram above shows how the <key, value> pairs of the word-count application are

passed through the MapReduce job.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

69

HDP Developer: Apache Pig and Hive

Demonstration: Understanding MapReduce

Objective: To understand how MapReduce works

See page 33 of the HDP Developer: Apache Pig and Hive Lab Booklet.

70 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The Map Phase

Mapper output =

Reducer input

Spill files are
merged into a

e/v I \ single file
The InputFormat o o a a a Records are

generates <k1,v1> sorted and spilled
pairs to disk when the
buffer reaches a
threshold

[
w—

MapOutputBuffer
Mapper — >

<k2,v2> <k2,v2>
<k2,v2> <k2,v2>
<k2,v2> <k2,v2>
<k2,v2> <k2,v2>
<k2,v2> <k2,v2>

The map method
outputs <k2,v2>
pairs

I*

NodeManager

The Map Phase

The data is passed into the mapper as a <key, value> pair generated by an InputFormat
instance. The key and value are determined by the specific InputFormat that you configure.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Here is how data flows through the map phase:

The InputFormat determines where the input data needs to be split between the mappers,
and then it generates an InputSplitinstance for each split

MapReduce spawns a map task for each Inputsplit generated by the InputFormat

Each <key, value> pair generated by the InputFormat is passed to the map method of
the mapper class

The map method outputs a <key, value> pair that is serialized into an unsorted buffer in
memory

When the buffer fills up, or when the map task is complete, the <key, value> pairsinthe
buffer are sorted then spilled to the disk

If more than one spill file was created, these files are merged into a single file of sorted
<key, value> pairs

The sorted records in the spi11file wait to be retrieved by a reducer

mapreduce.task.io.sort.mb property. A spill occurs when the buffer

C,} Note: The size of the mapper’s output memory buffer is configurable with the
>

72

reaches a certain capacity configured by the
mapreduce.map.sort.spill.percent property.

Important: Spilling to disk cannot be entirely avoided because there is always
one spill to disk when the mapper is complete. However, the ideal scenario is
to avoid any intermediate spills. If an intermediate spil1occurs, those <key,
value>pairs need to be written to disk, then read and rewritten one more time,
which results in three times the disk I/O for those spilled records

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The Reduce Phase

In-memory 2

/; buffer Spill files |

Merged

[¥
5. Ll
Reducer [—)_ SEEE HDFS

Mapper output =
Reducer input

NodeManager

Mapper output =
Reducer input

t o
S~

/’ e 20l s

1. The Reducer
’?’ fetches the data
from the Mappers l '?'

Ll L]
Reducer > ooas HDFS

Mapper output =
Reducer input

The Reduce Phase

The reducer fetches the records from the mapper and uses them to generate and output
another set of <key, value> pairs that are output to HDFS (or some other configurable
location).

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The reduce phase can actually be broken down in three phases:

Shuffle Also referred to as the fetchphase, this is when reducers retrieve

the output of the mappers. All records with the same key are
combined and sent to the same reducer

Sort This phase happens simultaneously with the shuffle phase. As

the records are fetched and merged, they are sorted by key

Reduce The reduce method is invoked for each key, with the records

combined into an iterable collection

Here is how data flows through the reduce phase:

As mappers finish their tasks, the reducers start fetching the records and storing them into
a buffer in their JVM’s memory

If the buffer fills, it is spilled to disk

Once all mappers complete and the reducer has fetched all its relevant input, all spill
records are merged and sorted (along with any records still in the buffer)

The reduce method is invoked on the reducer for each key

The output of the reducer is written to HDFS (or wherever the output was configured to be
sent)

Some comments about the reduce phase:

74

All records that share the same keyare sent to the same reducer

During shuffling, the records are sorted by key and the values are combined into a
collection

The valuesin the collection are not sorted by default
The number of reducers is determined by the mapreduce.job.reduces property

A MapReduce job does not require a reducer. Setting the number of reducers to zero
results in the mapper sending its output directly to HDFS

A reducer can actually start fetching the output of mappers after the first mappers finish
(but others are still working). This is done using threads, and the number of threads is
configurable with the mapreduce.reduce.shuffle.parallelcopiesproperty

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Review Questions

1) What are the three main phases of aMapReduce job?

2) Suppose the mappers of a MapReduce job output <key, value> pairs that are of type
<integer, string>. What will the pairs look like that are processed by the corresponding

reducers?

3) What happens if all the <key, value> pairs output by a mapper do not fit into the memory of
the mapper?

4) What determines the number of mappers of a MapReduce job?

5) What determines the number of reducers of a MapReducejob?

6) True or False: The shuffle/sort phase sorts the keys and values as they are passed to

the reducer.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 75

HDP Developer: Apache Pig and Hive

Lab: Running a MapReduce Job

Objective: Run a Java MapReduce job
See page 35 of the HDP Developer: Apache Pig and Hive Lab Booklet.

76 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Hadoop Streaming

Lesson Objectives
This lesson covers an overview of the streaming capabilities ofHadoop.

After completing this lesson, students should be ableto:

* Hadoop Streaming

* Running a Hadoop Streaming Job

Copyright © 2015, Hortonworks, Inc. All rights reserved.

77

HDP Developer: Apache Pig and Hive

Hadoop Streaming

1. The InputFormat

generates <k1,v1> pairs Mapper
3
2. Converts the <k1,v1> pairs to 3. The stdout of the
lines and sends them to the process is converted
stdin of the process into <k2,v2> pairs

My mapper script

Reducer > Output
Format
4. Converts <k2,(v2,v2,...) > S. The stdout of the
pairs to lines and send them process is converted
to the stdin of the process into <k3, v3> pairs
v

My reducer script

Hadoop Streaming

Hadoop Streaming is a part of HDP, and it allows you to create and run MapReduce jobs with
any executable or script as the mapper and/or the reducer. Streaming allows you to take
advantage of the benefits of MapReduce while using any scripting language you like.

Here is how Hadoop Streaming works:

* The MapReduce job starts as any other job, with the input splits sending key/value pairs
to a map task

* The streaming mapper converts the key/value pairs into lines of text and sends each line
of text to the stdin of the mapper process

e The streaming mapper reads each line of text from the stdout of the process and

converts the line to a key/value pair using a tab as the delimiter between the key and the
value

* Similarly, the streaming reducer converts the input key/values pairs into lines of text
and sends them to the stdin of the reducer process

* The output from stdout of the process is converted to key/value pairs (using a tab as the
delimiter) and output by the streaming reducer

78 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Running a Hadoop Streaming Job

The command to run a Hadoop streaming job looks like the following (entered on a single
command line):

> hadoop 3jar hadoop-streaming.jar
-input input directories
-output output_directories
-mapper mapper_script
-reducer reducer_script

For example, the following command executes a streaming job that uses cat as the mapper
and grep as its reducer:

hadoop Jjar hadoop-streaming.jar
-input test/data.txt
-output streamtest
-mapper /bin/cat
-reducer 'grep -i hadoop'

Copyright © 2015, Hortonworks, Inc. All rights reserved.

79

HDP Developer: Apache Pig and Hive

80

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Introduction to Pig

Lesson Objectives

This lesson covers the Pig framework and describes how to load and transform data using the
Pig programming language.

After completing this lesson, students should be ableto:
* Describe Pig

* Define a Schema

* Describe the GROUP Operator

* Describe the FOREACH GENERATE Operator

* Describe the FILTER Operator

* Describe the LIMIT Operator

Additional Content

* Demo: Understanding Pig
* Lab: Getting Started with Pig
* Quiz: Lesson Review

* Lab: Exploring Data with Pig

Copyright © 2015, Hortonworks, Inc. All rights reserved.

81

HDP Developer: Apache Pig and Hive

About Pig

What is Pig?

Apache Pig, http://pig.apache.org/, is a Hadoop platform for creating MapReduce jobs. Pig
uses a high-level SQL-like programming language named Pig Latin. The benefits of Pig include
the ability to:

* Run a MapReduce job with a few simple lines ofcode

* Process structured data with a schema, or Pig can process unstructured data without a
schema (Pigs eat anything)

* Use a familiar SQL-like syntax in Pig Latin
* Read and write data from HDFS with Pig scripts

* Create code with a data flow language, a logical solution for many MapReduce algorithms

" Note: Pig was created at Yahoo! to make it easier to analyze the data in your
» HDFS without the complexities of writing a traditional MapReduce program.

The developers of Pig published their philosophy to summarize the goals of Pig using
comparisons to actual pigs:

Pigs eat anything Pig can process any data, structured or unstructured

Pigs live anywhere Pig can run on any parallel data processing framework, so Pig
scripts do not have to run just on Hadoop

Pigs are domestic Pig is designed to be easily controlled and modified by itsusers
animals
Pigs fly Pig is designed to process data quickly

82 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Pig Latin

Pig Latin is a high-level data flow scripting language. Pig Latin scripts can be executed in one
of three ways:

Pig script Write a Pig Latin program in a text file and execute it usingthe pig
executable
Grunt shell Enter Pig statements manually one at a time from a CLItool known

as the Grunt interactive shell

Embedded in Java Use the pigserverclass to execute a Pig query from within Java
code

Pig executes in a unique fashion: some commands build on previous commands, while certain

commands trigger a MapReduce job.
* During execution, each statement is processed by the Piginterpreter
* |f a statement is valid, it gets added to a logical plan built by the interpreter

* The steps in the logical plan do not actually execute until a puMp or STORE command is
used

The Grunt Shell

A 0O O (N rich — root@sandbox:~ — ssh — 59x5 "
grunt> employees = LOAD 'pigdemo.txt' AS (state, name);
grunt> describe employees;

employees: {state: bytearray,name: bytearray}

grunt> employees_grp = group employees by state;
grunt> dump employees;fJ|

Grunt shell

The Grunt Shell

Grunt is an interactive shell that enables users to enter Pig Latin statements and also interact
with HDFS. To enter the Grunt shell, run the pig executable in the P1G_HOME\bin folder:

pig
grunt>

The Grunt shell provides tab completion for commands (unfortunately there is no tab
completion for files or folders), as well as command-line history and editing.

has the concept of a “present working directory” with the ability to change

E] Note: You can run HDFS commands directly from the Grunt shell, which also
»
directories using the cd command.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

83

HDP Developer: Apache Pig and Hive

Demonstration: Understanding Pig

Objective: To understand Pig scripts and relations

See page 37 of the HDP Developer: Apache Pig and Hive Lab Booklet.

84 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Pig Latin Relation Names

Each processing step of a Pig Latin script results in a new data set, referred to as a relation.
You assign names to relations, and the name of a relation is referred to as its alias. For
example, consider the following Pig Latin statement:

stocks = LOAD 'mydata.txt' using TextLoader() ;

The alias stocks is assigned to the relation created by the 1.oap statement, which in this
statement is a line of text from the mydata. txt file. The stocks alias now represents the
collection of records inmydata.txt.

" Note: TextLoader is a simple way of loading each line of text in a file into a
¥ record, no matter what the format of the datais.

Relation names (aliases) are not variables, even though they look like variables. You can
reassign an alias to a different relation, but that is notrecommended.

Pig Latin Field Names

You can also define field names when using the L.oaAD command to define a relation. Use the as
keyword to define field names:

salaries = LOAD 'salary.data' USING PigStorage(',') AS (gender, age, income, zip);

The alias for this relation is salaries, and salaries has four field names: gender, age, income
and zip.

Field names can be used in subsequent processing commands. For example, when filtering a
relation, you can refer to its fields in the By clause, as shown in the following statement:

highsalaries = FILTER salaries BY income > 1000000;

Field names contain the values of the current record as the data passes through the pipeline of
the Pig application. The highsalaries relation will contain all records whose income field is
greater than 1,000,000.

Both field names and relation names must satisfy the following namingcriteria:
* Must start with an alphabetic character
* Can contain alphabetic and numeric characters, as well as the underscore (_) character
* Can only contain ASCIl characters
Important: Field names and relation names are case sensitive in your Pig Latin

scripts. User Defined Functions (UDFs) are also case sensitive. However, Pig
Latin keywords (like LoaDand As) are not case sensitive.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 85

HDP Developer: Apache Pig and Hive

Pig Data Types

Pig has six built-in scalar datatypes:

int A 32-bit signed integer

long A 64-bit signed integer

float A 32-bit floating-point number

double A 64-bit floating-point number

chararray Strings of Unicode characters (represented as java.lang.String
objects)

bytearray A blob or array of bytes

boolean Can be either true or false (case-sensitive)

datetime A date and time stored in the format 1970-01-

01T00:00:00.000+00:00

bigdecimal and For performing precision arithmetic
biginteger

86 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Pig Complex Types

Pig has three complex types:

Tuple Ordered set of fields. A tupleis analogous to a row in an SQL
table, with the fields being SQL columns

Bag Unordered collection of tuples
Map Collection of key value pairs

Tuples are indicated by parentheses. For example, the following tuple has four fields:
(OH,Mark,Twain,b 31225)

Bags are constructed using curly braces, and commas separate the tuples within the bag.
The following bag has three tuples init:

{ (OH,Mark,Twain,31225) , (UK,Charles,Dickens,b 42207),
(ME ,Robert,Frost,11496)}

Maps are key/value pairs where the key must be a unique chararray type and the value can
be any data. maps are formed using square brackets, with a hashtag between the key and
value. The following map has three key#value pairs:

[state#0OH, name#Mark Twain,zip#31225]

As you can see in the demonstration, the complex types can be nested. For example, a bag
can be an element of a tuple, which is the result of the GrRour BYOperator:

(CA,{(CA,Ulf), (CA,manish), (CA,Brian)})

Copyright © 2015, Hortonworks, Inc. All rights reserved.

87

HDP Developer: Apache Pig and Hive

Defining a Schema

Pig will eat any kind of data, but if your data has a known structure to it, then you can define a
schema for it. The schema is typically defined when you load the data using the as keyword.
For example:

customers = LOAD 'customer data' AS (firstname:
chararray,lastname:chararray,house number:int,
street:chararray,phone:long,payment:double) ;

The customersrelation has six fields, and each field is a specific data type.

will be truncated. If you load a customer record that has fewer than six fields, it

C’] Note: If you load a customer record that has more than six fields, the extra fields
»
will pad the end of the record with nulls.

The schema can also specify complex types. For example, suppose we have the following
dataset in a file named ‘bag_demo.txt’:

F,66,{(41000,95103), (33000,57701) }
M,40,{(76000,95102) }

F,58,{(95000,95103, (60000,95105) }
M,85,{(14000,95102), (0,95105), (2000,94040) }

The corresponding relation might look like:

salaries = LOAD 'bag_demo.txt' AS (gender:chararray, age:int,
details:bag{ (salary:double,zip:long)}) ;

The salaries relation is a tuple of three fields: the first field is a chararray named gender, the
second field is an int named age, and the third field is a bag named details.

Pig is very lenient when it comes to schemas:

* If you define a schema, then Pig will perform error-checking withit

* If you do not define a schema, Pig will make its best guess as to how the data should be
treated

88 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Lab: Getting Started with Pig

Objective: Use Pig to navigate through HDFS and explore a dataset
See page 41 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

89

HDP Developer: Apache Pig and Hive

The GROUP Operator

salaries allsalaries

[gender | age | salary | zip |
r [17 [4100000]

{(F,17,41000.0,95103),
(M,19,76000.0,95102),
(F,22,95000.0,95103),
(F,19,60000.0,95105),
(M,19,14000.0,95102),
(M,17,35000.0,95103)}

allsalaries = GROUP salaries ALL;

The GROUP Operator

One of the most common operators in Pig is Group, which collects all records with the same
value for a provided key and puts them together into a bag. The result of a GRoUP operation is
a relation that includes one tuple per group. This tuple contains two fields:

* The first field is named "group"and is the same type as the group key
* The second field takes the name of the original relation and is typebag

Suppose we have the following data set:

F,66,41000,95103
M,40,76000,95102
F,58,95000,95103
F,68,60000,95105
M,85,14000,95102

Let’s group the records together by age:

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray,
age:int,salary:double,zip:int) ;

salariesbyage = GROUP salaries BY age;

The salariesbyage relation has two fields. The first is group, which will be an int because
age is an int, followed by the salaries field as a tuple:

> DESCRIBE salariesbyage;

salariesbyage: {group:int, salaries:{ (gender: chararray, age: int,salary: double,zip:
int) }}

The records will look like:

9 Copyright © 2015, Hortonworks, Inc. All rights reserved.

> DUMP salariesbyage;

(17,{(F,17,0.0,95050) , (M,17,0.0,95103) , (M,17,0.0,95102) })
(19,{(M,19,0.0,95050) })

(22, { (F,22,90000.0,95102) })

(23,{(M,23,89000.0,95105) , (M,23,64000.0,94041) })

Copyright © 2015, Hortonworks, Inc. All rights reserved.

91

HDP Developer: Apache Pig and Hive

You can also group a relation by multiple keys. The keys must be listed in parentheses. For
example:

> mygroup = GROUP salaries BY (gender,age);
> describe mygroup;

mygroup: {group: (gender: chararray,age: int),hsalaries: {(gender: chararray,age:
int,salary: double,zip: int)}}

Notice the group field is a tuple containing both gender and age. The resulting records in the
mygroup relation look like:

((M,17),{(M,17,0.0,95103),(M,17,0.0,95102) })
((M,19) ,{(M,19,0.0,95050) })
((M,23),{(M,23,64000.0,94041), (M,23,89000.0,95105) })

GROUP ALL

salaries

allsalaries

[goup | salaries |
{(F,17,41000.0,95103),
(M,19,76000.0,95102),
(F,22,95000.0,95103),

(F,19,60000.0,95105),
(M,19,14000.0,95102),
(M,17,35000.0,95103)}

allsalaries = GROUP salaries ALL;

GROUP ALL

You can group all of the records of a relation into a single tuple using the A11 option. For
example:

> allsalaries = GROUP salaries ALL;

> describe allsalaries;

allsalaries: {group: chararray,salaries: {(gender: chararray,age:
int,salary: double,zip: int)}}

In this case, the value of group will be the chararray “a11” followed by a bag of all records:

(all,{(F,66,41000.0,95103), (M,40,76000.0,95102) , (F,58,95000.0,95103) , (F,68,60000.0,951
05),(M,85,14000.0,95102) ,(M,14,0.0,95105) , (M,52,2000.0,94040) , (M,67,99000.0,94040) , (F,
43,11000.0,94041) , (F,37,65000.0,94040) , (M,72,83000.0,94041) , (M,68,15000.0,95103) , (F,74
,37000.0,95105) , (F,15,0.0,95050) , (F,83,0.0,94040) , (F,30,10000.0,95101) , (M,19,0.0,95050
), (M,23,89000.0,95105),(M,1,0.0,95050) ,(F,4,0.0,95103) })

9 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Relations without a Schema

salaries salariesgroup

| goup | salaries |

{(F,17,41000.0,95103),
(F,22,95000.0,95103)
(M,17,35000.0,95103)}

{(M,19,76000.0,95102),
(M,19,14000.0,95102)}

(95105 |{(F,19,60000.0,95105)}

salariesgroup = GROUP salaries BY §3;

Relations without a Schema

If you do not define a schema, then the fields of a relation are specified using an index that
starts at $0. This works well for datasets that have a lot of columns or for data that is not
structured.

The following relation has four columns but does not define a schema:
salaries = LOAD 'salaries.txt' USING PigStorage(','):

Notice what the output is when you try to describe thisrelation:

> DESCRIBE salaries;
Schema for salaries unknown.

The following relation groups salaries by its fourthfield:
salariesgroup = GROUP salaries BY §$3;
Notice the salariesgroup relation does not have a schema for its salaries field:

> describe salariesgroup
salariesgroup: {group: bytearray,salaries: {()}}

Why is the datatype of group bytearray?

Answer: Because the salaries relation does not have a schema, the data type of the field
used for grouping is the default bytearray type.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 93

HDP Developer: Apache Pig and Hive

The FOREACH GENERATE Operator

salaries A
[gender | age | salay | zip |
v Jes [4100000 |os103 66 [a100000

76000.00 57701 76000.00
M [ss [7eo000 [s7701 [umelllss |700000 |
r Jao |osoonoo |osio 00 | 9500000
M Jas leoooooo |osios 45 6000000

rl2a [ss00000 Josi03

A = FOREACH salaries GENERATE age, salary;

28 5500000

The FOREACH GENERATE Operator

The FOREACH. . . GENERATE operator transforms records based on a set of expressions that you
define. The operator works on each record in the data set (as in, “for each record”). The result
of a FOREACHIS a new tuple, typically with a different schema.

The FOREACH operator is a great tool for transforming your data into different data sets. The
expression in a FOREACH can contain fields, constants, mathematical expressions, the result of
invoking a Pig function, and many other variations and nestings.

Let’s look at an example. The following command takes in the salaries relation and generates a
new relation that only contains two of the columns insalaries:
> A = FOREACH salaries GENERATE age, salary;

> DESCRIBE A;
A: {age: int,salary: double}

The records in the 2 relation look like:

(66,84000.0)
(39,3000.0)
(84,14000.0)

You can perform mathematical computations in the GENERATE clause:

B = FOREACH salaries GENERATE salary, salary * 0.07;

The resulting relation contains each salary along with the salary multiplied by 7%:

(69000.0,4830.000000000001)
(91000.0,6370.000000000001)
(0.0,0.0)
(48000.0,3360.0000000000005)
(3000.0,210.00000000000003)

94 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Specifying Ranges in FOREACH
In the GENERATE clause, you can specify a range of values, which is useful when working with
datasets that have a large number of fields. Forexample:

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray,
age:int,salary:double,zip:int) ;
C = FOREACH salaries GENERATE age..zip;

The crelation will contain three fields: age, salary, and zip:

> describe C;

C: {age: int,salary: double,zip: int}
You can also specify an open-ended range:
D = FOREACH salaries GENERATE age..;

E = FOREACH salaries GENERATE ..salary;

D will contain age, salary, and zip. £ will contain gender, age, and salary.

