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Understanding Hadoop 

 
Lesson Objectives 
This lesson covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 

After completing this lesson, students should be able to: 

• Describe the Three Vs of Big Data 

• Describe the Six Key Hadoop Data Types 

• Describe Use Cases 

• Describe Hadoop 

• Describe the Hortonworks Data Platform (HDP) 

• Describe the Path to ROI 
 
Additional Content 
• Quiz: Lesson Review 

• Lab: Start an HDP 2.3 Cluster 
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The Three Vs of Big  Data 
Big data is a common buzzword in the world of IT nowadays, and it is important to understand 
what the term means. 

Big data describes the realization of greater business intelligence by storing, processing, and 
analyzing data that was previously ignored or siloed due to the limitations of traditional data- 
management technologies. 

Notice from this definition that there is more to big data than just a lot of data, and there is 
more to big data than just storing it. 

 
Processing If you are just storing a lot of data, then you probably do not have a 

use case for big data. Big data is data that you want to be able to 
process and use as part of a business application 

 
Analyzing In addition to making the data a part of your applications, big data 

is also data that you want to analyze (i.e. mine the data) to find 
information that was otherwise unknown 

 
The characteristics of big data are often defined as the three Vs: 

 
Variety Any type of structured or unstructured data 

 
Volume Terabytes and petabytes (and even exabytes) of data 

 
Velocity Data flows in to your organization at increasing rates 

 
 
 

 

 

Note: A common aspect of big data is that it is often data that was otherwise 
ignored in your business because you did not have the capability to store, 
process, and analyze it. 

For example, your customers’ personal information stored in an RDBMS and 
used in online transactions is not big data. However, the three terabytes of web- 
log files from millions of visits to your website over the last ten years is probably 
big data. 
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Big data includes all types of data: 

 
Structured The data has a schema, or a schema can be easily assigned to it 

 
Semi-structured Has some structure, but typically columns are often missing or 

rows have their own unique columns 
 

Unstructured Data that has no structure, like JPGs, PDF files, audio and video 
files, etc. 

 
Big data also has two inherent characteristics: 

 
Time based A piece of data is something known at a certain moment in time, 

and that time is an important element. For example, you might live 
in San Francisco and tweet about a restaurant that you enjoy. If 
you later move to New York, the fact that you once liked a 
restaurant in San Francisco does not change 

 
Immutable Because of its connection to a point in time, the truthfulness of the 

data does not change. We look at changes in big data as new 
entries, not updates of existing entries 
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Six Key Hadoop Data  Types 

 

 
6	
  Key	
  Hadoop	
  Data	
  Types	
  	
  

	
  
The type of big data that ends up in Hadoop typically fits into one of the following categories: 

 
Sentiment Understand how your customers feel about your brand and 

products right now 
 

Clickstream Capture and analyze website visitors’ data trails and optimize your 
website 

 
Sensor/Machine Discover patterns in data streaming automatically from remote 

sensors and machines 
 

Geographic Analyze location-based data to manage operations where they 
occur 

 
Server Logs Research log files to diagnose and process failures and prevent 

security breaches 
 

Text Understand patterns in text across millions of web pages, emails, 
and documents 
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About Use Cases 

Sentiment Use Case 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sentiment	
  Use	
  Cases	
  

	
  

The goal was to determine how the public felt about the debut of the Iron Man 3 movie using 
Twitter, and how the movie company might better promote the movie based on the initial 
feedback. Here are the steps that were performed: 

1) Use Flume to get the Twitter feeds into HDFS. 

2) Use HCatalog to define a shareable schema for the data. 

3) Use Hive to determine sentiment. 

4) Use an Excel bar graph to visualize the volume of tweets. 

5) Use MS PowerView to view sentiment by country on a map. 
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Getting	
  Twitter	
  Feeds	
  into	
  Hadoop	
  

	
  
Flume was used to input the Twitter feeds into Hadoop. Once the data was in HDFS, HCatalog 
was used to define a schema: 

 

 
There were a lot of Hive queries used to create the final result. Hive looks like SQL. For 
example: 

 

 

CREATE EXTERNAL TABLE tweets_raw ( 
id BIGINT, 
created_at STRING, 
source STRING, 
favorited BOOLEAN, 
retweet_count INT, 
text STRING 

) 

CREATE TABLE tweetsbi 
STORED AS RCFile 
AS 
SELECT 

t.*, 
case s.sentiment 

when 'positive' then 2 
when 'neutral' then 1 
when 'negative' then 0 

end as sentiment 
FROM tweets_clean t LEFT OUTER JOIN tweets_sentiment s on t.id = s.id; 
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The result was imported into Power View. The following graph shows the volume of tweets 
over the opening weekend of the movie: 

 

 
View	
  Spikes	
  in	
  Tweet	
  Volume	
  

	
  
The sentiment of the tweets was graphed by country: 

 

 
View	
  Sentiment	
  by	
  Country	
  

	
  

	
  
	
  

Reference: Visit http://hortonworks.com/hadoop-tutorial/how-to-refine-and-
visualize-sentiment-data/ to watch a video that walks through the steps above. 
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Geolocation Use Case 
A trucking company collects sensor data from its trucks based on GPS coordinates and logs 
driving events like speed, acceleration, stopping too quickly, driving too close to other 
vehicles, and so on. These events get collected and put into Hadoop for analysis. The goal of 
the trucking company is to reduce fuel costs and improve driver safety by recognizing high-risk 
drivers. 

• Flume is used to get the raw sensor data into Hadoop 

• Sqoop is used to get the data about each vehicle from an RDBMS into Hadoop 

• HCatalog contains all of the schema definitions 

• Hive is used to analyze the gas mileage of trucks 

• Pig is used to compute a risk factor for each truck driver based on his/her events 
• Excel is used to create bar graphs and maps showing where and how often events are 

occurring 
 

 
Getting	
  the	
  Raw	
  Data	
  into	
  Hadoop	
  

	
  
Flume was used to input the data into HDFS. The data collected from the trucks looks like: 

 

 

truckid 
driverid 
event 
latitude 
longitude 
city 
state 
velocity 
event_indicator (0 or 1) 
idling_indicator (0 or 1) 
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For example: 

 

 
The details of the trucks and drivers are stored in a relational database. Sqoop was used to 
import the relational data into HDFS, and HCatalog was used to define schemas for this data: 

 

 
 

 
Getting	
  the	
  Truck	
  Data	
  into	
  Hadoop	
  

A5 A5 unsafe following distance 41.526509 -124.038407 Klamath California 33 1 0 
A54 A54 normal 35.373292 -119.018712 Bakersfield California 19 0 0 
A48 A48 overspeed 38.752124 -121.288006 Roseville California 77 1 0 

create table trucks ( 
driverid string, 
truckid string, 
model string, 
monthyear_miles int, 
monthyear_gas int, 
total_miles int, 
total_gas double, 
mileage double 
); 
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Lots of Hive queries were used to evaluate the data. Hive looks like SQL: 

 

 
Pig is a scripting language that has an SQL-like look to it. Pig was used to compute the risk 
factor of each driver: 

 

 

CREATE TABLE truck_mileage AS 
SELECT truckid, rdate, miles, gas, 

miles/gas mpg 
FROM trucks 
LATERAL VIEW stack(54, 

'jun13',jun13_miles,jun13_gas,'may13',may13_miles,may13_gas,'apr13',apr13_miles,apr13_ 
gas,... 
) dummyalias AS rdate, miles, gas; 

 a = LOAD 'events'  
       using org.apache.hive.hcatalog.pig.HCatLoader(); 
 b = filter a by event != 'Normal'; 
c = foreach b 

generate driverid, event, (int) '1' as occurance; 
d = group c by driverid; 
e = foreach d generate group as driverid, 

SUM(c.occurance) as t_occ; 
f = LOAD 'trucks'  
       using org.apache.hive.hcatalog.pig.HCatLoader();  
g = foreach f generate driverid, 

((int) apr09_miles + (int) apr10_miles) as t_miles; 
join_d = join e by (driverid), g by (driverid); 
final_data = foreach join_d generate 

$0 as driverid, (float) $1/$3*1000 as riskfactor; 
store final_data into 'riskfactor' 

using org.apache.hive.hcatalog.pig.HCatStorer(); 
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Using Power View, the risks were displayed in a bar graph: 

 

 
Risk	
  Factors	
  Viewed	
  in	
  a	
  Graph	
  

	
  
The risk factors were also plotted on a map: 

 

 
Risk	
  Factors	
  Viewed	
  on	
  a	
  Map	
  

	
  

	
  
	
  

Reference: Visit http://hortonworks.com/hadoop-tutorial/geolocation-data-profit-
from-predictive-analytics/ to view a video of the trucking company geolocation 
use case. 
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About Hadoop 
Apache Hadoop, http://hadoop.apache.org/, is one such system. Hadoop ties together a cluster 
of commodity machines with local storage using free and open-source software to store and 
process vast amounts of data at a fraction of the cost of any other system. 

 

Framework for 
solving data-intensive 
processes 

Meaning the bottleneck was waiting to read data from the disk. 
The potential bottlenecks in a computing system are CPU, RAM, 
network, and disk IO. Hadoop was designed to solve the problem 
of disk IO 

 

Designed to scale 
massively 

To scale massively, it is important things are as simple as possible, 
provide redundancy, and avoid the need for any sharing of a single 
system, such as locking files for operations. To meet these goals, 
the Hadoop file system is “write once” and files are immutable 

 

Hadoop is very fast 
for big jobs 

Hadoop does scale. A 20-node cluster with 10 disks per machine 
running a large MapReduce job will have close to 200 disks 
reading and processing data all at once. The relative speed of work 
done in parallel when compared to a non-parallel system will be 
significant 

 

Variety of processing 
engines 

Big data on Hadoop can be processed using multiple different 
processing engines, including Tez, Spark and Storm. 

 

Designed for 
hardware and 
software failures 

Which is accomplished by “sharing nothing.” Core Hadoop 
systems are designed to share as little information about state as 
possible. DataNodes do not know what file a block belongs to. A 
map task writes to a temporary directory, and that data is thrown 
away at failure. A task is either running to success or it fails 
completely, and subsequent attempts do not acquire state from 
the failed task 

 

All of these features put together create a powerful data processing framework that not only 
stores large amounts of data but also processes large amounts of data in a relatively short 
amount of time. 
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Relational Databases vs. Hadoop 

 

 
Relational	
  Database	
  vs.	
  Hadoop	
  

	
  
Understanding how schemas work in Hadoop might help you better understand how Hadoop 
is different from relational databases: 

• With a relational database, a schema must exist before the data is written to the database, 
which forces the data to fit into a particular model 

• With Hadoop, data is input into HDFS in its raw format without any schema. When data is 
retrieved from HDFS, a schema can be applied then to fit the specific use case and needs 
of your application 

 

 

 
 

About Hadoop 2 
Hadoop 2.x refers to the next generation of Hadoop. As expected, the Hadoop framework has 
grown to meet the demands of its own popularity and usage, and 2.x reflects the natural 
maturing of the open-source project. 

The Apache Hadoop 2.x project (the open-source version number) consists of the following 
modules: 

 
Hadoop Common The utilities that provide support for the other Hadoop modules 

 
HDFS The Hadoop Distributed File System 

 
YARN A framework for job scheduling and cluster resource management 

 
MapReduce For processing large data sets in a scalable and parallel fashion 

Important: Hadoop is not meant to replace your relational database. Hadoop is 
for storing big data, which is often the type of data that you would otherwise not 
store in a database due to size or cost constraints. You will still have your 
database for relational, transactional data. 
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New in Hadoop 2.x 

 

HADOOP 1.x HADOOP 2.x 
 

  
 

What’s	
  New	
  in	
  Hadoop	
  2.x?	
  
	
  

There are two exciting and significant additions to the Hadoop framework: 
 

HDFS HA and 
Federation 

Provides a name service that is scalable and reliable 

 

YARN Stands for Yet Another Resource Negotiator. It divides the two 
major functions of the JobTracker (resource management and job 
lifecycle management) into separate components 

 
A key issue with Hadoop 1.x was providing a NameNode that was highly available. Hadoop 2.x 
provides an HA NameNode. 

Federation provides the ability to configure multiple NameNodes, and therefore multiple 
namespaces, to provide a distribution of workloads since the NameNodes can now scale 
horizontally. 

YARN provides a logical separation of duties for negotiating and executing jobs across a 
Hadoop cluster. The end result of YARN is a new, more generic resource-management 
framework that works with more than just MapReduce jobs. 

 
MapReduce%	
  

(cluster*resource*management*	
  
*&*data*processing)*	
  

 
 

HDFS%	
  
(redundant,*reliable*storage)*	
  

MapReduce%	
  
(data*processing)*	
  

Others%	
  
(data*processing)*	
  

YARN%	
  
(cluster*resource*management)*	
  

 
 

HDFS%	
  
(redundant,*reliable*storage)*	
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The Hadoop Ecosystem  

 
 

 
The	
  Hadoop	
  Ecosystem	
  

	
  

Hadoop is more than HDFS and MapReduce. There is a large group of technologies and 
frameworks that are associated with Hadoop, including: 

 
Pig A scripting language that simplifies the creation of MapReduce 

jobs, and excels at exploring and transforming data 
 

Hive Provides SQL-like access to your big data 
 

HBase A Hadoop database 
 

Accumulo A robust, scalable, high-performance data-storage and retrieval 
system, built on Hadoop and Zookeeper 

Ambari Provisioning, managing, and monitoring Apache Hadoop clusters 

Sqoop Efficiently transfers bulk data between Hadoop and RDBMS 

Falcon A data processing and management solution, designed for pipeline 
coordination, lifecycle management, and data discovery 

 
Oozie A workflow scheduler system to manage Apache Hadoop jobs 

 
Solr A standalone enterprise search server with a REST-like API 

 
Flume Efficiently collects, aggregates, and moves log data 

 
ZooKeeper An open-source server that enables highly reliable distributed 

coordination 
 

Mahout An Apache project whose goal is to build scalable-machine 
learning libraries 

 
Storm Framework that provides real-time processing of streams of data 

 
Spark A fast and general engine for large-scale data processing 
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The Hortonworks Data Platform  (HDP) 

 

 
The	
  Hortonworks	
  Data	
  Platform	
  (HDP)	
  

	
  
The Hortonworks Data Platform, or HDP for short, is the only 100% open-source data- 
management platform for Apache Hadoop and is the most stable and reliable Apache Hadoop 
distributor. It delivers the cost effectiveness of Hadoop and the advanced services required for 
enterprise deployments. 

The key features of HDP include: 
 

High Availability HA is now achievable in HDP 2.x without the use of an outside 
technology 

 

Open-Source Cluster 
Management 

HDP includes Apache Ambari, the only open-source operations 
tool that allows you to provision, manage, and monitor a Hadoop 
cluster of any size 

 

Metadata Services & 
HCatalog 

HCatalog provides metadata services and a REST interface that 
provides an additional SQL-like interface to Hadoop 

 

Data Integration 
Services 

Including Sqoop, Flume, and WebHDFS 

 

ODBC Done Right Hive has a free high-performance ODBC driver that includes an 
SQL engine so you can interact with nearly every BI tool, including 
all SQL-92 interfaces 

 
 
 

 

 

Note: Apache Hadoop has become a core component of the enterprise data 
architecture as a complement to existing data-management systems. 
Accordingly, HDP is designed to easily inter-operate so you can extend your 
existing investments in applications, tools, and processes with Hadoop. 
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The Path to ROI  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The	
  Path	
  to	
  ROI	
  

	
  

Along with the tools and frameworks in the Hadoop ecosystem, there are also the individuals 
who must push the data through Hadoop, answer questions, and find hidden gems within the 
big data. The path to ROI in Hadoop involves several steps and roles, including: 

 

Put the data into 
HDFS 

Because you do not need to apply a schema to the data, it is best 
to keep it in its raw format and to try not to force a structure on the 
data that may only fit a few use cases. By keeping all of the original 
raw data, you leave the door open for answers to future questions 
that you may not have thought to ask yet 

 

Explore and 
Transform 

Often the raw data needs to be transformed. Pig is an excellent 
tool for exploring the raw data and transforming it into a structure 
more suitable for your specific use case 

 

Answer questions Hive is a great tool for performing queries on structured data. The 
Hive query language is essentially SQL, so it is familiar and 
comfortable to use for data analysts 

 
Find hidden gems The real ROI comes from mining the data, a task that fits under the 

moniker of data science. The data scientist uses a variety of tools 
and frameworks, including Java, MapReduce, R, Mahout, Python, 
and other tools and scripting languages 

 
 
 

 

 

Note: The diagram above is meant only to show a typical use case of how data 
might flow through Hadoop and how the various elements of the Hadoop 
ecosystem are typically used. There are certainly many other scenarios and use 
cases, along with many other tools available for answering questions and mining 
big data. 
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Review Questions 
1)   What are 1,024 petabytes known as?  _ 

2)   What are 1,024 exabytes known as? __________________________ 

3)   List the three Vs of big data: _____________________________________________ 

4) Sentiment is one of the six key types of big data. List the other five: 

_______________________________________________________________________ 

5) What technology might you use to stream Twitter feeds into Hadoop? 

_______________________________________________________________________ 

6) What technology might you use to define, store, and share the schemas of your big data 
stored in Hadoop? 

_______________________________________________________________________ 

7) What are the two main new components in Hadoop 2.x? 

_______________________________________________________________________ 
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Lab: Start an HDP 2.3  Cluster 

Objective: Start an HDP cluster in your VM 
See page 7 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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The Hadoop Distributed File System (HDFS) 
 
Lesson Objectives 
This lesson covers the details of how files are stored and maintained in the Hadoop Distributed 
File System (HDFS). 

After completing this lesson, students should be able to: 

• Describe HDFS 

• Describe How to Understand Block Storage 

• Describe the NameNode 

• Describe the DataNodes 

• Describe HDFS Commands 
 
Additional Content 
• Demonstration: Understanding Block Storage 

• Quiz: Lesson Review 

• Lab: Using HDFS Commands 
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About HDFS  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What	
  is	
  HDFS?	
  

	
  

Data in Hadoop is stored on a filesystem referred to as HDFS or the Hadoop Distributed File 
System. With HDFS, data is broken down into chunks and distributed across a cluster of 
machines. 

HDFS has the following characteristics: 

• Primary storage system for Hadoop: it stores large files as small blocks 

• Designed to be deployed on low-cost hardware 
• Designed to scale easily and effectively (adding more nodes increases both storage space 

and computing throughput) 

• Reliability: data is replicated so that disk failover is not only acceptable but expected and 
handled seamlessly 

 

  

Note: HDFS is the data-storage mechanism for Hadoop. In Hadoop 2.x, YARN is 
referred to as the data operating system. 
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Hadoop vs. RDBMS  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hadoop	
  vs.	
  RDBMS	
  

	
  

To help better understand how Hadoop works, let’s compare it to something you may be very 
familiar with: a relational database. From a very high level, the difference between Hadoop and 
RDBMS is: 

• A relational database uses complex in-memory data structures to avoid the expense of disk 
access 

• Hadoop uses a collection of disks to parallelize the expense of disk access 
Using indexes optimizes a relational database’s performance by avoiding disk access. In order 
to store a lot of data and access it efficiently, RDBMS uses a smaller, organized representation 
of the data (an index) that can be loaded into memory and can allow a lightning-fast lookup as 
to whether or not a disk seek and read is needed. This works very well up to the point that your 
index no longer fits in RAM or up to the point that your final result set, or the operations 
performed while generating this result set, require a lot of disk access. 

Hadoop looks at this problem in another way. Hadoop assumes that the operation will require 
reading a significant amount of data off of disk. To avoid seeks, Hadoop simply reads the 
entire file. 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
34 

	
  

	
  

 
An Example of Disk Read Performance 
Suppose a RDBMS had to process a 500G data file. The time it takes to read this data off of 
disk would be 61 minutes. This assumes a transfer rate of 1030Mbps. (Source: 
http://www.calctool.org/CALC/prof/computing/transfer_time). Typically you would look at your 
queries, add some indexes, and try to optimize the access to avoid this disk seek. 

In Hadoop, this file could be stored as 2,000 256Mb chunks. If we processed it in Hadoop 
doing a single search for records matching a pattern, then Hadoop would perform 2,000 
individual file reads. Each of these 2,000 tasks will require 1.9 seconds of disk read. A cluster 
of 40 DataNodes with eight disks each (so a total of 320 disks) will get an average six or seven 
of these file chunk reads, for a total transfer time of 14 seconds. The bottleneck of processing 
this 500G file has been taken from 60 minutes to seven times 1.9 seconds, or roughly 14 
seconds. 

 

 

 

Note: This doesn’t mean the overall MapReduce job would take 14 seconds. 
This example is ignoring the overhead of both MapReduce and RDBMS and is 
only comparing the amount of time spent reading from disk. Regardless of the 
overhead, this demonstrates how Hadoop reads large amounts of data in an 
extremely efficient manner. 
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HDFS Components 
A Hadoop instance consists of a cluster of HDFS machines often referred to as the Hadoop 
cluster or the HDFS cluster. There are two main components of an HDFS cluster: 

 
NameNode The “master” node of HDFS that manages the data (without 

actually storing it) by determining and maintaining how the chunks 
of data are distributed across the DataNodes. 

 
DataNode Stores the chunks of data and is responsible for replicating the 

chunks across other DataNodes. 
 

The NameNode and DataNode are daemon processes running in the cluster. Some important 
concepts involving the NameNode and DataNodes: 

• A NameNode represents a single namespace. A cluster can have multiple NameNodes if 
multiple namespaces are desired 

• Data never resides on or passes through the NameNode. Your big data only resides on 
DataNodes 

• DataNodes are referred to as “slave” daemons to the NameNode and are constantly 
communicating their state with the NameNode 

• The NameNode keeps track of how the data is broken down into chunks on the DataNodes 

• The default chunk size is 128MB (but is configurable) 

• The default replication factor is three (and is also configurable), which means each chunk of 
data is replicated across three DataNodes 

• DataNodes communicate with other DataNodes (through commands from the NameNode) to 
achieve data replication 

 

  

Note: HDFS supports a traditional hierarchical file organization. A user or an 
application can create directories and store files inside these directories. 
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Understanding  Block Storage 

 

 
Understand	
  Block	
  Storage	
  

	
  
Putting a file into HDFS involves the following steps: 

1) A client application sends a request to the NameNode that specifies where they want to put 
the file in the filesystem. 

2) The NameNode determines how the data is broken down into blocks and which DataNodes 
will be used to store those blocks. That information is given to the client application. 

3) The client application communicates directly with each DataNode, writing the blocks onto 
the DataNodes. 

4) The DataNodes replicate the newly created blocks based on instructions from the 
NameNode. 

You can specify the block size for each file using the dfs.blocksize property. If you do not 
specify a block size at the file level, the global value of dfs.blocksize defined in hdfs- 
site.xml is used. 

 

 

 

Important: Notice that the data never actually passes through the NameNode. 
The client program that is uploading the data into HDFS performs I/O directly 
with the DataNodes. The NameNode only stores the metadata of the filesystem, 
but is not responsible for storing or transferring the data. 
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Demonstration:  Understanding  Block Storage 

Objective: To understand how data is partitioned into blocks and stored in HDFS 
See page 15 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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The NameNode  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The	
  NameNode	
  

	
  

HDFS has a master/slave architecture. An HDFS cluster consists of a single NameNode, which is 
a master server that manages the filesystem namespace and regulates access to files by 
clients. 

The NameNode has the following characteristics: 

• Acts as the master of the DataNodes 

• Executes filesystem namespace operations, like opening, closing, and renaming files and 
directories 

• Determines the mapping of blocks to DataNodes 

• Maintains the filesystem namespace 

The NameNode performs these tasks by maintaining two files: 
 
fsimage_N Contains the entire filesystem namespace, including the mapping of 

blocks to files and filesystem properties 
 
edits_N A transaction log that persistently records every change that 

occurs to filesystem metadata 
 

When the NameNode starts up, it enters safemode (a read-only mode). It loads the fsimage_N 
and edits_N from disk, applies all the transactions from the edits_N to the in-memory 
representation of the fsimage_N, and flushes out this new version into a new fsimage_N+1 on 
disk. 
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# ssh namenode 
[namenode ~]# ls -la /hadoop/hdfs/namenode/current/ 
total 1048 
-rw-r--r-- 1 hdfs hdfs 1048576 edits_inprogress_0000000000000000001 
-rw-r--r-- 1 hdfs hdfs 336 fsimage_0000000000000000000 
-rw-r--r-- 1 hdfs hdfs 62 fsimage_0000000000000000000.md5 
-rw-r--r-- 1 hdfs hdfs 2 seen_txid 
-rw-r--r-- 1 hdfs hdfs 202 VERSION 

 
For example, initially you will have an fsimage_0 file and an edits_inprogress_1 file. When 
the merging occurs, the transactions in edits_1 are merged with fsimage_0 and a new 
fsimage_1 file is created. In addition, a new empty edits_2 file is created for all future 
transactions that occur after the creation of fsimage_1. 

This process is called a checkpoint. Once the NameNode has successfully checkpointed, it will 
leave safemode, thus enabling writes. 

 

 

 

Note: On your classroom VM, you can view the fsimage and edit files in the 
/hadoop/hdfs/namenode/current folder on the namenode machine: 
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The DataNodes  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The	
  DataNodes	
  

	
  

HDFS exposes a filesystem namespace and allows user data to be stored in files. Internally, a 
file is split into one or more blocks and these blocks are stored in a set of DataNodes. 

The NameNode determines the mapping of blocks to DataNodes. The DataNodes are 
responsible for: 

• Handling read and write requests from application clients 

• Performing block creation, deletion, and replication upon instruction from the NameNode 
(The NameNode makes all decisions regarding replication of blocks) 

• Sending heartbeats to the NameNode 

• Sending a Blockreport to the NameNode 

The NameNode periodically receives a Heartbeat and a Blockreport from each of the 
DataNodes in the cluster. Receipt of a Heartbeat implies that the DataNode is functioning 
properly. A Blockreport contains a list of all blocks on a DataNode. 

DataNodes have the following characteristics: 

• The DataNode has no knowledge about HDFS files 

• It stores each block of HDFS data in a separate file on its local filesystem 

• The DataNode does not create all files in the same local directory. Instead, it uses a 
discovery technique to determine the optimal number of files per directory and creates 
subdirectories appropriately 

• When a DataNode starts up, it scans through its local file system, generates a list of all 
HDFS data blocks that correspond to each of these local files, and then sends this 
information to the NameNode (as a Blockreport) 
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DataNode Failure  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DataNode	
  Failure	
  
	
  

The primary objective of HDFS is to store data reliably even in the presence of failures. Hadoop 
is designed to recover gracefully from a disk failure or the network failure of a DataNode: 

• If a DataNode fails to send a Heartbeat to the NameNode, that DataNode is labeled as dead 

• Any data that was registered to a dead DataNode is not available to HDFS anymore 

• The NameNode does not send new I/O requests to a dead DataNode, and its blocks are 
replicated to live DataNodes 

DataNode death typically causes the replication factor of some blocks to fall below their 
specified value. The NameNode constantly tracks which blocks need to be replicated and 
initiates replication whenever necessary. 

 

 

 

Reference: For tips on configuring a network for a Hadoop cluster, visit 
http://hortonworks.com/kb/best-practices-for-cluster-network-configuration/. 

Note: It is possible that a block of data fetched from a DataNode arrives 
corrupted, either from a disk failure or network error. HDFS implements 
checksum checking on the contents of HDFS files. When a client creates an 
HDFS file, it computes a checksum of each block of the file and stores these 
checksums in a separate hidden file in the same HDFS namespace. When a client 
retrieves file contents, it verifies that the data it received from each DataNode 
matches the checksum stored in the associated checksum file. If not, then the 
client can opt to retrieve that block from another DataNode that has a replica of 
that block. 
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HDFS Commands 
The hdfs application is a Hadoop client application that allows you to issue commands to 
HDFS from a command line. The hdfs application has the following syntax: 
hdfs dfs -command <args>  

A command is one of the following: 
 

 
Use the help option for a description of a command. For example: 

 

 

# hdfs dfs 
Usage: hadoop fs [generic options] 

[-appendToFile <localsrc> ... <dst>] 
[-cat [-ignoreCrc] <src> ...] 
[-checksum <src> ...] 
[-chgrp [-R] GROUP PATH...] 
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...] 
[-chown [-R] [OWNER][:[GROUP]] PATH...] 
[-copyFromLocal [-f] [-p] <localsrc> ... <dst>] 
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src>...<localdst>] 
[-count [-q] <path> ...] 
[-cp [-f] [-p] <src> ... <dst>] 
[-createSnapshot <snapshotDir> [<snapshotName>]] 
[-deleteSnapshot <snapshotDir> <snapshotName>] 
[-df [-h] [<path> ...]] 
[-du [-s] [-h] <path> ...] 
[-expunge] 
[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 
[-getfacl [-R] <path>] 
[-getmerge [-nl] <src> <localdst>] 
[-help [cmd ...]] 
[-ls [-d] [-h] [-R] [<path> ...]] 
[-mkdir [-p] <path> ...] 
[-moveFromLocal <localsrc> ... <dst>] 
[-moveToLocal <src> <localdst>] 
[-mv <src> ... <dst>] 
[-put [-f] [-p] <localsrc> ... <dst>] 
[-renameSnapshot <snapshotDir> <oldName> <newName>] 
[-rm [-f] [-r|-R] [-skipTrash] <src> ...] 
[-rmdir [--ignore-fail-on-non-empty] <dir> ...] 
[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]] 
[-setrep [-R] [-w] <rep> <path> ...] 
[-stat [format] <path> ...] 
[-tail [-f] <file>] 
[-test -[defsz] <path>] 
[-text [-ignoreCrc] <src> ...] 
[-touchz <path> ...] 
[-usage [cmd ...]] 

# hdfs dfs -help put 
-put [-f] [-p] <localsrc> ... <dst>: Copy files from the local file system 

into fs. Copying fails if the file already 
exists, unless the -f flag is given. Passing 
-p preserves access and modification times, 
ownership and the mode. Passing -f overwrites 
the destination if it already exists. 
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Examples of HDFS Commands 
The following mkdir command makes a new directory named mydata: 
hdfs dfs -mkdir mydata  

This put command copies a local file named numbers.txt into mydata in HDFS: 
hdfs dfs -put numbers.txt mydata/  

Use the ls command to view the contents of the mydata folder: 
 

 
 
 

  
 
 

  

# hdfs dfs -ls mydata 
Found 1 items 
-rw-r--r-- 3 root root 2549 2013-08-29 mydata/numbers.txt 

Note: The logs for HDFS are, by default, in the /var/log/hadoop/hdfs folder. 
Hadoop uses log4j via the Apache Commons Logging framework for logging. 

Note: The hdfs dfs command is the same command as hadoop fs, and you 
may see the two used interchangeably. 
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HDFS File Permissions  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HDFS	
  File	
  Permissions	
  
	
  

HDFS implements a permissions model for files and directories that shares much of the POSIX 
model: 

• Each file and directory is associated with an owner and a group 
• The file or directory has separate permissions for the user that is the owner, for other users 

that are members of the group, and for all other users 

• For files, the r permission is required to read the file and the w permission is required to 
write or append to the file 

• For directories, the r permission is required to list the contents of the directory, the w 
permission is required to create or delete files or directories, and the x permission is 
required to access a child of the directory 

The output of the ls and ls -R commands shows the file permissions: 
 

 
 
 

  

drwxr-xr-x - root root 
-rw-r--r-- 3 root root 
-rw-r--r-- 3 root root 

0 2013-08-29 03:23 /user/root/mydata 
2549 2013-08-29 03:23 /user/root/mydata/numbers.txt 

3613198 2013-08-28 21:55 /user/root/stocks.csv 

Note: HDFS also supports ACLs, which provide even finer-grained authorization 
capabilities. 
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Review Questions 
1) Which component of HDFS is responsible for maintaining the namespace of the distributed 

filesystem? _________________________ 

2) What is the default file-replication factor in HDFS?    

3) True or False: To input a file into HDFS, the client application passes the data to the 
NameNode, which then divides the data into blocks and passes the blocks to the 
DataNodes.    

4) Which property is used to specify the block size of a file stored in HDFS? 
__________________________ 

5) The NameNode maintains the namespace of the filesystem using which two sets of files? 
__________________________________________________________________ 

6) What does the following command do? 
hdfs dfs -ls -R /user/thomas/  

__________________________________________________________________ 

7) What does the following command do? 
hdfs dfs -ls /user/thomas/  

__________________________________________________________________ 
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Lab: Using HDFS Commands 

Objective: Become familiar with adding, removing, and viewing files in HDFS 
See page 19 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Inputting Data into HDFS 

 
Lesson Objectives 
This lesson covers the various ways to input data into the Hadoop Distributed File System, 
including the Sqoop and Flume frameworks. 

After completing this lesson, students should be able to: 

• Describe the Options for Data Input 

• Describe Flume 

• Describe Sqoop 

• Use Sqoop to transfer data between HDFS and a relational database 
 
Additional Content 
• Quiz: Lesson Review 

• Lab: Importing RDBMS Data into HDFS 

• Lab: Exporting HDFS Data to a RDBMS 

• Lab: Importing Log Data into HDFS using Flume 
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Options for Data  Input  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Options	
  for	
  Data	
  Input	
  
	
  

Typically the first task in using a Hadoop cluster is getting your big data into HDFS. You have 
several options to choose from, and typically you may need to use more than one tool 
depending on the sources of your big data. 

In this unit, we will discuss some of the common techniques for inputting data into a Hadoop 
cluster. 

 

 

 
 

The Hadoop Client 
As you have already seen, the hadoop client works well for inputting files from a local file 

Best Practice: When putting data into Hadoop, do not forget one of the 
essentials of Hadoop: no schema is applied when the data goes in. In other 
words, keep your big data in its raw format and worry about applying structure 
and schema to it later when you transform and analyze the data. 
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system into HDFS. 
Usage: hdfs dfs -put <localsrc> ... <dst>  

Obviously you do not have a 2 Petabyte file sitting around on your local hard drive that you 
want to store into HDFS, but the put command is still an extremely useful tool that you will use 
on a regular basis when doing development. 

 

 

 

Note: The put command also reads input from stdin and writes to a specified 
file in HDFS. Just use a dash “-“ for the localsrc: 
# hdfs dfs -put - myinput.txt  
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WebHDFS 
WebHDFS is a REST API for accessing all of the HDFS file system interfaces. WebHDFS supports 
all HDFS user operations, including reading files, writing to files, making directories, changing 
permissions, and renaming. With WebHDFS, you can use common tools, like curl, wget, or any 
web services client, to access the files in a Hadoop cluster. 

Some of the features of WebHDFS include: 
 

Secure 
Authentication 

Uses Kerberos (SPNEGO) and Hadoop delegation tokens for 
authentication 

 

Data Locality Redirects the file read and file write calls to the corresponding 
Datanodes. It uses the full bandwidth of the Hadoop cluster for 
streaming data 

 
Built into Hadoop Runs inside NameNode and DataNodes, so there are no additional 

servers to install 
 

The syntax for an HTTP request looks like: 
http://host:port/webhdfs/v1/<PATH>?op=...  

For example, the following GET request reads a file named /test/mydata.txt: 
http://host:port/webhdfs/v1/test/mydata.txt?op=OPEN  

The following PUT request makes a new directory in HDFS named /user/root/data: 
http://host:port/webhdfs/v1/user/root/data?op=MKDIRS   

The following is a POST request that appends the posted data to the file named 
/test/mydata.txt: 
http://host:port/webhdfs/v1/test/mydata.txt?op=APPEND  
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Overview of Flume  
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Flume is an open-source Apache project that is a system for efficiently collecting, aggregating, 
and moving large amounts of log data from many different sources into HDFS. You can also 
customize Flume to work with network traffic data, social-media-generated data, email 
messages, and pretty much any data source possible. 

Flume uses a producer-consumer model for handling events where the Source is the producer 
and the Sink is the consumer of the events. Examples of a Source include: 

• System log files 

• Network traffic log files 

• Website traffic logs 

• Twitter feeds and other social media sources 
The events travel through an asynchronous Channel to a Sink. Examples of a Sink include: 

• HDFS 

• HBase 

A Channel drains into a Sink, but because it is asynchronous the Channel is not required to 
send events to the Sink at the same rate that it receives them from the Source. This allows for 
a Source to not have to wait for Flume to store the event in its final destination, which can 
improve performance by decoupling the Sink from the Source. 

 

 

 

Note: A Flume process can consist of more than one Agent with a single Source 
and Sink. You can have multiple Agents that aggregate data from multiple 
Sources, and you can configure multiple Sinks that output events to different 
destinations. 
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A Flume Example 
To use Flume, you start an Agent. An Agent has a configuration file associated with it that 
defines its Sources and Sinks. The command to start an Agent looks like: 
flume-ng agent -n my_agent -c conf -f myagent.conf  

The code myagent.conf is the configuration file. 

The following Agent config file demonstrates streaming a web server’s log file into HDFS as a 
sequence file: 

 

 
• The name of the Agent is my_agent 

• The names of the Sink, Source, and Channel are arbitrary 

• This Flume Agent has one Source named webserver 

• The webserver Source is of type exec, which means it executes a given Unix command. In 
this example, it executes the tail command on the httpd access log file 

• The Agent has one Sink named mycluster, which sends the events to a sequence file in a 
specified folder in HDFS 

• The Agent has one Channel named memoryChannel 

• The memoryChannel is configured with a memory type, which means it stores the events in 
memory. Notice that it is configured with a capacity of 10,000. No more than 10,000 events 
can fit in this Channel 

• Other options for a Channel include a database, a file, or you can define your own custom 
Channel 

• Other options for a Sink include a system log (as INFO events), an IRC destination, local 
files, HBase, and Elastic Search 

my_agent.sources = webserver 
my_agent.channels = memoryChannel 
my_agent.sinks = mycluster 
 
my_agent.sources.webserver.type = exec 
my_agent.sources.webserver.command = tail -F 

/var/log/hadoop/hdfs/hdfs-audit.log 
my_agent.sources.webserver.batchSize = 1 
my_agent.sources.webserver.channels = memoryChannel 
 
my_agent.channels.memoryChannel.type = memory 
my_agent.channels.memoryChannel.capacity = 10000 
 
my_agent.sinks.mycluster.type = hdfs 
my_agent.sinks.mycluster.channel = memoryChannel 
my_agent.sinks.mycluster.hdfs.path = 

hdfs://127.0.0.1:8020/hdfsaudit/ 
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Overview of Sqoop  
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Sqoop is a tool designed to transfer data between Hadoop and external structured 
datastores like RDBMS and data warehouses. Using Sqoop, you can provision the data from 
an external system into HDFS. Sqoop uses a connector-based architecture that supports 
plugins that provide connectivity to additional external systems. 

As you can see in the diagram, Sqoop uses MapReduce to distribute its work across the 
Hadoop cluster: 

• The sqoop command line executes a Sqoop job 

• Map tasks (4 by default) execute the command in Sqoop 

• Plugins are used to communicate with the outside data source. The data source provides 
the schema, and Sqoop generates and executes SQL statements using JDBC or other 
connectors 

 

  
HDP provides the following connectors for Sqoop: 

• Teradata 

• MySQL 

• Oracle JDBC connector 

• Netezza 
A Sqoop connector for the SQL Server is also available from Microsoft: SQL Server R2 
connector 

Note: Using MapReduce to perform Sqoop commands provides parallel 
operation as well as fault tolerance. 
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The Sqoop Import Tool 
With Sqoop, you can import data from a relational database system into HDFS: 

• The input to the import process is a database table 
• Sqoop will read the table row by row into HDFS. The output of this import process is a set 

of files containing a copy of the imported table 

• The import process is performed in parallel. For this reason, the output will be in multiple 
files 

• These files may be delimited text files (for example, with commas or tabs separating each 
field) or binary Avro or SequenceFiles containing serialized record data 

The import command looks like: 
sqoop import (generic-args) (import-args)  

The import command has the following requirements: 

• Must specify a connect string using the --connect argument 

• Can include credentials in the connect string, using the --username and --password 
arguments 

• Must specify either a table to import using --table or the result of an SQL query using -- 
query 

 
Importing a Table 
The following Sqoop command imports a database table named StockPrices into a folder in 
HDFS named /data/stockprices: 

 

 
Based on the import command above: 

• The connect string in this example is for MySQL. The database name is nyse 

• The --table argument is the name of the table in the NYSE database 

• The --target-dir is where the data will be imported into HDFS 

• The default number of map tasks for Sqoop is four, so the result of this import will be in four 
files 

• The --as-textfile argument imports the data as plain text 
 

  

sqoop import 
--connect jdbc:mysql://host/nyse 
--table StockPrices 
--target-dir /data/stockprice/ 
--as-textfile 

Note: You can use --as-avrodatafile to import the data to Avro files and use 
--as-sequencefile to import the data to sequence files. 
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Other useful import arguments include: 

 
--columns A comma-separated list of the columns in the table to import (as 

opposed to importing all columns, which is the default behavior) 
 

--fields- 
terminated-by 

Specify the delimiter. Sqoop uses a comma by default 

 

--append The data is appended to an existing dataset in HDFS 
 
--split-by The column used to determine how the data is split between 

mappers. If you do not specify a split-by column, then the 
primary key column is used 

 
-m The number of map tasks to use 

 
--query Use instead of –table. The imported data are the resulting records 

from the given SQL query 
 
--compress Enables compression 

 
--direct Sqoop will attempt the direct import channel, which may be higher 

performance than using JDBC 
 
 
 

  
 
 

  

Note: The import command shown here looks like it was entered over multiple 
lines, but you have to enter this entire Sqoop command on a single command line. 

Reference: Visit 
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html for a list of all 
arguments available for the import command. 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
56 

	
  

	
  

 
Importing Specific Columns 
Use the --columns argument to specify which columns from the table to import. For example: 

 

 
Based on the import command above: 

How many columns will be in imported? ______________ 

How many files will be created in /data/dailyhighs/? ______________ 

Which column will Sqoop use to split the data up between the mappers? 
____________________________ 

Answer: The StockSymbol column. 

sqoop import 
--connect jdbc:mysql://host/nyse 
--table StockPrices 
--columns StockSymbol,Volume,High,ClosingPrice 
--target-dir /data/dailyhighs/ 
--as-textfile 
--split-by StockSymbol 
-m 10 
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Importing from a Query 
Use the --query argument to specify which rows to select from a table. For example: 

 

 
Based on the command above: 

• Only rows whose Volume column is greater than 1,000,000 will be imported 

• The $CONDITIONS token must appear somewhere in the WHERE clause of your SQL query 
so that the data can be split between mappers 

• If you use --query, then you must also specify a --split-by column or the Sqoop 
command will fail to execute 

 

 

 
 
 

  

sqoop import 
--connect jdbc:mysql://host/nyse 
--query "SELECT * FROM StockPrices s 
WHERE s.Volume >= 1000000 
AND \$CONDITIONS" 
--target-dir /data/highvolume/ 
--as-textfile 
--split-by StockSymbol 

Note: Using --query is limited to simple queries where there are no ambiguous 
projections and no OR conditions in the WHERE clause. Use of complex queries 
(such as queries that have sub-queries or joins leading to ambiguous projections) 
can lead to unexpected results. 

Important: You either use --query or --table, but attempting to define both 
results in an error. 
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The Sqoop Export Tool 
Sqoop’s export process will read a set of delimited text files from HDFS in parallel, parse them 
into records, and insert them as new rows in a target database table. The syntax for the export 
command is: 
sqoop export (generic-args) (export-args)  

The Sqoop export tool runs in three modes: 
 

Insert Mode The records being exported are inserted into the table using an 
SQL INSERT statement 

 
Update Mode An UPDATE SQL statement is executed for existing rows, and an 

INSERT can be used for new rows 
 

Call Mode A stored procedure is invoked for each record 

The mode used is determined by the arguments specified: 

--table The table to populate in the database. This table must already exist 
in the database. If no --update-key is defined, the command is 
executed in Insert Mode 

 
--update-key The primary key column for supporting updates. If you define this 

argument, the Update Mode is used and existing rows are updated 
with the exported data 

 
--call Invokes a stored procedure for every record, thereby using Call 

Mode. If you define --call, do not define the --table argument 
or an error will occur 

 
The following are sqoop export arguments: 

 
--export-dir The directory in HDFS that contains the data to export 

 

--input-fields- 
terminated-by 

The input field delimiter. A comma is the default 

 

--update-mode Specifies how updates are performed when new rows are found 
with non-matching keys in the database. Values are updateonly 
(the default) and allowinsert 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
59 

	
  

	
  

 

Exporting to a Table 
The following Sqoop command exports the data in the /data/logfiles/ folder in HDFS to a 
table named LogData: 

 

 
Based on the command above: 

• The table LogData needs to already exist in the mylogs database 

• The column values are determined by the delimiter, which is a tab in this example 

• All files in the /data/logfiles/ directory will be exported 

• Sqoop will perform this job using four mappers, but you can specify the number to use with 
the -m argument 

sqoop export 
--connect jdbc:mysql://host/mylogs 
--table LogData 
--export-dir /data/logfiles/ 
--input-fields-terminated-by "\t" 
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Review Questions 
1) What tool would work best for importing data from a relational database into HDFS? 

___________________________ 

2) What tool would work best for putting a file on your local filesystem into HDFS? 
___________________________ 

3) List the three main components of a typical Flume agent:    

__________________________________________________________________ 

4) What is the default number of map tasks for a Sqoop job? ____________   

5) How do you specify a different number of mappers in a Sqoop job? 

__________________________________________________________________ 

6) What is the purpose of the $CONDITIONS value in the WHERE clause of a Sqoop query? 

__________________________________________________________________ 
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Lab: Importing RDBMS Data into HDFS 

Objective: Import data from a database into HDFS 
See page 25 of the HDP Developer: Apache Pig and Hive Lab Booklet. 

 
Lab: Exporting HDFS Data to a RDBMS 

Objective: Export data from HDFS into a MySQL table using Sqoop 
See page 29 of the HDP Developer: Apache Pig and Hive Lab Booklet. 

	
  
	
  

Lab: Importing Log Data into HDFS using Flume 

Objective: Import data from a log file into HDFS using Flume 
See page 29 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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The MapReduce Framework 

 
Lesson Objectives 
This lesson covers the details of the MapReduce programming paradigm. 

After completing this lesson, students should be able to: 

• Describe MapReduce 

• Describe the Map Phase 

• Describe the Reduce Phase 
 
Additional Content 
• Demo: Understanding MapReduce 

• Quiz: Lesson Review 

• Lab: Running a MapReduce Job 
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Overview  of MapReduce   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Overview	
  of	
  MapReduce	
  

	
  

MapReduce is a software framework for developing applications that process large amounts of 
data in parallel across a distributed environment. As its name implies, a MapReduce program 
consists of two main phases: a map phase and a reduce phase: 

 
Map phase Data is input into the mapper, where it is transformed and prepared 

for the reducer 
 
Reduce phase Retrieves the data from the mapper and performs the desired 

computations or analyses 
 

To write a MapReduce program, you define a mapper class to handle the map phase and a 
reducer class to handle the reduce phase. 