This syntax also works well with large relations that do not have a schema:

customer = LOAD 'data/customers';
F = FOREACH customer GENERATE $12..$23;

Field Names in a FOREACH

A relation created from a FOREACH statement is a new tuple. Pig infers the data types of the
fields in the new tuple, but sometimes the names of the fields are not inferred. In the following

simple projection, Pig will use the same field name as the originalrelation:

> salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray,
age:int,salary:double,zip:int);

> C = FOREACH salaries GENERATE zip, salary;

> DESCRIBE C;

C: {zip: int,salary: double}

However, in the following projection, Pig cannot determine a field name for the second value in
the new tuple:

> D = FOREACH salaries GENERATE zip, salary * 0.10;
> DESCRIBE D;
D: {zip: int,double}

Notice the second field in D only has a datatype, but no name. You would have to use the $1
to refer to this field in b.
You can use the as keyword to assign a name to the fields in the new tuple. For example:

> E = FOREACH salaries GENERATE zip, salary * 0.10 AS bonus;
> DESCRIBE E;
E: {zip: int,bonus: double}

Notice the second field in & has the name bonus.
" Note: You can use the as keyword for any of the fields in the GENERATE clause,
»

even if Pig can infer the field name.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 95

HDP Developer: Apache Pig and Hive

FOREACH with Groups

salaries
| salay | zip |
41000.00 | 95103

66 |
58 [7600000 0510 |
0
45 |
28 |

salariesbygender

{(M,66,41000.0,95103),
(M,58,76000.0,95102),

(M,45,60000.0,95105)}
60000.00 | 95105

{(F,40,95000.0,95102),
55000.00 | 95103 (F,28,55000.0,95103)}
salariesbygender = GROUP salaries BY gender; l %

J
COUNT(salaries)

gender

|

J = FOREACH salariesbygender
GENERATE group, COUNT (salaries);

FOREACH with Groups

Let’s look at an example of a Pig script that performs a FOREACH operation on a group:

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray,
age:int,salary:double,zip:int) ;
salariesbygender = GROUP salaries BY gender;

The salariesbygender relation has two fields: group and a bag named salaries:

salariesbygender: {group: chararray,salaries: {(gender: chararray,age: int,salary:
double, zip: int)}}

Since there are only two possible values of group (M or F), then there will be at most two rows.
The following FOREACH counts the number of tuples in each salaries bag:

J = FOREACH salariesbygender GENERATE group, COUNT (salaries);
The g relation looks like:

J: {group: chararray, long}

The output of Jis:

(F,24)
(M,26)

This means our salaries. txt file contains 24 female records and 26 male records.
If you need to specifically refer to a field inside the bag of a group relation, you use the dot

operator. For example, suppose we only want to refer to the salary field in the salaries bag
of the salariesbygender relation:

K = FOREACH salariesbygender GENERATE group, MAX(salaries.salary);
The K relation will contain the group (so either M or F) and the maximum salary field in that
particular salaries bag. The output of running this codeis:

(F,95000.0)
(M,99000.0)

9 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The FILTER Operator

salaries

e | age | salory | s |
17| 4100000 |os103 |
EM
EX 95103 |

e [0 [eommoo [sse
[ramaoo o
e T

G = FILTER salaries BY salary >= 50000.0;

The FILTER Operator

The FILTER operator selects tuples from a relation based on specified Boolean expressions.
Use FILTER to select the rows you want, or filter out the rows you do not. The FILTER operator

looks like:
FILTER alias BY expression;

For example, the following command filters the salaries relation to contain only those tuples

whose salary field is greater than 10,000:
G = FILTER salaries BY salary >= 10000.0;

Conditions can be combined using AND or OR:

H = FILTER salaries BY gender == 'F' AND age >=

Copyright © 2015, Hortonworks, Inc. All rights reserved.

50;

97

HDP Developer: Apache Pig and Hive

Use the NoT operator to reverse a condition. Suppose we have the following dataset:

SD Rich

NV Barry
Cco George
CA Ulf

IL Danielle
OH Tom

CA Manish
CA Brian
co Mark

The following NoT operator filters out all rows that match a regular expression:

> employees = LOAD 'pigdemo.txt' AS (state:chararray, name:chararray)
> no_b = FILTER employees BY NOT name MATCHES '.*b|B.*';

The no_b relation will contain all records that do not contain the letter ‘b’ or ‘B’

(SD,Rich)
(CO, George)
(CA,U1f)
(IL,Danielle)
(OH, Tom)
(CA,Manish)
(CO,Mark)

" Note: The FILTER command does not change the schema of a relation or the
¥ structure. It only narrows down the number of records belonging to that relation.

98 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The LIMIT Operator

The L1MIT command limits the number of output tuples for a relation:

employees = LOAD 'pigdemo.txt' AS (state:chararray, name:chararray) ;
emp group = GROUP employees BY state;
L = LIMIT emp group 3;

Note that there is no guarantee which three tuples will be returned, and the tuples that are

returned can change from one run to the next. Using the data shown earlier, the output ofone
of the executions was:

(CA, { (CA,Ulf), (CA,manish), (CA,Brian)})
(Co, { (CO,George) , (CO,Mark) })
(IL, { (IL,Danielle)})

" Note: If you define an orRDER BY (discussed in the next lesson) immediately
¥y before the L.1M1T, then you will be guaranteed to get the same results each time.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 99

HDP Developer: Apache Pig and Hive

Review Questions

1) List two Pig commands that cause a logical plan to execute:

2) Which Pig command stores the output of a relation into a folder in HDFS?

Suppose the prices.csvfile looks like:

XFR,2004-05-13,22.90,400
XFR,2004-05-12,22.60,400000
XFR,2004-05-11,22.80,2600
XFR,2004-05-10,23.00,3800
XFR,2004-05-07,23.55,2900
XFR,2004-05-06,24.00,2200

And assume we have the following relation defined:

prices = load 'prices.csv' using PigStorage(',')
as (symbol:chararray, date:chararray, price:double, volume:int);

Explain what each of the following Pig commands or relationsdo:

3) describe prices;

4) A = group prices by symbol;

B5) B = foreach prices generate symbol as x, volume as y;

o)
Q
|

= foreach A generate group, SUM(prices.volume) ;

7) D = foreach prices generate symbol..price;

8) Write a Pig relation that only contains prices with a volume greater than 3,000:

10 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Lab: Exploring Data with Pig

Objective: Use Pig to navigate through HDFS and explore a dataset
See page 45 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

10

HDP Developer: Apache Pig and Hive

Advanced Pig Programming

Lesson Objectives

This lesson covers some of the more advanced features of Pig, including sorting,
parallelization, joins, and user-defined functions.

After completing this lesson, students should be ableto:
* Describe the ORDER BY Operator

* Describe the CASE Operator

* Describe the DISTINCT Operator

* Describe How to Use PARALLEL

* Describe the FLATTEN Operator

* Describe Nested FOREACH

* Describe Joins

* Describe the COGROUP Operator

* Describe Pig User-Defined Functions

Additional Content
* Lab: Splitting a Dataset

* Lab: Joining Datasets

* Lab: Preparing Data for Hive

* Demo: Computing PageRank

* Quiz: Lesson Review

* Lab: Analyzing Clickstream Data

* Lab: Analyzing Stock Market Data using Quantiles

10 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The ORDER BY Operator

salaries

-“

v e [a100000 [os103
v [ss [7600000 [os102 |
_Iﬂm

byage

gender

—_—

v a5 eoo0000 [os105 |

MENEENE
DENCEETTRETY CEmCErrmET

byage = ORDER salaries BY age ASC;

The ORDER BY Operator

The orDER BYcommand allows you to sort the data in a relation:

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS
(gender:chararray,age:int,salary:double, zip:chararray) ;
byage = ORDER salaries BY age ASC;

The records in the byage relation will be sorted by age:

(M,19,0.0,95050)

(F,22,90000.0,95102)
(M,23,89000.0,95105)
(M,23,64000.0,94041)
(F,30,10000.0,95101)
(M,31,95000.0,94041)

You can use DESC or AsC in the By clause. You can also order by multiple fields:

agesalary = ORDER salaries BY age ASC, salary ASC;

The output is similar to byage, except the salary field is sorted in ascending order. Compare
the two outputs of the records with age = 23:

(M,19,0.0,95050)

(F,22,90000.0,95102)
(M,23,64000.0,94041)
(M,23,89000.0,95105)
(F,30,10000.0,95101)
(M,31,95000.0,94041)

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

means the data will be sorted across all output files. In other words, part-r-
00000 will contain the first set of ordered tuples then part-r-00001 will
continue where the first records left off and so on.

C'] Note: The resulting output of an orRDER BY relation is a total ordering, which
»

4 Important: If you define a relation with an ordering then process that relation in
\‘ another expression, the ordering is no longer guaranteed. Forexample:

The records in B are no longer guaranteed to be ordered by 1astname in
descending order.

10 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The CASE Operator

salaries

| age | salary | aip |

66 [410000 |9s103

55000.0

58| 76000.

40 [os0000 [os102 |
:

28

The CASE Operator

Pig has a case operator that allows you to make decisions within a FOREACH GENERATE

| salay | bonus
G 41000.0 2050.0

76000.0 7600.0

95000.0 9500.0

omo oo |

statement. A casE clause contains an arbitrary number of wHEN. . . THEN clauses and contains

an END statement to denote the end of the cask.

For example:

bonuses = FOREACH salaries GENERATE salary,
CASE

WHEN salary >= 70000.00 THEN salary * 0.10
WHEN salary < 70000.00 AND salary >= 30000.0

THEN salary * 0.05
WHEN salary < 30000.0 THEN 0.0
END) AS bonus;

Copyright © 2015, Hortonworks, Inc. All rights reserved.

(

101

HDP Developer: Apache Pig and Hive

Parameter Substitution

Pig provides a parameter substitution feature that allows your Pig scripts to refer to values that
can be defined at runtime, either from the command line or in a properties file. A parameter is a
value that starts with a dollar sign (s) .

For example, sINPUTFILE is a parameter in the following L.oaD statement:

stocks = load '$INPUTFILE' USING PigStorage(','):

When you execute the script, specify a value for sINPUTFILE using the -p switch:
> pig -p INPUTFILE=NYSE daily prices_A.csv myscript.pig

Use the -param_fileswitch if your properties are stored in a text file:

> pig -param file stock.params myscript.pig

The text file stock.params looks like this:

INPUTFILE=NYSE daily prices_A.csv

100 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The DISTINCT Operator

employees unique_emp

[s0 [s [so | s1 |
o [mcn |
(v ey
EX NV Barry

[co [ceorge | EXN
cn fur

EX LT

fca Jur |

unique_emp = DISTINCT employees;

The DISTINCT Operator

The pIsTINCT operator removes duplicate tuples in a relation. The syntax is:

DISTINCT alias;

Suppose we have the following data:

SD Rich
NV Barry
SD Rich
(e{0) George
CA Ulf

SD Rich
CA Ulf
(e{0) George

Applying pD1sTINCT removes the duplicates:

employees = LOAD 'employees.txt';
unique_emp = DISTINCT employees;

The tuples in unique emp are:

(CA,Ulf)
(CO, George)
(NV,Barry)
(SD,Rich)

102 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Using PARALLEL

The PARALLEL operator is a clause used to determine the number of reducers in the
subsequent MapReduce job for that particular operation.

The syntax for the PARALLEL clause is:

PARALLEL n;

In this clause, nis the number of reducers. For example:

A = LOAD 'datal';

B = LOAD 'data2';

C = JOIN A by $1, B by $3 PARALLEL 20;
D = ORDER C BY $0 PARALLEL 5;

The Jo1n operation will use 20 reducers, and the orRDER operation will use five reducers.

You can use the default parallel property to set the number of reducers at the script level.
As an example, there will be eight reducers for each reduce task in the following Pig script:

SET default_parallel 8;
LOAD 'datal';

LOAD 'data2';

JOIN A by $1, B by $3;
ORDER C BY $0;

ogQw
]

" Note: Some operators have a reduce phase, like GROUP, ORDER BY,

'S DISTINCT, JOIN, LIMIT, and coGroupP. But some Pig operators do not require
a reduce phase; these are LOAD, FOREACH, FILTER, and sAMPLE. Forthose
types of operators, it does not make sense to specify a PARALLEL value.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 103

HDP Developer: Apache Pig and Hive

The FLATTEN Operator

employees
[name | location | states() |
ENEEE —
ut [onsite |y |
[Tom | remote | (o) (V) |

flat_employees

>

>

[Barry [remote | (1), (v |

o | o
EH

| location | state |
remote {50 |
remote_ [cA |
onsite_ [ca |
Tom |remote oW |
remote [Ny |
remote [N |
remote [N

-

flat _employees = FOREACH employees
GENERATE name, location, FLATTEN (states) AS state;

The FLATTEN Operator

The FLATTEN operator removes the nesting of nested tuples and bags. You invoke FLATTEN
like a function, passing in the tuple or bag that you want to flatten:

FLATTEN (relation)

The FLATTEN operator is best understood by an example. Suppose we have the following data
set:

Rich remote { (SD), (CA)}
Ulf onsite { (CA)}

Tom remote { (OH), (NY) }
Barry remote { (NV), (NY)}

The Pig Latin statements below load the data using a schema. Notice the states are in a bag:

> employees = LOAD 'locations.txt' AS (

name:chararray,

location:chararray,

states:bag{t:tuple(state:chararray)})

> describe employees;

employees: {name: chararray,location: chararray,states: {t: (state: chararray)}}

The output of the employeesrelation is the following:

(Rich, remote, { (SD), (CA) })
(Ulf,onsite, { (CA)})

(Tom, remote, { (OH) , (NY) })
(Barry, remote, { (NV) , (NY) })

104 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Notice that each record has a bag containing one or more states. If you flatten the states field
in the employees relation, each entry in the bag becomes its own full record:
flat _employees = FOREACH employees GENERATE name,
location, FLATTEN (states) AS state;
The FLATTEN operator produces a cross-product of every record in the bag, with all of the
other expressions in the GENERATE clause. The output of flat employees is:
(Rich, remote, SD)
(Rich, remote,CA)
(Ulf,onsite,CA)
(Tom, remote, OH)
(Tom, remote, NY)

(Barry, remote,NV)
(Barry, remote,NY)

which simply removes the nesting so that each field in the tuple is at the top

E] Note: The example here flattened a bag, but you can also flatten a nested tuple,
»
level. Suppose a tuple looks like:

(1, (2, 3))
After this tuple was flattened, it would look like:

(1,2,3)

Copyright © 2015, Hortonworks, Inc. All rights reserved. 105

HDP Developer: Apache Pig and Hive

Lab: Splitting a Dataset

Objective: Research the White House visitor data and look for members of
Congress

See page 51 of the HDP Developer: Apache Pig and Hive Lab Booklet.

106 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Nested FOREACH

A nested FOREACH (also known as an inner foreach) is a FOREACH statement that contains a
nested block of code. The nested block of code has the followingcriteria:

* Can contain CROSS, DISTINCT, FILTER, FOREACH, LIMIT, and ORDER BYoperations
¢ Must end with a GENERATE statement

The syntax looks like:

FOREACH nested_alias {
alias = nested operation;
alias = nested operation;
GENERATE expression;

}i

The following example shows how to count unique entries in a group using a nested FOREACH.
The data is daily stock prices from the New York Stock Exchange (NYSE); each row looks like:
NYSE,AEA,2010-02-08,4.42,4.42,4.21,4.24,205500,4.24

The first field is the exchange name, and the second field is the stock symbol. These are the
only two fields we need for our problem:
dailyA = LOAD 'NYSE daily prices_A.csv' USING
PigStorage(',') AS (exchange,symbol) ;

dailyA grp = GROUP dailyA BY exchange;
unique_symbols = FOREACH dailyA grp ({

symbols = dailyA.symbol;

unique_symbol = DISTINCT symbols;

GENERATE group, COUNT (unique_symbol) ;

* Thedailya grpcontains all of the stock symbols grouped by exchange

* Within the FOREACH, the symbols relation takes the bag dailyA.symbol and produces a
new relation that is a bag with tuples that only have the fiel1d symbol

* Theunique symbol relation is also a list of symbols but with all of the duplicates removed

* The GENERATE statement projects the group (which is “NYSE” in this example) and the
number of values in unique symbol

The output is:

(NYSE, 203)

This means there are 203 unique stock symbols in the NYSE daily prices A.csv file.

" Note: Another common task inside a nested FOREACH is ORDER BY. For example:
I\

dailyA = LOAD 'NYSE daily prices_A.csv' USING
PigStorage(',') AS (exchange,symbol,date) ;
dailyA grp = GROUP dailyA BY symbol;
result = FOREACH dailyA grp {
sorted = ORDER dailyA BY date ASC;
first traded date = LIMIT sorted 1;
GENERATE group, first traded date;

Copyright © 2015, Hortonworks, Inc. All rights reserved. 107

HDP Developer: Apache Pig and Hive

About Joins

Performing an Inner Join

locations depts

e e =
CEmra— | ——

innerjoin = JOIN locations BY firstname, depts BY firstname;

innerjoin
fon fom Jrom |Morketing |

R I S S P
o T un werews |

Performing an Inner Join

Joins are a common occurrence in data processing. The JoIN operation in Pig performs both
inner and outer joins of two data sets using keys indicated for each input. If the keys are equal
then the two rows are joined.

An inner join in Pig looks like the following:
alias = JOIN aliasl BY keyl, alias2 BY key2;

Let’s look at an example. Suppose we have the following file containing states and first names:

SD Rich
NV Barry
(e{0) George
CA Ulf

OH Tom

The second data set contains first names and departments:

Rich Sales
Ulf Management
Tom Marketing
Barry Sales
Rich Marketing

108 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The following Pig Latin commands perform an inner join on these two data sets using the first
name in both data sets as the key:

locations = LOAD 'pigdemo.txt' AS
(state:chararray, firstname:chararray) ;

depts = LOAD 'joindemo.txt' AS
(firstname:chararray,dept:chararray) ;

innerjoin = JOIN locations BY firstname, depts BY firstname;

> describe innerjoin;

innerjoin: {
locations::state: chararray,
locations::firstname: chararray,
depts::firstname: chararray,
depts::dept: chararray

}

Notice the innerjoin relation contains all fields from both data sets in the join. The : :
operator is needed to avoid ambiguity when the two data sets share the same field names (like
firstname in this example).

The output of innerjoinis:

(OH, Tom, Tom,Marketing)
(CA,Ulf,Ulf Management)
(SD,Rich,Rich, Sales)
(SD,Rich,Rich,Marketing)
(NV,Barry,Barry,Sales)

Copyright © 2015, Hortonworks, Inc. All rights reserved. 109

HDP Developer: Apache Pig and Hive

Performing an Outer Join

depts

U
Tol

locations

Rich
Barry

U | Management |
Tom | Marketing

If
m

i fg? |

George

Marketing

outerjoin = JOIN locations BY firstname FULL OUTER,
depts BY firstname;

Tom

outerjoin
locations::state
=
so

0 Joow | [

Performing an Outer Join

An outer join in Pig uses the oUTER keyword, along with either LEFT, RIGHT, or FULL. The
syntax looks like:

alias = JOIN aliasl BY keyl [LEFT|RIGHT|FULL] OUTER, alias2 BY key2;

" Note: The main difference between an inner join and an outer join is that records
& that do not have a match on the other side are included in the outer join. Pig
inserts null values into the missingfields.

110 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Let’s look at an example using the same data from the previous example:

outerjoin = JOIN locations BY firstname FULL OUTER,
depts BY firstname;

In this case, no records on either side will be omitted. The output looks like:

(OH, Tom, Tom,Marketing)
(CA,Ulf,Ulf Management)
(SD,Rich,Rich, Sales)
(SD,Rich,Rich,Marketing)
(NV,Barry,Barry,Sales)
(CO, George, ,)

If you perform a LEFT join, you get all records from the left data set, but non-matching records
in the right data set are omitted:

leftjoin = JOIN locations BY firstname LEFT OUTER,
depts BY firstname;

In our simple example, the result of 1eftjoin is the same as FULL OUTER because our data on
the right does not contain any records that arenon-matching:

(OH, Tom, Tom,Marketing)
(CA,Ulf,Ulf Management)
(SD,Rich,Rich, Sales)
(SD,Rich,Rich,Marketing)
(NV,Barry,Barry,Sales)
(CO,George, ,)

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Replicated Joins

A replicated join is useful when one of the data sets in the join is small enough to fit into
memory. This results in a map-side join, saving an enormous amount of network traffic during
the shuffle/sort phase of the resulting MapReduce job.

To take advantage of a replicated join, list the smaller data set last in the BY clause and follow it
with @ USING ‘replicated’ statement. For example:
replicatedjoin = JOIN locations BY firstname,
depts BY firstname USING 'replicated';
The departments data set will be distributed across all map tasks (using a feature of

MapReduce called a LocalResource), and the join will occur in the map side instead of on the
reduce side.

performance is noticeable. Just be careful: if the data set does not fit in the

O Best Practice: Use replicated joins whenever you can. The increase in
= memory, the underlying MapReduce will generate an error andfail.

112 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The COGROUP Operator

locations

departments

Sales

Management

— 3 |

| state |
BN
George
o Jrom | Marketing

cgroup = COGROUP locations BY firstname,
departments BY firstname;

cgroup

locations departments
{(OH,Tom)} {(Tom,Marketing)}
{(cAUIf) {(UlfManagement)}

m {(Rich,Sales,(Rich,Marketing)}
{(NV,Barry)} (Barry,Sales)}
((CO,George)))

The COGROUP Operator

The coGrouP operator is actually identical to the GrouP operator, except we use CoGrROUP when
grouping together more than one relation. For each input, the result of a cocroup is a record
with a key and one bag. You can think of a cogroupr as the first half of a JoIN: the keys are
collected, but the cross-product is not performed.

Let’s look at an example using the 1ocations and departments data:

> cgroup = COGROUP locations BY firstname,
departments BY firstname;
> DESCRIBE cgroup;
cgroup: {group: chararray,
locations: {
(state: chararray,
firstname: chararray)
},
departments: {
(firstname: chararray,
dept: chararray)}
}

Notice the schema of the cgroup relation consists of a key followed by a bag for each data set.
The output of cgroup is:

(Tom, { (OH,Tom) } , { (Tom,Marketing) })

(Ulf, {(CA,Ulf)},{ (Ulf,Management) })

(Rich, { (SD,Rich) }, { (Rich,Sales), (Rich,Marketing) })
(Barry, { (NV,Barry) } , { (Barry,Sales) })

(George, { (CO,George) }, {})

Copyright © 2015, Hortonworks, Inc. All rights reserved. 113

HDP Developer: Apache Pig and Hive

You could use the cgrouprelation to count the number of records that would occur in the
join’s result:
counters = FOREACH cgroup GENERATE group, COUNT (locations),

COUNT (departments) ;

The first number is the inner join count, and the second number is the outer join count:

(Tom,1,1)
(U1lf,1,1)
(Rich,1,2)
(Barry,1,1)
(George,1,0)

see GROUP, that implies the grouping of a single relation. If you see coGroup, that

C'] Note: The only difference between Grour and coGrour is the readability. If you
>
implies the grouping of two or more relations.

114 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Pig User-Defined Functions

The Pig API has a large collection of built-in functions for performing common tasks and
computations. However, some Pig scripts may require User-Defined Functions (UDFs) to
complete their tasks. Pig UDFs can be written in sixlanguages:

e Java

e Jython
* Python
* JRuby

* JavaScript

* Groovy

You write a UDF in Java following these steps:

1) Write a Java class that extendsEvalFunc.

2) Deploy the class in a Jarfile.

3) Register the Jar file in the Pig script using the REGISTER command.
)

4) Optionally define an alias for the UDF using the DEFINE command.

@ Reference: The Pig APl Javadocs are at:

http://pig.apache.org/docs/r0.14.0/api/

Copyright © 2015, Hortonworks, Inc. All rights reserved.

115

HDP Developer: Apache Pig and Hive

A UDF Example

Let’s take a look at an example. The following UDF adds a comma between two input strings:

package com.hortonworks.udfs;
public class CONCAT_COMMA extends EvalFunc<String> ({

@Override

public String exec(Tuple input) throws IOException {
String first = input.get(0) .toString() .trim() ;
String second = input.get(l).toString().trim()

return first + ", " + second;

* The coNCcAT coMMA class extends EvalFunc

* The generic of EvalFunc represents the data type of the return value. Notice the exec
method returns a string

* The execmethod is called when the UDF is invoked from the Pig script

* The input parameter is a Tupleinstance, which allows for an arbitrary number of
arguments.

* The get method of Tuple is used to retrieve the arguments passed in

Invoking a UDF

Before you can invoke a UDF, the function needs to be registered by your Pig script so that the
Pig compiler knows where to find the definition of the UDF. Use the REGISTER command to

register a JaR:

register my. jar;

You can specify a relative path or a full path to the Jar file. Once the JaR is registered, call the
UDF using its fully qualified class name:

x = FOREACH logevents
GENERATE com.hortonworks.udfs.CONCAT COMMA (level, code);

As an option, you can use the pErFINE command to define an alias that simplifies the syntax for
invoking the UDF:

DEFINE CONCAT COMMA com.hortonworks.udfs.CONCAT_ COMMA () ;

Now you can invoke the UDF using the alias:

x = FOREACH logevents GENERATE CONCAT_COMMA (level, code) ;

116 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Tips for Optimizing Pig Scripts

Here are a few best practices that can make the difference in the performance of Pig scripts:

Filter early and often

Project early and
often

Drop nulls before a
join

Use replicated joins
whenever possible

Optimize regular
join ordering

Use PARALLEL
properly

Use compression

Choose the right data

types

Getting rid of data as quickly as possible will improvethe
performance by reducing the amount of data that gets shuffledand
sorted across the network

Use a FOREACH to remove unwanted or unused fields in your
records as soon as possible

Filter out null records before the Jorn. The gain can besignificant,
even if you have a small percentage of null values

A map-sidejoin is always much more efficient than a reduce-side
join

Make sure that the table with the largest number of tuples per key
Is the last table in your query

Know your cluster. Setting this value too high can actually slow
down the job, and setting it too low is not a good use of your
cluster’s resources

Enable the compression of the temporary data files used between
map/reduce tasks and jobs by setting
mapreduce.map.output.compress to true and specifying a
compression codec with
mapreduce.map.output.compress.codec. Enable compression of
the output files between MapReduce jobs within a Pig processing
pipeline by setting the pig.tmpfilecompression and
pig.tmpfilecompression.codec properties

If you are treating a field as a specific data type, define the typein
the Loap statement with a schema. This will avoid unnecessary
data-type conversions later

Tip: When you start Pig, a special file named .pigbootup is searched for in the
user’s home folder and executed. The .pigbootup file is a great place to
configure properties, register Jarfiles, define UDFs, and perform any other task

that can be applied globally to all of your Pigscripts.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Lab: Joining Datasets

Objective: Join two datasets in Pig
See page 55 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Lab: Preparing Data for Hive

Objective: Transform and export a dataset for use with Hive

See page 61 of the HDP Developer: Apache Pig and Hive Lab Booklet.

118 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Overview of the DataFu Library

The pataFu library is an open-source library of Pig UDFs for performing data analysis on
Hadoop. patafrFu contains UDFs for:

* Bag operations, like append and concatenate

* Set operations, like union and intersect

* Running PageRank on a collection of graphs

» Statistical computations, like quantiles andvariance
* Sessionization functions for working with page views

To use the functions in the pataFu library, you need to register the patarFu JaR file, just like
you would with any other Pig UDF library:

register
/usr/hdp/current/pig-
client/lib/datafu. jar;

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Computing Quantiles

A quantile is a set of points from the cumulative distribution function of a random variable,
taken at regular intervals. The number of points, n, is the name of the quantile. For example: If
n = 4, you have a four-quantile (commonly called a quatrtile). If n = 5, you have a five-quantile,
and so on.

The datafu library has a quantile UDF named datafu.pig.stats.Quantile that computes a
quantile based on provided intervals and passed in to the UDF’s constructor. For example, an
evenly distributed five-quantile function would be definedas:
define Quintile datafu.pig.stats.Quantile('0.0','0.20',

'0.40','0.60','0.80','1.0") ;
You can also instantiate a guantile by passing in the number of evenly-spaced ranges. For
example, the above Quintilecould also be defined as:

define Quintile datafu.pig.stats.Quantile('6');

Quintiles are what five-quantiles are called, but we could have used any alias. Invoking this
UDF requires passing in a sorted bag. This is typically accomplished using a nested FOREACH.

Here is what the entire Pig script might look like for computing the quintiles of a collection of
high temperatures gathered at various weather stations:

register /usr/hdp/current/pig-client/lib/datafu.jar;

define Quintile datafu.pig.stats.Quantile('0.0','0.20',
'0.40','0.60','0.80','1.0") ;

temperatures = LOAD 'data.txt' AS (
location:chararray,
hightemp:double,
lowtemp:double

);

temps filter = FILTER temperatures BY hightemp is not null;
temps_group = GROUP temps_filter BY location;

quintiles = FOREACH temps_group {
sorted = ORDER temps filter BY hightemp;
GENERATE group AS location,
Quintile (sorted.hightemp) AS quant;
}

dump quintiles;

The output for each location is going to be six values, which define five equally numerous
subsets of the high temperatures:

(Toronto, (-7.22,-3.48,13.6,16.05,19.49,24.5))

(Moscow, (-9.0,-2.04,5.5,18.975,21.205,24.98))

(NorthPole, (-20.5,-14.6,-8.76,-2.57,1.475,2.445,3.61))

(Houston, (40.9,51.12,69.41,82.75,94.55,105.87))
(IntlFalls, (-14.41,-4.25,-1.15,12.15,17.6,21.73))

For example, in Toronto you have an equal number of days where the high temperature was
between -7.22 and -3.48 degrees Celsius, between -3.48 and 13.6 degrees Celsius, between
13.6 and 16.05 degrees Celsius, and so on.

120 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Demonstration: Computing PageRank

Objective: To understand how to use the PageRank UDF in DataFu
See page 63 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 121

HDP Developer: Apache Pig and Hive

Review Questions

1) If arelation is sorted using orRDER BY and the resulting MapReduce job runs with three
reducers, how is the output actually sorted?

Suppose the prices.csvfile looks like:

XFR,2004-05-13,22.90,400
XFR,2004-05-12,22.60,400000
XFR,2004-05-11,22.80,2600
XFR,2004-05-10,23.00,3800
XFR,2004-05-07,23.55,2900
XFR,2004-05-06,24.00,2200

And assume we have the following relation defined:

prices = load 'prices.csv' using PigStorage(',')
as (symbol:chararray, date:chararray, price:double, volume:int);

Explain what each of the following Pig commands or relationsdo:
2) F = foreach prices generate
(CASE
WHEN volume > 3000 THEN volume
WHEN volume <= 3000 THEN -1

END) AS high volume;

3) G = distinct prices;

4) H = GROUP prices BY symbol;

foreach H {
J = filter prices by volume > 3000;

GENERATE group, SUM(J.price);

5) What is the benefit of the using ‘replicated’ clause in a Pig join?

6) Why is filtering and projecting a relation early a performance benefit in Pig?

192 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Lab: Analyzing Clickstream Data

Objective: Become familiar with using the DataFu library to sessionize
clickstream data

See page 67 of the HDP Developer: Apache Pig and Hive LabBooklet.

Lab: Analyzing Stock Market Data using Quantiles

Objective: Use DataFu to compute quantiles
See page 71 of the HDP Developer: Apache Pig and Hive LabBooklet.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

123

HDP Developer: Apache Pig and Hive

124 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Hive Programming

Lesson Objectives

This lesson covers the details of the Hive framework and HiveQL programming language.

After completing this lesson, students should be ableto:

Describe Hive

Describe How to Define Tables
Describe How to Perform Queries
Describe How to Sort Data

Describe How to Join Data and Hive Join Strategies

Additional Content

Lab: Understanding Hive Tables

Demo: Understanding Partitions and Skew

Lab: Analyzing Big Data with Hive

Demo: Computing ngrams

Lab: Joining Datasets in Hive

Lab: Computing ngrams of Emails in Avro Format

Quiz: Lesson Review

Copyright © 2015, Hortonworks, Inc. All rights reserved.

125

HDP Developer: Apache Pig and Hive

About Hive

Apache Hive, http://hive.apache.org/, is a data warehouse system for Hadoop. Hive is not a
relational database; it only maintains metadata information about your big data stored on HDFS.
Hive allows you to treat your big data as tables and perform SQL-like operations on the data
using a scripting language called HiveQL.

* Hive is not a database, but it uses a database (called the metastore) to store the tables that
you define. Hive uses Derby by default

e A Hive table consists of a schema stored in the metastore and data stored on HDFS

* Hive converts HiveQL commands into MapReduce or Tez jobs (similar to how Pig Latin
scripts execute with Pig)

* One of the key benefits of HiveQL is its similarity to SQL. Data analysts familiar with SQL
can run MapReduce jobs by writing SQL-like queries, something they are already
comfortable doing

* You can easily perform ad hoc custom queries on HDFS usingHive

Pig and Hive have quite a few similarities, so you might be wondering which framework to
choose for your particular application. For most use cases:

* Pigis a good choice for ETL jobs, where unstructured data is reformatted so that it is easier
to define a structure to it

* Hive is a good choice when you want to query data that has a certain known structure to it

In other words, you will likely benefit from using both Pig and Hive. Pig is great for moving data
around and restructuring it, while Hive is great for performing analyses on the data.

C'j Note: Hive does not make any promises regarding performance. The benefit of
¥ Hive is its simplicity in being able to define and run a MapReduce or Tez job,
but the queries are not meant to execute in real time. Even the simplest of Hive
queries can take several minutes to execute (just like any MapReduce job), and
large Hive queries can feasibly take hours to run.

126 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Comparing Hive to SQL

SQL$Datatypes$ sQL$Seman.cs$
SELECT,SLOAD,SINSERTSfromSqueryS
ExpressionsSinSWHERESandSHAVINGS
GROUPSBY,SORDERSBY,SSORTSBYS
CLUSTERSBY,SDISTRIBUTESBYS
SublqueriesSinSFROMSclause$
GROUPSBY,SORDERSBYS
ROLLUPSandSCUBES

UNIONS

LEFT,SRIGHTSandSFULLSINNER/OUTERS
JOINS

CROSSSJOIN,SLEFTSSEMISJOINS

WindowingSfuncOonsS(OVER,SRANK,S
)S

Sublqueries$forSIN/NOTSIN,SHAVINGS
EXISTSS/SNOTSEXISTSS

INTS
TINYINT/SMALLINT/BIGINTS
BOOLEANS

FLOATS

DOUBLES

STRINGS

BINARYS

TIMESTAMPS
ARRAY,SMAP,SSTRUCT,SUNIONS

DECIMALS
CHARS

o
-
(e]

VARCHARS
DATES

Comparing Hive to SQL

Hive provides basic SQL functionality using Tez/MapReduce to execute queries. Hive supports
standard SQL clauses:

INSERT INTO
SELECT

FROM .. JOIN ..
WHERE

GROUP BY
HAVING

ORDER BY
LIMIT

[©]

N

Hive also supports basic DDL commands:
CREATE/ALTER/DROP TABLE/DATABASE

Some of the limitations of Hiveinclude:

* Index and view support are limited (discussed in detail later)
e The data in Hive is read only (no updates)

* Datatypesdo not line up with traditional SQL types

* New partitions can be inserted, but not individual rows

Copyright © 2015, Hortonworks, Inc. All rights reserved. 127

HDP Developer: Apache Pig and Hive

Hive Architecture

Hive queries are submitted to a HiveServer2 process that typically runs on a master node in the

cluster.
N
o I
/' Sy
m/ Metastore

E—— MapReduce 1 e

e User issues SQL query YARN job

e Hive parses and plans query

Query converted to MapReduce
and executed on Hadoop

" Hive

Compiler

Hive

Executor

‘ I
\/

NodeManager

Hive Architecture

Issuing Commands Using the Hive CLI, a Web interface, or a Hive JDBC/ODBC client,
a Hive query is submitted to the Hiveserver

Hive Query Plan The Hive query is compiled, optimized, and planned asa
Tez/MapReduce job

Tez/MapReduce The corresponding Tez or MapReduce job is executed on the
Job Executes Hadoop cluster

128 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Submitting Hive Queries

Hive queries are written using the HiveQL language, an SQL-like scripting language that
simplifies the creation of TezzMapReduce jobs. With HiveQL, data analysts can focus on
answering questions about the data, and let the Hive framework convert the HiveQL into a
Tez/MapReduce job.

You have two options for executing HiveQL commands:

Hive CLI The Hive command line interface allows you toenter commands
directly into the Hive shell or write the commands in a text fileand
execute the file

Beeline A new JDBC client that works with HiveServer2. The Beeline shell
works in embedded mode (just like the Hive CLI) and also remote
mode, where you connect to a HiveServer2 process using Thrift

The Hive CLI shell is started using the hive executable:

$ hive
hive>

Use the -fflag to specify a file that contains a Hive script:
$ hive -f myquery.hive
Beeline is started using the beeline executable:

$ beeline -u url -n username -p password
beeline>

Copyright © 2015, Hortonworks, Inc. All rights reserved. 129

HDP Developer: Apache Pig and Hive

Defining a Hive-Managed Table

A Hive table allows you to add structure to your otherwise unstructured data in HDFS. Use the
CREATE TABLE command to define a Hive table, similar to creating a table in SQL.

For example, the following HiveQL creates a new Hive-managed table named customer:

CREATE TABLE customer (
customerID INT,
firstName STRING,
lastName STRING,
birthday TIMESTAMP,
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ', ';

e The customer table has four columns
* ROW FORMAT is either DELIMITED Or SERDE

* Hive supports the following data types: TINYINT, SMALLINT, INT, BIGINT, BOOLEAN,
FLOAT, DOUBLE, DECIMAL, STRING, VARCHAR, CHAR, BINARY, DATEand TIMESTAMP

* Hive also has four complex data types: ARRAY, MAP, STRUCT, and UNIONTYPE

Defining an External Table

The following cREATE statement creates an external table named salaries:

CREATE EXTERNAL TABLE salaries (
gender string,
age int,
salary double,
zip int

)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';

An external table is just like a Hive-managed table, except that when the table is dropped, Hive
will not delete the underlying /apps/hive/warehouse/salariesfolder.

130 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Defining a Table LOCATION

Hive does not have to store the underlying data in /apps/hive/warehouse. Instead, the files
for a Hive table can be stored in a folder anywhere in HDFS by defining the nLocaT1on clause.
For example:
CREATE EXTERNAL TABLE salaries (
gender string,
age int,
salary double,
zip int
)
ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','
LOCATION '/user/train/salaries/';

In the table above, the table data for salaries will be whatever is in the
/user/train/salaries directory.

Important: The sole difference in behavior between external tables and Hive-
managed tables is when they are dropped. If you drop a Hive-managed table,
then its underlying data is deleted from HDFS. If you drop an external table,then
its underlying data remains in HDFS (even if the LocaTTONWas in

/apps/hive/warehouse/).

Copyright © 2015, Hortonworks, Inc. All rights reserved. 131

HDP Developer: Apache Pig and Hive

Loading Data into a Hive Table

The data for a Hive table resides in HDFS. To associate data with a table, use the LoaD pDATA
command. The data does not actually get “loaded” into anything, but the data does get
moved:

* For Hive-managed tables, the data is moved into a special Hive subfolders of
/apps/hive/warehouse

* For external tables, the data is moved to the folder specified by the LocaT1on clause in the
table’s definition

The Loap paTa command can load files from the local file system (using the Locar qualifier) or
files already in HDFS. For example, the following command loads a local file into a table named

customers.

LOAD DATA LOCAL INPATH '/tmp/customers.csv' OVERWRITE INTO TABLE customers;

The ovERWRITE option deletes any existing data in the table and replaces it with the new data.
If you want to append data to the table’s existing contents, simply leave off the OVERWRITE
keyword.

If the data is already in HDFS, then leave off the L.ocar keyword:
LOAD DATA INPATH '/user/train/customers.csv' OVERWRITE INTO TABLE customers;
In either case above, the file customers.csv is moved either into HDFS in a subfolder of

/apps/hive/warehouse or to the table’s LocaTION folder, and the contents of customers.csv
are now associated with the customerstable.

You can also insert data into a Hive table that is the result of a query, which is a common
technique in Hive. The syntax looks like:
INSERT INTO TABLE birthdays

SELECT firstName, lastName, birthday

FROM customers
WHERE birthday IS NOT NULL;

The birthdays table will contain all customers whose birthday column is not null.

132 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Performing Queries

Let’s take a look at some sample queries to demonstrate what HiveQL looks like. The following
SELECT statement selects all records from the customers table:

SELECT * FROM customers;
You can use the familiar wHERE clause to specify which rows to select from a table:

FROM customers
SELECT firstName, lastName, address, zip
WHERE orderID > O
ORDER BY zip;

’\ Note: The rFroM clause in Hive can appear before or after the seLECT clause.
»

One nice benefit of Hive is its ability to join data in a simple fashion. The JoIn command in
HiveQL is similar to its SQL counterpart. For example, the following statement performs an
inner join on two tables:

SELECT customers.*, orders.*

FROM customers

JOIN orders ON (
customers.customerID = orders.customerID

)
To perform an outer join, use the oUTER keyword:

SELECT customers.*, orders.*
FROM customers
LEFT OUTER JOIN orders
ON (customers.customerID = orders.customerID) ;

In the sELECT above, a row will be returned for every customer, even those without any orders.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 133

HDP Developer: Apache Pig and Hive

Lab: Understanding Hive Tables

Objective: Understand how Hive table data is stored in HDFS
See page 75 of the HDP Developer: Apache Pig and Hive Lab Booklet.

134 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Hive Partitions

Hive manages the data in its tables using files in HDFS. You can define a table to have a
partition, which results in the underlying data being stored in files partitioned by a specified
column (or columns) in the table. Partitioning the data can greatly improve the performance of
queries because the data is already separated into files based on the column value, which can
decrease the number of mappers and greatly decrease the amount of shuffling and sorting of

data in the resulting Tez/MapReduce job.
Use the partitioned byclause to define a partition when creating a table:

create table employees (id int, name string, salary double)
partitioned by (dept string);

This will result in each department having its own subfolder in the underlying warehouse folder
for the table:

/apps/hive/warehouse/employees
/dept=hr/
/dept=support/
/dept=engineering/
/dept=training/

" Note: You can partition by multiple columns, which results in subfolders within
» the subfolders of the table’s warehouse directory.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 135

HDP Developer: Apache Pig and Hive

Hive Buckets

the column value is
input
records

hashed

The table’s data is divided
up into buckets

bucket 2

Hive Buckets

Hive tables can be organized into buckets, which imposes extra structure on the table and the
way the underlying files are stored. Bucketing has two key benefits:

More efficient queries Especially when performing joins on the same bucketed columns

More efficient Because the data is already split up into smaller pieces
sampling

Buckets are created using the c1ustered by clause. For example, the following table has 16
buckets that are clustered by the id column:
create table employees (id int, name string, salary double)

clustered by (id) into 16 buckets;

How does Hive determine which bucket to put a record into? If you have n buckets, the
buckets are numbered 0 to n-1 and Hive hashes the column value and then uses the modulo
operator on the hash value.