 

  

Note: The shuffle/sort phase of MapReduce is a part of the framework, so it 
does not require any programming on your part. 
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Some important concepts to understand about MapReduce: 

• The map and reduce tasks run in their own JVM on the DataNodes 

• The mapper inputs key/value pairs from HDFS files and outputs intermediate key/value 
pairs. The data types of the input and output pairs can be different 

• After all of the mappers finish executing, the intermediate key/value pairs go through a 
shuffle-and-sort phase where all of the values that share a key are combined and sent 
to the same reducer 

• The reducer inputs the intermediate <key, value> pairs and outputs its own <key, 
value> pairs, which are typically written to HDFS 

• The number of mappers is determined by the input format 

• The number of reducers is determined by the MapReduce job configuration 

• A Partitioner is used to determine which <key, value> pairs are sent to which reducer 

• A Combiner can be optionally configured to combine the output of the mapper, which can 
increase performance by decreasing the network traffic of the shuffle and sort phase 
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Understanding MapReduce  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Understanding	
  MapReduce	
  
	
  

The map phase involves running map tasks on NodeManagers. The main purpose of the map 
phase is to read all of the input data. The goal (in order to gain the best performance) is to 
achieve data locality, where a map task runs on a DataNode where its Input Split (or at least 
most of the split) is stored. 

• A block of data rarely maps exactly to an Input Split, but it is often close, especially 
when processing text data. Records that spill over to a subsequent block have to be pulled 
over the network so the map task can process the entire record, but this is normally an 
acceptable overhead 

• The number of map tasks in a MapReduce job is based on the number of Input Splits 

• If no NodeManager is available where a specific block resides, then you lose data locality 
and the block has to be pulled across the network 
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Understanding	
  MapReduce	
  -­‐-­‐-­‐	
  	
  	
  continued	
  

	
  
• Map tasks output <key, value> pairs, which are written to a temporary file on the local 

filesystem 

• When a map task finishes, its output becomes immediately available to the reduce tasks. 
Each reducer asks each mapper for the <key, value> pairs designated for that reducer. 
This designating of records is called partitioning 

• As a reducer reads-in its <key, value> pairs, the values are aggregated into a collection 
and the entire input to the reducer is sorted by keys. This is referred to as the 
shuffle/sort phase 
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Understanding	
  MapReduce	
  -­‐-­‐-­‐	
  	
  	
  continued	
  

	
  
The main purpose of the reduce phase is typically business logic: going through the data 
output by the mappers and answering a question or solving a problem. The <key, value> 
pairs coming into the reducer are combined by key, meaning each key is presented once to 
the reducer along with all of the values that belong to that key. 

• Reducers also output <key, value> pairs 

• The output of a reducer is typically a file in HDFS. For example, if you have five 
reducers, the output will be five different files 

• The number of reduce tasks in a MapReduce job is a setting that you get to choose 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
68 

	
  

	
  

 
The Key/Value Pairs of MapReduce 

 

 
The	
  Key/Value	
  Pairs	
  of	
  MapReduce	
  

	
  
The data types of the <key, value> pairs in a MapReduce job look like: 

 

<K1, V1> Input to the mapper 

<K2, V2> Output from the mapper 

<K2, Iterable<V2>> Input to the reducer 

<K3, V3> Output from the reducer 
 
 

 
 

Note: Keys are constantly being compared and sorted in MapReduce, and both 
keys and values get serialized and deserialized between the map and reduce 
phases. 
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WordCount in MapReduce  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
WordCount	
  in	
  MapReduce	
  

	
  

The “Hello, World” of Hadoop programming is the word-count application, which reads in a 
text file and counts the number of occurrences of each distinct word. 

The diagram above shows how the <key,value> pairs of the word-count application are 
passed through the MapReduce job. 
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Demonstration:  Understanding  MapReduce 

Objective: To understand how MapReduce works 
See page 33 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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The Map Phase  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The	
  Map	
  Phase	
  

	
  

The data is passed into the mapper as a <key, value> pair generated by an InputFormat 
instance. The key and value are determined by the specific InputFormat that you configure. 
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Here is how data flows through the map phase: 

• The InputFormat determines where the input data needs to be split between the mappers, 
and then it generates an InputSplit instance for each split 

• MapReduce spawns a map task for each InputSplit generated by the InputFormat 

• Each <key, value> pair generated by the InputFormat is passed to the map method of 
the mapper class 

• The map method outputs a <key, value> pair that is serialized into an unsorted buffer in 
memory 

• When the buffer fills up, or when the map task is complete, the <key, value> pairs in the 
buffer are sorted then spilled to the disk 

• If more than one spill file was created, these files are merged into a single file of sorted 
<key, value> pairs 

• The sorted records in the spill file wait to be retrieved by a reducer 
 
 

 

 
 
 

 

 

Note: The size of the mapper’s output memory buffer is configurable with the 
mapreduce.task.io.sort.mb property. A spill occurs when the buffer 
reaches a certain capacity configured by the 
mapreduce.map.sort.spill.percent property. 

Important: Spilling to disk cannot be entirely avoided because there is always 
one spill to disk when the mapper is complete. However, the ideal scenario is 
to avoid any intermediate spills. If an intermediate spill occurs, those <key, 
value> pairs need to be written to disk, then read and rewritten one more time, 
which results in three times the disk I/O for those spilled records 
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The Reduce Phase  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The	
  Reduce	
  Phase	
  

	
  

The reducer fetches the records from the mapper and uses them to generate and output 
another set of <key, value> pairs that are output to HDFS (or some other configurable 
location). 
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The reduce phase can actually be broken down in three phases: 

 
Shuffle Also referred to as the fetch phase, this is when reducers retrieve 

the output of the mappers. All records with the same key are 
combined and sent to the same reducer 

 
Sort This phase happens simultaneously with the shuffle phase. As 

the records are fetched and merged, they are sorted by key 
 
Reduce The reduce method is invoked for each key, with the records 

combined into an iterable collection 
 

Here is how data flows through the reduce phase: 

• As mappers finish their tasks, the reducers start fetching the records and storing them into 
a buffer in their JVM’s memory 

• If the buffer fills, it is spilled to disk 

• Once all mappers complete and the reducer has fetched all its relevant input, all spill 
records are merged and sorted (along with any records still in the buffer) 

• The reduce method is invoked on the reducer for each key 

• The output of the reducer is written to HDFS (or wherever the output was configured to be 
sent) 

Some comments about the reduce phase: 

• All records that share the same key are sent to the same reducer 

• During shuffling, the records are sorted by key and the values are combined into a 
collection 

• The values in the collection are not sorted by default 

• The number of reducers is determined by the mapreduce.job.reduces property 

• A MapReduce job does not require a reducer. Setting the number of reducers to zero 
results in the mapper sending its output directly to HDFS 

• A reducer can actually start fetching the output of mappers after the first mappers finish 
(but others are still working). This is done using threads, and the number of threads is 
configurable with the mapreduce.reduce.shuffle.parallelcopies property 
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Review Questions 
1) What are the three main phases of a MapReduce job?  ________ 

______________________________________________________________________ 

2) Suppose the mappers of a MapReduce job output <key,value> pairs that are of type 
<integer,string>. What will the pairs look like that are processed by the corresponding 
reducers? ___________________________________________________________ 

3) What happens if all the <key,value> pairs output by a mapper do not fit into the memory of 
the mapper? __________________________________________________________ 

4) What determines the number of mappers of a MapReduce job? _____________ 

______________________________________________________________________ 

5) What determines the number of reducers of a MapReduce job? ____________ 

______________________________________________________________________ 

6) True or False: The shuffle/sort phase sorts the keys and values as they are passed to 
the reducer. __________________________________________________________ 
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Lab: Running a MapReduce  Job 

Objective: Run a Java MapReduce job 
See page 35 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Hadoop Streaming 
 
Lesson Objectives 
This lesson covers an overview of the streaming capabilities of Hadoop. 

After completing this lesson, students should be able to: 

• Hadoop Streaming 

• Running a Hadoop Streaming Job 
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Hadoop Streaming  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hadoop	
  Streaming	
  

	
  

Hadoop Streaming is a part of HDP, and it allows you to create and run MapReduce jobs with 
any executable or script as the mapper and/or the reducer. Streaming allows you to take 
advantage of the benefits of MapReduce while using any scripting language you like. 

Here is how Hadoop Streaming works: 

• The MapReduce job starts as any other job, with the input splits sending key/value pairs 
to a map task 

• The Streaming mapper converts the key/value pairs into lines of text and sends each line 
of text to the stdin of the mapper process 

• The Streaming mapper reads each line of text from the stdout of the process and 
converts the line to a key/value pair using a tab as the delimiter between the key and the 
value 

• Similarly, the Streaming reducer converts the input key/values pairs into lines of text 
and sends them to the stdin of the reducer process 

• The output from stdout of the process is converted to key/value pairs (using a tab as the 
delimiter) and output by the Streaming reducer 
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Running a Hadoop Streaming  Job 
The command to run a Hadoop Streaming job looks like the following (entered on a single 
command line): 

 

 
For example, the following command executes a Streaming job that uses cat as the mapper 
and grep as its reducer: 

 

 

> hadoop jar hadoop-streaming.jar 
-input input_directories 
-output output_directories 
-mapper mapper_script 
-reducer reducer_script 

hadoop jar hadoop-streaming.jar 
-input test/data.txt 
-output streamtest 
-mapper /bin/cat 
-reducer 'grep -i hadoop' 
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Introduction to Pig 
 
Lesson Objectives 
This lesson covers the Pig framework and describes how to load and transform data using the 
Pig programming language. 

After completing this lesson, students should be able to: 

• Describe Pig 

• Define a Schema 

• Describe the GROUP Operator 

• Describe the FOREACH GENERATE Operator 

• Describe the FILTER Operator 

• Describe the LIMIT Operator 
 
Additional Content 
• Demo: Understanding Pig 

• Lab: Getting Started with Pig 

• Quiz: Lesson Review 

• Lab: Exploring Data with Pig 
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About Pig  

 
 

 
What	
  is	
  Pig?	
  

	
  

Apache Pig, http://pig.apache.org/, is a Hadoop platform for creating MapReduce jobs. Pig 
uses a high-level SQL-like programming language named Pig Latin. The benefits of Pig include 
the ability to: 

• Run a MapReduce job with a few simple lines of code 
• Process structured data with a schema, or Pig can process unstructured data without a 

schema (Pigs eat anything) 

• Use a familiar SQL-like syntax in Pig Latin 

• Read and write data from HDFS with Pig scripts 

• Create code with a data flow language, a logical solution for many MapReduce algorithms 
 

  
The developers of Pig published their philosophy to summarize the goals of Pig using 
comparisons to actual pigs: 

 
Pigs eat anything Pig can process any data, structured or unstructured 

 
Pigs live anywhere Pig can run on any parallel data processing framework, so Pig 

scripts do not have to run just on Hadoop 
 

Pigs are domestic 
animals 

Pig is designed to be easily controlled and modified by its users 

 

Pigs fly Pig is designed to process data quickly 

Note: Pig was created at Yahoo! to make it easier to analyze the data in your 
HDFS without the complexities of writing a traditional MapReduce program. 
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Pig Latin 
Pig Latin is a high-level data flow scripting language. Pig Latin scripts can be executed in one 
of three ways: 

 
Pig script Write a Pig Latin program in a text file and execute it using the pig 

executable 
 

Grunt shell Enter Pig statements manually one at a time from a CLI tool known 
as the Grunt interactive shell 

 
Embedded in Java Use the PigServer class to execute a Pig query from within Java 

code 
 

Pig executes in a unique fashion: some commands build on previous commands, while certain 
commands trigger a MapReduce job. 

• During execution, each statement is processed by the Pig interpreter 

• If a statement is valid, it gets added to a logical plan built by the interpreter 

• The steps in the logical plan do not actually execute until a DUMP or STORE command is 
used 

 
The Grunt Shell 

 

 
The	
  Grunt	
  Shell	
  

	
  
Grunt is an interactive shell that enables users to enter Pig Latin statements and also interact 
with HDFS. To enter the Grunt shell, run the pig executable in the PIG_HOME\bin folder: 

 

 
The Grunt shell provides tab completion for commands (unfortunately there is no tab 
completion for files or folders), as well as command-line history and editing. 

 

 
 

# pig 
grunt> 

Note: You can run HDFS commands directly from the Grunt shell, which also 
has the concept of a “present working directory” with the ability to change 
directories using the cd command. 
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Demonstration:  Understanding Pig 

Objective: To understand Pig scripts and relations 
See page 37 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Pig Latin Relation  Names 
Each processing step of a Pig Latin script results in a new data set, referred to as a relation. 
You assign names to relations, and the name of a relation is referred to as its alias. For 
example, consider the following Pig Latin statement: 
stocks = LOAD 'mydata.txt' using TextLoader();  

The alias stocks is assigned to the relation created by the LOAD statement, which in this 
statement is a line of text from the mydata.txt file. The stocks alias now represents the 
collection of records in mydata.txt. 

 

  
Relation names (aliases) are not variables, even though they look like variables. You can 
reassign an alias to a different relation, but that is not recommended. 

 
Pig Latin Field Names 
You can also define field names when using the LOAD command to define a relation. Use the AS 
keyword to define field names: 
salaries = LOAD 'salary.data' USING PigStorage(',') AS (gender, age, income, zip);  

The alias for this relation is salaries, and salaries has four field names: gender, age, income 
and zip. 

Field names can be used in subsequent processing commands. For example, when filtering a 
relation, you can refer to its fields in the BY clause, as shown in the following statement: 
highsalaries = FILTER salaries BY income > 1000000;  

Field names contain the values of the current record as the data passes through the pipeline of 
the Pig application. The highsalaries relation will contain all records whose income field is 
greater than 1,000,000. 

Both field names and relation names must satisfy the following naming criteria: 

• Must start with an alphabetic character 

• Can contain alphabetic and numeric characters, as well as the underscore (_) character 

• Can only contain ASCII characters 
 

 
 

Note: TextLoader is a simple way of loading each line of text in a file into a 
record, no matter what the format of the data is. 

Important: Field names and relation names are case sensitive in your Pig Latin 
scripts. User Defined Functions (UDFs) are also case sensitive. However, Pig 
Latin keywords (like LOAD and AS) are not case sensitive. 
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Pig Data Types 
Pig has six built-in scalar data types: 

 
int A 32-bit signed integer 

 
long A 64-bit signed integer 

 
float A 32-bit floating-point number 

 
double A 64-bit floating-point number 

 
chararray Strings of Unicode characters (represented as java.lang.String 

objects) 
 
bytearray A blob or array of bytes 

 
boolean Can be either true or false (case-sensitive) 

 
datetime A date and time stored in the format 1970-01- 

01T00:00:00.000+00:00 
 

bigdecimal and 
biginteger 

For performing precision arithmetic 
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Pig Complex Types 
Pig has three complex types: 

 
Tuple Ordered set of fields. A tuple is analogous to a row in an SQL 

table, with the fields being SQL columns 
 
Bag Unordered collection of tuples 

 
Map Collection of key value pairs 

 
Tuples are indicated by parentheses. For example, the following tuple has four fields: 
(OH,Mark,Twain,31225)  

Bags are constructed using curly braces, and commas separate the tuples within the bag. 
The following bag has three tuples in it: 

 

 
Maps are key/value pairs where the key must be a unique chararray type and the value can 
be any data. Maps are formed using square brackets, with a hashtag between the key and 
value. The following map has three key#value pairs: 
[state#OH,name#Mark Twain,zip#31225]  

As you can see in the demonstration, the complex types can be nested. For example, a bag 
can be an element of a tuple, which is the result of the GROUP BY operator: 
(CA,{(CA,Ulf),(CA,manish),(CA,Brian)})  

{(OH,Mark,Twain,31225),(UK,Charles,Dickens,42207), 
(ME,Robert,Frost,11496)} 
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Defining a Schema 
Pig will eat any kind of data, but if your data has a known structure to it, then you can define a 
schema for it. The schema is typically defined when you load the data using the AS keyword. 

For example: 
 

 
The customers relation has six fields, and each field is a specific data type. 

 

 
 

The schema can also specify complex types. For example, suppose we have the following 
dataset in a file named ‘bag_demo.txt’: 

 

 
The corresponding relation might look like: 

 

 
The salaries relation is a tuple of three fields: the first field is a chararray named gender, the 
second field is an int named age, and the third field is a bag named details. 

Pig is very lenient when it comes to schemas: 

• If you define a schema, then Pig will perform error-checking with it 
• If you do not define a schema, Pig will make its best guess as to how the data should be 

treated 

customers = LOAD 'customer_data' AS (firstname: 
chararray,lastname:chararray,house_number:int, 
street:chararray,phone:long,payment:double); 

Note: If you load a customer record that has more than six fields, the extra fields 
will be truncated. If you load a customer record that has fewer than six fields, it 
will pad the end of the record with nulls. 

F,66,{(41000,95103),(33000,57701)} 
M,40,{(76000,95102)} 
F,58,{(95000,95103,(60000,95105)} 
M,85,{(14000,95102),(0,95105),(2000,94040)} 

salaries = LOAD 'bag_demo.txt' AS (gender:chararray, age:int, 
details:bag{(salary:double,zip:long)}); 
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Lab: Getting Started with Pig 

Objective: Use Pig to navigate through HDFS and explore a dataset 
See page 41 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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The  GROUP Operator  

 
 
 
 
 
 
 
 
 
 
 
 
 

The	
  GROUP	
  Operator	
  
	
  

One of the most common operators in Pig is GROUP, which collects all records with the same 
value for a provided key and puts them together into a bag. The result of a GROUP operation is 
a relation that includes one tuple per group. This tuple contains two fields: 

• The first field is named "group" and is the same type as the group key 

• The second field takes the name of the original relation and is type bag 

Suppose we have the following data set: 
 

 
Let’s group the records together by age: 

 

 
The salariesbyage relation has two fields. The first is group, which will be an int because 
age is an int, followed by the salaries field as a tuple: 

 

 
The records will look like: 

 

F,66,41000,95103 
M,40,76000,95102 
F,58,95000,95103 
F,68,60000,95105 
M,85,14000,95102 
... 

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray, 
age:int,salary:double,zip:int); 
salariesbyage = GROUP salaries BY age; 

> DESCRIBE salariesbyage; 
salariesbyage: {group:int, salaries:{(gender: chararray, age: int,salary: double,zip: 
int)}} 
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> DUMP salariesbyage; 
(17,{(F,17,0.0,95050),(M,17,0.0,95103),(M,17,0.0,95102)}) 
(19,{(M,19,0.0,95050)}) 
(22,{(F,22,90000.0,95102)}) 
(23,{(M,23,89000.0,95105),(M,23,64000.0,94041)}) 
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You can also group a relation by multiple keys. The keys must be listed in parentheses. For 
example: 

 

 
Notice the group field is a tuple containing both gender and age. The resulting records in the 
mygroup relation look like: 

 

 
 

GROUP ALL  
 
 

 
GROUP	
  ALL	
  

	
  

You can group all of the records of a relation into a single tuple using the ALL option. For 
example: 

 

 
In this case, the value of group will be the chararray “all” followed by a bag of all records: 

 

 

> mygroup = GROUP salaries BY (gender,age); 
> describe mygroup; 
mygroup: {group: (gender: chararray,age: int),salaries: {(gender: chararray,age: 
int,salary: double,zip: int)}} 

((M,17),{(M,17,0.0,95103),(M,17,0.0,95102)}) 
((M,19),{(M,19,0.0,95050)}) 
((M,23),{(M,23,64000.0,94041),(M,23,89000.0,95105)}) 

> allsalaries = GROUP salaries ALL; 
> describe allsalaries; 
allsalaries: {group: chararray,salaries: {(gender: chararray,age: 
 int,salary: double,zip: int)}} 

(all,{(F,66,41000.0,95103),(M,40,76000.0,95102),(F,58,95000.0,95103),(F,68,60000.0,951 
05),(M,85,14000.0,95102),(M,14,0.0,95105),(M,52,2000.0,94040),(M,67,99000.0,94040),(F, 
43,11000.0,94041),(F,37,65000.0,94040),(M,72,83000.0,94041),(M,68,15000.0,95103),(F,74 
,37000.0,95105),(F,15,0.0,95050),(F,83,0.0,94040),(F,30,10000.0,95101),(M,19,0.0,95050 
),(M,23,89000.0,95105),(M,1,0.0,95050),(F,4,0.0,95103)}) 
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Relations without a Schema  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Relations	
  without	
  a	
  Schema	
  
	
  

If you do not define a schema, then the fields of a relation are specified using an index that 
starts at $0. This works well for datasets that have a lot of columns or for data that is not 
structured. 

The following relation has four columns but does not define a schema: 
salaries = LOAD 'salaries.txt' USING PigStorage(',');  

Notice what the output is when you try to describe this relation: 
 

 
The following relation groups salaries by its fourth field: 
salariesgroup = GROUP salaries BY $3;  

Notice the salariesgroup relation does not have a schema for its salaries field: 
 

 
Why is the datatype of group bytearray? ____________________________________ 

Answer: Because the salaries relation does not have a schema, the data type of the field 
used for grouping is the default bytearray type. 

> DESCRIBE salaries; 
Schema for salaries unknown. 

> describe salariesgroup 
salariesgroup: {group: bytearray,salaries: {()}} 
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The  FOREACH  GENERATE Operator 

 

 
The	
  FOREACH	
  GENERATE	
  Operator	
  

	
  
The FOREACH...GENERATE operator transforms records based on a set of expressions that you 
define. The operator works on each record in the data set (as in, “for each record”). The result 
of a FOREACH is a new tuple, typically with a different schema. 

The FOREACH operator is a great tool for transforming your data into different data sets. The 
expression in a FOREACH can contain fields, constants, mathematical expressions, the result of 
invoking a Pig function, and many other variations and nestings. 

Let’s look at an example. The following command takes in the salaries relation and generates a 
new relation that only contains two of the columns in salaries: 

 

 
The records in the A relation look like: 

 

 
You can perform mathematical computations in the GENERATE clause: 
B = FOREACH salaries GENERATE salary, salary * 0.07;  

The resulting relation contains each salary along with the salary multiplied by 7%: 
 

 

> A = FOREACH salaries GENERATE age, salary; 
> DESCRIBE A; 
A: {age: int,salary: double} 

(66,84000.0) 
(39,3000.0) 
(84,14000.0) 

(69000.0,4830.000000000001) 
(91000.0,6370.000000000001) 
(0.0,0.0) 
(48000.0,3360.0000000000005) 
(3000.0,210.00000000000003) 
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Specifying Ranges in FOREACH 
In the GENERATE clause, you can specify a range of values, which is useful when working with 
datasets that have a large number of fields. For example: 

 

 
The C relation will contain three fields: age, salary, and zip: 

 

 
You can also specify an open-ended range: 

 

 
D will contain age, salary, and zip. E will contain gender, age, and salary. 

This syntax also works well with large relations that do not have a schema: 

 
 

Field Names in a FOREACH 
A relation created from a FOREACH statement is a new tuple. Pig infers the data types of the 
fields in the new tuple, but sometimes the names of the fields are not inferred. In the following 
simple projection, Pig will use the same field name as the original relation: 

 

 
However, in the following projection, Pig cannot determine a field name for the second value in 
the new tuple: 

 

 
Notice the second field in D only has a datatype, but no name. You would have to use the $1 
to refer to this field in D. 

You can use the AS keyword to assign a name to the fields in the new tuple. For example: 
 

 
Notice the second field in E has the name bonus. 

 

  

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray, 
age:int,salary:double,zip:int); 
C = FOREACH salaries GENERATE age..zip; 

> describe C; 
C: {age: int,salary: double,zip: int} 

D = FOREACH salaries GENERATE age..; 
E = FOREACH salaries GENERATE ..salary; 

customer = LOAD 'data/customers'; 
F = FOREACH customer GENERATE $12..$23; 

> salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray, 
age:int,salary:double,zip:int); 
> C = FOREACH salaries GENERATE zip, salary; 
> DESCRIBE C; 
C: {zip: int,salary: double} 

> D = FOREACH salaries GENERATE zip, salary * 0.10; 
> DESCRIBE D; 
D: {zip: int,double} 

> E = FOREACH salaries GENERATE zip, salary * 0.10 AS bonus; 
> DESCRIBE E; 
E: {zip: int,bonus: double} 

Note: You can use the AS keyword for any of the fields in the GENERATE clause, 
even if Pig can infer the field name. 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
96 

	
  

	
  

 
FOREACH with Groups  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FOREACH	
  with	
  Groups	
  

	
  

Let’s look at an example of a Pig script that performs a FOREACH operation on a group: 
 

 
The salariesbygender relation has two fields: group and a bag named salaries: 

 

 
Since there are only two possible values of group (M or F), then there will be at most two rows. 
The following FOREACH counts the number of tuples in each salaries bag: 
J = FOREACH salariesbygender GENERATE group, COUNT(salaries);  

The J relation looks like: 
J: {group: chararray,long}  

The output of J is: 
 

 
This means our salaries.txt file contains 24 female records and 26 male records. 