136 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Skewed Tables

In Hive, skew refers to one or more columns in a table that have values that appear very often.
If you know a column is going to have heavy skew, you can specify this in the table’s schema:
CREATE TABLE Customers (

id int,

username string,

zip int
)
SKEWED BY (zip) ON (57701, 57702)

STORED as DIRECTORIES;

By specifying the values with heavy skew, Hive will split those out into separate files
automatically and take this fact into account during queries so that it can skip whole files if
possible.

In the customers table above, records with a zip of 57701 or 57702 will be stored in separate
files because the assumption is that there will be a large number of customers in those two z1p
codes.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 137

HDP Developer: Apache Pig and Hive

Demonstration: Understanding Partitions and Skew

Objective: To understand how Hive partitioning and skewed tables work

See page 81 of the HDP Developer: Apache Pig and Hive LabBooklet.

138 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Sorting Data

HiveQL has two sorting clauses:

ORDER BY A complete ordering of the data, which is accomplished byusing a
single reducer

SORT BY Data output is sorted per reducer

The syntax for the two clauses looks like:
select * from table name [order | sort] by column name;

The syntax for both is identical; only the behavior is different. If there is more than one
reducer, sort by provides a partial sorting of the data by reducer but not a total ordering.

Order by implements a total ordering across all reducers. To obtain a parallel total ordering
across multiple reducers in Hive, you have to set the following property:

hive.optimize.sampling.orderby=true

If you do not set the property above then the total ordering is achieved by using one reducer.
In that situation, you must add a LImMIT clause to the Hive query to limit the size of the output
so that it can be managed by a single reducer.

Using Distribute By

Hive uses the columns in distribute by to distribute the rows among reducers. In other
words, all rows with the same distribute by columns will go to the same reducer. For

example, suppose you have the following table named salaries with the schema (gender,
age, salary, zip):

F 66 41000.0 95103
M 40 76000.0 95102
F 58 95000.0 95103
F 68 60000.0 95105
M 85 14000.0 95102

Note that distribute by is typically used in conjunction with an insert statement (or also
when using Hadoop streaming with custom mappers and/or reducers). The following
command demonstrates distribute by on the age column:

set mapreduce. job.reduces=2;

insert overwrite table mytable

select gender, age, salary from salaries
distribute by age;

Records with the same age will go to the same reducer.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 139

HDP Developer: Apache Pig and Hive

The distribute by does not guarantee any type of clustering of the records. For example, a
reducer might get:

M,66,84000.
F,58,95000.
M,40,76000.
F,66,41000.

O o oo

The two records with age = 66 are sent to the same reducer, but they are not adjacent. You
can use sort by to cluster records with the same distribute by column together:

insert overwrite table mytable
select gender, age, salary from salaries
distribute by age
sort by age;

The records with the same age will now appear together in the reducer’s output:

F,58,95000.
M,66,84000.
F,66,41000.
M,68,15000.
F,68,60000.
M,72,83000.

O oO0Oo0Oo0Ooo

" Note: If you use distribute by followed with a sort by on the same column,
F you can use cluster by and get the same result. For example, the following
statement has the same result as the previous Hive statementabove:

140 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Storing Results to a File

The following command outputs the results of a query to a file in HDFS. For example:

INSERT OVERWRITE DIRECTORY '/user/train/ca_or_sd/' select name, state from names where
state = 'CA' or state = 'SD';

You can also output the results of a query to a file on the local file system by adding the L.ocarn
keyword:

INSERT OVERWRITE LOCAL DIRECTORY '/tmp/myresults/' SELECT * FROM bucketnames ORDER BY
age;
Specifying MapReduce Properties

Keep in mind that a Hive query is actually a MapReduce job behind the scenes. You can
specify some of the properties of that underlying MapReduce job in Hive using the seT
command.

You can either set the property in the Hive script:

SET mapreduce.job.reduces = 12

Or you can set properties at the command line using the hiveconfflag:
hive -f myscript.hive -hiveconf mapreduce.job.reduces =12

You can use hivevar for parameter substitution. For example:

SELECT * FROM names WHERE age = ${age}

Specify age using either seT or the hivevar flag:

hive -f myscript.hive -hivevar age=33

Copyright © 2015, Hortonworks, Inc. All rights reserved. 141

HDP Developer: Apache Pig and Hive

Lab: Analyzing Big Data with Hive

Objective: Analyze the White House visitor data

See page 85 of the HDP Developer: Apache Pig and Hive Lab Booklet.

142 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Hive Join Strategies

Approach | Pos | Cons |

Join keys are shuffled using Works regardless of Most resource-

MapReduce and joins are
performed on the reduce
side.

Small tables are loaded into
memory in all nodes,
mapper scans through the
large table and joins.

Map
(Broadcast)
Join

Mappers take advantage of
co-location of keys to do
efficient joins.

Sort-
Merge-
Bucket Join

data size or layout. intensive and
slowest join type.

Very fast, single scan All but one table

through largest must be small

table. enough to fit in
RAM.

Very fast for tables of Data must be sorted

any size. and bucketed ahead
of time.

Hive Join Strategies

Some important concepts to understand when performing joins and laying out your Hive data:

* Shuffle joins always work in the sense that if you cannot perform a more efficient type of

join, two tables can always be joined using a shufflejoin

* A map join is very efficient and ideal if one side of the join is a small enough dataset to fit

into memory

* If amap join is not an option, then the next best option is a sort-merge-bucket join, which

we will discuss in more detail

Shuffle Joins

customer

[Nk Jroner [uom
[lessie [smonds | 11012

orders
[cd | price | quantiy |
a0 Jwoso |3 |
391 se9 s |
s Jaoso o |

SELECT * FROM customer JOIN orders ON customer.id = orders.cid;

{id: 11911, { first: Nick, last: Toner }}
{id: 11914, { first: Rodger, last: Clayton }}

{ cid: 4150, { price: 10.50, quantity: 3 }}
{ cid: 11914, { price: 12.25, quantity: 27 }}

{id: 11911, { first: Nick, last: Toner }}
{ cid: 4150, { price: 10.50, quantity: 3 }}

{id: 11914, { first: Rodger, last: Clayton }}
{cid: 11914, { price: 12.25, quantity: 27 }}

Shuffle Joins

A shuffle join is the default join technique for Hive, and it works with any data sets (no matter

how large). Identical keys are shuffled to the same reducer, and the join is performed on the

reduce side. This is the most expensive join from a network utilization standpoint because all
records from both sides of the join need to be processed by a mapper and then shuffled and
sorted, even the records that are not a part of the resultset.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

143

HDP Developer: Apache Pig and Hive

Map (Broadcast) Joins

customer orders
[st |t | id N o [price | quantiy |
[Nk froner |uon NEEEMaso fwso [s |
[Jessie [smonds |01z Wemuons [122s |z |
[kasi [tamers |u0i3 NMEaen [ses s |
[Rodger [clayon |11 ooz [3009 22 |
[verona [Hollen {1195 [l i01a faos0o o |

SELECT * FROM customer JOIN orders ON customer.id = orders.cid;

{id: 12914, { first: Rodger, last: Clayton }} Records are joined during
: , { price: 12.25, quantity: 27 }, the Map phase.

4, { price: 12.25, quantity: 27 }}

Map (Broadcast) Joins

If one of the datasets is small enough to fit into memory, then it can be distributed (broadcast)
to each mapper and perform the join in the map phase. This greatly reduces the number of
records being shuffled and sorted because only records that appear in the result set will be
passed on to a reducer.

A map join has a special C-style comment syntax for providing a hint to the Hive engine:

select /*+ MAPJOIN(states) */ customers.*, states.*
from customers

join states on (customers.state = states.state);

Important: In HDP 2.x, Hive joins are automatically optimized without the need
for providing hints.

144 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Sort-Merge-Bucket (SMB) Joins

customer orders

[Nk froner Juom |

SELECT * FROM customer join orders ON customer.id = orders.cid;

Distribute and sort by the most common join key.

CREATE TABLE orders (cid int, price float, quantity int)
CLUSTERED BY(cid) SORTED BY(cid) INTO 32 BUCKETS;

CREATE TABLE customer (id int, first string, last string)
CLUSTERED BY(id) SORTED BY(cid) INTO 32 BUCKETS;

Sort-Merge-Bucket (SMB) Joins

If you have two datasets that are too large for a map-side join, an efficient technique for joining
them is to sort the two datasets into buckets. The trick is to cluster and sort by the same join
key.

This provides two major optimization benefits:

* Sorting by the join key makes joins easy. All possible matches reside in the same area on
disk

* Hash bucketing a join key ensures all matching values reside on the same node. Equi-joins
can then run with no shuffle

For this to work properly, the number of bucket columns has to equal the number of join
columns. This means that, in general, you will need to specifically define your Hive tables to fit
the requirements of a sort-merge-bucket join, which implies you are aware at design time of
the columns that will be most commonly used in joinstatements.

following configuration settings enabled. (Note that these settings are already set
to true in HDP 2.x):

hive.auto.convert.sortmerge. join=true;
hive.optimize.bucketmapjoin = true;
hive.optimize.bucketmapjoin.sortedmerge = true;
hive.auto.convert.sortmerge.join.noconditionaltask = true;

C"‘ Note: An SMB join can be converted to an SMB map join. This requires the

Copyright © 2015, Hortonworks, Inc. All rights reserved. 145

HDP Developer: Apache Pig and Hive

Invoking a Hive UDF

Similar to Pig, Hive has the ability to use User-Defined Functions written in Java to perform
computations that would otherwise be difficult (or impossible) to perform using the built-in Hive
functions and SQL commands.

To invoke a UDF from within a Hive script, you needto:
* Register the garfile that contains the UDF class and
* Define an alias for the function using the CREATE TEMPORARY FUNCTION command.

For example, the following Hive commands demonstrate how to invoke the ComputeShipping
UDF defined above:

ADD JAR /myapp/lib/myhiveudfs.jar;
CREATE TEMPORARY FUNCTION ComputeShipping
AS 'hiveudfs.ComputeShipping';
FROM orders SELECT address, description, ComputeShipping(zip, weight);

146 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Computing ngrams in Hive
An ngram is a subsequence of text within a large document. The “n” represents the length of
the subsequence. The result of an ngramis a frequency distribution

For example, when n is 2 it’s called a bigram, and it represents the occurrence of two adjacent
terms. A trigram is when n is 3 and represents three adjacent terms, and so on.

Hive contains an ngram function for computing the frequency distribution. For example:
select ngrams (sentences(val),2,100) from mytable;

The above command computes a bigram of the data in the val column of mytable, returning a
frequency distribution of the top 100 results.

Hive also contains a context ngram function, which computes ngrams based on a context
string that appears around the subsequence of text. Forexample:
select context ngrams (sentences(val),
array ("error","code" ,null),
100)
from mytable;

The above command generates a frequency distribution of the top 100 words that follow the
expression “error code.”

Copyright © 2015, Hortonworks, Inc. All rights reserved. 147

HDP Developer: Apache Pig and Hive

Demonstration: Computing ngrams

Objective: To understand how to compute ngrams usingHive

See page 95 of the HDP Developer: Apache Pig and Hive Lab Booklet.

148 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Review Questions

1)

6)
7)

A Hive table consists of a schema stored inthe Hive
in

True or False: The Hive metastore requires an underlying SQL database.

and data stored

What happens to the underlying data of a Hive-managed table when the table is dropped?

True or False: A Hive external table must define arLocaTION.

List three different ways data can be loaded into a Hivetable:

When would you use a skewed table?

Suppose you have the following table definition:

create table movies (title string, rating string,

8)

length double) partitioned by (genre string):;

What will the folder structure in HDFS look like for the movies table?

Explain the output of the following query:

select * from movies order by title;

9)

What does the following Hive query compute?

from mytable

select explode (ngrams (sentences(val) ,3,100)) as myresult;

10) What does the following Hive query compute?

from mytable

select explode(context ngrams (sentences(val),
array("I","liked" ,null) ,10)) as myresult;

Copyright © 2015, Hortonworks, Inc. All rights reserved.

149

HDP Developer: Apache Pig and Hive

Lab: Joining Datasets in Hive

Objective: Perform a join of two datasets in Hive
See page 99 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Lab: Computing ngrams of Emails in Avro Format

Objective: Use Hive to compute ngrams
See page 103 of the HDP Developer: Apache Pig and Hive Lab Booklet.

150 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Using HCatalog

Lesson Objectives

This lesson covers the details of how HCatalog is used to provide a central repository for
defining and sharing schemas for data stored in Hadoop.

After completing this lesson, students should be ableto:
* About HCatalog

* HCatalog in the Ecosystem

* Defining a New Schema

* Using HCatLoader with Pig

* Using HCatStorer with Pig

Additional Content

* Quiz: Lesson Review

* Lab: Using HCatalog with Pig

Copyright © 2015, Hortonworks, Inc. All rights reserved. 151

HDP Developer: Apache Pig and Hive

About HCatalog

o This is analyst Joe, he uses
This is programmer Bob, he Hive to build reports and
uses Pig to crunch data. answer ad-hoc queries.

Photo Credit: totalAldo via Flickr

Hmm, is it done yet? Where is it? What
format did you use to store it today? Is it
compressed? And can you help me load it
into Hive?

HCatalog

What Is HCatalog?

One of the most attractive qualities of Hadoop is its flexibility to require schema on read, not on
write. Hcatalog helps Hadoop deliver on this promise. It is a metadata- and table-
management system for Hadoop. HCataloghas the following features:

162

Makes the Hive metastore available to users of other tools on Hadoop

Provides connectors for MapReduce and Pig so that users of those tools can read data
from and write data to Hive’'s warehouse

Allows users to share data and metadata across Hive, Pig, andMapReduce
Provides a relational view through an SQL-like language (HiveQL) to data within Hadoop

Allows users to write their applications without being concerned about how or where the
data is stored

Insulates users from schema- and storage-format changes

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

HCatalog in the Ecosystem

ﬁ Java MapReduce

HCatalog

HCatalog in the Ecosystem

HCatalog provides a consistent data model for the various tools that use Hadoop. It also
provides table abstraction, which abstracts some of the details about your data like:

* How the data is stored

* Where the data resides onthe filesystem
* What format that data is in

* What the schema is of the data

Having this information available to Hadoop tools in a consistent fashion can simplify the

software development process and also bring consistency of algorithms and results across all

of the tools and frameworks used in your Hadoop environment.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

153

HDP Developer: Apache Pig and Hive

Defining a New Schema

HCatalogis an extension of Hive that exposes the Hive metadata to other tools and
frameworks. To define a new HCatalogschema, you simply define a table in Hive.

This means you already have HCatalog schemas defined. The benefit of Hcatalog is not in the
defining of schemas but in its ability to expose the schemas and make them available to
frameworks outside of Hive.

Using HCatLoader with Pig

HCatalog provides two interfaces for use by Pig scripts to read and write data in HCatalog-
managed tables:

HCatLoader To read data from HCatalog-managed tables
HCatStorer To write data to HCcatalog-managedtables

For example, the following Pig Latin command loads a table named emp1oyees managed by
HCatalog:

emp relation = LOAD 'employees' USING org.apache.hive.hcatalog.pig.HCatLoader() ;

Notice that you do not provide a schema when loading a relation with HCatalog. The schema
of the relation emp relation is whatever the schema is of the employees table.

Using HCatStorer with Pig

Similarly, if you have a relation that you want to store into an HCatalog-managed table, you
use the sTORE command along with the us1nG clause with HCatStorer:

STORE customer projection INTO 'customers' USING
org.apache.hive.hcatalog.pig.HCatStorer() ;

Important: For the above command to execute successfully, the field names of
the customer projection relation must match the column names of the
customerstable. You will see how this works in the upcoming lab.

The Pig SQL Command

Pig has an SQL command that you can use to run Hive DDL commands. For example, you
could create a table from within a Pig script (or the Grunt shell) using the following command:

grunt> sqgl create table movies (
title string,
rating string,
length double)
partitioned by (genre string)
stored as ORC;

154 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Review Questions

1) Where does HCatalogstore its schema information?

2) List three programming frameworks that can readily access an HCatalog schema:

3) What Java class does Pig use to load data from an HCatalogtable?

4) True or False: HCatalogis now merged with Hive.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

155

HDP Developer: Apache Pig and Hive

Lab: Using HCatalog with Pig

Objective: Use HCatalog to provide the schema for a Pig relation

See page 109 of the HDP Developer: Apache Pig and Hive Lab Booklet.

156 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Advanced Hive Programming

Lesson Objectives

This lesson covers some of the more advanced features of Hive programming, including views,
the windowing functions, and the various optimization capabilities of Hive.

After completing this lesson, students should be ableto:
* Describe How to Perform a Multi-Table/File Insert

* Describe Views

* Describe How to Use Windows

* Describe How to Compute Table Statistics

* Describe How to Use HiveServer2

e Describe How to Understand Hive onTez

Additional Content

* Lab: Advanced Hive Programming

* Quiz: Lesson Review

Copyright © 2015, Hortonworks, Inc. All rights reserved. 157

HDP Developer: Apache Pig and Hive

Performing a Multi-Table/File Insert

insert overwrite directory '2014 _visitors' select * from wh_visits
where visit_year='2014'
insert overwrite directory 'ca_co
where state='CA' ;

gress' select * from congress

No semi-colon

from visitors
INSERT OVERWRITE TABLE gender_sum
SELECT visitors.gender, count_distifict(visitors.userid)
GROUP BY visitors.gender
INSERT OVERWRITE DIRECTORY '/user/tmp/age_sum'
SELECT visitors.age, count_distinct(visitors.userid)
GROUP BY visitors.age;

Performing a Multi-Table/File Insert

Hive queries are converted into one or more MapReduce jobs and executed on a Hadoop
cluster. Your Hive query might result in a map-only job, in a single mapper and a single
reducer, Or in multiple mappers and multiple reducers. Each MapReduce job requires a lot of
work on the cluster, and some Hive queries can take a very long time (hours) to execute.

One clever trick you can use when querying Big Data using Hive is to perform a multi-table or
multi-file insert, where you essentially run multiple queries within a single MapReduce job. The
queries do not even need to process the sametables.

Consider the following simple Hive query that selects all White House visitors for the year 2013.

insert overwrite directory '2013 visitors' select * from wh_visits where
visit year='2013' ;

Now suppose we have the following query on a different table named congress:
insert overwrite directory 'ca_congress' select * from congress where state='CA' ;
As expected, each query above requires a MapReducejob.

Notice in the following Hive query that we perform both selects in the same query:

insert overwrite directory '2013 visitors' select * from wh_visits where
visit year='2013"
insert overwrite directory 'ca congress' select * from congress where state='CA' ;

158 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Notice the only difference is that the semicolon was removed after the first query, which means
the Hive code above is a single statement. The important result is that the above Hive
command runs as a single MapReduce job. Two output folders are created (2013 visitors
and ca_congress) and the data from two separate Hive tables are processed, but all in a single
MapReduce job.

understand how Hive queries relate to underlying MapReduce jobs. In general,
you can gain a lot of performance by running two tasks at the same timeinstead
of running two separate MapReduce jobs.

C,] Note: Using a multi-file insert may seem a bit odd, but it is important to
I

The following example demonstrates querying from the same table, with one result being
output to another table and the other resultgetting written to HDFS:

from visitors

INSERT OVERWRITE TABLE gender_sum
SELECT visitors.gender, count distinct(visitors.userid)
GROUP BY visitors.gender

INSERT OVERWRITE DIRECTORY '/user/tmp/age_ sum'
SELECT visitors.age, count_distinct(visitors.userid)
GROUP BY visitors.age;

Copyright © 2015, Hortonworks, Inc. All rights reserved. 159

HDP Developer: Apache Pig and Hive

Understanding Views

Table_1

Table_2

Table_3

3

Hive tables map
to folders in

HDFS

Understanding Views

Hive views are the results
of queries and have no
underlying stored data

A view in Hive is defined by a seLECT statement and allows you to treat the result of the query
like a table. The table does not actually exist, and the query does not execute until the
statement that refers to the view is executed.

Use cases for using views include:

* Define a view to reduce the complexity of a query. For example, a nested SELECT
statement can be defined separately as aview

* Restrict a user’s access to the subset of an actual Hive table by defining a view that
contains only the columns and rows that the userneeds

that is using the view or the view may have to be executed in its own
MapReduce job. For example, if the view query contains an orRDER BY then it will
execute in its own MapReduce job.

C,{‘ Note: Depending on the query, a view gets combined (optimized) into the query
»

" Note: Views in Hive are non-materialized, so you can use them without concern
¥ of creating more work for the resulting MapReduce job.

160 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Defining Views

A view is defined using the CREATE vIEwW statement. For example, the following Hive statement
defines a view named 2010 _visitors:
CREATE VIEW 2010_visitors AS

SELECT fname, lname, time of arrival, info_ comment

FROM wh_visits
WHERE
cast(substring(time_of arrival,6,4) AS int) >= 2010
AND
cast(substring(time_of arrival,6,4) AS int) < 2011;
The 2010 visitors is a view that represents people that visited the White House in the year

2010.