If you need to specifically refer to a field inside the bag of a group relation, you use the dot 
operator. For example, suppose we only want to refer to the salary field in the salaries bag 
of the salariesbygender relation: 
K = FOREACH salariesbygender GENERATE group, MAX(salaries.salary);  

The K relation will contain the group (so either M or F) and the maximum salary field in that 
particular salaries bag. The output of running this code is: 

 

 

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray, 
age:int,salary:double,zip:int); 
salariesbygender = GROUP salaries BY gender; 

salariesbygender: {group: chararray,salaries: {(gender: chararray,age: int,salary: 
double,zip: int)}} 

(F,24) 
(M,26) 

(F,95000.0) 
(M,99000.0) 
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The FILTER Operator  

 
 
 
 
 
 
 
 
 
 
 
 
 

The	
  FILTER	
  Operator	
  
	
  

The FILTER operator selects tuples from a relation based on specified Boolean expressions. 
Use FILTER to select the rows you want, or filter out the rows you do not. The FILTER operator 
looks like: 
FILTER alias BY expression;  

For example, the following command filters the salaries relation to contain only those tuples 
whose salary field is greater than 10,000: 
G = FILTER salaries BY salary >= 10000.0;  

Conditions can be combined using AND or OR: 
H = FILTER salaries BY gender == 'F' AND age >= 50;  
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Use the NOT operator to reverse a condition. Suppose we have the following dataset: 

 

 
The following NOT operator filters out all rows that match a regular expression: 

 

 
The no_b relation will contain all records that do not contain the letter ‘b’ or ‘B’: 

 

 
 
 

  

SD 
NV 
CO 
CA 
IL 
OH 
CA 
CA 
CO 

Rich 
Barry 
George 
Ulf 
Danielle 
Tom 
Manish 
Brian 
Mark 

> employees = LOAD 'pigdemo.txt' AS (state:chararray, name:chararray); 
> no_b = FILTER employees BY NOT name MATCHES '.*b|B.*'; 

(SD,Rich) 
(CO,George) 
(CA,Ulf) 
(IL,Danielle) 
(OH,Tom) 
(CA,Manish) 
(CO,Mark) 

Note: The FILTER command does not change the schema of a relation or the 
structure. It only narrows down the number of records belonging to that relation. 
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The LIMIT Operator 
The LIMIT command limits the number of output tuples for a relation: 

 

 
Note that there is no guarantee which three tuples will be returned, and the tuples that are 
returned can change from one run to the next. Using the data shown earlier, the output of one 
of the executions was: 

 

 
 
 

  

employees = LOAD 'pigdemo.txt' AS (state:chararray, name:chararray); 
emp_group = GROUP employees BY state; 
L = LIMIT emp_group 3; 

(CA,{(CA,Ulf),(CA,manish),(CA,Brian)}) 
(CO,{(CO,George),(CO,Mark)}) 
(IL,{(IL,Danielle)}) 

Note: If you define an ORDER BY (discussed in the next lesson) immediately 
before the LIMIT, then you will be guaranteed to get the same results each time. 
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Review Questions 
1) List two Pig commands that cause a logical plan to execute:    

2) Which Pig command stores the output of a relation into a folder in HDFS?     

Suppose the prices.csv file looks like: 

 
And assume we have the following relation defined: 

 

 
Explain what each of the following Pig commands or relations do: 

3)   describe prices; ______________________________________________________ 

4)   A = group prices by symbol;___________________________________________ 

5) B = foreach prices generate symbol as x, volume as y; 

________________________________________________________________________ 

6) C = foreach A generate group, SUM(prices.volume); 

________________________________________________________________________ 

7) D = foreach prices generate symbol..price; 

________________________________________________________________________ 

8) Write a Pig relation that only contains prices with a volume greater than 3,000: 

________________________________________________________________________ 

XFR,2004-05-13,22.90,400 
XFR,2004-05-12,22.60,400000 
XFR,2004-05-11,22.80,2600 
XFR,2004-05-10,23.00,3800 
XFR,2004-05-07,23.55,2900 
XFR,2004-05-06,24.00,2200 

prices = load 'prices.csv' using PigStorage(',') 
as (symbol:chararray, date:chararray, price:double, volume:int); 
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Lab: Exploring Data with Pig 

Objective: Use Pig to navigate through HDFS and explore a dataset 
See page 45 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Advanced Pig Programming 

 
Lesson Objectives 
This lesson covers some of the more advanced features of Pig, including sorting, 
parallelization, joins, and user-defined functions. 

After completing this lesson, students should be able to: 

• Describe the ORDER BY Operator 

• Describe the CASE Operator 

• Describe the DISTINCT Operator 

• Describe How to Use PARALLEL 

• Describe the FLATTEN Operator 

• Describe Nested FOREACH 

• Describe Joins 

• Describe the COGROUP Operator 

• Describe Pig User-Defined Functions 
 
Additional Content 
• Lab: Splitting a Dataset 

• Lab: Joining Datasets 

• Lab: Preparing Data for Hive 

• Demo: Computing PageRank 

• Quiz: Lesson Review 

• Lab: Analyzing Clickstream Data 

• Lab: Analyzing Stock Market Data using Quantiles 
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The ORDER BY  Operator   

 
 
 
 
 
 
 
 
 
 
 
 
The	
  ORDER	
  BY	
  Operator	
  

	
  

The ORDER BY command allows you to sort the data in a relation: 
 

 
The records in the byage relation will be sorted by age: 

 

 
You can use DESC or ASC in the BY clause. You can also order by multiple fields: 
agesalary = ORDER salaries BY age ASC, salary ASC;  

The output is similar to byage, except the salary field is sorted in ascending order. Compare 
the two outputs of the records with age = 23: 

 

 

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS 
(gender:chararray,age:int,salary:double,zip:chararray); 

byage = ORDER salaries BY age ASC; 

(M,19,0.0,95050) 
(F,22,90000.0,95102) 
(M,23,89000.0,95105) 
(M,23,64000.0,94041) 
(F,30,10000.0,95101) 
(M,31,95000.0,94041) 

(M,19,0.0,95050) 
(F,22,90000.0,95102) 
(M,23,64000.0,94041) 
(M,23,89000.0,95105) 
(F,30,10000.0,95101) 
(M,31,95000.0,94041) 
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A = ORDER visitors BY lastname DESC; 
B = FILTER A BY age >= 21; 

 
 

 

 
 
 

 

 

Note: The resulting output of an ORDER BY relation is a total ordering, which 
means the data will be sorted across all output files. In other words, part-r- 
00000 will contain the first set of ordered tuples then part-r-00001 will 
continue where the first records left off and so on. 

Important: If you define a relation with an ordering then process that relation in 
another expression, the ordering is no longer guaranteed. For example: 

 
 

The records in B are no longer guaranteed to be ordered by lastname in 
descending order. 
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The CASE Operator  

 
 
 
 
 
 
 
 
 
 
 

The	
  CASE	
  Operator	
  
	
  

Pig has a CASE operator that allows you to make decisions within a FOREACH GENERATE 
statement. A CASE clause contains an arbitrary number of WHEN...THEN clauses and contains 
an END statement to denote the end of the CASE. 

For example: 
 

 

bonuses = FOREACH salaries GENERATE salary, ( 
CASE 

WHEN salary >= 70000.00 THEN salary * 0.10 
WHEN salary < 70000.00 AND salary >= 30000.0 

THEN salary * 0.05 
WHEN salary < 30000.0 THEN 0.0 

END) AS bonus; 
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Parameter  Substitution 
Pig provides a parameter substitution feature that allows your Pig scripts to refer to values that 
can be defined at runtime, either from the command line or in a properties file. A parameter is a 
value that starts with a dollar sign ($). 

For example, $INPUTFILE is a parameter in the following LOAD statement: 
stocks = load '$INPUTFILE' USING PigStorage(',');  

When you execute the script, specify a value for $INPUTFILE using the -p switch: 
> pig -p INPUTFILE=NYSE_daily_prices_A.csv myscript.pig  

Use the -param_file switch if your properties are stored in a text file: 
> pig -param_file stock.params myscript.pig  

The text file stock.params looks like this: 
INPUTFILE=NYSE_daily_prices_A.csv  
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The  DISTINCT Operator  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The	
  DISTINCT	
  Operator	
  

	
  

The DISTINCT operator removes duplicate tuples in a relation. The syntax is: 
DISTINCT alias;  

Suppose we have the following data: 
 

 
Applying DISTINCT removes the duplicates: 

 

 
The tuples in unique_emp are: 

 

 

SD 
NV 
SD 
CO 
CA 
SD 
CA 
CO 

Rich 
Barry 
Rich 
George 
Ulf 
Rich 
Ulf 
George 

employees = LOAD 'employees.txt'; 
unique_emp = DISTINCT employees; 

(CA,Ulf) 
(CO,George) 
(NV,Barry) 
(SD,Rich) 
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Using PARALLEL 
The PARALLEL operator is a clause used to determine the number of reducers in the 
subsequent MapReduce job for that particular operation. 

The syntax for the PARALLEL clause is: 
PARALLEL n;  

In this clause, n is the number of reducers. For example: 
 

 
The JOIN operation will use 20 reducers, and the ORDER operation will use five reducers. 

You can use the default_parallel property to set the number of reducers at the script level. 
As an example, there will be eight reducers for each reduce task in the following Pig script: 

 

 
 
 

 

 

A = LOAD 'data1'; 
B = LOAD 'data2'; 
C = JOIN A by $1, B by $3 PARALLEL 20; 
D = ORDER C BY $0 PARALLEL 5; 

SET default_parallel 8; 
A = LOAD 'data1'; 
B = LOAD 'data2'; 
C = JOIN A by $1, B by $3; 
D = ORDER C BY $0; 

Note: Some operators have a reduce phase, like GROUP, ORDER BY, 
DISTINCT, JOIN, LIMIT, and COGROUP. But some Pig operators do not require 
a reduce phase; these are LOAD, FOREACH, FILTER, and SAMPLE. For those 
types of operators, it does not make sense to specify a PARALLEL value. 
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The  FLATTEN Operator  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The	
  FLATTEN	
  Operator	
  

	
  

The FLATTEN operator removes the nesting of nested tuples and bags. You invoke FLATTEN 
like a function, passing in the tuple or bag that you want to flatten: 
FLATTEN(relation)  

The FLATTEN operator is best understood by an example. Suppose we have the following data 
set: 

 

 
The Pig Latin statements below load the data using a schema. Notice the states are in a bag: 

 

 
The output of the employees relation is the following: 

 

 

Rich remote {(SD),(CA)} 
Ulf onsite {(CA)} 
Tom remote {(OH),(NY)} 
Barry  remote {(NV),(NY)} 

> employees = LOAD 'locations.txt' AS ( 
name:chararray, 
location:chararray, 
states:bag{t:tuple(state:chararray)}); 
> describe employees; 
employees: {name: chararray,location: chararray,states: {t: (state: chararray)}} 

(Rich,remote,{(SD),(CA)}) 
(Ulf,onsite,{(CA)}) 
(Tom,remote,{(OH),(NY)}) 
(Barry,remote,{(NV),(NY)}) 
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Notice that each record has a bag containing one or more states. If you flatten the states field 
in the employees relation, each entry in the bag becomes its own full record: 

 

 
The FLATTEN operator produces a cross-product of every record in the bag, with all of the 
other expressions in the GENERATE clause. The output of flat_employees is: 

 

 
 
 

 

 

flat_employees = FOREACH employees GENERATE name, 
location, FLATTEN(states) AS state; 

(Rich,remote,SD) 
(Rich,remote,CA) 
(Ulf,onsite,CA) 
(Tom,remote,OH) 
(Tom,remote,NY) 
(Barry,remote,NV) 
(Barry,remote,NY) 

Note: The example here flattened a bag, but you can also flatten a nested tuple, 
which simply removes the nesting so that each field in the tuple is at the top 
level. Suppose a tuple looks like: 
(1, (2, 3))  

After this tuple was flattened, it would look like: 
(1,2,3)  
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Lab: Splitting a Dataset 

Objective: Research the White House visitor data and look for members of 
Congress 
See page 51 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Nested FOREACH 
A nested FOREACH (also known as an inner foreach) is a FOREACH statement that contains a 
nested block of code. The nested block of code has the following criteria: 

• Can contain CROSS, DISTINCT, FILTER, FOREACH, LIMIT, and ORDER BY operations 

• Must end with a GENERATE statement 

The syntax looks like: 

 
The following example shows how to count unique entries in a group using a nested FOREACH. 
The data is daily stock prices from the New York Stock Exchange (NYSE); each row looks like: 
NYSE,AEA,2010-02-08,4.42,4.42,4.21,4.24,205500,4.24  

The first field is the exchange name, and the second field is the stock symbol. These are the 
only two fields we need for our problem: 

 

 
• The dailyA_grp contains all of the stock symbols grouped by exchange 

• Within the FOREACH, the symbols relation takes the bag dailyA.symbol and produces a 
new relation that is a bag with tuples that only have the field symbol 

• The unique_symbol relation is also a list of symbols but with all of the duplicates removed 

• The GENERATE statement projects the group (which is “NYSE” in this example) and the 
number of values in unique_symbol 

The output is: 
(NYSE,203)  

This means there are 203 unique stock symbols in the NYSE_daily_prices_A.csv file. 
 

 

 

FOREACH nested_alias { 
alias = nested_operation; 
alias = nested_operation; 
GENERATE expression; 

}; 

dailyA = LOAD 'NYSE_daily_prices_A.csv' USING 
PigStorage(',') AS (exchange,symbol); 

dailyA_grp = GROUP dailyA BY exchange; 
unique_symbols = FOREACH dailyA_grp { 

symbols = dailyA.symbol; 
unique_symbol = DISTINCT symbols; 
GENERATE group, COUNT(unique_symbol); 

}; 

Note: Another common task inside a nested FOREACH is ORDER BY. For example: 
dailyA = LOAD 'NYSE_daily_prices_A.csv' USING 

PigStorage(',') AS (exchange,symbol,date); 
dailyA_grp = GROUP dailyA BY symbol; 
result = FOREACH dailyA_grp { 

sorted = ORDER dailyA BY date ASC; 
first_traded_date = LIMIT sorted 1; 
GENERATE group, first_traded_date; 

}; 
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About Joins 

Performing an Inner Join 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Performing	
  an	
  Inner	
  Join	
  

	
  

Joins are a common occurrence in data processing. The JOIN operation in Pig performs both 
inner and outer joins of two data sets using keys indicated for each input. If the keys are equal 
then the two rows are joined. 

An inner join in Pig looks like the following: 
alias = JOIN alias1 BY key1, alias2 BY key2;  

Let’s look at an example. Suppose we have the following file containing states and first names: 
 

 
The second data set contains first names and departments: 

 

 

SD 
NV 
CO 
CA 
OH 

Rich 
Barry 
George 
Ulf 
Tom 

Rich Sales 
Ulf Management 
Tom Marketing 
Barry Sales 
Rich Marketing 
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The following Pig Latin commands perform an inner join on these two data sets using the first 
name in both data sets as the key: 

 

 
Notice the innerjoin relation contains all fields from both data sets in the join. The :: 
operator is needed to avoid ambiguity when the two data sets share the same field names (like 
firstname in this example). 

The output of innerjoin is: 
 

 

locations = LOAD 'pigdemo.txt' AS 
(state:chararray,firstname:chararray); 

depts = LOAD 'joindemo.txt' AS 
(firstname:chararray,dept:chararray); 

innerjoin = JOIN locations BY firstname, depts BY firstname; 
 
> describe innerjoin; 
innerjoin:{ 

locations::state: chararray, 
locations::firstname: chararray, 
depts::firstname: chararray, 
depts::dept: chararray 

} 

(OH,Tom,Tom,Marketing) 
(CA,Ulf,Ulf,Management) 
(SD,Rich,Rich,Sales) 
(SD,Rich,Rich,Marketing) 
(NV,Barry,Barry,Sales) 
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Performing an Outer Join  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Performing	
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An outer join in Pig uses the OUTER keyword, along with either LEFT, RIGHT, or FULL. The 
syntax looks like: 
alias = JOIN alias1 BY key1 [LEFT|RIGHT|FULL] OUTER, alias2 BY key2;  

 
 

 
 

Note: The main difference between an inner join and an outer join is that records 
that do not have a match on the other side are included in the outer join. Pig 
inserts null values into the missing fields. 
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Let’s look at an example using the same data from the previous example: 

 

 
In this case, no records on either side will be omitted. The output looks like: 

 

 
If you perform a LEFT join, you get all records from the left data set, but non-matching records 
in the right data set are omitted: 

 

 
In our simple example, the result of leftjoin is the same as FULL OUTER because our data on 
the right does not contain any records that are non-matching: 

 

 

outerjoin = JOIN locations BY firstname FULL OUTER, 
depts BY firstname; 

(OH,Tom,Tom,Marketing) 
(CA,Ulf,Ulf,Management) 
(SD,Rich,Rich,Sales) 
(SD,Rich,Rich,Marketing) 
(NV,Barry,Barry,Sales) 
(CO,George,,) 

leftjoin = JOIN locations BY firstname LEFT OUTER, 
depts BY firstname; 

(OH,Tom,Tom,Marketing) 
(CA,Ulf,Ulf,Management) 
(SD,Rich,Rich,Sales) 
(SD,Rich,Rich,Marketing) 
(NV,Barry,Barry,Sales) 
(CO,George,,) 
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Replicated Joins 
A replicated join is useful when one of the data sets in the join is small enough to fit into 
memory. This results in a map-side join, saving an enormous amount of network traffic during 
the shuffle/sort phase of the resulting MapReduce job. 

To take advantage of a replicated join, list the smaller data set last in the BY clause and follow it 
with a USING ‘replicated’ statement. For example: 

 

 
The departments data set will be distributed across all map tasks (using a feature of 
MapReduce called a LocalResource), and the join will occur in the map side instead of on the 
reduce side. 

 

 
 

replicatedjoin = JOIN locations BY firstname, 
depts BY firstname USING 'replicated'; 

Best Practice: Use replicated joins whenever you can. The increase in 
performance is noticeable. Just be careful: if the data set does not fit in the 
memory, the underlying MapReduce will generate an error and fail. 
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The  COGROUP Operator   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The	
  COGROUP	
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The COGROUP operator is actually identical to the GROUP operator, except we use COGROUP when 
grouping together more than one relation. For each input, the result of a COGROUP is a record 
with a key and one bag. You can think of a COGROUP as the first half of a JOIN: the keys are 
collected, but the cross-product is not performed. 

Let’s look at an example using the locations and departments data: 
 

 
Notice the schema of the cgroup relation consists of a key followed by a bag for each data set. 
The output of cgroup is: 

 

 

> cgroup = COGROUP locations BY firstname, 
departments BY firstname; 

> DESCRIBE cgroup; 
cgroup: {group: chararray, 
locations: { 

(state: chararray, 
firstname: chararray) 

}, 
departments: { 

(firstname: chararray, 
dept: chararray)} 

} 

(Tom,{(OH,Tom)},{(Tom,Marketing)}) 
(Ulf,{(CA,Ulf)},{(Ulf,Management)}) 
(Rich,{(SD,Rich)},{(Rich,Sales),(Rich,Marketing)}) 
(Barry,{(NV,Barry)},{(Barry,Sales)}) 
(George,{(CO,George)},{}) 
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You could use the cgroup relation to count the number of records that would occur in the 
join’s result: 

 

 
The first number is the inner join count, and the second number is the outer join count: 

 

 
 
 

 
 

counters = FOREACH cgroup GENERATE group, COUNT(locations), 
COUNT(departments); 

(Tom,1,1) 
(Ulf,1,1) 
(Rich,1,2) 
(Barry,1,1) 
(George,1,0) 

Note: The only difference between GROUP and COGROUP is the readability. If you 
see GROUP, that implies the grouping of a single relation. If you see COGROUP, that 
implies the grouping of two or more relations. 
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Pig  User-Defined Functions 
The Pig API has a large collection of built-in functions for performing common tasks and 
computations. However, some Pig scripts may require User-Defined Functions (UDFs) to 
complete their tasks. Pig UDFs can be written in six languages: 

• Java 

• Jython 

• Python 

• JRuby 

• JavaScript 

• Groovy 

You write a UDF in Java following these steps: 

1) Write a Java class that extends EvalFunc. 

2) Deploy the class in a JAR file. 

3) Register the JAR file in the Pig script using the REGISTER command. 

4) Optionally define an alias for the UDF using the DEFINE command. 
 

  

Reference: The Pig API Javadocs are at: 

http://pig.apache.org/docs/r0.14.0/api/ 
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A UDF Example 
Let’s take a look at an example. The following UDF adds a comma between two input strings: 

 

 
• The CONCAT_COMMA class extends EvalFunc 

• The generic of EvalFunc represents the data type of the return value. Notice the exec 
method returns a String 

• The exec method is called when the UDF is invoked from the Pig script 

• The input parameter is a Tuple instance, which allows for an arbitrary number of 
arguments. 

• The get method of Tuple is used to retrieve the arguments passed in 
 

Invoking a UDF 
Before you can invoke a UDF, the function needs to be registered by your Pig script so that the 
Pig compiler knows where to find the definition of the UDF. Use the REGISTER command to 
register a JAR: 
register my.jar;  

You can specify a relative path or a full path to the JAR file. Once the JAR is registered, call the 
UDF using its fully qualified class name: 

 

 
As an option, you can use the DEFINE command to define an alias that simplifies the syntax for 
invoking the UDF: 
DEFINE CONCAT_COMMA com.hortonworks.udfs.CONCAT_COMMA();  

Now you can invoke the UDF using the alias: 
x = FOREACH logevents GENERATE CONCAT_COMMA(level, code);  

package com.hortonworks.udfs; 
 
public class CONCAT_COMMA extends EvalFunc<String> { 
 

@Override 
public String exec(Tuple input) throws IOException { 

String first = input.get(0).toString().trim(); 
String second = input.get(1).toString().trim(); 

 
return first + ", " + second; 

} 
} 

x = FOREACH logevents 
GENERATE com.hortonworks.udfs.CONCAT_COMMA(level, code); 
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Tips for Optimizing Pig Scripts 
Here are a few best practices that can make the difference in the performance of Pig scripts: 

 
Filter early and often Getting rid of data as quickly as possible will improve the 

performance by reducing the amount of data that gets shuffled and 
sorted across the network 

 

Project early and 
often 

Use a FOREACH to remove unwanted or unused fields in your 
records as soon as possible 

 

Drop nulls before a 
join 

Filter out null records before the JOIN. The gain can be significant, 
even if you have a small percentage of null values 

 

Use replicated joins 
whenever possible 

A map-side join is always much more efficient than a reduce-side 
join 

 

Optimize regular 
join ordering 

Make sure that the table with the largest number of tuples per key 
Is the last table in your query 

Use PARALLEL 
properly 

Know your cluster. Setting this value too high can actually slow 
down the job, and setting it too low is not a good use of your 
cluster’s resources 

 

Use compression Enable the compression of the temporary data files used between 
map/reduce tasks and jobs by setting 
mapreduce.map.output.compress to true and specifying a 
compression codec with 
mapreduce.map.output.compress.codec. Enable compression of 
the output files between MapReduce jobs within a Pig processing 
pipeline by setting the pig.tmpfilecompression and 
pig.tmpfilecompression.codec properties 

 

Choose the right data 
types 

If you are treating a field as a specific data type, define the type in 
the LOAD statement with a schema. This will avoid unnecessary 
data-type conversions later 

 
 
 

 

 

Tip: When you start Pig, a special file named .pigbootup is searched for in the 
user’s home folder and executed. The .pigbootup file is a great place to 
configure properties, register JAR files, define UDFs, and perform any other task 
that can be applied globally to all of your Pig scripts. 
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Lab:  Joining Datasets 

Objective: Join two datasets in Pig 
See page 55 of the HDP Developer: Apache Pig and Hive Lab Booklet. 