A view is not a table in Hive with actual data, but a view can be treated like a table. For
example, you can run the DESCRIBEcommand on a view to see its schema:

hive> describe 2010_visitors;

OK

fname string None
lname string None
time of arrival string None
info comment string None

A view will also show up in your list of tables. Notice the output of the sHOwW TABLES
command:

hive> show tables;

OK

2010_visitors
wh_visits

Similar to a table, you can delete a view using the proP vIEwcommand:

DROP VIEW 2010_visitors;

" Note: Views can also contain partitions, just like tables. This allows you to define
» views that behave exactly like your underlying tables, even tables that are
partitioned.

Using Views

You can use a view in a query just like you would use a table. For example, the following query
uses the 2010 visitorsview to find visitors to the President:

from 2010_visitors
select *
where info comment like "%CONGRESS%"
order by lname;

Copyright © 2015, Hortonworks, Inc. All rights reserved. 161

HDP Developer: Apache Pig and Hive

Notice that you could have performed the above query without using a view. Instead, you
could have defined a longer wHERE clause or a nested serLECcT statement. However, using a
view keeps the SQL easier to read. This is obviously a simple example, but it demonstrates the
power and usefulness of views. Hive will determine the best way to convert the above
command into one or more MapReduce jobs at runtime.

The TRANSFORM Clause

You can write your own custom mappers Or reducers and use them in Hive using the
TRANSFORM clause. For example, the following example shows data being processed by a
Python script named splitwords.pyin a SELECT clause and then that result being processed
by countwords.py.

add file splitwords.py:;
add file countwords.py;

FROM (
FROM mytable
SELECT TRANSFORM (keywords) USING 'python splitwords.py'
AS word, count
CLUSTER BY word
) wc
INSERT OVERWRITE TABLE word_count
SELECT TRANSFORM (wc.word, wc.count)
USING 'python countwords.py'
AS word, count;

By default, columns will be transformed to sTRING and delimited by a tab before being fed to
the user script. The output of the script will be treated as tab-separated sTRING columns.

You can achieve a similar result using the MmaP and REDUCE clauses:

add file splitwords.py:;
add file countwords.py;

FROM (
FROM mytable
MAP keywords USING 'python splitwords.py'
AS word, count
CLUSTER BY word
) wc
INSERT OVERWRITE TABLE word_count
REDUCE wc.word, wc.count USING 'python countwords.py'
AS word, count;

,\ Note: Using MAP and REDUCE as an alias to SELECT TRANSFORM may not have the

o exact affect that you desire, since there is no guarantee that your specified script
will be executed during a map or reduce phase. The end result of your query will
likely be the same, but MAP does not force a map phase, and REDUCE does not
force a reduce phase.

162 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The OVER Clause

orders result set

[ca | price | quantiy

cid max(price)

4150 10.50 3 2934 39.99

z — E T TR
s s s
2

"

SELECT cid, max(price) FROM orders GROUP BY cid;

orders result set
| price | quantity | cid max(price)
1050 204 2999
12.25 4150 10.50
R ——
599 s | 4150 10.50

s i e

11914 40.50

SELECT cid, max(price) OVER (PARTITION BY cid) FROM orders;

The OVER Clause

Hive 0.11 introduced windowing capabilities to the Hive QL. Similar to an aggregate function
(like GrOUP BY), a window function performs a calculation across a set of table rows that are
somehow related, except that a window function does not cause rows to become grouped into
a single output row; the rows retain their separateidentities.

This is best demonstrated by the ovER clause, as you can see in the result above. The Group
By statement finds the maximum price of each order, and the results are aggregated into a
single row for each unique cid.

The ovVER clause does not aggregate the result but instead maintains each row of data and
outputs the maximum price of the each cid group.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 163

HDP Developer: Apache Pig and Hive

Using Windows

result set

sum(price)

cid
4150 5.99

SELECT cid, sum(price) OVER (PARTITION BY cid ORDER BY price
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) FROM orders;

Using Windows

The ovER clause allows you to define a window over which to perform a specific calculation.
For example, the following Hive statement computes the sum of each order, but the sum is not
computed over all prices in an order. Instead, the sum is computed over a window that
includes the current row and the two preceding rows, as ordered by the price column.

SELECT cid, sum(price) OVER (PARTITION BY cid ORDER BY price ROWS BETWEEN 2 PRECEDING
AND CURRENT ROW) FROM orders;

Study the output carefully and see if you can verify that the result is what you expected based
on the query.

The FOLLOWING statement is used to specify rows after the current row:

SELECT cid, sum(price) OVER (PARTITION BY cid ORDER BY price ROWS BETWEEN 2 PRECEDING
AND 3 FOLLOWING) FROM orders;

Use the unBoUNDED statement to specify all prior or following rows:

SELECT cid, sum(price) OVER (PARTITION BY cid ORDER BY price ROWS BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW) FROM orders;

,‘ Note: Hive window functions also include the LEaAD and 1ac functions for
»

specifying the number of rows to lead ahead or lag behind in the window. Their
usage is identical to the SQL standard.

164 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Hive Analytics Functions

orders

result set

cid quantity
10.50 4150 2
12.25 4150
—_—
4150

39.99 2

20.00

3
27
599 [s
309 |2
10
2

5
4150 2
11914

2

11914 27

SELECT cid, quantity, rank() OVER (PARTITION BY cid
ORDER BY quantity) FROM orders;

Hive Analytics Functions

Hive 0.11 also added the following SQL standard analytics functions:

RANK

DENSE RANK

PERCENT RANK

ROW_NUMBER

CUME_DIST

NTILE

Returns the rank of each row within the partition of a resultset

Returns the rank of rows within the partition of a resultset without

any gaps in the ranking

Calculates the relative rank of a row within a group ofrows

Returns the sequential number of a row within a partition ofa result

set

Calculates the number of rows with values lower than orequal to
the value of r, divided by the number of rows evaluated in the

partition for a row r

Distributes the rows in an ordered partition into a specified number
of groups. For each row, NTILE returns the number of the group to

which the row belongs

Copyright © 2015, Hortonworks, Inc. All rights reserved.

165

HDP Developer: Apache Pig and Hive

Lab: Advanced Hive Programming

Objective: To understand how some of the more advanced features of Hive work

See page 113 of the HDP Developer: Apache Pig and Hive Lab Booklet.

166 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Hive File Formats

As you have seen, Hive does not store data. The data for a table is stored in HDFS in one of
the following formats:

Text file Comma, tab, or other delimited file types

SequenceFile Serialized key/value pairs that can quickly be deserialized in
Hadoop

RCFile A record columnar file that organizes data by columns(as opposed

to the traditional database row format)

ORC File The optimized row columnar format that improves the efficiency of
Hive by a considerable amount (discussed in more detail in the
next section)

Using the sTORED AsS clause, you specify a file format when you create the table:

CREATE TABLE tablename (
) STORED AS fileformat;

For example, the following table is for data using the rRcFileformat:

CREATE TABLE names
(fname string, lname string)
STORED AS RCFile;

Hive SerDes

SerDe is short for serializer/deserializer and refers to how records read in from a table
(deserialized) and written back out to HDFS (serialized). Records can be stored in any custom
format you want by writing Java classes, or you can use one of the several built-in serpes,
including:

AvroSerDe For reading and writing files using an Avro schema
RegexSerDe For using a regular expression to deserialize data
ColumnarSerDe For columnar-based storage supported by RCFiles
OrcSerDe For reading and writing to ORC files

There are quite a few built-in serpes, so check the documentation for a complete list.

’\ Note: There are third-party serbes available as well, so do a search online
o before attempting to develop a custom serpe that might already be available.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 167

HDP Developer: Apache Pig and Hive

Using serDes requires the Row FORMAT SERDE clause. For example, the following table is for
data stored in the avro format:

CREATE TABLE emails (
from field string,
sender string,
email body string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS
INPUTFORMAT

'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
TBLPROPERTIES (
'avro.schema.url'='hdfs//nn:8020/emailschema.avsc') ;

Hive ORC Files

The Optimized Row Columnar (ORC) file format, http://orc.apache.org, provides a highly
efficient way to store Hive data. It was designed to overcome limitations of the other Hive
file formats. Using ORC files improves performance when Hive is reading, writing, and
processing data.

File formats in Hive are specified at the table level. Use the As keyword and specify the ORC
file format:

CREATE TABLE tablename (
) AS ORC;
You can also modify the file format of an existingtable:

ALTER TABLE tablename SET FILEFORMAT ORC;

And you can specify ORC as the default file format of newtables:

SET hive.default.fileformat=Orc
ORC files have three main components:

* Stripe

* Footer

* Postscript

Here are the features of these components:

* An ORC file is broken down into sets of rows called stripes

* The default stripe size is 64 MB in Hive 0.14. Large stripe sizes enable efficient reads of
columns

* An ORC file contains a footer that contains the list of stripe locations
* The footer also contains column data like the count, min, max, and sum

* At the end of the file, the postscript holds compression parameters and the size ofthe
compressed footer

168 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Computing Table Statistics

Hive can store table and partition statistics in its metastore. There are two types of table
statistics currently supported by Hive:

Table and partition Number of rows, number of files, raw data size, and number of
statistics partitions

Column Level Top K Number of null values, number of true/false values, maximum and

statistics minimum values, estimate of number of distinct values, average
column length, maximum column length, and height balanced
histograms

Important: Column statistics are computed using the top kalgorithm, hence
the name Top Kstatistics. Column statistics is still a work in progress and has
not been included in the current stable release of Hive.

The ANALYZE TABLE command gathers statistics for a table, a partition, and columns and
writes them to the Hive metastore. To compute table statistics, the syntax looks like:

ANALYZE TABLE tablename COMPUTE STATISTICS;

For computing column statistics, use the following syntax:

ANALYZE TABLE tablename COMPUTE STATISTICS FOR COLUMNS column name_1l, column_name 2,

For computing stats on partitions, use the pARTITION COMmmand:

ANALYZE TABLE tablename PARTITION (partl, part2,..) COMPUTE STATISTICS

The aNALYZE command runs a MapReduce job that processes the entire table. The table and
partition stats are outputed to the command window:

Table default.customers stats: [num partitions: 0, num files: 11, num rows: 891048,
total size: 4605775, raw_data size: 0]

You can also view these stats for a table by running the bEsCrRIBE command:

DESCRIBE FORMATTED tablename
DESCRIBE EXTENDED tablename

You can also specify one or more partitions to view details for at the partition level:

DESCRIBE EXTENDED tablename PARTITION (partl=valuel, part2=value2);

Copyright © 2015, Hortonworks, Inc. All rights reserved.

169

HDP Developer: Apache Pig and Hive

Hive Cost Based Optimization

In the first phase of calcite and CBO in Hive, calcite is used to reorder joins and to pick the
right join algorithm to reduce query latency. Table cardinality and boundary statistics are used
for this cost-based optimization.

Suppose you want to use CBO on a table named tweets that has columns named sender and
topic that are commonly used in your Hive Jo1in queries. First you need to analyze the table:

analyze table tweets compute statistics;
Second, compute the column statistics for senderand topic:

analyze table tweets compute statistics
for columns sender, topic;

Third, set the following properties to enable CBO:

set hive.compute.query.using.stats=true;
set hive.cbo.enable=true;
set hive.stats.fetch.column.stats=true;

170 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Vectorization

Before After

)
\
Vectorization + ORC files = huge breakthrough in Hive query performance

Vectorization

Vectorization is a new feature that allows Hive to process a batch of up to 1,024 rows together
instead of processing one row at a time. Each batch consists of a column vector, which is
usually an array of primitive types. Operations are performed on the entire column vector,
improving the instruction pipelines and cache usage.

To take advantage of vectorization, your table needs to be in the ORC format and you need to
enable vectorization with the following property:

hive.vectorized.execution.enabled=true

When vectorization is enabled, Hive examines the query and the data to determine whether
vectorization can be supported. If it cannot be supported, Hive will execute the query with
vectorization turned off.

improvements from vectorization, in addition to the new ORC file format, have

C'] Note: Vectorization is a joint effort between Hortonworks and Microsoft. The
»
helped increase the speed of Hive queries by a magnitude.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 171

HDP Developer: Apache Pig and Hive

Using HiveServer2

Hive n\\ l
saL JDBC /
ODBC
Accepts and processes
Accepts and processes
! only one request at a
multiple concurrent 8
: ; time.
requests, including

requests from JDBC/ODBC
clients.

Using HiveServer2

As we discussed earlier, Hive queries are submitted to a Hiveserver process. Older versions
of Hive used the hiveserver process, which can only process one request at a time. HDP 2.x
ships with HiveServer2, a Thrift-based implementation that allows multiple concurrent
connections and also supports Kerberos authentication.

* A new HiveServer2 instance is started with the hiveserver2 binary, or it can be run as a
service

* Settings are defined in hive-site.xml, except for the bind host and port, which can be
defined using the HIVE SERVER2 THRIFT BIND HOST and HIVE SERVER2 THRIFT PORT

environment variables. This allows you to run multiple HiveServer2 instances on the same
machine

For example:

set HIVE SERVER2 THRIFT_ PORT=12345
hive --service hiveserver2

The above command runs a hiveserver2instance on port 12345.

172 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Understanding Hive on Tez

SELECT a.state, COUNT(*), AVG(c.price)
FROM a
JOIN b ON (a.id = b.id)
JOIN ¢ ON (a.itemid = c.itemid)
GROUP BY a.state

Tez avoids unneeded

writes to HDFS

Hive — MapReduce Hive — Tez

SELECT a.state SELECT b.id SELEClT a.lstljam.
R ctem] SELECT b.id
== M

JOIN (a, ¢)
SELECT c.price

JOIN (a,¢)

JOIN(a, b)
GROUP BY a.state
COUNT(*)
AVG(c.price)

JOIN(a, b)
GROUP BY a.state
COUNT(*)
AVG(c.price)

Understanding Hive on Tez

Tez, http://tez.apache.org, provides a general-purpose, highly customizable framework that
simplifies data-processing tasks across both small-scale (low-latency) and large-scale (high-
throughput) workloads in Hadoop. It generalizes the MapReduce paradigm to a more powerful
framework by providing the ability to execute a complex pac of tasks for a single job.

As you can see in the diagram above, a Hive query without Tez can consist of multiple
MapReduce jobs. Tez performs a Hive query in a single job, avoiding the intermediate writes to
disk that were a result of the multiple MapReducejobs.

Using Tez for Hive Queries

To use Tez for a Hive query, you need to define the following property in your Hive script or in
hive-site.xml:

set hive.execution.engine=tez;

Note that this property is set to mr by default.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 173

HDP Developer: Apache Pig and Hive

174 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Hive Optimization Tips

Divide data amongst different files that can be pruned out by using partitions, buckets, and
skews

Use the ORC file format

Sort and Bucket on common join keys

Use map (broadcast) joins whenever possible

Increase the replication factor for hot data (which reduceslatency)

Take advantage of Tez

Above are some helpful design tips for improving the speed of Hive queries.

you launch a Hive shell. This makes the .hiverc file a great place for adding

C,] Note: Hive has a special file called the .hiverc file that gets executed each time
>

custom configuration settings that you use all the time or for loading Jar files
that contain frequently used UDFs. The file is saved in the Hive conf directory,
which is /etc/hive/conf for an HDP installation.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 175

HDP Developer: Apache Pig and Hive

Hive Query Tunings

Hive has a lot of parameters that can be set globally in hive-site.xml or at the script level
using the set command. Here are some of the more important parameters to improve the
performance of your Hive queries:

mapreduce.input.fileinputformat.split.maxsize If the min is too large, you will have

and too few mappers; if the max is too

mapreduce.input.fileinputformat.split.minsize small, you will have too many
mappers

mapreduce.tasks.io.sort.mb Increase this value to avoid disk spills

Always set the following properties:

hive.
hive.
hive.
hive.
hive.
hive.

optimize.mapjoin.mapreduce=true;
optimize.bucketmapjoin=true;
optimize.bucketmapjoin.sortedmerge=true;
auto.convert. join=true;

auto.convert.sortmerge. join=true;
auto.convert.sortmerge. join.noconditionaltask=true;

When bucketing data, set the following properties:

hive.enforce.bucketing=true;
hive.enforce.sorting=true;

176

Important: In HDP, these values are set to true by default. You can verify by
viewing the properties in hive-site.xml. If a property is not set, just use the set
command in your Hive script. For example:

set hive.optimize.mapjoin.mapreduce=true;

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Review Questions

1) What is the benefit of performing two insert queries in the same Hive command?

2) True or False: Hive views are materialized when they are defined.

3) Suppose an employees table has 200 rows and its department column has 15 distinct
values. How many rows would be in the result set of the following query?

from employees
select fname, lname,MAX (salary)
over (partition by department) ;

4) Explain what the following query is computing:

from employees
select fname,lname,AVG (salary)
over (partition by department order by salary
rows between 5 preceding and current row) ;

5) Which Hive file format provides the best performance?

6) What does paG stand for?

Copyright © 2015, Hortonworks, Inc. All rights reserved.

177

HDP Developer: Apache Pig and Hive

178 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Hadoop 2 and YARN

Lesson Objectives

This lesson covers the newer features of Hadoop 2, like YARN, HDFS Federation, and
NameNode high availability.

After completing this lesson, students should be ableto:
* Define HDFS Federation

* Explain how NameNode HA isimplemented

* Define YARN

Additional Content

e Quiz: Lesson Review

* Lab: Running a YARN Application

Copyright © 2015, Hortonworks, Inc. All rights reserved. 179

HDP Developer: Apache Pig and Hive

About HDFS Federation

Hadoop 2.x introduces a scaling mechanism for the NameNode referred to as HDFS Federation.
As opposed to a single NameNode (which was used in Hadoop 1.x), the new Hadoop
infrastructure provides for multiple NameNodes that run independently of each other providing:

Scalability NameNodes can now scale horizontally, allowing you to improve the
performance of NameNode tasks by distributing reads and writes
across a cluster of NameNodes

Namespaces The ability to define multiple Namespaces allows for the organizing

and separating of your big data

Multiple Federated NameNodes

Q NameNode # NameNode Q NameNode

1. Each DataNode
registers with all the
NameNodes in the
cluster

2. DataNodes send periodic
heartbeats and block reports
to all NameNodes

3. Any NameNode can send a

DataNode command to any DataNode

@.Y" DataNode

Multiple Federated NameNodes

The NameNodes are federated: that is, the NameNodes are independent and don’t require
coordination with each other.

The pataNodes are used as common storage for blocks by all of the NameNodes. The
NameNodes and DataNodes communicate as follows:

* Each pataNode registers with all of the NameNodes in the cluster

* DataNodes send periodic heartbeats and block reports to the NameNodes

* NameNodes send commands to the bataNodes

180 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Multiple Namespaces

Q NameNode 1 Q NameNode 2 Q NameNode 3

Namespace A Namespace B Namespace C

Multiple Namespaces
Benefits of multiple Namespaces include:

Scalability Having multiple independent Namespacesis what makes scaling
possible in Hadoop 2.x

File Management You can now associate your big data with a Namespace, making it
easier to manage and maintain files

C'] Note: A NameNode can only define one namespace.
»

Overview of HDFS High Availability

Prior to Hadoop 2.0, the NameNode was a single point of failure in an HDFS cluster. Each
cluster had a single NameNode, and if that machine or process became unavailable, the cluster
as a whole would be unavailable until the NameNode was either restarted or brought up on a
separate machine.

The HDFS High Availability (HA) feature addresses this issue by providing the option of running
two redundant NameNodes in the same cluster in an Active/Passive configuration with a hot
standby. This allows a fast failover to a new NameNode in the case that a machine crashes or a
graceful administrator-initiated failover occurs for the purpose of planned maintenance.

You can now achieve NameNode HA by configuring your cluster to use the Quorum Journal
Manager (QJM), which we will discuss next.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 181

HDP Developer: Apache Pig and Hive

Quorum Journal Manager

Q NameNode 1 | Al Namespace mod!ﬁc§n9ns are Q NaisNGaa:2
logged durably to a majority of

the JournalNode daemons.

Active Standby

The Standby node is constantly reading the
changes and applying them to its Namespace

All client operations are
handled by the Active node v

) ::

A set of JournalNode daemons

V' cm—

Quorum Journal Manager

Two separate machines are configured as NameNodes. At any point in time, exactly one of the
NameNodes is in an Active state and the other is in a standby state. The Active NameNode is
responsible for all client operations in the cluster, while the standby is simply acting as a slave,
maintaining enough state to provide a fast failover if necessary.

* Both nodes communicate with a group of separate daemonscalled JournalNodes

* All Namespace modifications are logged durably to a majority of the JournalNode daemons
(hence the name Quorum)

* Asthe standby Node sees the edits in the JournalNodes, it applies them to its own
namespace

,\ Note: In the event of a failover, the standbymust read all of the edits from the
F JounalNodes before promoting itself to the Active state. This ensures that the
namespace state is fully synchronized before a failover occurs.

182 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Configuring Automatic Failover

Q NameNode 1 ZKFC holds a lock to the Active Q NameNode 2

Active NameNode. If that NameNode fails, Standby
the lock is made available.

ZKFC daemon ZKFC daemon

The ZooKeeper daemons determine if a
NameNode has failed. It also provides the lock that
the ZKFC uses.