 
Lab: Preparing Data for Hive 

Objective: Transform and export a dataset for use with Hive 
See page 61 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Overview of the DataFu Library 
The DataFu library is an open-source library of Pig UDFs for performing data analysis on 
Hadoop. DataFu contains UDFs for: 

• Bag operations, like append and concatenate 

• Set operations, like union and intersect 

• Running PageRank on a collection of graphs 

• Statistical computations, like quantiles and variance 

• Sessionization functions for working with page views 
To use the functions in the DataFu library, you need to register the DataFu JAR file, just like 
you would with any other Pig UDF library: 
register 
/usr/hdp/current/pig-
client/lib/datafu.jar;  
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Computing Quantiles 
A quantile is a set of points from the cumulative distribution function of a random variable, 
taken at regular intervals. The number of points, n, is the name of the quantile. For example: If 
n = 4, you have a four-quantile (commonly called a quartile). If n = 5, you have a five-quantile, 
and so on. 

The datafu library has a quantile UDF named datafu.pig.stats.Quantile that computes a 
quantile based on provided intervals and passed in to the UDF’s constructor. For example, an 
evenly distributed five-quantile function would be defined as: 

 

 
You can also instantiate a Quantile by passing in the number of evenly-spaced ranges. For 
example, the above Quintile could also be defined as: 
define Quintile datafu.pig.stats.Quantile('6');  

Quintiles are what five-quantiles are called, but we could have used any alias. Invoking this 
UDF requires passing in a sorted bag. This is typically accomplished using a nested FOREACH. 

Here is what the entire Pig script might look like for computing the quintiles of a collection of 
high temperatures gathered at various weather stations: 

 

 
The output for each location is going to be six values, which define five equally numerous 
subsets of the high temperatures: 

 

 
For example, in Toronto you have an equal number of days where the high temperature was 
between -7.22 and -3.48 degrees Celsius, between -3.48 and 13.6 degrees Celsius, between 
13.6 and 16.05 degrees Celsius, and so on. 

define Quintile datafu.pig.stats.Quantile('0.0','0.20', 
'0.40','0.60','0.80','1.0'); 

register /usr/hdp/current/pig-client/lib/datafu.jar; 
 
define Quintile datafu.pig.stats.Quantile('0.0','0.20', 

'0.40','0.60','0.80','1.0'); 
 
temperatures = LOAD 'data.txt' AS ( 

location:chararray, 
hightemp:double, 
lowtemp:double 

); 
 
temps_filter = FILTER temperatures BY hightemp is not null; 
temps_group = GROUP temps_filter BY location; 
 
quintiles = FOREACH temps_group { 

sorted = ORDER temps_filter BY hightemp; 
GENERATE group AS location, 

Quintile(sorted.hightemp) AS quant; 
} 
 
dump quintiles; 

(Toronto,(-7.22,-3.48,13.6,16.05,19.49,24.5)) 
(Moscow,(-9.0,-2.04,5.5,18.975,21.205,24.98)) 
(NorthPole,(-20.5,-14.6,-8.76,-2.57,1.475,2.445,3.61)) 
(Houston,(40.9,51.12,69.41,82.75,94.55,105.87)) 
(IntlFalls,(-14.41,-4.25,-1.15,12.15,17.6,21.73)) 
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Demonstration:  Computing PageRank 

Objective: To understand how to use the PageRank UDF in DataFu 
See page 63 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Review Questions 
1) If a relation is sorted using ORDER BY and the resulting MapReduce job runs with three 

reducers, how is the output actually sorted? __________________________ 

___________________________________________________________________ 

Suppose the prices.csv file looks like: 

 
And assume we have the following relation defined: 

 

 
Explain what each of the following Pig commands or relations do: 

2) F = foreach prices generate 

(CASE 

WHEN volume > 3000 THEN volume 

WHEN volume <= 3000 THEN -1 

END) AS high_volume; 
________________________________________________________________ 

3)   G = distinct prices; __________________________________________ 

4) H = GROUP prices BY symbol; 

I = foreach H { 

J = filter prices by volume > 3000; 

GENERATE group, SUM(J.price); 

}; 

_______________________________________________________________ 

5) What is the benefit of the using ‘replicated’ clause in a Pig join? 

_______________________________________________________________ 

6) Why is filtering and projecting a relation early a performance benefit in Pig? 

_______________________________________________________________ 

XFR,2004-05-13,22.90,400 
XFR,2004-05-12,22.60,400000 
XFR,2004-05-11,22.80,2600 
XFR,2004-05-10,23.00,3800 
XFR,2004-05-07,23.55,2900 
XFR,2004-05-06,24.00,2200 

prices = load 'prices.csv' using PigStorage(',') 
as (symbol:chararray, date:chararray, price:double, volume:int); 
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Lab:  Analyzing  Clickstream Data 

Objective: Become familiar with using the DataFu library to sessionize 
clickstream data 
See page 67 of the HDP Developer: Apache Pig and Hive Lab Booklet. 

 
Lab: Analyzing Stock Market Data using Quantiles 

Objective: Use DataFu to compute quantiles 
See page 71 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Hive Programming 
 
Lesson Objectives 
This lesson covers the details of the Hive framework and HiveQL programming language. 

After completing this lesson, students should be able to: 

• Describe Hive 

• Describe How to Define Tables 

• Describe How to Perform Queries 

• Describe How to Sort Data 

• Describe How to Join Data and Hive Join Strategies 
 
Additional Content 
• Lab: Understanding Hive Tables 

• Demo: Understanding Partitions and Skew 

• Lab: Analyzing Big Data with Hive 

• Demo: Computing ngrams 

• Lab: Joining Datasets in Hive 

• Lab: Computing ngrams of Emails in Avro Format 

• Quiz: Lesson Review 
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About Hive 
Apache Hive, http://hive.apache.org/, is a data warehouse system for Hadoop. Hive is not a 
relational database; it only maintains metadata information about your big data stored on HDFS. 
Hive allows you to treat your big data as tables and perform SQL-like operations on the data 
using a scripting language called HiveQL. 

• Hive is not a database, but it uses a database (called the metastore) to store the tables that 
you define. Hive uses Derby by default 

• A Hive table consists of a schema stored in the metastore and data stored on HDFS 

• Hive converts HiveQL commands into MapReduce or Tez jobs (similar to how Pig Latin 
scripts execute with Pig) 

• One of the key benefits of HiveQL is its similarity to SQL. Data analysts familiar with SQL 
can run MapReduce jobs by writing SQL-like queries, something they are already 
comfortable doing 

• You can easily perform ad hoc custom queries on HDFS using Hive 
Pig and Hive have quite a few similarities, so you might be wondering which framework to 
choose for your particular application. For most use cases: 

• Pig is a good choice for ETL jobs, where unstructured data is reformatted so that it is easier 
to define a structure to it 

• Hive is a good choice when you want to query data that has a certain known structure to it 
In other words, you will likely benefit from using both Pig and Hive. Pig is great for moving data 
around and restructuring it, while Hive is great for performing analyses on the data. 

 

 

 

Note: Hive does not make any promises regarding performance. The benefit of 
Hive is its simplicity in being able to define and run a MapReduce or Tez job, 
but the queries are not meant to execute in real time. Even the simplest of Hive 
queries can take several minutes to execute (just like any MapReduce job), and 
large Hive queries can feasibly take hours to run. 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
127 

	
  

	
  

 
Comparing Hive to SQL 

 
SQL$Datatypes$	
   	
   SQL$Seman.cs$	
  

INT$	
   	
   SELECT,$LOAD,$INSERT$from$query$	
  

TINYINT/SMALLINT/BIGINT$	
   	
   Expressions$in$WHERE$and$HAVING$	
  

BOOLEAN$	
   	
   GROUP$BY,$ORDER$BY,$SORT$BY$	
  

FLOAT$	
   	
   CLUSTER$BY,$DISTRIBUTE$BY$	
  

DOUBLE$	
   	
   SubIqueries$in$FROM$clause$	
  

STRING$	
   	
   GROUP$BY,$ORDER$BY$	
  

BINARY$	
   	
   ROLLUP$and$CUBE$	
  

TIMESTAMP$	
   	
   UNION$	
  

ARRAY,$MAP,$STRUCT,$UNION$	
   	
   LEFT,$RIGHT$and$FULL$INNER/OUTER$	
  
JOIN$	
  

DECIMAL$	
   	
   CROSS$JOIN,$LEFT$SEMI$JOIN$	
  

CHAR$	
   	
   Windowing$funcOons$(OVER,$RANK,$	
  
etc.)$	
  

VARCHAR$	
   	
   SubIqueries$for$IN/NOT$IN,$HAVING$	
  

DATE$	
   	
   EXISTS$/$NOT$EXISTS$	
  

Comparing	
  Hive	
  to	
  SQL	
  
	
  

Hive provides basic SQL functionality using Tez/MapReduce to execute queries. Hive supports 
standard SQL clauses: 

 

 
Hive also supports basic DDL commands: 
CREATE/ALTER/DROP TABLE/DATABASE  

Some of the limitations of Hive include: 

• Index and view support are limited (discussed in detail later) 

• The data in Hive is read only (no updates) 

• Datatypes do not line up with traditional SQL types 

• New partitions can be inserted, but not individual rows 

INSERT INTO 
SELECT 
FROM … JOIN … ON 
WHERE 
GROUP BY 
HAVING 
ORDER BY 
LIMIT 
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Hive Architecture 
Hive queries are submitted to a HiveServer2 process that typically runs on a master node in the 
cluster. 

 

 
Hive	
  Architecture	
  

	
  

Issuing Commands Using the Hive CLI, a Web interface, or a Hive JDBC/ODBC client, 
a Hive query is submitted to the HiveServer 

 
Hive Query Plan The Hive query is compiled, optimized, and planned as a 

Tez/MapReduce job 
 

Tez/MapReduce 
Job Executes 

The corresponding Tez or MapReduce job is executed on the 
Hadoop cluster 
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Submitting Hive Queries 
Hive queries are written using the HiveQL language, an SQL-like scripting language that 
simplifies the creation of Tez/MapReduce jobs. With HiveQL, data analysts can focus on 
answering questions about the data, and let the Hive framework convert the HiveQL into a 
Tez/MapReduce job. 

You have two options for executing HiveQL commands: 
 

Hive CLI The Hive command line interface allows you to enter commands 
directly into the Hive shell or write the commands in a text file and 
execute the file 

 
Beeline A new JDBC client that works with HiveServer2. The Beeline shell 

works in embedded mode (just like the Hive CLI) and also remote 
mode, where you connect to a HiveServer2 process using Thrift 

 
The Hive CLI shell is started using the hive executable: 

 

 
Use the -f flag to specify a file that contains a Hive script: 
$ hive -f myquery.hive  

Beeline is started using the beeline executable: 
 

 

$ hive 
hive> 

$ beeline –u url –n username –p password 
beeline> 
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Defining  a  Hive-Managed Table 
A Hive table allows you to add structure to your otherwise unstructured data in HDFS. Use the 
CREATE TABLE command to define a Hive table, similar to creating a table in SQL. 

For example, the following HiveQL creates a new Hive-managed table named customer: 
 

 
• The customer table has four columns 

• ROW FORMAT is either DELIMITED or SERDE 

• Hive supports the following data types: TINYINT, SMALLINT, INT, BIGINT, BOOLEAN, 
FLOAT, DOUBLE, DECIMAL, STRING, VARCHAR, CHAR, BINARY, DATE and TIMESTAMP 

• Hive also has four complex data types: ARRAY, MAP, STRUCT, and UNIONTYPE 
 

Defining an External Table 
The following CREATE statement creates an external table named salaries: 

 

 
An external table is just like a Hive-managed table, except that when the table is dropped, Hive 
will not delete the underlying /apps/hive/warehouse/salaries folder. 

CREATE TABLE customer ( 
customerID INT, 
firstName STRING, 
lastName STRING, 
birthday TIMESTAMP, 

) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; 

CREATE EXTERNAL TABLE salaries ( 
gender string, 
age int, 
salary double, 
zip int 

) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ','; 
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Defining a Table LOCATION 
Hive does not have to store the underlying data in /apps/hive/warehouse. Instead, the files 
for a Hive table can be stored in a folder anywhere in HDFS by defining the LOCATION clause. 
For example: 

 

 
In the table above, the table data for salaries will be whatever is in the 
/user/train/salaries directory. 

 

 

 

CREATE EXTERNAL TABLE salaries ( 
gender string, 
age int, 
salary double, 
zip int 

) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
LOCATION '/user/train/salaries/'; 

Important: The sole difference in behavior between external tables and Hive- 
managed tables is when they are dropped. If you drop a Hive-managed table, 
then its underlying data is deleted from HDFS. If you drop an external table, then 
its underlying data remains in HDFS (even if the LOCATION was in 
/apps/hive/warehouse/). 
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Loading Data into a Hive Table 
The data for a Hive table resides in HDFS. To associate data with a table, use the LOAD DATA 
command. The data does not actually get “loaded” into anything, but the data does get 
moved: 

• For Hive-managed tables, the data is moved into a special Hive subfolders of 
/apps/hive/warehouse 

• For external tables, the data is moved to the folder specified by the LOCATION clause in the 
table’s definition 

The LOAD DATA command can load files from the local file system (using the LOCAL qualifier) or 
files already in HDFS. For example, the following command loads a local file into a table named 
customers: 
LOAD DATA LOCAL INPATH '/tmp/customers.csv' OVERWRITE INTO TABLE customers;  

The OVERWRITE option deletes any existing data in the table and replaces it with the new data. 
If you want to append data to the table’s existing contents, simply leave off the OVERWRITE 
keyword. 

If the data is already in HDFS, then leave off the LOCAL keyword: 
LOAD DATA INPATH '/user/train/customers.csv' OVERWRITE INTO TABLE customers;  

In either case above, the file customers.csv is moved either into HDFS in a subfolder of 
/apps/hive/warehouse or to the table’s LOCATION folder, and the contents of customers.csv 
are now associated with the customers table. 

You can also insert data into a Hive table that is the result of a query, which is a common 
technique in Hive. The syntax looks like: 

 

 
The birthdays table will contain all customers whose birthday column is not null. 

INSERT INTO TABLE birthdays 
SELECT firstName, lastName, birthday 
FROM customers 
WHERE birthday IS NOT NULL; 
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Performing Queries 
Let’s take a look at some sample queries to demonstrate what HiveQL looks like. The following 
SELECT statement selects all records from the customers table: 
SELECT * FROM customers;  

You can use the familiar WHERE clause to specify which rows to select from a table: 
 

 
 
 

  
One nice benefit of Hive is its ability to join data in a simple fashion. The JOIN command in 
HiveQL is similar to its SQL counterpart. For example, the following statement performs an 
inner join on two tables: 

 

 
To perform an outer join, use the OUTER keyword: 

 

 
In the SELECT above, a row will be returned for every customer, even those without any orders. 

FROM customers 
SELECT firstName, lastName, address, zip 
WHERE orderID > 0 
ORDER BY zip; 

Note: The FROM clause in Hive can appear before or after the SELECT clause. 

SELECT customers.*, orders.* 
FROM customers 
JOIN orders ON ( 

customers.customerID = orders.customerID 
); 

SELECT customers.*, orders.* 
FROM customers 
LEFT OUTER JOIN orders 
ON (customers.customerID = orders.customerID); 
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Lab:  Understanding  Hive Tables 

Objective: Understand how Hive table data is stored in HDFS 
See page 75 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Hive Partitions 
Hive manages the data in its tables using files in HDFS. You can define a table to have a 
partition, which results in the underlying data being stored in files partitioned by a specified 
column (or columns) in the table. Partitioning the data can greatly improve the performance of 
queries because the data is already separated into files based on the column value, which can 
decrease the number of mappers and greatly decrease the amount of shuffling and sorting of 
data in the resulting Tez/MapReduce job. 

Use the partitioned by clause to define a partition when creating a table: 
 

 
This will result in each department having its own subfolder in the underlying warehouse folder 
for the table: 

 

 
 
 

  

create table employees (id int, name string, salary double) 
partitioned by (dept string); 

/apps/hive/warehouse/employees 
/dept=hr/ 
/dept=support/ 
/dept=engineering/ 
/dept=training/ 

Note: You can partition by multiple columns, which results in subfolders within 
the subfolders of the table’s warehouse directory. 
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Hive Buckets  

 
 

 
Hive	
  Buckets	
  

	
  

Hive tables can be organized into buckets, which imposes extra structure on the table and the 
way the underlying files are stored. Bucketing has two key benefits: 

 
More efficient queries Especially when performing joins on the same bucketed columns 

 

More efficient 
sampling 

Because the data is already split up into smaller pieces 

 

Buckets are created using the clustered by clause. For example, the following table has 16 
buckets that are clustered by the id column: 

 

 
How does Hive determine which bucket to put a record into? If you have n buckets, the 
buckets are numbered 0 to n-1 and Hive hashes the column value and then uses the modulo 
operator on the hash value. 

create table employees (id int, name string, salary double) 
clustered by (id) into 16 buckets; 
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Skewed Tables 
In Hive, skew refers to one or more columns in a table that have values that appear very often. 
If you know a column is going to have heavy skew, you can specify this in the table’s schema: 

 

 
By specifying the values with heavy skew, Hive will split those out into separate files 
automatically and take this fact into account during queries so that it can skip whole files if 
possible. 

In the Customers table above, records with a zip of 57701 or 57702 will be stored in separate 
files because the assumption is that there will be a large number of customers in those two ZIP 
codes. 

CREATE TABLE Customers ( 
id int, 
username string, 
zip int 

) 
SKEWED BY (zip) ON (57701, 57702) 
STORED as DIRECTORIES; 
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Demonstration:  Understanding  Partitions  and Skew 

Objective: To understand how Hive partitioning and skewed tables work 
See page 81 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Sorting Data 
HiveQL has two sorting clauses: 

 
ORDER BY A complete ordering of the data, which is accomplished by using a 

single reducer 
 
SORT BY Data output is sorted per reducer 

 
The syntax for the two clauses looks like: 
select * from table_name [order | sort] by column_name;  

The syntax for both is identical; only the behavior is different. If there is more than one 
reducer, sort by provides a partial sorting of the data by reducer but not a total ordering. 

Order by implements a total ordering across all reducers. To obtain a parallel total ordering 
across multiple reducers in Hive, you have to set the following property: 
hive.optimize.sampling.orderby=true  

If you do not set the property above then the total ordering is achieved by using one reducer. 
In that situation, you must add a LIMIT clause to the Hive query to limit the size of the output 
so that it can be managed by a single reducer. 

 
Using Distribute By 
Hive uses the columns in distribute by to distribute the rows among reducers. In other 
words, all rows with the same distribute by columns will go to the same reducer. For 
example, suppose you have the following table named salaries with the schema (gender, 
age, salary, zip): 

 

F 66 41000.0 95103 
M 40 76000.0 95102 
F 58 95000.0 95103 
F 68 60000.0 95105 
M 
... 

85 14000.0 95102 

Note that distribute by is typically used in conjunction with an insert statement (or also 
when using Hadoop streaming with custom mappers and/or reducers). The following 
command demonstrates distribute by on the age column: 

 

 
Records with the same age will go to the same reducer. 

set mapreduce.job.reduces=2; 
insert overwrite table mytable 

select gender, age, salary from salaries 
distribute by age; 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
140 

	
  

	
  

insert overwrite table myoutput_table 
from dataset 

select * 
cluster by age; 

 
The distribute by does not guarantee any type of clustering of the records. For example, a 
reducer might get: 

 

 
The two records with age = 66 are sent to the same reducer, but they are not adjacent. You 
can use sort by to cluster records with the same distribute by column together: 

 

 
The records with the same age will now appear together in the reducer’s output: 

 

 
 
 

 

 

M,66,84000.0 
F,58,95000.0 
M,40,76000.0 
F,66,41000.0 

insert overwrite table mytable 
select gender, age, salary from salaries 
distribute by age 
sort by age; 

F,58,95000.0 
M,66,84000.0 
F,66,41000.0 
M,68,15000.0 
F,68,60000.0 
M,72,83000.0 

Note: If you use distribute by followed with a sort by on the same column, 
you can use cluster by and get the same result. For example, the following 
statement has the same result as the previous Hive statement above: 
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Storing Results to a File 
The following command outputs the results of a query to a file in HDFS. For example: 

 

 
You can also output the results of a query to a file on the local file system by adding the LOCAL 
keyword: 

 

 
 

Specifying MapReduce Properties 
Keep in mind that a Hive query is actually a MapReduce job behind the scenes. You can 
specify some of the properties of that underlying MapReduce job in Hive using the SET 
command. 

You can either set the property in the Hive script: 
SET mapreduce.job.reduces = 12  

Or you can set properties at the command line using the hiveconf flag: 
hive -f myscript.hive -hiveconf mapreduce.job.reduces =12  

You can use hivevar for parameter substitution. For example: 
SELECT * FROM names WHERE age = ${age}  

Specify age using either SET or the hivevar flag: 
hive -f myscript.hive -hivevar age=33  

INSERT OVERWRITE DIRECTORY '/user/train/ca_or_sd/' select name, state from names where 
state = 'CA' or state = 'SD'; 

INSERT OVERWRITE LOCAL DIRECTORY '/tmp/myresults/' SELECT * FROM bucketnames ORDER BY 
age; 
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Lab: Analyzing Big Data with Hive 

Objective: Analyze the White House visitor data 
See page 85 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Hive Join Strategies  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hive	
  Join	
  Strategies	
  

	
  

Some important concepts to understand when performing joins and laying out your Hive data: 

• Shuffle joins always work in the sense that if you cannot perform a more efficient type of 
join, two tables can always be joined using a shuffle join 

• A map join is very efficient and ideal if one side of the join is a small enough dataset to fit 
into memory 

• If a map join is not an option, then the next best option is a sort-merge-bucket join, which 
we will discuss in more detail 

 
Shuffle Joins 

 

 
Shuffle	
  Joins	
  

	
  
A shuffle join is the default join technique for Hive, and it works with any data sets (no matter 
how large). Identical keys are shuffled to the same reducer, and the join is performed on the 
reduce side. This is the most expensive join from a network utilization standpoint because all 
records from both sides of the join need to be processed by a mapper and then shuffled and 
sorted, even the records that are not a part of the result set. 
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Map (Broadcast) Joins  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Map	
  (Broadcast)	
  Joins	
  

	
  

If one of the datasets is small enough to fit into memory, then it can be distributed (broadcast) 
to each mapper and perform the join in the map phase. This greatly reduces the number of 
records being shuffled and sorted because only records that appear in the result set will be 
passed on to a reducer. 

A map join has a special C-style comment syntax for providing a hint to the Hive engine: 
 

 
 
 

  

select /*+ MAPJOIN(states) */ customers.*, states.* 
from customers 
join states on (customers.state = states.state); 

Important: In HDP 2.x, Hive joins are automatically optimized without the need 
for providing hints. 
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hive.auto.convert.sortmerge.join=true; 
hive.optimize.bucketmapjoin = true; 
hive.optimize.bucketmapjoin.sortedmerge = true; 
hive.auto.convert.sortmerge.join.noconditionaltask = true; 

 
Sort-Merge-Bucket (SMB) Joins 

 

 
Sort-­‐-­‐-­‐Merge-­‐-­‐-­‐Bucket	
  (SMB)	
  Joins	
  

	
  
If you have two datasets that are too large for a map-side join, an efficient technique for joining 
them is to sort the two datasets into buckets. The trick is to cluster and sort by the same join 
key. 

This provides two major optimization benefits: 

• Sorting by the join key makes joins easy. All possible matches reside in the same area on 
disk 

• Hash bucketing a join key ensures all matching values reside on the same node. Equi-joins 
can then run with no shuffle 

For this to work properly, the number of bucket columns has to equal the number of join 
columns. This means that, in general, you will need to specifically define your Hive tables to fit 
the requirements of a sort-merge-bucket join, which implies you are aware at design time of 
the columns that will be most commonly used in join statements. 

 

 

 

Note: An SMB join can be converted to an SMB map join. This requires the 
following configuration settings enabled. (Note that these settings are already set 
to true in HDP 2.x): 
hive.auto.convert.sortmerge.join=true; 
hive.optimize.bucketmapjoin = true; 
hive.optimize.bucketmapjoin.sortedmerge = true; 
hive.auto.convert.sortmerge.join.noconditionaltask = true; 
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Invoking a Hive UDF 
Similar to Pig, Hive has the ability to use User-Defined Functions written in Java to perform 
computations that would otherwise be difficult (or impossible) to perform using the built-in Hive 
functions and SQL commands. 

To invoke a UDF from within a Hive script, you need to: 

• Register the JAR file that contains the UDF class and 

• Define an alias for the function using the CREATE TEMPORARY FUNCTION command. 

For example, the following Hive commands demonstrate how to invoke the ComputeShipping 
UDF defined above: 

 

 

ADD  JAR  /myapp/lib/myhiveudfs.jar; 
CREATE TEMPORARY FUNCTION ComputeShipping 

AS 'hiveudfs.ComputeShipping'; 
FROM orders SELECT address, description, ComputeShipping(zip, weight); 
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Computing ngrams in Hive 
An ngram is a subsequence of text within a large document. The “n” represents the length of 
the subsequence. The result of an ngram is a frequency distribution 

For example, when n is 2 it’s called a bigram, and it represents the occurrence of two adjacent 
terms. A trigram is when n is 3 and represents three adjacent terms, and so on. 

Hive contains an ngram function for computing the frequency distribution. For example: 
select ngrams(sentences(val),2,100) from mytable;  

The above command computes a bigram of the data in the val column of mytable, returning a 
frequency distribution of the top 100 results. 

Hive also contains a context_ngram function, which computes ngrams based on a context 
string that appears around the subsequence of text. For example: 

 

 
The above command generates a frequency distribution of the top 100 words that follow the 
expression “error code.” 

select context_ngrams(sentences(val), 
array("error","code",null), 
100) 

from mytable; 
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Demonstration:  Computing ngrams 

Objective: To understand how to compute ngrams using Hive 

See page 95 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Review Questions 
1) A Hive table consists of a schema stored in the Hive  and data stored 

in  . 

2) True or False: The Hive metastore requires an underlying SQL database. 

3) What happens to the underlying data of a Hive-managed table when the table is dropped? 
________________________________________________________ 

4) True or False: A Hive external table must define a LOCATION. 

5) List three different ways data can be loaded into a Hive table:    

_____________________________________________________________________ 

6) When would you use a skewed table?    

7) Suppose you have the following table definition: 
 

 
What will the folder structure in HDFS look like for the movies table? 

8) Explain the output of the following query: 
select * from movies order by title;  

9) What does the following Hive query compute? 
 

 
_______________________________________________________ 

10) What does the following Hive query compute? 
 

 
_______________________________________________________ 

create table movies (title string, rating string, 
length double) partitioned by (genre string); 

from mytable 
select explode(ngrams(sentences(val),3,100)) as myresult; 

from mytable 
select explode(context_ngrams(sentences(val), 

array("I","liked",null),10)) as myresult; 
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Lab: Joining Datasets in Hive 

Objective: Perform a join of two datasets in Hive 
See page 99 of the HDP Developer: Apache Pig and Hive Lab Booklet. 

 
Lab: Computing ngrams of Emails in Avro Format 

Objective: Use Hive to compute ngrams 
See page 103 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Using HCatalog 

 
Lesson Objectives 
This lesson covers the details of how HCatalog is used to provide a central repository for 
defining and sharing schemas for data stored in Hadoop. 

After completing this lesson, students should be able to: 

• About HCatalog 

• HCatalog in the Ecosystem 

• Defining a New Schema 

• Using HCatLoader with Pig 

• Using HCatStorer with Pig 
 
Additional Content 
• Quiz: Lesson Review 

• Lab: Using HCatalog with Pig 
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About HCatalog  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What	
  Is	
  HCatalog?	
  

	
  

One of the most attractive qualities of Hadoop is its flexibility to require schema on read, not on 
write. HCatalog helps Hadoop deliver on this promise. It is a metadata- and table- 
management system for Hadoop. HCatalog has the following features: 

• Makes the Hive metastore available to users of other tools on Hadoop 

• Provides connectors for MapReduce and Pig so that users of those tools can read data 
from and write data to Hive’s warehouse 

• Allows users to share data and metadata across Hive, Pig, and MapReduce 

• Provides a relational view through an SQL-like language (HiveQL) to data within Hadoop 
• Allows users to write their applications without being concerned about how or where the 

data is stored 

• Insulates users from schema- and storage-format changes 
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HCatalog in the Ecosystem 

 

 
HCatalog	
  in	
  the	
  Ecosystem	
  

	
  
HCatalog provides a consistent data model for the various tools that use Hadoop. It also 
provides table abstraction, which abstracts some of the details about your data like: 

• How the data is stored 

• Where the data resides on the filesystem 

• What format that data is in 

• What the schema is of the data 
Having this information available to Hadoop tools in a consistent fashion can simplify the 
software development process and also bring consistency of algorithms and results across all 
of the tools and frameworks used in your Hadoop environment. 
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Defining a New Schema 
HCatalog is an extension of Hive that exposes the Hive metadata to other tools and 
frameworks. To define a new HCatalog schema, you simply define a table in Hive. 

This means you already have HCatalog schemas defined. The benefit of HCatalog is not in the 
defining of schemas but in its ability to expose the schemas and make them available to 
frameworks outside of Hive. 

 
Using HCatLoader with Pig 
HCatalog provides two interfaces for use by Pig scripts to read and write data in HCatalog- 
managed tables: 

 
HCatLoader To read data from HCatalog-managed tables 

 
HCatStorer To write data to HCatalog-managed tables 

 
For example, the following Pig Latin command loads a table named employees managed by 
HCatalog: 
emp_relation = LOAD 'employees' USING org.apache.hive.hcatalog.pig.HCatLoader();  

Notice that you do not provide a schema when loading a relation with HCatalog. The schema 
of the relation emp_relation is whatever the schema is of the employees table. 

 
Using HCatStorer with Pig 
Similarly, if you have a relation that you want to store into an HCatalog-managed table, you 
use the STORE command along with the USING clause with HCatStorer: 

 

 
 
 

 
 

 

The Pig SQL Command 
Pig has an SQL command that you can use to run Hive DDL commands. For example, you 
could create a table from within a Pig script (or the Grunt shell) using the following command: 

 

 

STORE customer_projection INTO 'customers' USING 
org.apache.hive.hcatalog.pig.HCatStorer(); 

Important: For the above command to execute successfully, the field names of 
the customer_projection relation must match the column names of the 
customers table. You will see how this works in the upcoming lab. 

grunt> sql create table movies ( 
title string, 
rating string, 
length double) 

partitioned by (genre string) 
stored as ORC; 
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Review Questions 
1) Where does HCatalog store its schema information? ______________________ 

2) List three programming frameworks that can readily access an HCatalog schema: 

_________________________________________________________________ 

3) What Java class does Pig use to load data from an HCatalog table? 

_______________________________ 

4) True or False: HCatalog is now merged with Hive. 
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Lab: Using HCatalog with  Pig 

Objective: Use HCatalog to provide the schema for a Pig relation 
See page 109 of the HDP Developer: Apache Pig and Hive Lab Booklet. 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
157 

	
  

	
  

 
Advanced Hive Programming 

 
Lesson Objectives 
This lesson covers some of the more advanced features of Hive programming, including views, 
the windowing functions, and the various optimization capabilities of Hive. 

After completing this lesson, students should be able to: 

• Describe How to Perform a Multi-Table/File Insert 

• Describe Views 

• Describe How to Use Windows 

• Describe How to Compute Table Statistics 

• Describe How to Use HiveServer2 

• Describe How to Understand Hive on Tez 
 
Additional Content 
• Lab: Advanced Hive Programming 

• Quiz: Lesson Review 
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Performing  a  Multi-Table/File Insert 

 

 
Performing	
  a	
  Multi-­‐-­‐-­‐Table/File	
  Insert	
  

	
  
Hive queries are converted into one or more MapReduce jobs and executed on a Hadoop 
cluster. Your Hive query might result in a map-only job, in a single mapper and a single 
reducer, or in multiple mappers and multiple reducers. Each MapReduce job requires a lot of 
work on the cluster, and some Hive queries can take a very long time (hours) to execute. 

One clever trick you can use when querying Big Data using Hive is to perform a multi-table or 
multi-file insert, where you essentially run multiple queries within a single MapReduce job. The 
queries do not even need to process the same tables. 

Consider the following simple Hive query that selects all White House visitors for the year 2013. 
 

 
Now suppose we have the following query on a different table named congress: 
insert overwrite directory 'ca_congress' select * from congress where state='CA' ;  

As expected, each query above requires a MapReduce job. 

Notice in the following Hive query that we perform both selects in the same query: 
 

 

insert overwrite directory '2013_visitors' select * from wh_visits where 
visit_year='2013' ; 

insert overwrite directory '2013_visitors' select * from wh_visits where 
visit_year='2013' 
insert overwrite directory 'ca_congress' select * from congress where state='CA' ; 
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Notice the only difference is that the semicolon was removed after the first query, which means 
the Hive code above is a single statement. The important result is that the above Hive 
command runs as a single MapReduce job. Two output folders are created (2013_visitors 
and ca_congress) and the data from two separate Hive tables are processed, but all in a single 
MapReduce job. 

 

 

 
The following example demonstrates querying from the same table, with one result being 
output to another table and the other result getting written to HDFS: 

 

 

Note: Using a multi-file insert may seem a bit odd, but it is important to 
understand how Hive queries relate to underlying MapReduce jobs. In general, 
you can gain a lot of performance by running two tasks at the same time instead 
of running two separate MapReduce jobs. 

from visitors 
INSERT OVERWRITE TABLE gender_sum 

SELECT visitors.gender, count_distinct(visitors.userid) 
GROUP BY visitors.gender 

 
INSERT OVERWRITE DIRECTORY '/user/tmp/age_sum' 

SELECT visitors.age, count_distinct(visitors.userid) 
GROUP BY visitors.age; 
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Understanding  Views  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Understanding	
  Views	
  

	
  

A view in Hive is defined by a SELECT statement and allows you to treat the result of the query 
like a table. The table does not actually exist, and the query does not execute until the 
statement that refers to the view is executed. 

Use cases for using views include: 

• Define a view to reduce the complexity of a query. For example, a nested SELECT 
statement can be defined separately as a view 

• Restrict a user’s access to the subset of an actual Hive table by defining a view that 
contains only the columns and rows that the user needs 

 

 

 
 
 

  

Note: Depending on the query, a view gets combined (optimized) into the query 
that is using the view or the view may have to be executed in its own 
MapReduce job. For example, if the view query contains an ORDER BY then it will 
execute in its own MapReduce job. 

Note: Views in Hive are non-materialized, so you can use them without concern 
of creating more work for the resulting MapReduce job. 
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Defining Views 
A view is defined using the CREATE VIEW statement. For example, the following Hive statement 
defines a view named 2010_visitors: 

 

 
The 2010_visitors is a view that represents people that visited the White House in the year 
2010. 

A view is not a table in Hive with actual data, but a view can be treated like a table. For 
example, you can run the DESCRIBE command on a view to see its schema: 

 

 
A view will also show up in your list of tables. Notice the output of the SHOW TABLES 

command: 
 

 
Similar to a table, you can delete a view using the DROP VIEW command: 
DROP VIEW 2010_visitors;  

 
 

 
 

 

Using Views 
You can use a view in a query just like you would use a table. For example, the following query 
uses the 2010_visitors view to find visitors to the President: 

 

 

CREATE VIEW 2010_visitors AS 
SELECT fname, lname, time_of_arrival, info_comment 
FROM wh_visits 
WHERE 

cast(substring(time_of_arrival,6,4) AS int) >= 2010 
AND 

cast(substring(time_of_arrival,6,4) AS int) < 2011; 

hive> describe 2010_visitors; 
OK 
fname string 
lname string 
time_of_arrival string 
info_comment string 

None 
None 
None 
None 

hive> show tables; 
OK 
2010_visitors 
wh_visits 

Note: Views can also contain partitions, just like tables. This allows you to define 
views that behave exactly like your underlying tables, even tables that are 
partitioned. 

from 2010_visitors 
select * 
where info_comment like "%CONGRESS%" 
order by lname; 
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Notice that you could have performed the above query without using a view. Instead, you 
could have defined a longer WHERE clause or a nested SELECT statement. However, using a 
view keeps the SQL easier to read. This is obviously a simple example, but it demonstrates the 
power and usefulness of views. Hive will determine the best way to convert the above 
command into one or more MapReduce jobs at runtime . 

 
The TRANSFORM Clause 
You can write your own custom mappers or reducers and use them in Hive using the 
TRANSFORM clause. For example, the following example shows data being processed by a 
Python script named splitwords.py in a SELECT clause and then that result being processed 
by countwords.py. 

 

 
By default, columns will be transformed to STRING and delimited by a tab before being fed to 
the user script. The output of the script will be treated as tab-separated STRING columns. 

You can achieve a similar result using the MAP and REDUCE clauses: 
 

 
 
 

 

 

add file splitwords.py; 
add file countwords.py; 
 
FROM ( 

FROM mytable 
SELECT TRANSFORM(keywords) USING 'python splitwords.py' 
AS word, count 
CLUSTER BY word 

) wc 
INSERT OVERWRITE TABLE word_count 
SELECT TRANSFORM (wc.word, wc.count) 
USING 'python countwords.py' 
AS word, count; 

add file splitwords.py; 
add file countwords.py; 
 
FROM ( 

FROM mytable 
MAP keywords USING 'python splitwords.py' 
AS word, count 
CLUSTER BY word 

) wc 
INSERT OVERWRITE TABLE word_count 
REDUCE wc.word, wc.count USING 'python countwords.py' 
AS word, count; 

Note: Using MAP and REDUCE as an alias to SELECT TRANSFORM may not have the 
exact affect that you desire, since there is no guarantee that your specified script 
will be executed during a map or reduce phase. The end result of your query will 
likely be the same, but MAP does not force a map phase, and REDUCE does not 
force a reduce phase. 
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The OVER Clause  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The	
  OVER	
  Clause	
  

	
  

Hive 0.11 introduced windowing capabilities to the Hive QL. Similar to an aggregate function 
(like GROUP BY), a window function performs a calculation across a set of table rows that are 
somehow related, except that a window function does not cause rows to become grouped into 
a single output row; the rows retain their separate identities. 

This is best demonstrated by the OVER clause, as you can see in the result above. The GROUP 
BY statement finds the maximum price of each order, and the results are aggregated into a 
single row for each unique cid. 

The OVER clause does not aggregate the result but instead maintains each row of data and 
outputs the maximum price of the each cid group. 
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Using Windows  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using	
  Windows	
  

	
  

The OVER clause allows you to define a window over which to perform a specific calculation. 
For example, the following Hive statement computes the sum of each order, but the sum is not 
computed over all prices in an order. Instead, the sum is computed over a window that 
includes the current row and the two preceding rows, as ordered by the price column. 

 

 
Study the output carefully and see if you can verify that the result is what you expected based 
on the query. 

The FOLLOWING statement is used to specify rows after the current row: 
 

 
Use the UNBOUNDED statement to specify all prior or following rows: 

 

 
 
 

 
 

SELECT cid, sum(price) OVER (PARTITION BY cid ORDER BY price ROWS BETWEEN 2 PRECEDING 
AND CURRENT ROW) FROM orders; 

SELECT cid, sum(price) OVER (PARTITION BY cid ORDER BY price ROWS BETWEEN 2 PRECEDING 
AND 3 FOLLOWING) FROM orders; 

SELECT cid, sum(price) OVER (PARTITION BY cid ORDER BY price ROWS BETWEEN UNBOUNDED 
PRECEDING AND CURRENT ROW) FROM orders; 

Note: Hive window functions also include the LEAD and LAG functions for 
specifying the number of rows to lead ahead or lag behind in the window. Their 
usage is identical to the SQL standard. 
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Hive Analytics Functions  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hive	
  Analytics	
  Functions	
  
	
  

Hive 0.11 also added the following SQL standard analytics functions: 
 
RANK Returns the rank of each row within the partition of a result set 

 
DENSE_RANK Returns the rank of rows within the partition of a result set without 

any gaps in the ranking 
 
PERCENT_RANK Calculates the relative rank of a row within a group of rows 

 
ROW_NUMBER Returns the sequential number of a row within a partition of a result 

set 
 
CUME_DIST Calculates the number of rows with values lower than or equal to 

the value of r, divided by the number of rows evaluated in the 
partition for a row r 

 
NTILE Distributes the rows in an ordered partition into a specified number 

of groups. For each row, NTILE returns the number of the group to 
which the row belongs 
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Lab:  Advanced  Hive Programming 

Objective: To understand how some of the more advanced features of Hive work 
See page 113 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Hive File Formats 
As you have seen, Hive does not store data. The data for a table is stored in HDFS in one of 
the following formats: 

 
Text file Comma, tab, or other delimited file types 

 
SequenceFile Serialized key/value pairs that can quickly be deserialized in 

Hadoop 
 
RCFile A record columnar file that organizes data by columns (as opposed 

to the traditional database row format) 
 
ORC File The optimized row columnar format that improves the efficiency of 

Hive by a considerable amount (discussed in more detail in the 
next section) 

 
Using the STORED AS clause, you specify a file format when you create the table: 

 

 
For example, the following table is for data using the RCFile format: 

 

 
 

Hive SerDes 
SerDe is short for serializer/deserializer and refers to how records read in from a table 
(deserialized) and written back out to HDFS (serialized). Records can be stored in any custom 
format you want by writing Java classes, or you can use one of the several built-in SerDes, 
including: 

 
AvroSerDe For reading and writing files using an Avro schema 

RegexSerDe For using a regular expression to deserialize data 

ColumnarSerDe For columnar-based storage supported by RCFiles 

OrcSerDe For reading and writing to ORC files 

There are quite a few built-in SerDes, so check the documentation for a complete list. 
 

  

CREATE TABLE tablename ( 
... 
) STORED AS fileformat; 

CREATE TABLE names 
(fname string, lname string) 

STORED AS RCFile; 

Note: There are third-party SerDes available as well, so do a search online 
before attempting to develop a custom SerDe that might already be available. 
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Using SerDes requires the ROW FORMAT SERDE clause. For example, the following table is for 
data stored in the Avro format: 

 

 
 

Hive ORC Files 
The Optimized Row Columnar (ORC) file format, http://orc.apache.org, provides a highly 
efficient way to store Hive data. It was designed to overcome limitations of the other Hive 
file formats. Using ORC files improves performance when Hive is reading, writing, and 
processing data. 

File formats in Hive are specified at the table level. Use the AS keyword and specify the ORC 
file format: 

 

 
You can also modify the file format of an existing table: 
ALTER TABLE tablename SET FILEFORMAT ORC;  

And you can specify ORC as the default file format of new tables: 
SET hive.default.fileformat=Orc  

ORC files have three main components: 

• Stripe 

• Footer 

• Postscript 
Here are the features of these components: 

• An ORC file is broken down into sets of rows called stripes 
• The default stripe size is 64 MB in Hive 0.14. Large stripe sizes enable efficient reads of 

columns 

• An ORC file contains a footer that contains the list of stripe locations 

• The footer also contains column data like the count, min, max, and sum 

• At the end of the file, the postscript holds compression parameters and the size of the 
compressed footer 

CREATE TABLE emails ( 
from_field string, 
sender string, 
email_body string) 
ROW FORMAT SERDE 
'org.apache.hadoop.hive.serde2.avro.AvroSerDe' 
STORED AS 
INPUTFORMAT 

 
'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat' 

OUTPUTFORMAT 
'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat' 

TBLPROPERTIES ( 
'avro.schema.url'='hdfs//nn:8020/emailschema.avsc'); 

CREATE TABLE tablename ( 
... 
) AS ORC; 
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Computing  Table Statistics 
Hive can store table and partition statistics in its metastore. There are two types of table 
statistics currently supported by Hive: 

 

Table and partition 
statistics 

Number of rows, number of files, raw data size, and number of 
partitions 

 

Column Level Top K 
statistics 

Number of null values, number of true/false values, maximum and 
minimum values, estimate of number of distinct values, average 
column length, maximum column length, and height balanced 
histograms 

 
 
 

 
 

The ANALYZE TABLE command gathers statistics for a table, a partition, and columns and 
writes them to the Hive metastore. To compute table statistics, the syntax looks like: 
ANALYZE TABLE tablename COMPUTE STATISTICS;  

For computing column statistics, use the following syntax: 
 

 
For computing stats on partitions, use the PARTITION command: 
ANALYZE TABLE tablename PARTITION(part1, part2,..) COMPUTE STATISTICS  

The ANALYZE command runs a MapReduce job that processes the entire table. The table and 
partition stats are outputed to the command window: 

 

 
You can also view these stats for a table by running the DESCRIBE command: 

 

 
You can also specify one or more partitions to view details for at the partition level: 
DESCRIBE EXTENDED tablename PARTITION(part1=value1, part2=value2);  

Important: Column statistics are computed using the top K algorithm, hence 
the name Top K statistics. Column statistics is still a work in progress and has 
not been included in the current stable release of Hive. 

ANALYZE TABLE tablename COMPUTE STATISTICS FOR COLUMNS column_name_1, column_name_2, 
... 

Table default.customers stats: [num_partitions: 0, num_files: 11, num_rows: 891048, 
total_size: 4605775, raw_data_size: 0] 

DESCRIBE FORMATTED tablename 
DESCRIBE EXTENDED tablename 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
170 

	
  

	
  

analyze table tweets compute statistics 
for columns sender, topic; 

 
Hive Cost Based Optimization 
In the first phase of Calcite and CBO in Hive, Calcite is used to reorder joins and to pick the 
right join algorithm to reduce query latency. Table cardinality and boundary statistics are used 
for this cost-based optimization. 

Suppose you want to use CBO on a table named tweets that has columns named sender and 
topic that are commonly used in your Hive JOIN queries. First you need to analyze the table: 
analyze table tweets compute statistics;   

Second, compute the column statistics for sender and topic: 

 
 

Third, set the following properties to enable CBO: 
 

 

set hive.compute.query.using.stats=true; 
set hive.cbo.enable=true; 
set hive.stats.fetch.column.stats=true; 
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Vectorization  

 
 

 
Vectorization	
  

	
  

Vectorization is a new feature that allows Hive to process a batch of up to 1,024 rows together 
instead of processing one row at a time. Each batch consists of a column vector, which is 
usually an array of primitive types. Operations are performed on the entire column vector, 
improving the instruction pipelines and cache usage. 

To take advantage of vectorization, your table needs to be in the ORC format and you need to 
enable vectorization with the following property: 
hive.vectorized.execution.enabled=true  

When vectorization is enabled, Hive examines the query and the data to determine whether 
vectorization can be supported. If it cannot be supported, Hive will execute the query with 
vectorization turned off. 

 

 
 

Note: Vectorization is a joint effort between Hortonworks and Microsoft. The 
improvements from vectorization, in addition to the new ORC file format, have 
helped increase the speed of Hive queries by a magnitude. 
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Using HiveServer2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using	
  HiveServer2	
  

	
  

As we discussed earlier, Hive queries are submitted to a HiveServer process. Older versions 
of Hive used the hiveserver process, which can only process one request at a time. HDP 2.x 
ships with HiveServer2, a Thrift-based implementation that allows multiple concurrent 
connections and also supports Kerberos authentication. 