ZooKeeper instances

Configuring Automatic Failover

Up to this point, you have a Quorum Journal Manager, but note that it requires manual failover.
If you want your HA NameNodes to failover automatically, you need to configure Zookeeper.
More specifically, you need the following within yourcluster:

ZooKeeper An odd number of Zookeeper daemons that monitor when a
NameNode fails

ZKFailoverController A new component that is a zookeeper client that monitors and
(ZKFC) manages the state of a NameNode

Copyright © 2015, Hortonworks, Inc. All rights reserved. 183

HDP Developer: Apache Pig and Hive

About YARN

vyARN takes Hadoop beyond just MapReduce for data processing. You will still be able to
execute MapReduce jobs across your Hadoop cluster, but YARN provides a generic framework
that allows for any type of application to execute on the big data across your clusters.

Open-source YARN Use Cases

Tez Improves the execution of MapReduce jobs

Slider Deploy existing frameworks on YARN

Storm For real-time computing

Spark A MapReduce-like cluster computing framework designed for low-

latency iterative jobs and interactive use from aninterpreter
Apache Giraph A graph-processing platform

Now that Hadoop can run applications beyond MapReduce, there are countless possibilities
for the type of processing that can be done on data stored in HDFS. Above are some open-
source projects that are currently being ported onto yarnfor use in Hadoop 2.x.

You can expect other computing frameworks to be developed once YARN becomes prevalent.

184 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The Components of YARN

/ Q NOdeManager
| = |

)i
VAN, 'q ApplicationMaster

D Client application

The Components of YARN

YARN consists of the following main components:
* ResourceManager

* NodeManager

* ApplicationsMaster

The ResourceManager typically runs on its own machine and is responsible for scheduling and
allocating resources. The two main components of the ResourceManager are:

* Scheduler
* Applications Manager (AsM)

The ResourceManager is the central controlling authority for resource management and makes
allocation decisions:

* It has a pluggable scheduler that allows for different algorithms (such as capacity and fair
scheduling) to be used as necessary

* It tries to optimize the cluster (i.e. use all resources all the time) based on the constraints of
the scheduler

" Note: If you are familiar with Hadoop 1.x, note that yarRNsplits up the
F functionality of the JobTrackerinto two separate processes:

ResourceManager A daemon process that allocates cluster resourcesto
applications

ApplicationMaster A per-application process that provides the runtimefor
executing applications

The ResourceManager allocates resources for applications but does not manage the lifecycle
of applications. Instead, applications are managed by an applicationMaster thatrunson a
node in the cluster. Each application running in the cluster requires its own
ApplicationMaster.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 185

HDP Developer: Apache Pig and Hive

Lifecycle of a YARN Application
A YARN application has the following lifecycle:

‘ - ° Peavary The AsM finds an
Client submits an P appropriate NodeManager

application

AM asks RM for resources. ° e
RM provides a list of Q NodeManager

Containers to AM

NodeManager creates an

ApplicationMaster
EEEE EEEE e @ ;
REB

mEE ‘-(ApplicationMaster
aEm L L] w

Containers execute their
given task on DataNodes
in the cluster

Lifecycle of a YARN Application

* |t all starts with a client submitting a new Application Request to the Resource Manager
(RM)

* The applicationsManager (AsM) finds an available pataNode on the cluster that is not
too busy

* That node’s NodeManager (NM) creates an instance of the ApplicationMaster (AM)

* The aM then sends a request to the ruv, asking for specific resources, like memory and CPU
requirements. The rM replies with a list of Containers, which includes the specific
DataNodes to start the Containers

* The aM starts a container On each DataNode as instructed by the rM. The Container
performs a task, as directed by the am

As the tasks are being performed by the containers, the client application can request status
updates directly from the ApplicationMaster.

186 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

A Cluster View Example

ResourceManager
e 0
PiisS
v
’?’ NodeManager —” -?'. NodeManager
| contaner H | Conaner g om
Node 4 — I Node 6
= d = d il oevianacer
| A
—lizm' Node 8 Node 9
= d ~¢" MEEEET = d
[conaner gy N Conainer |

A Cluster View Example

Answer the following questions:
1) How many applications are running on the cluster above?

2) How many containers are being used by the application controlled by the amM on Node 27?

3) Node 8 appears to have two Containers running on it. Is this allowed in YARN?

4) Is it possible that a container could be executed on the same node as its corresponding
aM?

Answers:
1) Two
2) Four
3) Certainly

4) Yes. It all depends on the availability of resources on anode.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 187

HDP Developer: Apache Pig and Hive

Review Questions

1) True or False: A NameNode can contain multiple namespaces.

2) What is the key benefit of the new yarn framework?

3) What are the three main components of YARN?

4) What happens if a container fails to complete its task in a yarN application?

188 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Lab: Running a YARN Application

Objective: To run a YARN application
See page 129 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 189

HDP Developer: Apache Pig and Hive

Introducing Apache Spark

Lesson Objectives

This lesson introduces the core Apache Spark framework as the ecosystem of projects that rely upon it.
After completing this lesson, students should be able to:

* Describe the origin of Apache Spark
* Understand the rapid growth of the Spark ecosystem
* Recognize some of the use cases for Spark

¢ Describe some major differences between Spark and MapReduce

Additional Content

* Quiz: Lesson Review

What is Apache Spark?

Spark

What is Apache Spark?

Apache Spark started as a research paper in 2009 by a graduate student at Berkley. The framework
surfaced as part of the evolving Berkeley Data Analytics Stack (BDAS). Spark was created to be a general-
purpose data processing engine, focused on in-memory distributed computing use-cases.

The Berkley research paper and BDAS started because of the struggles current users were having with
certain use cases in the MapReduce framework.

The following is a timeline of some of the major moments in Spark's creation:

2009: BDAS research project

¢ June 2013: Accepted as an Apache Incubator project

* February 2014: Became a top-level Apache project

* December 2014: Spark became part of the HDP stack with version 2.2

" Note: Spark took many concepts from MapReduce and implemented them in a
¥ new ways.

190 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Spark is a general data-processing engine focused on in-memory distributed computing uses cases. Spark
API's are available in Scala, Python, Java and recently were added for R.

The Spark Ecosystem

Spark SQL Spark ML-Lib GraphX
& Data Streaming
Frames

The Spark Ecosystem

Spark consists of a core library. Spark SQL, Streaming, ML-Lib (for machine learning applications) and
GraphX were built upon it. Spark SQL and is Dataframe concept have exploded in popularity recently as
there have been many performance improvements. GraphXis very new and currently not supported by
anyone.

Why Spark?
Spark was built with the developer in mind. Spark has very elegant high-level APls, which seek to minimize
the “plumbing” that developers traditionally have to worry about. Spark provides APIs that allow
developers to focus on the business logic; not the framework internals.
Spark has brought forward in-memory computation for Hadoop which has been very effective for iterative
computations. This allows large amounts of data to be stored in memory and to be quickly accessed. Some
applications have seen as much as a 100x speed increase due to these new abilities.
One of the biggest drivers for adoption from the development community is that Spark provides a single
framework for most data processing needs. This allows for a single programmatic approach to be utilized
for importing, transforming and exporting data for a wide variety of workloads including the following:

* ML-Lib for Data Scientists

* Spark SQL for Data Analysts

* Spark Streaming for micro batch use cases

¢ Spark Core, SQL, Streaming, ML-Lib and GraphX for data-processing applications

The features (all in open source), plus its performance improvements for many scenarios and the full
integration with Hadoop are the cornerstones for the rapid adoption of Spark.

Who Uses Spark!?

The following real world uses for Spark help to explain its applicability and flexibility:

NASA JPL NASA' Jet Propulsion Laboratory receives 10+ TB of data daily from
Instrument and Ground Systems for Earth Monitoring and runs
multiple kinds of jobs ranging from long running to sub second. JPL
created SciSpark library to allow for interactive computation and
exploration possible using scientific processing. SciSpark provides

Copyright © 2015, Hortonworks, Inc. All rights reserved. 191

HDP Developer: Apache Pig and Hive

support for scientific data formats and created a new type of RDD
called a scientific RDD (sRDD).

eBay eBay uses Spark on clusters close to 2000 nodes, with 100 TB Ram
and 20,000 cores. Ebay leverages Spark for interrogation of
complex data, data modeling and data scoring among other things.
eBay uses ML-Llib to cluster sellers together via Kmeans. By
clustering sellers together, they’re able to increase the user
experience by helping users find products they may like more, and
provide alternatives or recommendations. In addition, eBay uses
SQL with Spark, to increase the performance of their queries. They
report that the queries are running at least 5x faster than their Hive
counterparts.

Conviva Conviva provides monitoring and optimization for online video
provides. Customers include ESPN, Yahoo, Microsoft, Comcast
amongst many others. They use Spark to process 150gb / week of
compressed summary data. They found Spark to be 30x faster than
Hive. Processing time went from 24 hours to 45 minutes for their
weekly Geo Report. Biggest speed up came from reducing disk
reads, and storing only relevant data in memory. 30% of their
reports currently use Spark, as of 2012.

Yahoo! Yahoo has a cluster with over 35k servers, 150PB of data spanning
800m users. Yahoo needs a way to quickly learn about users and
provide a personalized homepage to increase the user experience.
Yahoo's data scientists leveraged spark to create models to find
what news stories would appeal to each users. These models need
to run fast, really fast. With Spark they were able to create models
in under an hour which greatly enhanced Yahoo's ability to provide
personalized news stories to users.

Spark vs MapReduce

As the following diagram suggests, some use cases that can benefit from Spark's in-memory data storage
can achieve up to 100x performance improvements.

192 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

120 110

w0
o

W
o O

0.9

Running time (s)
»
o

Logistic Regression

Potential Improvements

® Hadoop
¥ Spark

Just as important is developer productivity. The following provides the source code of the quintessential

Hadoop "Word Count" example as written in the Java MapReduce API.

packagt

import
import
import
import
import
import
import
import
import
import
public
publi
pr.

pr.

pul

}

publi

pul

}

publi
Co:

Jjol
jol

jol
jol

joi

e org.myorg;

java.io.IOException;
java.util.*;

org.apache.hadoop.fs.Path;

org.apache.hadoop.conf.*;

org.apache.hadoop.io.*;

org.apache.hadoop.mapreduce. *;
org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

class WordCount {

c static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {

ivate final static IntWritable one = new IntWritable(1l);
ivate Text word = new Text();
blic void map(LongWritable key, Text value, Context) throws IO! ion, Interrup ion {

String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set (tokenizer.nextToken());
context.write(word, one);

c static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
blic void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();

}
context.write(key, new IntWritable(sum));

c static void main(String[] args) throws Exception {
nfiguration conf = new Configuration();

Job job = new Job(conf, "wordcount');

b.setOutputKeyClass(Text.class);
b.setOutputValueClass(IntWritable.class);

b.setMapperClass(Map.class);
b.setReducerClass (Reduce.class);

b.setInputFormatClass(TextInputFormat.class);

job.setOs lass (TextO 'ormat.class);

Fi
Fi

leInputFormat.addInputPath(job, new Path(args[0]));
leOutputFormat.setOutputPath(job, new Path(args[l]));

job.waitForCompletion(true);

Copyright © 2015, Hortonworks, Inc. All rights reserved.

193

HDP Developer: Apache Pig and Hive

Conversely, here is Word Count implemented with Spark.
text_file = spark.textFile("hdfs://...")
counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
. reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile("hdfs://...")
In fairness, this high-level APl should be compared to something like Pig. Here's the analogous version in
that language.

load '/user/hue/word_count_text.txt’;

foreach a generate flatten(TOKENIZE((chararray)$e)) as word;
group b by word;

= foreach ¢ generate COUNT(b), group;

store d into '/user/hue/pig wordcount’;

a
b
c
d

Why is Spark faster?
Spark is faster than MapReduce for several reasons. First, and the biggest, is Spark can cache data into
memory. Reading from memory is measured in nanoseconds, reading from disk is measured in
milliseconds. Quite the increase in speed is seen from there.
In addition, the scheduling of tasks in Spark has greatly decreased from MapReduce. Spark has dedicated
resources, so scheduling of tasks doesn’t require a resource request. Because of this, scheduling has gone
from 15-20s to 15-20ms.
In Spark, you can have multiple reduces and maps in a row. You do not need a map phase for every reduce
phase. Skipping this extra map save reading and writing data to disk.

Spark Growth is Massive
Spark is a top level project at Apache as of February 2014. Spark's previous release (as of November 2015)
had over 1000 commits with 230 developers contributing. Spark is one of the largest open source projects
currently at Apache. Releases of spark are independent of the major Hadoop distributions, with an average
X release of Spark every three months.
Spark is growing massively and many new features, along with bug fixes and internal optimizations, are
being release all the time. One of the biggest jumps in Spark usability was the new feature of Spark SQL and
Dataframes.

Spark and HDP

As stated earlier, Spark was introduced into the Hortonworks Data Platform (HDP) in December 2014. The
following bullets reference some key version points for both HDP and Spark:

e HDP2.3.2-Spark1.4.1
e HDP2.2.8-Spark1.3.1
e HDP2.2.4-Spark1.2.1

Review Questions

1) What are some of the reasons Spark is faster than MapReduce?

194 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

2) What distribution of HDP includes Spark 1.4.1?

3) What are the four libraries that build upon Spark Core?

4) Name another benefit to using Spark vs MapReduce?

Review Answers

1) What are some of the reasons Spark is faster than MapReduce?

Answer: Task scheduling, in-memory data caching, can link multiple maps and reduces
together, less reading & writing to HDFS

2) What distribution of HDP includes Spark 1.4.1?
Answer: HDP 2.3.2

3) What are the four libraries that build upon Spark Core?

Answer: GraphX, Spark SQL, ML-Lib and Spark Streaming

4) Name another benefit to using Spark vs MapReduce?

Answer: High-level API, many committers and/or rapid improvements & bug fixes

Copyright © 2015, Hortonworks, Inc. All rights reserved. 195

HDP Developer: Apache Pig and Hive

Programming with Apache Spark

Lesson Objectives

This lesson explains the basics of programming with Apache Spark. Upon completion of this lesson,
students should be able to:

e Start the Spark shell

* Understand what an RDD is

* Load data from HDFS and create a Word Count application

* Know the differences between Transformation and Action operations

* Explain lazy evaluation

Additional Content

* Quiz: Lesson Review

¢ lab: Getting Started with Apache Spark

Starting the Apache Shell

The fastest way to get started with Apache Spark is using a command-line based Spark shell application. In
addition to learning Spark, the shells are great for debugging, exploring data, and when building
applications. Spark has two shells available, one for Python and one for Scala.

In order to start the scala shell, the user needs to enter “spark-shell” on the command line.

In order to start the python shell, the user needs to enter “pyspark” on the command line. We will focus on
python in this lesson and use pyspark for the labs in this course.

196 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

M ™ root@ubuntu: ~

15/11/14 07:59:24 INFO Utils: Successfully started service 'org.apache
.spark.network.netty.NettyBlockTransferService' on port 49228.
15/11/14 07:59:24 INFO NettyBlockTransferService: Server created on 49
228

15/11/14 07:59:24 INFO BlockManagerMaster: Trying to register BlockMan
ager

15/11/14 07:59:24 INFO BlockManagerMasterEndpoint: Registering block
anager localhost:49228 with 265.1 MB RAM, BlockManagerId(driver, local
host, 49228)

15/11/14 07:59:24 INFO BlockManagerMaster: Registered BlockManager
elcome to

[l e

SN R W oI N

J= oo N o 101 I\ Bversion 1:4.1
40§

sing Python version 2.6.6 (r266:84292, Jul 23 2015 15:22:56)
SparkContext available as sc, HiveContext available as sqlContext.

The pyspark RPEL

Generally speaking, a shell is often referred to as a REPL, which stands for Read — Evaluate — Print — Loop.
This lesson will refer to the two shells as the REPL to avoid confusion.

Q Reference: Spark's Programming Guide,
//\c‘\\ http://spark.apache.org/docs/1.4.1/programming-guide.html, is an invaluable

resource for this lesson.

Working with the Spark Context

For any application to become a Spark application, an instance of the SparkContext class must be

instantiated. In pyspark, the following code has already been executed for you at start up.
conf = SparkConf () .setAppName (appName) . setMaster (master)
sc = SparkContext (conf=conf)

This allows subsequent use of the needed SparkContext object through the sc variable created for you.
This class has many APIs that can be used for accessing configurations:

* sc.appName () sets the application name
* sc.master () determines what kind of Spark Master (local or YARN enabled) is in use
* sc.version () displays to the user which version of Spark they are utilizing

The context object also has APIs that perform operations such as the following which will be discussed
further:

* sc.parallelize () createsan RDD from local data
* sc.textFile () createsan RDD from a text file residing on HDFS

Copyright © 2015, Hortonworks, Inc. All rights reserved. 197

HDP Developer: Apache Pig and Hive

* sc.stop /() stopsthe SparkContext object

@ Reference: More details on the SparkContect class used in pyspark are available at
http://spark.apache.org/docs/1.4.1/api/python/pyspark.html#pyspark.SparkContext.

The Resilient Distributed Dataset

The Resilient Distributed Dataset (RDD) is an immutable collection of objects (or records) that can be
operated on in parallel. RDD's adhere to these key attributes that make up their namesake:

Resilient Can be recreated from parent RDDs — and RDD keeps its lineage
information.

Distributed Partitions of data are distributed across nodes in the cluster.

Dataset A set of data than can be accessed.

Each RDD is composed of one, or more, partitions. The user can control the number of partitions, by
increasing partitions, the user increase the parallelism.

RDD’s are not a physical entity. They are a set of instructions on how to transform data. The only time an
RDD every physically exists is when the data is cached into memory.

For HDFS files, the RDD partitions will be aligned with the file’s blocks thus leveraging the same kind of
parallelism that Hadoop is famous for.

Creating an RDD

A common way to create an RDD is to simple read a text file. This file can exist in a variety of place such as

HDFS, S3 or the local filesystem and can be loaded from a single line:
rddl sc.textFile("file:/path/to/file. txt)
rdd2 sc.textFile ("hdfs://namenode:8020/mydata/data. txt")

The method can also accept a comma separated list of files, or a wildcard list of files:
rdd3 sc.textFile ("mydata/*.txt")
rdd4 sc.textFile ("datal.txt,data2.txt")

Working with RDDs and Lazy Evaluation
RDDs have the following two types of operations:
Transformations The RDD is transformed into a new RDD.
Actions An action is performed on the RDD and the result is returned to the
application or saved somewhere.
Transformations are lazy: they do not compute until an action is performed. This is an important concept of
Spark. Spark likes to do the least amount of work possible and will only process data when it is forced too.

Transformation Example
Using Word Count as an example, the following lines of Spark code illustrates multiple transformation that
work toward building possible directed acyclic graphs (DAG), the mechanism to describe the job flow steps,

for eventual execution.

file = sc.textFile("hdfs://some-text-file”)

counts = file.flatMap(lambda line: line.split(" ")) \
.map (lambda word: (word, 1)) \
.reduceByKey (lambda a, b: a + b)

Action Example

The save operation below writes the newly created text file back to HDFS which constitutions an action that

triggers execution of the whole DAG.
counts.saveAsTextFile ("hdfs://wordcount-out”)

Restating this, lazy evaluation means that transformations will be only executed when actions are called.
While build a pipeline, spark creates a DAG of the transformations. When an action is called on an RDD, it

198 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

triggers the execution of the entire finalized DAG.
O Reference: The keyword lambda is Python's approach for small anonymous
b functions that can be used wherever function objects are required.
See https://docs.python.org/2/tutorial/controlflow.html#lambda-expressions for
more on this approach.

Functional Programming
Spark uses functional programming which this allows the user to process data in parallel. Functional
programming is a paradigm shift from object-oriented programing and the following are some of its
architectural tenants:

* Programs are built on functions instead of objects

* Mutation is forbidden — all variables are final

* Functional purity —if you pass A into a function, you're always getting back B
* Functions have input and output only — no state or side effects

* Passing functions as input to other functions

* Anonymous functions — undefined functions passed inline

Reference: Please visit https://en.wikipedia.org/wiki/Functional_programming
for a more thorough explanation of the functional programming paradigm.

Common Spark Actions

As a reminder, Spark action operations trigger execution. This section presents several common actions.

count () Action

The count () action returns the number of elements in an RDD.
data = [5, 12, -4 , 7, 20]

rdd= sc.parallelize (data)

rdd.count ()

5

reduce () Action
The reduce () action's aggregation of elements of an RDD using a defined function has many use cases in
Spark applications. The reducing logically happens over and over with only two of the RDD elements at a
time. Once those two have been reduced, then the outcome will be part of another logical reduce step
until all elements have been accounted for.
This concept of having multiple passes on the reduce phase is similar to the Java MapReduce API's
Combiner. Because of this, the function used by the reduce must be both commutative and associative. For
example, a+tb = b+a. Aricher example shows that a+ (b+c) = (a+b) +c. The following show

examples of the reduce () action.
Dataset:[5, 12, -4 , 7, 20]

rdd.reduce (lambda a, b : a+b)
40

rdd.reduce (lambda a, b: a if (a>b) else b)
20

The reason for the requirement to be commutative and associative is that Spark does not guarantee the

Copyright © 2015, Hortonworks, Inc. All rights reserved. 199

HDP Developer: Apache Pig and Hive

order in which the data will be processed.
Definitions:

Commutative = (of a binary operation) having the property that one term
— operating on a second is equal to the second operating on the first,asa x b =

b x a

Associative = (of an operation on a set of elements) giving an equivalent
expression when elements are grouped without change of order,as (a + b) +
c =a + (b + c)

The following diagram presents this concept of commutative and associative as a visual example.