• A new HiveServer2 instance is started with the hiveserver2 binary, or it can be run as a 
service 

• Settings are defined in hive-site.xml, except for the bind host and port, which can be 
defined using the HIVE_SERVER2_THRIFT_BIND_HOST and HIVE_SERVER2_THRIFT_PORT 
environment variables. This allows you to run multiple HiveServer2 instances on the same 
machine 

For example: 
 

 
The above command runs a hiveserver2 instance on port 12345. 

set HIVE_SERVER2_THRIFT_PORT=12345 
hive --service hiveserver2 
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Understanding Hive on  Tez 

 

 
Understanding	
  Hive	
  on	
  Tez	
  

	
  
Tez, http://tez.apache.org, provides a general-purpose, highly customizable framework that 
simplifies data-processing tasks across both small-scale (low-latency) and large-scale (high-
throughput) workloads in Hadoop. It generalizes the MapReduce paradigm to a more powerful 
framework by providing the ability to execute a complex DAG of tasks for a single job. 

As you can see in the diagram above, a Hive query without Tez can consist of multiple 
MapReduce jobs. Tez performs a Hive query in a single job, avoiding the intermediate writes to 
disk that were a result of the multiple MapReduce jobs. 

 
Using Tez for Hive Queries 
To use Tez for a Hive query, you need to define the following property in your Hive script or in 
hive-site.xml: 
set hive.execution.engine=tez;  

Note that this property is set to mr by default. 
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Hive Optimization Tips 
• Divide data amongst different files that can be pruned out by using partitions, buckets, and 

skews 

• Use the ORC file format 

• Sort and Bucket on common join keys 

• Use map (broadcast) joins whenever possible 

• Increase the replication factor for hot data (which reduces latency) 

• Take advantage of Tez 
Above are some helpful design tips for improving the speed of Hive queries. 

 

 

 

Note: Hive has a special file called the .hiverc file that gets executed each time 
you launch a Hive shell. This makes the .hiverc file a great place for adding 
custom configuration settings that you use all the time or for loading JAR files 
that contain frequently used UDFs. The file is saved in the Hive conf directory, 
which is /etc/hive/conf for an HDP installation. 
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hive.optimize.mapjoin.mapreduce=true; 
hive.optimize.bucketmapjoin=true; 
hive.optimize.bucketmapjoin.sortedmerge=true; 
hive.auto.convert.join=true; 
hive.auto.convert.sortmerge.join=true; 
hive.auto.convert.sortmerge.join.noconditionaltask=true; 

 
Hive Query Tunings 
Hive has a lot of parameters that can be set globally in hive-site.xml or at the script level 
using the set command. Here are some of the more important parameters to improve the 
performance of your Hive queries: 

 

mapreduce.input.fileinputformat.split.maxsize 

and 
mapreduce.input.fileinputformat.split.minsize 

If the min is too large, you will have 
too few mappers; if the max is too 
small, you will have too many 
mappers 

 

mapreduce.tasks.io.sort.mb Increase this value to avoid disk spills 

Always set the following properties: 

 
 
 
 
 

When bucketing data, set the following properties: 
 

 
 
 

 

 

hive.enforce.bucketing=true; 
hive.enforce.sorting=true; 

Important: In HDP, these values are set to true by default. You can verify by 
viewing the properties in hive-site.xml. If a property is not set, just use the set 
command in your Hive script. For example: 
set hive.optimize.mapjoin.mapreduce=true;  
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Review Questions 
1) What is the benefit of performing two insert queries in the same Hive command? 

_______________________________________________________ 

2) True or False: Hive views are materialized when they are defined. ________________ 

3) Suppose an employees table has 200 rows and its department column has 15 distinct 
values. How many rows would be in the result set of the following query? _________ 

 

 
4) Explain what the following query is computing: 

 

 
____________________________________________________________________________ 

____________________________________________________________________________ 

5) Which Hive file format provides the best performance?  ________ 

6)  What does DAG stand for? ____________________________________________________ 

from employees 
select fname,lname,MAX(salary) 
over (partition by department); 

from employees 
select fname,lname,AVG(salary) 
over (partition by department order by salary 

rows between 5 preceding and current row); 
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Hadoop 2 and YARN 

 
Lesson Objectives 
This lesson covers the newer features of Hadoop 2, like YARN, HDFS Federation, and 
NameNode high availability. 

After completing this lesson, students should be able to: 

• Define HDFS Federation 

• Explain how NameNode HA is implemented 

• Define YARN 
 
Additional Content 
• Quiz: Lesson Review 

• Lab: Running a YARN Application 
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About  HDFS Federation 
Hadoop 2.x introduces a scaling mechanism for the NameNode referred to as HDFS Federation. 
As opposed to a single NameNode (which was used in Hadoop 1.x), the new Hadoop 
infrastructure provides for multiple NameNodes that run independently of each other providing: 

 
Scalability NameNodes can now scale horizontally, allowing you to improve the 

performance of NameNode tasks by distributing reads and writes 
across a cluster of NameNodes 

 
Namespaces The ability to define multiple Namespaces allows for the organizing 

and separating of your big data 

 
Multiple Federated NameNodes 

 

 
Multiple	
  Federated	
  NameNodes	
  

	
  
The NameNodes are federated: that is, the NameNodes are independent and don’t require 
coordination with each other. 

The DataNodes are used as common storage for blocks by all of the NameNodes. The 
NameNodes and DataNodes communicate as follows: 

• Each DataNode registers with all of the NameNodes in the cluster 

• DataNodes send periodic heartbeats and block reports to the NameNodes 

• NameNodes send commands to the DataNodes 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
181 

	
  

	
  

 

Multiple Namespaces  
 
 
 
 
 
 
 
 
 
 
 
 

Multiple	
  Namespaces	
  
	
  

Benefits of multiple Namespaces include: 
 

Scalability Having multiple independent Namespaces is what makes scaling 
possible in Hadoop 2.x 

 
File Management You can now associate your big data with a Namespace, making it 

easier to manage and maintain files 
 
 
 

  
 

Overview of HDFS High Availability 
Prior to Hadoop 2.0, the NameNode was a single point of failure in an HDFS cluster. Each 
cluster had a single NameNode, and if that machine or process became unavailable, the cluster 
as a whole would be unavailable until the NameNode was either restarted or brought up on a 
separate machine. 

The HDFS High Availability (HA) feature addresses this issue by providing the option of running 
two redundant NameNodes in the same cluster in an Active/Passive configuration with a hot 
standby. This allows a fast failover to a new NameNode in the case that a machine crashes or a 
graceful administrator-initiated failover occurs for the purpose of planned maintenance. 

You can now achieve NameNode HA by configuring your cluster to use the Quorum Journal 
Manager (QJM), which we will discuss next. 

Note: A NameNode can only define one namespace. 
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Quorum Journal Manager  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quorum	
  Journal	
  Manager	
  

	
  

Two separate machines are configured as NameNodes. At any point in time, exactly one of the 
NameNodes is in an Active state and the other is in a Standby state. The Active NameNode is 
responsible for all client operations in the cluster, while the Standby is simply acting as a slave, 
maintaining enough state to provide a fast failover if necessary. 

• Both nodes communicate with a group of separate daemons called JournalNodes 

• All Namespace modifications are logged durably to a majority of the JournalNode daemons 
(hence the name Quorum) 

• As the Standby Node sees the edits in the JournalNodes, it applies them to its own 
namespace 

 

 
 

Note: In the event of a failover, the Standby must read all of the edits from the 
JounalNodes before promoting itself to the Active state. This ensures that the 
namespace state is fully synchronized before a failover occurs. 
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Configuring Automatic Failover 
 

 
Configuring	
  Automatic	
  Failover	
  

	
  
Up to this point, you have a Quorum Journal Manager, but note that it requires manual failover. 
If you want your HA NameNodes to failover automatically, you need to configure ZooKeeper. 

More specifically, you need the following within your cluster: 
 
ZooKeeper An odd number of ZooKeeper daemons that monitor when a 

NameNode fails 
 

ZKFailoverController 
(ZKFC) 

A new component that is a ZooKeeper client that monitors and 
manages the state of a NameNode 
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About YARN 
YARN takes Hadoop beyond just MapReduce for data processing. You will still be able to 
execute MapReduce jobs across your Hadoop cluster, but YARN provides a generic framework 
that allows for any type of application to execute on the big data across your clusters. 

 
Open-source YARN Use Cases 

 
Tez Improves the execution of MapReduce jobs 

 
Slider Deploy existing frameworks on YARN 

 
Storm For real-time computing 

 
Spark A MapReduce-like cluster computing framework designed for low- 

latency iterative jobs and interactive use from an interpreter 
 

Apache Giraph A graph-processing platform 
 

Now that Hadoop can run applications beyond MapReduce, there are countless possibilities 
for the type of processing that can be done on data stored in HDFS. Above are some open- 
source projects that are currently being ported onto YARN for use in Hadoop 2.x. 

You can expect other computing frameworks to be developed once YARN becomes prevalent. 
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The Components of YARN  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The	
  Components	
  of	
  YARN	
  

	
  

YARN consists of the following main components: 

• ResourceManager 

• NodeManager 

• ApplicationsMaster 

The ResourceManager typically runs on its own machine and is responsible for scheduling and 
allocating resources. The two main components of the ResourceManager are: 

• Scheduler 

• Applications Manager (AsM) 
The ResourceManager is the central controlling authority for resource management and makes 
allocation decisions: 

• It has a pluggable scheduler that allows for different algorithms (such as capacity and fair 
scheduling) to be used as necessary 

• It tries to optimize the cluster (i.e. use all resources all the time) based on the constraints of 
the scheduler 

 

 

 
The ResourceManager allocates resources for applications but does not manage the lifecycle 
of applications. Instead, applications are managed by an ApplicationMaster that runs on a 
node in the cluster. Each application running in the cluster requires its own 
ApplicationMaster. 

Note: If you are familiar with Hadoop 1.x, note that YARN splits up the 
functionality of the JobTracker into two separate processes: 

ResourceManager A daemon process that allocates cluster resources to 
applications 

ApplicationMaster A per-application process that provides the runtime for 
executing applications 
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Lifecycle of a YARN Application 
A YARN application has the following lifecycle: 

 

 
Lifecycle	
  of	
  a	
  YARN	
  Application	
  

	
  
• It all starts with a client submitting a new Application Request to the Resource Manager 

(RM) 

• The ApplicationsManager (AsM) finds an available DataNode on the cluster that is not 
too busy 

• That node’s NodeManager (NM) creates an instance of the ApplicationMaster (AM) 

• The AM then sends a request to the RM, asking for specific resources, like memory and CPU 
requirements. The RM replies with a list of Containers, which includes the specific 
DataNodes to start the Containers 

• The AM starts a Container on each DataNode as instructed by the RM. The Container 
performs a task, as directed by the AM 

As the tasks are being performed by the Containers, the client application can request status 
updates directly from the ApplicationMaster. 
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A Cluster View Example  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A	
  Cluster	
  View	
  Example	
  

	
  

Answer the following questions: 

1) How many applications are running on the cluster above? _____________ 

2) How many containers are being used by the application controlled by the AM on Node 2? 
______________ 

3) Node 8 appears to have two Containers running on it. Is this allowed in YARN? 
_______________________________________________________________ 

4) Is it possible that a Container could be executed on the same node as its corresponding 
AM? ___________________________________________________________ 

 
 

Answers: 

1) Two 

2) Four 

3) Certainly 

4) Yes. It all depends on the availability of resources on a node. 
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Review Questions 
1) True or False: A NameNode can contain multiple namespaces.    

2) What is the key benefit of the new YARN framework? 

__________________________________________________________________ 

3) What are the three main components of YARN? ____________________________ 

________________________________________________________________ 

4) What happens if a Container fails to complete its task in a YARN application? 

________________________________________________________________ 
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Lab: Running a YARN Application 

Objective: To run a YARN application 
See page 129 of the HDP Developer: Apache Pig and Hive Lab Booklet. 



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
190 

	
  

	
  

 
 
 

Introducing Apache Spark 
 
 

Lesson Objectives  
This	
  lesson	
  introduces	
  the	
  core	
  Apache	
  Spark	
  framework	
  as	
  the	
  ecosystem	
  of	
  projects	
  that	
  rely	
  upon	
  it.	
  	
  
After	
  completing	
  this	
  lesson,	
  students	
  should	
  be	
  able	
  to:	
  	
  

• Describe	
  the	
  origin	
  of	
  Apache	
  Spark	
  

• Understand	
  the	
  rapid	
  growth	
  of	
  the	
  Spark	
  ecosystem	
  

• Recognize	
  some	
  of	
  the	
  use	
  cases	
  for	
  Spark	
  

• Describe	
  some	
  major	
  differences	
  between	
  Spark	
  and	
  MapReduce	
  

Additional Content 
• Quiz:	
  Lesson	
  Review	
  

What is Apache Spark? 

	
  
What	
  is	
  Apache	
  Spark?	
  

Apache	
  Spark	
  started	
  as	
  a	
  research	
  paper	
  in	
  2009	
  by	
  a	
  graduate	
  student	
  at	
  Berkley.	
  	
  The	
  framework	
  
surfaced	
  as	
  part	
  of	
  the	
  evolving	
  Berkeley	
  Data	
  Analytics	
  Stack	
  (BDAS).	
  	
  Spark	
  was	
  created	
  to	
  be	
  a	
  general-­‐
purpose	
  data	
  processing	
  engine,	
  focused	
  on	
  in-­‐memory	
  distributed	
  computing	
  use-­‐cases.	
  	
  	
  
The	
  Berkley	
  research	
  paper	
  and	
  BDAS	
  started	
  because	
  of	
  the	
  struggles	
  current	
  users	
  were	
  having	
  with	
  
certain	
  use	
  cases	
  in	
  the	
  MapReduce	
  framework.	
  	
  	
  
The	
  following	
  is	
  a	
  timeline	
  of	
  some	
  of	
  the	
  major	
  moments	
  in	
  Spark's	
  creation:	
  

• 2009:	
  BDAS	
  research	
  project	
  

• June	
  2013:	
  Accepted	
  as	
  an	
  Apache	
  Incubator	
  project	
  

• February	
  2014:	
  Became	
  a	
  top-­‐level	
  Apache	
  project	
  

• December	
  2014:	
  Spark	
  became	
  part	
  of	
  the	
  HDP	
  stack	
  with	
  version	
  2.2	
  

	
  

Note:	
  Spark	
  took	
  many	
  concepts	
  from	
  MapReduce	
  and	
  implemented	
  them	
  in	
  a	
  
new	
  ways.	
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Spark	
  is	
  a	
  general	
  data-­‐processing	
  engine	
  focused	
  on	
  in-­‐memory	
  distributed	
  computing	
  uses	
  cases.	
  	
  Spark	
  
API's	
  are	
  available	
  in	
  Scala,	
  Python,	
  Java	
  and	
  recently	
  were	
  added	
  for	
  R.	
  	
  

The Spark Ecosystem 

 
The	
  Spark	
  Ecosystem	
  

Spark	
  consists	
  of	
  a	
  core	
  library.	
  	
  Spark	
  SQL,	
  Streaming,	
  ML-­‐Lib	
  (for	
  machine	
  learning	
  applications)	
  and	
  
GraphX	
  were	
  built	
  upon	
  it.	
  	
  Spark	
  SQL	
  and	
  is	
  Dataframe	
  concept	
  have	
  exploded	
  in	
  popularity	
  recently	
  as	
  
there	
  have	
  been	
  many	
  performance	
  improvements.	
  	
  GraphX	
  is	
  very	
  new	
  and	
  currently	
  not	
  supported	
  by	
  
anyone.	
  

Why Spark? 
Spark	
  was	
  built	
  with	
  the	
  developer	
  in	
  mind.	
  	
  Spark	
  has	
  very	
  elegant	
  high-­‐level	
  APIs,	
  which	
  seek	
  to	
  minimize	
  
the	
  “plumbing”	
  that	
  developers	
  traditionally	
  have	
  to	
  worry	
  about.	
  	
  Spark	
  provides	
  APIs	
  that	
  allow	
  
developers	
  to	
  focus	
  on	
  the	
  business	
  logic;	
  not	
  the	
  framework	
  internals.	
  	
  	
  
Spark	
  has	
  brought	
  forward	
  in-­‐memory	
  computation	
  for	
  Hadoop	
  which	
  has	
  been	
  very	
  effective	
  for	
  iterative	
  
computations.	
  	
  This	
  allows	
  large	
  amounts	
  of	
  data	
  to	
  be	
  stored	
  in	
  memory	
  and	
  to	
  be	
  quickly	
  accessed.	
  	
  Some	
  
applications	
  have	
  seen	
  as	
  much	
  as	
  a	
  100x	
  speed	
  increase	
  due	
  to	
  these	
  new	
  abilities.	
  	
  	
  
One	
  of	
  the	
  biggest	
  drivers	
  for	
  adoption	
  from	
  the	
  development	
  community	
  is	
  that	
  Spark	
  provides	
  a	
  single	
  
framework	
  for	
  most	
  data	
  processing	
  needs.	
  	
  This	
  allows	
  for	
  a	
  single	
  programmatic	
  approach	
  to	
  be	
  utilized	
  
for	
  importing,	
  transforming	
  and	
  exporting	
  data	
  for	
  a	
  wide	
  variety	
  of	
  workloads	
  including	
  the	
  following:	
  

• ML-­‐Lib	
  for	
  Data	
  Scientists	
  

• Spark	
  SQL	
  for	
  Data	
  Analysts	
  

• Spark	
  Streaming	
  for	
  micro	
  batch	
  use	
  cases	
  

• Spark	
  Core,	
  SQL,	
  Streaming,	
  ML-­‐Lib	
  and	
  GraphX	
  for	
  data-­‐processing	
  applications	
  

The	
  features	
  (all	
  in	
  open	
  source),	
  plus	
  its	
  performance	
  improvements	
  for	
  many	
  scenarios	
  and	
  the	
  full	
  
integration	
  with	
  Hadoop	
  are	
  the	
  cornerstones	
  for	
  the	
  rapid	
  adoption	
  of	
  Spark.	
  

Who Uses Spark!? 
The	
  following	
  real	
  world	
  uses	
  for	
  Spark	
  help	
  to	
  explain	
  its	
  applicability	
  and	
  flexibility:	
  
NASA	
  JPL NASA'	
  Jet	
  Propulsion	
  Laboratory	
  receives	
  10+	
  TB	
  of	
  data	
  daily	
  from	
  

Instrument	
  and	
  Ground	
  Systems	
  for	
  Earth	
  Monitoring	
  and	
  runs	
  
multiple	
  kinds	
  of	
  jobs	
  ranging	
  from	
  long	
  running	
  to	
  sub	
  second.	
  	
  JPL	
  
created	
  SciSpark	
  library	
  to	
  allow	
  for	
  interactive	
  computation	
  and	
  
exploration	
  possible	
  using	
  scientific	
  processing.	
  	
  SciSpark	
  provides	
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support	
  for	
  scientific	
  data	
  formats	
  and	
  created	
  a	
  new	
  type	
  of	
  RDD	
  
called	
  a	
  scientific	
  RDD	
  (sRDD).	
  

eBay eBay	
  uses	
  Spark	
  on	
  clusters	
  close	
  to	
  2000	
  nodes,	
  with	
  100	
  TB	
  Ram	
  
and	
  20,000	
  cores.	
  	
  Ebay	
  leverages	
  Spark	
  for	
  interrogation	
  of	
  
complex	
  data,	
  data	
  modeling	
  and	
  data	
  scoring	
  among	
  other	
  things.	
  	
  
eBay	
  uses	
  ML-­‐Llib	
  to	
  cluster	
  sellers	
  together	
  via	
  Kmeans.	
  	
  By	
  
clustering	
  sellers	
  together,	
  they’re	
  able	
  to	
  increase	
  the	
  user	
  
experience	
  by	
  helping	
  users	
  find	
  products	
  they	
  may	
  like	
  more,	
  and	
  
provide	
  alternatives	
  or	
  recommendations.	
  	
  In	
  addition,	
  eBay	
  uses	
  
SQL	
  with	
  Spark,	
  to	
  increase	
  the	
  performance	
  of	
  their	
  queries.	
  	
  They	
  
report	
  that	
  the	
  queries	
  are	
  running	
  at	
  least	
  5x	
  faster	
  than	
  their	
  Hive	
  
counterparts.	
  

Conviva Conviva	
  provides	
  monitoring	
  and	
  optimization	
  for	
  online	
  video	
  
provides.	
  	
  Customers	
  include	
  ESPN,	
  Yahoo,	
  Microsoft,	
  Comcast	
  
amongst	
  many	
  others.	
  	
  They	
  use	
  Spark	
  to	
  process	
  150gb	
  /	
  week	
  of	
  
compressed	
  summary	
  data.	
  	
  They	
  found	
  Spark	
  to	
  be	
  30x	
  faster	
  than	
  
Hive.	
  	
  Processing	
  time	
  went	
  from	
  24	
  hours	
  to	
  45	
  minutes	
  for	
  their	
  
weekly	
  Geo	
  Report.	
  	
  Biggest	
  speed	
  up	
  came	
  from	
  reducing	
  disk	
  
reads,	
  and	
  storing	
  only	
  relevant	
  data	
  in	
  memory.	
  	
  30%	
  of	
  their	
  
reports	
  currently	
  use	
  Spark,	
  as	
  of	
  2012.	
  

Yahoo! Yahoo	
  has	
  a	
  cluster	
  with	
  over	
  35k	
  servers,	
  150PB	
  of	
  data	
  spanning	
  
800m	
  users.	
  	
  Yahoo	
  needs	
  a	
  way	
  to	
  quickly	
  learn	
  about	
  users	
  and	
  
provide	
  a	
  personalized	
  homepage	
  to	
  increase	
  the	
  user	
  experience.	
  	
  
Yahoo’s	
  data	
  scientists	
  leveraged	
  spark	
  to	
  create	
  models	
  to	
  find	
  
what	
  news	
  stories	
  would	
  appeal	
  to	
  each	
  users.	
  	
  These	
  models	
  need	
  
to	
  run	
  fast,	
  really	
  fast.	
  	
  With	
  Spark	
  they	
  were	
  able	
  to	
  create	
  models	
  
in	
  under	
  an	
  hour	
  which	
  greatly	
  enhanced	
  Yahoo's	
  ability	
  to	
  provide	
  
personalized	
  news	
  stories	
  to	
  users.	
  

Spark vs MapReduce 
As	
  the	
  following	
  diagram	
  suggests,	
  some	
  use	
  cases	
  that	
  can	
  benefit	
  from	
  Spark's	
  in-­‐memory	
  data	
  storage	
  
can	
  achieve	
  up	
  to	
  100x	
  performance	
  improvements.	
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Potential	
  Improvements	
  

Just	
  as	
  important	
  is	
  developer	
  productivity.	
  	
  The	
  following	
  provides	
  the	
  source	
  code	
  of	
  the	
  quintessential	
  
Hadoop	
  "Word	
  Count"	
  example	
  as	
  written	
  in	
  the	
  Java	
  MapReduce	
  API.	
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Conversely,	
  here	
  is	
  Word	
  Count	
  implemented	
  with	
  Spark.	
  

	
  
In	
  fairness,	
  this	
  high-­‐level	
  API	
  should	
  be	
  compared	
  to	
  something	
  like	
  Pig.	
  	
  Here's	
  the	
  analogous	
  version	
  in	
  
that	
  language.	
  

	
  
Why is Spark faster? 

Spark	
  is	
  faster	
  than	
  MapReduce	
  for	
  several	
  reasons.	
  	
  First,	
  and	
  the	
  biggest,	
  is	
  Spark	
  can	
  cache	
  data	
  into	
  
memory.	
  	
  Reading	
  from	
  memory	
  is	
  measured	
  in	
  nanoseconds,	
  reading	
  from	
  disk	
  is	
  measured	
  in	
  
milliseconds.	
  	
  Quite	
  the	
  increase	
  in	
  speed	
  is	
  seen	
  from	
  there.	
  	
  	
  
In	
  addition,	
  the	
  scheduling	
  of	
  tasks	
  in	
  Spark	
  has	
  greatly	
  decreased	
  from	
  MapReduce.	
  	