(5)< (20) (~4)< (1) memmlniiatl
Commutative
@ T a & Associative

@ T @ We end up with the same

reduced value regardless of
which path we take to get
there

@<

(28) @ ?a?
(=23 C)—& (9
21r A4 (7
207 Oaa®

Visual depiction of Commutative & Associative

Other Useful Spark Actions

The following are additional Spark actions that are leveraged heavily.
e first () returnsthe first elementin the RDD

* take () returns the first n elements of the RDD

* collect () returnsall the elementsin the RDD to the driver

* saveAsTextFile () writesthe RDD to afile

Dataset:[5, 12, -4 , 7, 20]

200 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

rdd. first()

5
rdd. take (3)
[5, 12, -4]

rdd.saveAsTextFile (“myfile”)

Important: Make sure you only call collect () on small datasets or risk crashing
your shell/application.

Common Spark Transformation
As a reminder, Spark transformation operations create new RDDs from existing ones. Transformations are
lazy and processing does not occur until an action is called on the RDD, or a subsequent RDD.
Transformation create a recipe, or lineage, that Spark uses to process the data. Spark will pipeline data
through these transformations.

map () Transformation
The map () transformation applies a function to each element of an RDD. It takes a one input to one output

approach.
rdd = sc.parallelize([1l, 2, 3, 4, 5])

rdd.map (lambda x: x*2+1) .collect()

[3, 5, 7, 9, 11]

flatMap () Transformation
We just saw an example of a map operation and f1atMap () is another very important transformation
that is used heavily. f1atMap () applies a function to each element of the RDD and returns a collection.
The main difference between map () and flatMap () are the outputs. This transformation takes a one

input to many output approach.
rdd = sc.parallelize([1l, 2, 3, 4, 5])

rdd.map (lambda x: [x, x*2]).collect()
[(1,2), (2, 4), (3,6), (4,8), (5,10)]

rdd.flatMap (lambda x: [x, x*2]) .collect()
[1I 2[2[4! 3[6! 4[8! 5[10]

The reason for the requirement to be commutative and associative is that Spark does not guarantee the
order in which the data will be processed.

filter () Transformation
The filter () transformation keeps elements based on a predicate. It will include the current element of

the RDD being evaluated in the new RDD when the function being used evaluates to true.
rdd = sc.parallelize([1, 2, 3, 4, 5])

rdd.map (lambda x: x*2+1) .collect()

[3, 5, 7, 9, 11]

(Key Value) Pair RDDs
Pair RDDs are a different type of RDD than previously discussed. A Pair RDD, or Key Value Pair (KVP) RDD, is
an RDD whose elements comprise a pair of values — key and value. Pair RDDs are very useful for many
applications. We can create KVPs then allow group operations to occur based on the key. Examples of
these operations include join (), groupByKey () and reduceByKey () which will be explained

further.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 201

HDP Developer: Apache Pig and Hive
Creating Pair RDDs

Pair RDDs are often created from regular RDDs by using the map () or f1atMap () transformation

operations as shown in the following example:
wordlist = ‘this is my list and it is a nice list’
rddl = sc.parallelize([wordlist])

kv_rdd = rddl.flatMap(lambda x: x.split(‘' ')) .map(lambda x: (x,1))
kv_rdd.collect()
[(this, 1), (is, 1), (my, 1), (list, 1), (and, 1), .. (list,1)]

Performing Actions on a Pair RDD
A common action taken on Pair RDDs is the reduceByKey () function. It performs reduce actions on all
values with the same key and collapses them all down to a single KVP with only the value being updated by
whatever function is used in the operation. Like with the less complex reduce () action, the function still
must be commutative and associative. The easily understood Word Count functionality helps in

understanding this operation.

kv_rdd.reduceByKey (lambda a,b: a+b) .collect()

[("this', 1), ('my', 1), ('and', 1), ('list', 2), ('a', 1), ('it', 1),
('is', 2), ('nice', 1)]

'-" Note: These simple examples might lead one to believe that the keys and/or

;j values must be primitive values, but in fact, they can be very complex & nested
tuple structures.
Keys & Values can contain rich tuples.

The following example implements the familiar Word Count use case, but introduces some additional data

elements to both sides of the KVP being utilized.

suess = ['I do not like green eggs and ham I do not like them Sam I am']
parallelSuess = sc.parallelize (suess)

parallelSuess. take (1)

['IT do not like green eggs and ham I do not like them Sam I am']

suessWords = parallelSuess.flatMap(lambda sentence: sentence.split(' '))
suessWords. take (5)
['T', 'do', 'mot', 'like', 'green']

notSimplePair = suessWords.map(lambda word: ((word,'theKey'), ('theval',l)))
notSimplePair.sortByKey (ascending=False) . take (5)

[(('"them', 'theKey'), ('theval', 1)), (('not', 'theKey'), ('theval',6 1)), (('not',
'theKey'), ('theval', 1)), (('like', 'theKey'), ('theval', 1)), (('like', 'theKey'),
('theval', 1))]

notSimplePair.reduceByKey (lambda oneValue,anotherValue: ('n/a', oneValue[l] +
anotherValue[l])) .sortByKey (ascending=False) .collect()

[(('them', 'theKey'), ('theval',6 1)), (('not', 'theKey'), ('n/a', 2)), (('like’',
"theKey'), ('n/a', 2)), (('ham', 'theKey'), ('theval', 1)), (('green',6 'theKey'),
('theval', 1)), (('eggs', 'theKey'), ('theval', 1)), (('do', 'theKey'), ('n/a', 2)),
(('and', 'theKey'), ('theval', 1)), (('am', 'theKey'), ('theval',6 1)), (('Sam',
"theKey'), ('theval', 1)), (('I', 'theKey'), ('n/a', 3))]

pyspark Tips

The following suggestions may make your experience using pyspark more navigable:

* Take advantage of your command history by utilizing the "up arrow" key similar to the Linux shell

202 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Instead of initially chaining together a long list of methods, consider creating temporary variable, or at
least adding one method at a time and using take () to see if it appears each operation is working as
expected before adding another method

Leverage dir () to get a list of current variables — like with Pig's aliases command, there will be
additional system-oriented variable names present

Consider triming down the extra "noise" by calling sc.setLogLevel ('WARN') to eliminate INFO
messages

Review Questions

9)

What are the three ways we can create an RDD?

What are the two types of operations we can perform on an RDD? Give example of each.

What is functional programming?

What is Lazy Execution?

What does the R stand for in RDD? What does that mean?

Review Answers

10) What are the three ways we can create an RDD?

Answer: From a filesystem/db, parallelizing a collection, from another RDD

11) What are the two types of operations we can perform on an RDD? Give example of each.

Answer: Action (count, collect, take) and Transformation (map, flatMap, filter)

12) What is functional programming?

Answer: Functional programming allows us to build applications on functions and not objects,
passing functions as inputs to other functions, functions have inputs and outputs — no side
effects, no “state”

13) What is Lazy Execution?

Copyright © 2015, Hortonworks, Inc. All rights reserved. 203

HDP Developer: Apache Pig and Hive

Answer: Lazy execution means Spark doesn’t process data until it has to when an action is
performed

14) What does the R stand for in RDD? What does that mean?

Answer: R stands for Resilient. We’re able to recompute the data using lineage in case we
were to lose part of it

504 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Spark SQL and DataFrames

Lesson Objectives

This lesson explores the additional Spark ecosystem framework called Spark SQL and its tightly coupled
DataFrame APIl. Upon completion of this lesson, students should be able to:

* Load multiple types of data
e Perform SQL queries within pyspark
e Utilize DataFrame operations

¢ Understand some of the optimization engine

Additional Content

* lab: Exploring Spark SQL

Spark SQL Overview

SQL

Spark SQL is Spark's integrated module for working with structured data. In addition to the following
bullets, Spark SQL features a uniform data access approach and Hive compatibility.

Spa

What is Apache Spark?

* |tis a module built on top of Spark Core
* Provides a programming abstraction for distributed processing of large-scale structured data in Spark
* Datais described as a DataFrame with row, columns and a schema
¢ Data manipulation and access is available with two mechanisms
o SQL Queries
o DataFrames API

The DataFrame Abstraction

Copyright © 2015, Hortonworks, Inc. All rights reserved. 205

HDP Developer: Apache Pig and Hive

* A DataFrame is inspired by the dataframe concept in R (dplr, Dataframe) and Python (pandas), but
stored using RDDs underneath in a distributed manner

* A DataFrame is organized into names columns —an RDD of "Row" objects

* The DataFrame API is available in Scala, Java, Python and R

Column

Colt [Col2 [.. .. [ColNlc R\

Spark-SQL >

Data Frame
(with RDD underneath)

Visual Representation of a DataFrame

DataFrame Primary Sources
* DataFrames from Hive data
o Reading from Hive tables
o Writing to Hive tables
* DataFrames from file
o Built-in: JSON, JDBC, Parquet, HDFS

o External plug-in: CSV, HBase, Avro, memsq|, elasticsearch

SQLContext and HiveContext

To use Spark SQL from your Spark application, an instance of the SQLContext class must be instantiated.

In pyspark, the following code has already been executed for you at start up.
from pyspark.sql import SQLContext
sqlContext = SQLContext (sc)

This allows subsequent use of the needed SQL.Context object through the sglContext variable

created for you. Alternatively, you can create a HiveContext instance to connect with Hive.
from pyspark.sql import HiveContext
hc = HiveContext (sc)

'-" Note: Since HiveContext is a specialized subclass of SQLContext you can
F I use it in place of the already instantiated sglContext reference for
consistency.

Data Manipulation and Access Options
Copyright © 2015, Hortonworks, Inc. All rights reserved.

206

HDP Developer: Apache Pig and Hive
As stated previously, accessing and manipulating data is available via two options.

DataFrames API

The following illustrates an example of using the DataFrame API:
from pyspark.sql import HiveContext
hc = HiveContext (sc)

hc.sql (Y“use demo”)
dfl = hc.table(“crimes”)

.select (“year”, “month”, “day”, “category”)
.filter (“year > 2014”) .head(5)
SQL Syntax

The following illustrates an example of using the SQL syntax:
from pyspark.sql import HiveContext
hc = HiveContext (sc)
hc.sql (Y“use demo”)
dfl = hc.sql ("""
SELECT year, month, day, category

FROM crimes
WHERE year > 2014”””) .head(5)

" Note: When the SQL statement spans more than one line, wrap it with three sets
» of double-quotes. Otherwise, a single set of double-quotes is sufficient.

DataFrames vs Spark Core
Spark SQL uses and extensible cost-based optimizer (CBO) called Catalyst. This CBO engine understands the
structure of data & semantics of operations and performs optimizations accordingly with results like those
shown below compared with Spark Core's RDD processing.

Spark Python DF
Spark Scala DF

RDD Python [R e e R

RDD Scala

0 2 4 6 8 10

Performance of aggregating 10 million int pairs (secs)
DataFrame Performance Comparison

Again, much of the performance gains are due to the Catalyst optimizer that features the following
functionality and highlights:

* Query or DataFrame operations are modeled as a tree
* Logical plan is created and optimized

Copyright © 2015, Hortonworks, Inc. All rights reserved. 507

HDP Developer: Apache Pig and Hive

* Various physical plans are created then the best one is chosen based on overall cost

* Code generation and execution

) Logical Physical Code
Analysis Optimization ~ Planning Generation
sQL Query 3
- Selected
Unresolved I ; Optimized Physical p= i
Logical Plan LGOS = Logical Plan p|yans ‘g’ Prg::al -
DataFrame b

Catalog

Catalyst Architecture

Creating DataFrames

There are multiple ways to create DataFrames (DF) as the following subsections identify.

Create DF from Hive

An entire Hive table could be loaded to create a DataFrame:
df = hc.table("patients")

Alternatively, a DataFrame could be created from the results of a SQL query such as these examples show:
dfl = hc.sql("SELECT * FROM patients WHERE age > 50")

df2 = hc.sql ("""
SELECT coll AS timestamp, SUBSTR(date,1l,4) AS year, event
FROM events
WHERE year > 2014""")
Create DF from a File
With the built-in adapters and an extensible framework, virtually any file format could be read to create a
DataFrame.

Here are two approaches for reading from a JSON file:
df = hc.read.json("somefile.json")

df = hc.read.format("json") .load("somefile.json")

'_" Note: There are two syntax options for reading files types. The following model
F I can be used for well-known and tested file formats:
hc.read.TECH-NAME (“FILE-NAME")
The more extensible syntax follows:
hc.read. format (WTECH-NAME"”) .load (“"FILE-NAME")

Examples reading from Parquet and CSV files using the built-in and external plug-in models, respectively:
dfParquet = hc.read.parquet("somefile.parquet")

dfCSV = hc.read.format("com.databricks.spark.csv")
.options (header="'true') .load("somefile.csv")

Create DF from an RDD

You can create an RDD of Row objects and then use its toDF () function:
from pyspark.sql import Row

rdd = sc.parallelize ([Row(name='Alice', age=12, height=80),
Row (name='Bob', age=15, height=120)])
df = rdd.toDF ()

Another approach would be to let Spark SQL infer the schema using the createDataFrame () function:

208 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

rdd = sc.parallelize([('Alice',12,80), ('Bob',15,120)])

df = hc.createDataFrame(rdd, ['name', 'age', 'height'])

Create DF from a Text File
When you have a file with some known structure and format you can read the file into an RDD and then

leverage the same available options to convert it to a DataFrame.
from pyspark.sql import Row

lines = sc.textFile ("examples/src/main/resources/people.txt")
parts = lines.map(lambda 1: 1l.split(","))
people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))

Infer the schema, and register the DataFrame as a table.
schemaPeople = sqlContext.inferSchema (people)
schemaPeople.registerTempTable ("people")

SQL can be run over DataFrames that have been registered as a table.
teenagers = sqglContext.sql ("SELECT name FROM people WHERE age >= 13 AND age <= 19")

While this course has focused on Python and pyspark, the following Scala example is being presented for
this same scenario to show how it can benefit from defining a full class on the fly (or defined elsewhere) to
provide "column" names & data types and then constructing a new one for each row during the second

map transformation below

val sqglContext = new org.apache.spark.sql.SQLContext (sc)

// this is used to implicitly convert an RDD to a DataFrame.
import sqglContext.implicits.

case class Person(name: String, age: Int)

val people = sc.textFile ("examples/src/main/resources/people.txt")
.map (_.split(","))
.map (p => Person(p(0), p(l).trim.toInt)).toDF ()

DataFrame Operations

Now that we have reviewed several ways to create DataFrames, this section will present some common
operations that can be made on these structures.

For the next few slides, let’s create two data frames:

age |cid [name |state

dfl = sc.parallelize(

0|25 |101 |Alice |ca
[Row(cid=‘101’, name='Alice', age=25, state=‘ca’), \

Row(cid=‘102’, name='Bob', age=15, state=‘ny’), \ 1|15 |102|Bob |ny

Row(cid=‘103’, name=‘Bob’, age=23, state=‘nc’), \ 2|23 (103 |Bob |nc

Row(cid=‘104', name='Ram', age=45, state=‘f1l’)]).toDF() 3|45 (104 |Ram |fl

df2 = sc.parallelize(A A
cid |date price | product
[Row(cid=‘101’, date=‘2015-03-12', product=‘toaster’, price=200), \

101 15-03-1 r
Row(cid=‘104', date=‘2015-04-12', product=‘iron’, price=120), \ O[1V [SNBO0IZ |20 |ese

Row(cid=‘102’, date=‘2014-12-31', product=‘fridge’, price=850), \ 1/104]2015-04-12 120 |iron
Row(cid=‘102’, date=‘2015-02-03’, product=‘cup’, price=5)]).toDF() 21102 (2014-12-31 |850 |fridge
3|102 |2015-02-03 (5 cup

DataFrames for Illustration Purposes
Inspecting Content
As DataFrames are backed by RDDs, you still have accessto first () and take () as before:

Copyright © 2015, Hortonworks, Inc. All rights reserved. 209

HDP Developer: Apache Pig and Hive

dfl.first()
Row (age=23, cid=u’104’, name=u’Bob’, state=u’nc’)

dfl. take(2)
[Row (age=45, cid=u’104’, name=u’Ram’,6 state=u’fl’)
Row (age=15, cid=u’102’, name=u’Bob’, state=u’ny’)]

You also can now leverage some new, DataFrame API specific, method calls.
e limit () reducesthe DataFrame to a specified number of rows
o Result is still a DataFrame, not a Python result list

* show () prints the first n rows to the console in a formatted manner

dfl.show(3)

S S S - S S +
|age|cid| name|state]
S S S S —— S S— +
| 25|101|Alice| cal
| 15]/102| Bob] ny |
| 23/103| Bob] nc |

N S S S S—— +
Sample show() Output

Inspecting Schema

Expected operations to understand the metadata for the DataFrame are also availabl
Display column names

dfl.columns

[u"age’, u’cid’, u’name’, u’state’]

Display column names and types
dfl.dtypes
[('age', 'bigint'), ('cid', 'string'), ('name', 'string'), ('state',

Display detailed schema

dfl.schema

StructType (List (StructField (age,LongType, true),
StructField(cid,StringType, true),

StructField (name,StringType, true) ,
StructField(state,StringType, true)))

Counting Rows

Obviously, you can count all the rows in a DataFrame, too:
dfl.count()
4

e:

'string')]

Important: count () returns the number of non-duplicate rows.

Use dfl.rdd.count () to return the number of actual rows.

210 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Removing Duplicates

The DataFrame API offers a couple of ways to remove duplicates:
Remove duplicate rows
dfl.distinct () .show()

Remove duplicate rows by key
dfl.drop_duplicates(["name"]) .show()

'_" Note: Using show () without a parameter results in the top 20 rows being

F I returned.

Saving DataFrames

There are multiple ways to save DataFrames such as those presented below.
Write full file

df .write.format (“parquet”) .save (“output.parquet”) *

df .write.format (“com.databricks.spark.avro”) .save (“output.avro”)

Write only some columns
df.select(“name”,”age”) .write.format(“json”) .save (“namesAndAges. json”)

To partition, just specific the column(s) to partition by
df .write.partitionBy (“name”,”age”) .parquet (“partitionNameAndAge.parquet”)

df .write.partitionBy (“name”,”age”) .format (“avro”) .save (“partitionNameAndAge.parquet”)

Copyright © 2015, Hortonworks, Inc. All rights reserved.

211

HDP Developer: Apache Pig and Hive

Defining Workflow with Oozie

Lesson Objectives

This lesson covers how to implement a Hadoop workflow using the Apache Oozie framework.
After completing this lesson, students should be ableto:

* Describe Oozie

¢ Describe an Oozie Coordinator Job

Additional Content

¢ Quiz: Lesson Review

* Lab: Defining an Oozie Workflow

Copyright © 2015, Hortonworks, Inc. All rights reserved. 191

HDP Developer: Apache Pig and Hive

Overview of Oozie

Oozie, http://oozie.apache.org, is an open-source Apache project that provides a framework
for coordinating and scheduling Hadoop jobs. Oozie is not restricted to just MapReduce jobs;
you can use Oozie to schedule Pig, Hive, Sqoop, Streaming jobs, and even Javaprograms.

Oozie has two main capabilities:
Oozie Workflow A collection of actions (defined in a workflow.xml file)
Oozie Coordinator A recurring workflow (defined in a coordinator.xml file)

Behind the scenes, Oozie is a Java web application that runs in a Tomcat instance. You run
Oozie as a service then start workflows using the ooziecommand.

We will now discuss the details of defining an Oozie workflow.xm1l file.

& Reference: For more information on the Apache Oozie project, visit their website
/ %‘ \ at http://oozie.apache.org/.
I

192 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Defining an Oozie Workflow

Copyright © 2015, Hortonworks, Inc. All rights reserved. 193

HDP Developer: Apache Pig and Hive

Start% Ac+on‘%§

o)
-5

«
&

VY
Ac+on‘%?

v
Ac+on‘%¢

A

V.
Ac+on$

A

> End%

194 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Defining and Oozie Workflow

An Oozie workflow consists of a workflow.xml file and the necessary files required by the
workflow. The workflow is put into HDFS with the following directory structure:

/appdir/workflow.xml
/appdir/config-default.xml
/appdir/lib/files. jar

* The config-default.xml file is optional and contains properties shared by all workflows

* Each workflow can also have a job.properties file (not put into HDFS) for job-specific
properties

As you will soon discover, most of your time spent defining an Oozie workflow is in writing
workflow.xml. A workflow definition consists of two mainentries:

Control flow nodes For determining the execution path. A fork node splitsone path

into multiple paths. A join node waits until every path of aprevious
fork node arrives to it

Action nodes For executing a job or task

Copyright © 2015, Hortonworks, Inc. All rights reserved. 195

HDP Developer: Apache Pig and Hive

Pig Actions

The pig action starts a Pig job. The workflow job will wait until the Pig job completes before
continuing to the next action. Here is an example of a simple workflow that only contains a
single Pig script as one of its actions:

<workflow-app xmlns="uri:oozie:workflow:0.2"

name="whitehouse-workflow">
<start to="transform whitehouse_visitors"/>

<action name="transform whitehouse_visitors">
<pig>
<job-tracker>${resourceManager}</job-tracker>
<name-node>$ {nameNode }</name-node>

<prepare>
<delete path="wh_visits"/>
</prepare>
<script>whitehouse.pig</script>
</pig>

<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">
<message>Job failed, error
message[${wf:errorMessage (wf:lastErrorNode ()) }]
</message>
</kill>
<end name="end"/>

</workflow-app>

196

Every workflow must define a <start>and <end>
This workflow has one action namedtransform whitehouse visitors

A workflow looks almost identical to the run method of a MapReduce job, except the job
properties are specified in XML

The <delete>function is a convenient way to delete an existing output folder

The <ok> tag determines where the flow should go if the job completes successfully. The
<error>tag defines where to go if the job fails

Parameters use the s {} syntax and represent values defined outside of workflow.xml. For
example, ${resourceManager} is the server name and port number where the
ResourceManager is running. Instead of hard-coding this value, you define it in an external
properties file (the job.propertiesfile)

The Oozie framework provides functions also, like wf:user (), which returns the name of
the user running the job, and wf: lastErrorNode (), which returns the DataNode where the
most recent error occurred. View the Oozie Documentation for a complete list of functions

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Hive Actions

The hive action runs a Hive job. It looks similar to a pig action:

<action name="find congress_visits">

<hive xmlns="uri:oozie:hive-action:0.5">
<job-tracker>${resourceManager}</job-tracker>
<name-node>$ {nameNode }</name-node>
<prepare>
<delete path="congress_visits"/>
</prepare>
<job-xml>hive-site.xml</job-xml>
<configuration>
<property>
<name>mapreduce.map.output.compress</name>
<value>true</value>
</property>
</configuration>
<script>congress.hive</script>
</hive>
<ok to="end"/>
<error to="fail"/>

</action>

The congress.hivescript will execute when this action is executed

The hive-site.xml file needs to be packaged in the workflow and needs to contain the
various properties for connecting to Hive

This action compresses the output of the map tasks

Copyright © 2015, Hortonworks, Inc. All rights reserved.

197

HDP Developer: Apache Pig and Hive

MapReduce Actions

Let’s take a look at an example of a map-reduce action:

<action name="payroll-job">
<map-reduce>
<job-tracker>${resourceManager}</job-tracker>
<name-node>$ {nameNode }</name-node>
<prepare>
<delete path="${nameNode}/user/${wf:user()}/payroll/result"/>
</prepare>
<configuration>
<property>
<name>mapreduce. job. queuename</name>
<value>$ {queueName}</value>
</property>
<property>
<name>mapred.mapper . new-api</name>
<value>true</value>
</property>
<property>
<name>mapred. reducer.new-api</name>
<value>true</value>
</property>
<property>
<name>mapreduce. job.map.class</name>
<value>payroll.PayrollMapper</value>
</property>
<property>
<name>mapreduce. job.reduce.class</name>
<value>payroll.PayrollReducer</value>

</property>
<property>
<name>mapreduce. job. inputformat.class</name>
<value>
org.apache.hadoop.mapreduce.lib.input.TextInputFormat
</value>
</property>
<property>
<name>mapreduce. job.outputformat.class</name>
<value>
org.apache.hadoop.mapreduce.lib.output.NullOutputFormat
</value>
</property>
<property>

<name>mapreduce. job.output.key.class</name>
<value>payroll.EmployeeKey</value>
</property>
<property>
<name>mapreduce. job.output.value.class</name>
<value>payroll.Employee</value>
</property>
<property>
<name>mapreduce. job.reduces</name>
<value>20</value>
</property>
<property>
<name>
mapreduce.input.fileinputformat.inputdir
</name>

198 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

<value>
${nameNode} /user/${wf:user () } /payroll/input
</value>

</property>
<property>
<name>

mapreduce.output.fileoutputformat.outputdir

</name>
<value>
$ {nameNode} /user/${wf:user () } /payroll/result</value>

</property>
<property>

<name>taxCode</name>
<value>${taxCode}</value>
</property>
</configuration>
</map-reduce>
<ok to="compute-tax"/>
<error to="fail"/>
</action>

Notice a <map-reduce> job consists of properties you would expect, like the map class, reduce

class, input and output formats, number of reduce tasks, etc.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

199

HDP Developer: Apache Pig and Hive

Submitting a Workflow Job

Oozie has a command-line tool named ocozie for submitting and executing workflows. The
command looks like:

oozie job -config job.properties -run

The code job.properties contains the properties passed in to the workflow. Note that the
workflow is typically deployed in HDFS and job.properties is typically kept on the local

filesystem.

Notice the command above does not specify which Oozie workflow to execute. This is
specified by the cozie.wf.application.pathproperty:

oozie.wf.application.path=hdfs://node:8020/path/to/app

Here is an example of a job.properties file:

oozie.wf.application.path=hdfs://node:8020/path/to/app

#{Hadoop ResourceManager
resourceManager=node: 8050

#Hadoop fs.default.name
nameNode=hdfs://node:8020/

#Hadoop mapred.queue.name
queueName=default

#Application-specific properties

taxCode=2012

The resourceManager property was used in workflow.xml for the <job-tracker> value.
Similarly, the nameNode property became the <name-node> value and the queueName property
ended up as the value of mapreduce.job.queuename in workflow.xml. You define your
application-specific properties in job.properties

200 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Fork and Join Nodes

Oozie has fork and join nodes for controlling workflow. Forexample:

<fork name="forking">
<path start="firstparalleljob"/>
<path start="secondparalleljob"/>

</fork>

<action name="firstparallejob">
<map-reduce>

</map-reduce>
<ok to="joining"/>
<error to="kill"/>
</action>
<action name="secondparalleljob">
<map-reduce>

</map-reduce>
<ok to="joining"/>
<error to="kill"/>
</action>
<join name="joining" to="nextaction"/>

Copyright © 2015, Hortonworks, Inc. All rights reserved.

201

HDP Developer: Apache Pig and Hive

Defining an Oozie Coordinator Job

Oozie Coordinator is a component of Oozie that allows you to define jobs that are recurring
Oozie workflows. These recurring jobs can be triggered by two types of events:

time Similar to a cron job

data availability The job triggers when a specified directory is created
An Oozie Coordinator job consists of twofiles:

coordinator.xml The definition of the coordinator application

coordinator.properties For defining the job’s properties

Schedule a Job Based on Time

Let’s take a look at an example of a coordinator.xml file. The following Coordinator is
triggered based on time:

<coordinator-app name="tf-idf"
frequency="1440"
start="2013-01-01T00:00Z"
end="2013-12-31T00:00z"
timezone="UTC"
xmlns="uri:oozie:coordinator:0.1">
<action>
<workflow>
<app-path>
hdfs://node:8020/home/train/tfidf/workflow

</app-path>
</workflow>
</action>
</coordinator-app>

* The frequency is in minutes, so this job runs once aday

* Note the Oozie Coordinator has utility functions (similar to the Oozie workflow) like
${coord:days (1) } for specifying the frequency in days

* The job starts at midnight on Jan 1, 2013, and runs every day for ayear
* The <app-path>specifies the job to run, which is an Oozie workflow job

You submit an Oozie Coordinator job similar to submitting a workflow job:
oozie job -config coordinator.properties -run
The coordinator.propertiesfile contains the path to the coordinator app:

oozie.coord.application.path=hdfs://node:8020/path/to/app

200 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

" Note: Oozie also supports the scheduling of jobs similar to how cron jobs are
¥ scheduled.

Schedule a Job Based on Data Availability

The following coordinator application triggers a workflow job when a directory named
hdfs://node:8020/job/result/ gets created:

<coordinator-app name="file_ check"
frequency="1440" start="2012-01-01T00:00Z"
end="2015-12-31T00:00Z" timezone="UTC"
xmlns="uri:oozie:coordinator:0.1">
<datasets>
<dataset name="inputl">
<uri-template>
hdfs://node:8020/job/result/
</uri-template>
</dataset>
</datasets>
<action>
<workflow>
<app-path>hdfs://node:8020/myapp/</app-path>
</workflow>
</action>
</coordinator-app>

This coordinator app is scheduled to run once a day. If the folder

hdfs://node:8020/job/result/ exists, the <action> executes, which in this example is an
Oozie workflow deployed in the hdfs://node:8020/myapp folder.

The assumption here is that some MapReduce job executes once a day at an unspecified time.
When that job runs, it deletes the hdfs://node:8020/job/result directory and then creates
a new one, which triggers the Coordinator to run. This Coordinator runs once a day, and if
/job/result exists, the /myapp workflow will execute.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 501

HDP Developer: Apache Pig and Hive

Review Questions

1) What are the two main capabilities of Oozie?

2) What file is required to be a part of an Oozie workflow?

3) List three common Oozie workflow actions:

4) What two types of events can be used to trigger an Oozie coordinator job?

202 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Lab: Defining an Oozie Workflow

Objective: Define and run an Oozie workflow

See page 133 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 203

HDP Developer: Apache Pig and Hive

204 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved. 205

HDP Developer: Apache Pig and Hive

Appendix A: Lesson Review Quiz Answers

Understanding Hadoop: Review Answers

1)

2)

3)

4)

5)

6)

7)

206

What are 1,024 petabytes known as?
Answer: 1,024 petabytes = 1 Exabyte

What are 1,024 exabytes known as?
Answer: 1,024 Exabytes = 1 Zettabyte
And for what it’s worth:

1,024 Zettabytes = 1 Yottabyte

1,024 Yottabytes = 1 Brontobyte
1,024 Brontobytes = 1 Geopbyte

List the three Vs of big data:

Answer: Variety, Volume, and Velocity

Sentiment is one of the six key types of big data. List the other five:
Answer: Clickstream

Sensor and machine data

Location-based (geographic) data

Server logs

Text (web pages, emails, documents, etc.)

What technology might you use to stream Twitter feeds intoHadoop?

Answer: Flume is commonly used for importing Twitter feeds into a Hadoop cluster

What technology might you use to define, store, and share the schemas of your big data
stored in Hadoop?

Answer: HCatalog is designed to easily store and share schemas for your bigdata.

What are the two main new components in Hadoop 2.x?

Answer: HDFS Federation and yARN.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The Hadoop Distributed File System (HDFS): Review Answers

1)

6)

Which component of HDFS is responsible for maintaining the namespace of the distributed
filesystem?

Answer: NameNode

What is the default file-replication factor in HDFS?

Answer: 3

True or False: To input a file into HDFS, the client application passes the data to the
NameNode, Which then divides the data into blocks and passes the blocks to the
DataNodes.

Answer: False. A file’s data in HDFS never passes through the NameNode. Client
applications read and write directly from the bataNodes.

Which property is used to specify the block size of a file stored in HDFS?

Answer: dfs.blocksize

The NameNode maintains the namespace of the filesystem using which two sets of files?

Answer: The fsimage N and edits Nfiles

What does the following command do?

hdfs dfs -1ls -R /user/thomas/

7)

Answer: Recursively lists the contents of /user/thomas in HDFS and all of its subfolders

What does the following command do?

hdfs dfs -1ls /user/thomas/

Answer: Lists the file and folders in /user/thomas, but not recursively. (The files in the
subfolders of /user/thomas are not listed.)

Copyright © 2015, Hortonworks, Inc. All rights reserved. 507

HDP Developer: Apache Pig and Hive

Inputting Data into HDFS: Review Answers
1) What tool would work best for importing data from a relational database into HDFS?

Answer: Sqoop

2) What tool would work best for putting a file on your local filesystem into HDFS?

Answer: The Hadoop client (hdfs dfs -put command)

3) List the three main components of a typical F1ume agent:

Answer: A Flume agent consists of a source, channel, and sink

4) What is the default number of map tasks for a Sqoop job?

Answer: Four map tasks by default

5) How do you specify a different number of mappersin a Sqoop job?

Answer: The -moption is for specifying the number of mappers.

6) What is the purpose of the sconpITIONS value in the WwHERE clause of a Sqoop query?

Answer: The scoNDITIONS value is used internally by Sqoop to specify LIMIT and OFFSET
clauses so the data can be split up amongst the map tasks

208 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

The MapReduce Framework: Review Answers

1)

What are the three main phases of a MapReduce job?

Answer: Map phase, shuffle/sort phase, and reduce phase

Suppose the mappers of a MapReduce job output <key, value> pairs that are of type
<integer, string>. What will the pairs look like that are processed by the corresponding

reducers?

Answer: The pairs coming into the reducerwill look like <integer,
(string,string,string,...)>

What happens if all the <key, value> pairs output by a mapper do not fit into the memory of
the mapper?

Answer: When the map output buffer reaches a threshold, the <key, value> pairs are
spilled to disk, meaning they are written to a temporary file on the local filesystem.

What determines the number of mappers of a MapReduce job?

Answer: The number of mappersis determined by the input splits.

What determines the number of reducersof a MapReduce job?

Answer: You get to choose the number of reducers.

True or False: The shuffle/sort phase sorts the keys and values as they are passed to
the reducer.

Answer: False. The keys are sorted, but the values are not.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 209

HDP Developer: Apache Pig and Hive

Introduction to Pig: Review Answers

1) List two Pig commands that cause a logical plan to execute:

Answer: STORE, DUMP, and ILLUSTRATE all cause a logical plan to execute

2) Which Pig command stores the output of a relation into a folder in HDFS?

Answer: STORE

Suppose the prices.csvfile looks like:

XFR,2004-05-13,22.90,400
XFR,2004-05-12,22.60,400000
XFR,2004-05-11,22.80,2600
XFR,2004-05-10,23.00,3800
XFR,2004-05-07,23.55,2900
XFR,2004-05-06,24.00,2200

And assume we have the following relation defined:

prices = load 'prices.csv' using PigStorage(',')
as (symbol:chararray, date:chararray, price:double, volume:int);

Explain what each of the following Pig commands or relationsdo:

3) describe prices;

Answer: prices: {symbol: chararray,date: chararray,price: double,volume:

int}

4) A = group prices by symbol;

Answer: The result is a collection of bags, with a bag for each distinct symbol. The A
relation looks like:

A: {group: chararray,prices: {(symbol: chararray,date: chararray,price:
double,volume: int)}}

5) B = foreach prices generate symbol as x, volume asy;

Answer: The B relation is a projection of the symbo1 and volume fields of prices. The
schema was also changed. B looks like:

B: {x: chararray,y: int}

210 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

6) C = foreach A generate group, SUM(prices.volume) ;

Answer: C is a projection of a. The group field is the symbo1 field of prices, and the sum
function adds up the volume field of each group of symbols. The c relation looks like:

C: {group: chararray,long}

The output of c looks like:

(XFR,411900)

7) D = foreach prices generate symbol..price;

Answer: D is a projection of all fields of prices between symbol and price. The D relation
looks like:

D: {symbol: chararray,date: chararray,price: double}

8) Write a Pig relation that only contains prices with a volume greater than 3,000:

Answer. E = filter prices by volume > 3000;

Copyright © 2015, Hortonworks, Inc. All rights reserved.

211

HDP Developer: Apache Pig and Hive

Advanced Pig Programming: Review Answers

1) If arelation is sorted using orRDER BY and the resulting MapReduce job runs with three
reducers, how is the output actually sorted?

Answer: The oORDER BY command generates a total ordering, meaning that the records will
be sorted across all three reducers, with the output of reducer 1 containing the first set
of sorted records, reducer 2 containing the second set, and so on.

Suppose the prices.csvfile looks like:

XFR,2004-05-13,22.90,400
XFR,2004-05-12,22.60,400000
XFR,2004-05-11,22.80,2600
XFR,2004-05-10,23.00,3800
XFR,2004-05-07,23.55,2900
XFR,2004-05-06,24.00,2200

And assume we have the following relation defined:

prices = load 'prices.csv' using PigStorage(',')
as (symbol:chararray, date:chararray, price:double, volume:int);

Explain what each of the following Pig commands or relationsdo:
2) F = foreach prices generate
(CASE
WHEN volume > 3000 THEN volume
WHEN volume <= 3000 THEN -1

END) AS high volume;

Answer: The output of rlooks like:

(-1)
(400000)
(-1)
(3800)
(-1)
(-1)

3) G = distinct prices;

Answer: The DISTINCT operator removes duplicate records, but the prices relation does
not contain any duplicates, so in this example the ¢ relation is identical to the prices
relation.

212 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

T
Il

GROUP prices BY symbol;

I = foreach H {

J = filter prices by volume > 3000;
GENERATE group, SUM(J.price);
b

Answer: The output of T is (XFR, 45.6), which is the sum of the prices fields for each
record where the volume is greater than 3,000.

What is the benefit of the using ‘replicated’ clause in a Pig join?

Answer: The result is a map-side join, which greatly improves the resulting join operation in
MapReduce by limiting network traffic in the shuffle/sort phase to only records that will
appear in the result.

Why is filtering and projecting a relation early a performance benefit in Pig?

Answer: Filtering limits the number of records, and projecting limits the size of the records,
which greatly improves both network traffic and processing time of the resulting
MapReduce job.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 513

HDP Developer: Apache Pig and Hive

Hive Programming: Review Answers

1)

7)

A Hive table consists of a schema stored inthe Hive and data stored
in

Answer: A Hive table consists of a schema stored in the Hive metastore and data stored in
HDFS.

True or False: The Hive metastore requires an underlying SQL database.

Answer: True. Hive uses an in-memory database called Derby by default, but you can
configure Hive to use any SQL database.

What happens to the underlying data of a Hive-managed table when the table is dropped?

Answer: The data and folders are deleted from HDFS.

True or False: A Hive external table must define arLocaTION.

Answer: False. An external table can use an external location, but it can also use the Hive
warehouse folder.

List three different ways data can be loaded into a Hivetable:

Answer: There are several ways to load data into a Hive table, including manually copying
files into the table’s folder in HDFS; using the Loap paTa command; and inserting data as
the result of a query.

When would you use a skewed table?

Answer: Skewed tables make sense when your data is naturally skewed, where a small
number of columns contain a disproportionate amount ofrecords.

Suppose you have the following table definition:

create table movies (title string, rating string,

214

length double) partitioned by (genre string):;
What will the folder structure in HDFS look like for the movies table?

Answer: Within /apps/hive/warehouse/movies will be subfolders named /genre=value.
For example, /genre=scifi, /genre=comedy, /genre=drama,€tcC.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

8) Explain the output of the following query:
select * from movies order by title;

Answer: The order by clause causes the output to be totally ordered by title across all
output files.

9) What does the following Hive query compute?
from mytable
select explode (ngrams (sentences(val) ,3,100)) as myresult;
Answer: The ngram output from this query is called a trigram, because the result will be

sets of three words. The 100 argument specifies you want the top 100 trigrams from this
dataset.

10) What does the following Hive query compute?

from mytable
select explode(context ngrams (sentences(val),
array("I","liked" ,null) ,10)) as myresult;

Answer: The output of this query is the top 10 words in the dataset that follow the phrase
“I liked.”

Copyright © 2015, Hortonworks, Inc. All rights reserved.

215

HDP Developer: Apache Pig and Hive

Using HCatalog: Review Answers
1) Where does HCatalogstore its schema information?

Answer: In the Hive metastore.

2) List three programming frameworks that can readily access an HCatalog schema:

Answer: Pig, Hive, and Java MapReduce programs can all easily use the schemas shared
by HCatalog.

3) What Java class does Pig use to load data from an HCatalogtable?

Answer: The HCatLoader class; more specifically,
org.apache.hive.hcatalog.pig.HCatLoader.

4) True or False: HCatalogis now merged with Hive.

Answer: True. HCatalogis now a part of Hive.

216 Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Advanced Hive Programming: Review Answers

1)

3)

What is the benefit of performing two insert queries in the same Hive command?

Answer: Two queries that would normally require two MapReduce jobs can be combined
and accomplished in a single MapReduce job.

True or False: Hive views are materialized when they aredefined.

Answer: False. Hive views are not materialized until they are used in another query.

Suppose an employees table has 200 rows and its department column has 15 distinct
values. How many rows would be in the result set of the following query?

from employees

4)

select fname,lname,MAX (salary)
over (partition by department) ;

Answer: 200. The ovER clause causes the group aggregation to not occur, so each
employees row will be output. There will only be 15 salary values, the maximum salary in
each department.

Explain what the following query is computing:

from employees

select fname,lname,AVG (salary)
over (partition by department order by salary
rows between 5 preceding and current row) ;

Answer: The result will contain the fname, 1name, and the average salary of this

employee and the five preceding employees whose salaries are less than or equal to the
current employee.

Which Hive file format provides the bestperformance?

Answer: ORC files are a part of the Stinger Initiative and provide the best performance for
Hive queries.

What does pac stand for?

Answer: DAG = Directed Acyclic Graph. Hive queries are processed into a series of jobs that
look like a DAG.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 017

HDP Developer: Apache Pig and Hive

Hadoop 2 and YARN: Review Answers

1)

2)

3)

4)

218

True or False: A NameNode can contain multiple namespaces.

Answer: False. A NameNode can represent only a single namespace.

What is the key benefit of the new YarN framework?

Answer: Hadoop jobs are no longer restricted to MapReduce. With YarN, any type of
computing paradigm can be implemented to run on Hadoop.

What are the three main components of yArRN?

Answer: ResourceManager, NodeManager, and ApplicationMaster

What happens if a container fails to complete its task in a YyaArN application?

Answer: It is up to the ApplicationMaster t0 request a new Container from the
ResourceManager and attempt the task again.

Copyright © 2015, Hortonworks, Inc. All rights reserved.

HDP Developer: Apache Pig and Hive

Defining Workflow with Oozie: Review Answers

1)

2)

3)

4)

What are the two main capabilities of Oozie?

Answer: Oozie Workflow, for defining Hadoop job workflows; and the Oozie coordinator, for
scheduling recurring workflows.

What file is required to be a part of an Oozie workflow?

Answer: Each Oozie workflow must contain a workflow.xm1 configuration file.

List three common Oozie workflow actions:

Answer: <pig>, <hive>, and <map-reduce>

What two types of events can be used to trigger an Oozie coordinator job?

Answer: Time based, where a job executes at a specific time; or data based, where a job
executes if data is available in a specific location.

Copyright © 2015, Hortonworks, Inc. All rights reserved. 519