  Spark	
  has	
  dedicated	
  
resources,	
  so	
  scheduling	
  of	
  tasks	
  doesn’t	
  require	
  a	
  resource	
  request.	
  	
  Because	
  of	
  this,	
  scheduling	
  has	
  gone	
  
from	
  15-­‐20s	
  to	
  15-­‐20ms.	
  	
  	
  
In	
  Spark,	
  you	
  can	
  have	
  multiple	
  reduces	
  and	
  maps	
  in	
  a	
  row.	
  	
  You	
  do	
  not	
  need	
  a	
  map	
  phase	
  for	
  every	
  reduce	
  
phase.	
  	
  Skipping	
  this	
  extra	
  map	
  save	
  reading	
  and	
  writing	
  data	
  to	
  disk.	
  	
  

Spark Growth is Massive 
Spark	
  is	
  a	
  top	
  level	
  project	
  at	
  Apache	
  as	
  of	
  February	
  2014.	
  	
  Spark's	
  previous	
  release	
  (as	
  of	
  November	
  2015)	
  
had	
  over	
  1000	
  commits	
  with	
  230	
  developers	
  contributing.	
  	
  Spark	
  is	
  one	
  of	
  the	
  largest	
  open	
  source	
  projects	
  
currently	
  at	
  Apache.	
  	
  Releases	
  of	
  spark	
  are	
  independent	
  of	
  the	
  major	
  Hadoop	
  distributions,	
  with	
  an	
  average	
  
.x	
  release	
  of	
  Spark	
  every	
  three	
  months.	
  	
  	
  
Spark	
  is	
  growing	
  massively	
  and	
  many	
  new	
  features,	
  along	
  with	
  bug	
  fixes	
  and	
  internal	
  optimizations,	
  are	
  
being	
  release	
  all	
  the	
  time.	
  	
  One	
  of	
  the	
  biggest	
  jumps	
  in	
  Spark	
  usability	
  was	
  the	
  new	
  feature	
  of	
  Spark	
  SQL	
  and	
  
Dataframes.	
  

Spark and HDP 
As	
  stated	
  earlier,	
  Spark	
  was	
  introduced	
  into	
  the	
  Hortonworks	
  Data	
  Platform	
  (HDP)	
  in	
  December	
  2014.	
  	
  The	
  
following	
  bullets	
  reference	
  some	
  key	
  version	
  points	
  for	
  both	
  HDP	
  and	
  Spark:	
  

• HDP	
  2.3.2	
  –	
  Spark	
  1.4.1	
  

• HDP	
  2.2.8	
  –	
  Spark	
  1.3.1	
  

• HDP	
  2.2.4	
  –	
  Spark	
  1.2.1	
  

	
  
 
 

Review Questions 
1) What are some of the reasons Spark is faster than MapReduce? 

__________________________________________________________________ 
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2) What distribution of HDP includes Spark 1.4.1? _______________________  
3) What are the four libraries that build upon Spark Core? 

__________________________________________________________________ 
4) Name another benefit to using Spark vs MapReduce?  

__________________________________________________________________  

Review Answers 
1) What are some of the reasons Spark is faster than MapReduce? 

__________________________________________________________________ 
Answer: Task scheduling, in-memory data caching, can link multiple maps and reduces 
together, less reading & writing to HDFS 
 

2) What distribution of HDP includes Spark 1.4.1? _______________________  
Answer: HDP 2.3.2 
 

3) What are the four libraries that build upon Spark Core? 
__________________________________________________________________ 
Answer: GraphX, Spark SQL, ML-Lib and Spark Streaming 
 

4) Name another benefit to using Spark vs MapReduce?  
__________________________________________________________________  
Answer: High-level API, many committers and/or rapid improvements & bug fixes 
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Programming with Apache Spark 

 
 

Lesson Objectives  
This	
  lesson	
  explains	
  the	
  basics	
  of	
  programming	
  with	
  Apache	
  Spark.	
  	
  Upon	
  completion	
  of	
  this	
  lesson,	
  
students	
  should	
  be	
  able	
  to:	
  	
  

• Start	
  the	
  Spark	
  shell	
  

• Understand	
  what	
  an	
  RDD	
  is	
  

• Load	
  data	
  from	
  HDFS	
  and	
  create	
  a	
  Word	
  Count	
  application	
  

• Know	
  the	
  differences	
  between	
  Transformation	
  and	
  Action	
  operations	
  

• Explain	
  lazy	
  evaluation	
  

Additional Content 
• Quiz:	
  Lesson	
  Review	
  

• Lab:	
  Getting	
  Started	
  with	
  Apache	
  Spark	
  

Starting the Apache Shell 
The	
  fastest	
  way	
  to	
  get	
  started	
  with	
  Apache	
  Spark	
  is	
  using	
  a	
  command-­‐line	
  based	
  Spark	
  shell	
  application.	
  	
  In	
  
addition	
  to	
  learning	
  Spark,	
  the	
  shells	
  are	
  great	
  for	
  debugging,	
  exploring	
  data,	
  and	
  when	
  building	
  
applications.	
  	
  Spark	
  has	
  two	
  shells	
  available,	
  one	
  for	
  Python	
  and	
  one	
  for	
  Scala.	
  
In	
  order	
  to	
  start	
  the	
  scala	
  shell,	
  the	
  user	
  needs	
  to	
  enter	
  “spark-­‐shell”	
  on	
  the	
  command	
  line.	
  
In	
  order	
  to	
  start	
  the	
  python	
  shell,	
  the	
  user	
  needs	
  to	
  enter	
  “pyspark”	
  on	
  the	
  command	
  line.	
  	
  We	
  will	
  focus	
  on	
  
python	
  in	
  this	
  lesson	
  and	
  use	
  pyspark	
  for	
  the	
  labs	
  in	
  this	
  course.	
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The	
  pyspark	
  RPEL	
  

Generally	
  speaking,	
  a	
  shell	
  is	
  often	
  referred	
  to	
  as	
  a	
  REPL,	
  which	
  stands	
  for	
  Read	
  –	
  Evaluate	
  –	
  Print	
  –	
  Loop.	
  	
  
This	
  lesson	
  will	
  refer	
  to	
  the	
  two	
  shells	
  as	
  the	
  REPL	
  to	
  avoid	
  confusion.	
  

	
  

Reference:	
  Spark's	
  Programming	
  Guide,	
  
http://spark.apache.org/docs/1.4.1/programming-­‐guide.html,	
  is	
  an	
  invaluable	
  
resource	
  for	
  this	
  lesson.	
  

Working with the Spark Context 
For	
  any	
  application	
  to	
  become	
  a	
  Spark	
  application,	
  an	
  instance	
  of	
  the	
  SparkContext	
  class	
  must	
  be	
  
instantiated.	
  	
  In	
  pyspark,	
  the	
  following	
  code	
  has	
  already	
  been	
  executed	
  for	
  you	
  at	
  start	
  up.	
  
conf = SparkConf().setAppName(appName).setMaster(master) 
sc = SparkContext(conf=conf) 

This	
  allows	
  subsequent	
  use	
  of	
  the	
  needed	
  SparkContext	
  object	
  through	
  the	
  sc	
  variable	
  created	
  for	
  you.	
  	
  
This	
  class	
  has	
  many	
  APIs	
  that	
  can	
  be	
  used	
  for	
  accessing	
  configurations:	
  

• sc.appName()	
  sets	
  the	
  application	
  name	
  

• sc.master()	
  determines	
  what	
  kind	
  of	
  Spark	
  Master	
  (local	
  or	
  YARN	
  enabled)	
  is	
  in	
  use	
  

• sc.version()	
  displays	
  to	
  the	
  user	
  which	
  version	
  of	
  Spark	
  they	
  are	
  utilizing	
  

The	
  context	
  object	
  also	
  has	
  APIs	
  that	
  perform	
  operations	
  such	
  as	
  the	
  following	
  which	
  will	
  be	
  discussed	
  
further:	
  

• sc.parallelize()	
  creates	
  an	
  RDD	
  from	
  local	
  data	
  

• sc.textFile()	
  creates	
  an	
  RDD	
  from	
  a	
  text	
  file	
  residing	
  on	
  HDFS	
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• sc.stop()	
  stops	
  the	
  SparkContext	
  object	
  

	
  

Reference:	
  More	
  details	
  on	
  the	
  SparkContect	
  class	
  used	
  in	
  pyspark	
  are	
  available	
  at	
  
http://spark.apache.org/docs/1.4.1/api/python/pyspark.html#pyspark.SparkContext.	
  

The Resilient Distributed Dataset 
The	
  Resilient	
  Distributed	
  Dataset	
  (RDD)	
  is	
  an	
  immutable	
  collection	
  of	
  objects	
  (or	
  records)	
  that	
  can	
  be	
  
operated	
  on	
  in	
  parallel.	
  	
  RDD's	
  adhere	
  to	
  these	
  key	
  attributes	
  that	
  make	
  up	
  their	
  namesake:	
  
Resilient Can	
  be	
  recreated	
  from	
  parent	
  RDDs	
  –	
  and	
  RDD	
  keeps	
  its	
  lineage	
  

information.	
  
Distributed Partitions	
  of	
  data	
  are	
  distributed	
  across	
  nodes	
  in	
  the	
  cluster.	
  
Dataset A	
  set	
  of	
  data	
  than	
  can	
  be	
  accessed.	
  
Each	
  RDD	
  is	
  composed	
  of	
  one,	
  or	
  more,	
  partitions.	
  	
  The	
  user	
  can	
  control	
  the	
  number	
  of	
  partitions,	
  by	
  
increasing	
  partitions,	
  the	
  user	
  increase	
  the	
  parallelism.	
  
RDD’s	
  are	
  not	
  a	
  physical	
  entity.	
  	
  They	
  are	
  a	
  set	
  of	
  instructions	
  on	
  how	
  to	
  transform	
  data.	
  	
  The	
  only	
  time	
  an	
  
RDD	
  every	
  physically	
  exists	
  is	
  when	
  the	
  data	
  is	
  cached	
  into	
  memory.	
  
For	
  HDFS	
  files,	
  the	
  RDD	
  partitions	
  will	
  be	
  aligned	
  with	
  the	
  file’s	
  blocks	
  thus	
  leveraging	
  the	
  same	
  kind	
  of	
  
parallelism	
  that	
  Hadoop	
  is	
  famous	
  for.	
  

Creating an RDD 
A	
  common	
  way	
  to	
  create	
  an	
  RDD	
  is	
  to	
  simple	
  read	
  a	
  text	
  file.	
  	
  This	
  file	
  can	
  exist	
  in	
  a	
  variety	
  of	
  place	
  such	
  as	
  
HDFS,	
  S3	
  or	
  the	
  local	
  filesystem	
  and	
  can	
  be	
  loaded	
  from	
  a	
  single	
  line:	
  
rdd1 = sc.textFile("file:/path/to/file.txt) 
rdd2 = sc.textFile("hdfs://namenode:8020/mydata/data.txt") 
The	
  method	
  can	
  also	
  accept	
  a	
  comma	
  separated	
  list	
  of	
  files,	
  or	
  a	
  wildcard	
  list	
  of	
  files:	
  
rdd3 = sc.textFile("mydata/*.txt") 
rdd4 = sc.textFile("data1.txt,data2.txt") 

Working with RDDs and Lazy Evaluation 
RDDs	
  have	
  the	
  following	
  two	
  types	
  of	
  operations:	
  
Transformations The	
  RDD	
  is	
  transformed	
  into	
  a	
  new	
  RDD.	
  
Actions An	
  action	
  is	
  performed	
  on	
  the	
  RDD	
  and	
  the	
  result	
  is	
  returned	
  to	
  the	
  

application	
  or	
  saved	
  somewhere.	
  
Transformations	
  are	
  lazy:	
  they	
  do	
  not	
  compute	
  until	
  an	
  action	
  is	
  performed.	
  	
  This	
  is	
  an	
  important	
  concept	
  of	
  
Spark.	
  	
  Spark	
  likes	
  to	
  do	
  the	
  least	
  amount	
  of	
  work	
  possible	
  and	
  will	
  only	
  process	
  data	
  when	
  it	
  is	
  forced	
  too.	
  

Transformation Example 
Using	
  Word	
  Count	
  as	
  an	
  example,	
  the	
  following	
  lines	
  of	
  Spark	
  code	
  illustrates	
  multiple	
  transformation	
  that	
  
work	
  toward	
  building	
  possible	
  directed	
  acyclic	
  graphs	
  (DAG),	
  the	
  mechanism	
  to	
  describe	
  the	
  job	
  flow	
  steps,	
  
for	
  eventual	
  execution.	
  
file = sc.textFile("hdfs://some-text-file”)  
counts = file.flatMap(lambda line: line.split(" ")) \  
 .map(lambda word: (word, 1)) \ 
 .reduceByKey(lambda a, b: a + b)  

Action Example 
The	
  save	
  operation	
  below	
  writes	
  the	
  newly	
  created	
  text	
  file	
  back	
  to	
  HDFS	
  which	
  constitutions	
  an	
  action	
  that	
  
triggers	
  execution	
  of	
  the	
  whole	
  DAG.	
  
counts.saveAsTextFile("hdfs://wordcount-out”)   

Restating	
  this,	
  lazy	
  evaluation	
  means	
  that	
  transformations	
  will	
  be	
  only	
  executed	
  when	
  actions	
  are	
  called.	
  	
  
While	
  build	
  a	
  pipeline,	
  spark	
  creates	
  a	
  DAG	
  of	
  the	
  transformations.	
  	
  When	
  an	
  action	
  is	
  called	
  on	
  an	
  RDD,	
  it	
  



HDP Developer: Apache Pig and   Hive 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 
199 

	
  

	
  

triggers	
  the	
  execution	
  of	
  the	
  entire	
  finalized	
  DAG.	
  	
  	
  

	
  

Reference:	
  The	
  keyword	
  lambda	
  is	
  Python's	
  approach	
  for	
  small	
  anonymous	
  
functions	
  that	
  can	
  be	
  used	
  wherever	
  function	
  objects	
  are	
  required.	
  
See	
  https://docs.python.org/2/tutorial/controlflow.html#lambda-­‐expressions	
  for	
  
more	
  on	
  this	
  approach.	
  

Functional Programming  
Spark	
  uses	
  functional	
  programming	
  which	
  this	
  allows	
  the	
  user	
  to	
  process	
  data	
  in	
  parallel.	
  	
  Functional	
  
programming	
  is	
  a	
  paradigm	
  shift	
  from	
  object-­‐oriented	
  programing	
  and	
  the	
  following	
  are	
  some	
  of	
  its	
  
architectural	
  tenants:	
  	
  

• Programs	
  are	
  built	
  on	
  functions	
  instead	
  of	
  objects	
  

• Mutation	
  is	
  forbidden	
  –	
  all	
  variables	
  are	
  final	
  

• Functional	
  purity	
  –	
  if	
  you	
  pass	
  A	
  into	
  a	
  function,	
  you're	
  always	
  getting	
  back	
  B	
  

• Functions	
  have	
  input	
  and	
  output	
  only	
  –	
  no	
  state	
  or	
  side	
  effects	
  

• Passing	
  functions	
  as	
  input	
  to	
  other	
  functions	
  

• Anonymous	
  functions	
  –	
  undefined	
  functions	
  passed	
  inline	
  

	
  

Reference:	
  Please	
  visit	
  https://en.wikipedia.org/wiki/Functional_programming	
  
for	
  a	
  more	
  thorough	
  explanation	
  of	
  the	
  functional	
  programming	
  paradigm.	
  

Common Spark Actions 
As	
  a	
  reminder,	
  Spark	
  action	
  operations	
  trigger	
  execution.	
  	
  This	
  section	
  presents	
  several	
  common	
  actions.	
  

count() Action 
The	
  count()	
  action	
  returns	
  the	
  number	
  of	
  elements	
  in	
  an	
  RDD.	
  
data = [5, 12, -4 , 7, 20] 
rdd= sc.parallelize(data) 
rdd.count() 
 
5  

reduce() Action 
The	
  reduce()	
  action's	
  aggregation	
  of	
  elements	
  of	
  an	
  RDD	
  using	
  a	
  defined	
  function	
  has	
  many	
  use	
  cases	
  in	
  
Spark	
  applications.	
  	
  The	
  reducing	
  logically	
  happens	
  over	
  and	
  over	
  with	
  only	
  two	
  of	
  the	
  RDD	
  elements	
  at	
  a	
  
time.	
  	
  Once	
  those	
  two	
  have	
  been	
  reduced,	
  then	
  the	
  outcome	
  will	
  be	
  part	
  of	
  another	
  logical	
  reduce	
  step	
  
until	
  all	
  elements	
  have	
  been	
  accounted	
  for.	
  
This	
  concept	
  of	
  having	
  multiple	
  passes	
  on	
  the	
  reduce	
  phase	
  is	
  similar	
  to	
  the	
  Java	
  MapReduce	
  API's	
  
Combiner.	
  	
  Because	
  of	
  this,	
  the	
  function	
  used	
  by	
  the	
  reduce	
  must	
  be	
  both	
  commutative	
  and	
  associative.	
  	
  For	
  
example,	
  a+b = b+a.	
  	
  A	
  richer	
  example	
  shows	
  that	
  a+(b+c) = (a+b)+c.	
  	
  The	
  following	
  show	
  
examples	
  of	
  the	
  reduce()	
  action.	
  
Dataset:[5, 12, -4 , 7, 20] 
 
rdd.reduce(lambda a, b : a+b) 
40 
 
rdd.reduce(lambda a, b: a if (a>b) else b) 
20  
The	
  reason	
  for	
  the	
  requirement	
  to	
  be	
  commutative	
  and	
  associative	
  is	
  that	
  Spark	
  does	
  not	
  guarantee	
  the	
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order	
  in	
  which	
  the	
  data	
  will	
  be	
  processed.	
  

	
  

Definitions:	
  	
  
Commutative	
  =	
  (of	
  a	
  binary	
  operation)	
  having	
  the	
  property	
  that	
  one	
  term	
  
operating	
  on	
  a	
  second	
  is	
  equal	
  to	
  the	
  second	
  operating	
  on	
  the	
  first,	
  as	
  a x b = 
b x a	
  	
  
Associative	
  =	
  (of	
  an	
  operation	
  on	
  a	
  set	
  of	
  elements)	
  giving	
  an	
  equivalent	
  
expression	
  when	
  elements	
  are	
  grouped	
  without	
  change	
  of	
  order,	
  as	
  (a + b) + 
c = a + (b + c)	
  

The	
  following	
  diagram	
  presents	
  this	
  concept	
  of	
  commutative	
  and	
  associative	
  as	
  a	
  visual	
  example.	
  

	
  
Visual	
  depiction	
  of	
  Commutative	
  &	
  Associative	
  

Other Useful Spark Actions 
The	
  following	
  are	
  additional	
  Spark	
  actions	
  that	
  are	
  leveraged	
  heavily.	
  

• first()	
  returns	
  the	
  first	
  element	
  in	
  the	
  RDD	
  

• take()	
  returns	
  the	
  first	
  n	
  elements	
  of	
  the	
  RDD	
  

• collect()	
  returns	
  all	
  the	
  elements	
  in	
  the	
  RDD	
  to	
  the	
  driver	
  

• saveAsTextFile()	
  writes	
  the	
  RDD	
  to	
  a	
  file	
  
Dataset:[5, 12, -4 , 7, 20] 
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rdd.first() 
5 
rdd.take(3) 
[5, 12, -4] 
 
rdd.saveAsTextFile(“myfile”)  

	
  

	
  

Important:	
  Make	
  sure	
  you	
  only	
  call	
  collect()	
  on	
  small	
  datasets	
  or	
  risk	
  crashing	
  
your	
  shell/application.	
  

Common Spark Transformation 
As	
  a	
  reminder,	
  Spark	
  transformation	
  operations	
  create	
  new	
  RDDs	
  from	
  existing	
  ones.	
  	
  Transformations	
  are	
  
lazy	
  and	
  processing	
  does	
  not	
  occur	
  until	
  an	
  action	
  is	
  called	
  on	
  the	
  RDD,	
  or	
  a	
  subsequent	
  RDD.	
  	
  
Transformation	
  create	
  a	
  recipe,	
  or	
  lineage,	
  that	
  Spark	
  uses	
  to	
  process	
  the	
  data.	
  	
  Spark	
  will	
  pipeline	
  data	
  
through	
  these	
  transformations.	
  

map() Transformation 
The	
  map()	
  transformation	
  applies	
  a	
  function	
  to	
  each	
  element	
  of	
  an	
  RDD.	
  	
  It	
  takes	
  a	
  one	
  input	
  to	
  one	
  output	
  
approach.	
  
rdd = sc.parallelize([1, 2, 3, 4, 5]) 
  
rdd.map(lambda x: x*2+1).collect() 
  
[3, 5, 7, 9, 11] 

flatMap() Transformation 
We	
  just	
  saw	
  an	
  example	
  of	
  a	
  map	
  operation	
  and	
  flatMap()	
  is	
  another	
  very	
  important	
  transformation	
  
that	
  is	
  used	
  heavily.	
  	
  flatMap()	
  applies	
  a	
  function	
  to	
  each	
  element	
  of	
  the	
  RDD	
  and	
  returns	
  a	
  collection.	
  	
  
The	
  main	
  difference	
  between	
  map()	
  and	
  flatMap()	
  are	
  the	
  outputs.	
  	
  This	
  transformation	
  takes	
  a	
  one	
  
input	
  to	
  many	
  output	
  approach.	
  
rdd = sc.parallelize([1, 2, 3, 4, 5]) 
 
rdd.map(lambda x: [x, x*2]).collect() 
[(1,2), (2, 4), (3,6), (4,8), (5,10)] 
  
rdd.flatMap(lambda x: [x, x*2]).collect() 
[1, 2, 2, 4, 3, 6, 4, 8, 5, 10] 
The	
  reason	
  for	
  the	
  requirement	
  to	
  be	
  commutative	
  and	
  associative	
  is	
  that	
  Spark	
  does	
  not	
  guarantee	
  the	
  
order	
  in	
  which	
  the	
  data	
  will	
  be	
  processed.	
  

filter() Transformation 
The	
  filter()	
  transformation	
  keeps	
  elements	
  based	
  on	
  a	
  predicate.	
  	
  It	
  will	
  include	
  the	
  current	
  element	
  of	
  
the	
  RDD	
  being	
  evaluated	
  in	
  the	
  new	
  RDD	
  when	
  the	
  function	
  being	
  used	
  evaluates	
  to	
  true.	
  
rdd = sc.parallelize([1, 2, 3, 4, 5]) 
  
rdd.map(lambda x: x*2+1).collect() 
  
[3, 5, 7, 9, 11] 

(Key Value) Pair RDDs 
Pair	
  RDDs	
  are	
  a	
  different	
  type	
  of	
  RDD	
  than	
  previously	
  discussed.	
  	
  A	
  Pair	
  RDD,	
  or	
  Key	
  Value	
  Pair	
  (KVP)	
  RDD,	
  is	
  
an	
  RDD	
  whose	
  elements	
  comprise	
  a	
  pair	
  of	
  values	
  –	
  key	
  and	
  value.	
  	
  Pair	
  RDDs	
  are	
  very	
  useful	
  for	
  many	
  
applications.	
  	
  We	
  can	
  create	
  KVPs	
  then	
  allow	
  group	
  operations	
  to	
  occur	
  based	
  on	
  the	
  key.	
  	
  Examples	
  of	
  
these	
  operations	
  include	
  join(),	
  groupByKey()	
  and	
  reduceByKey()	
  which	
  will	
  be	
  explained	
  
further.	
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Creating Pair RDDs 
Pair	
  RDDs	
  are	
  often	
  created	
  from	
  regular	
  RDDs	
  by	
  using	
  the	
  map()	
  or	
  flatMap()	
  transformation	
  
operations	
  as	
  shown	
  in	
  the	
  following	
  example:	
  
wordlist = ‘this is my list and it is a nice list’ 
rdd1 = sc.parallelize([wordlist]) 
 
kv_rdd = rdd1.flatMap(lambda x: x.split(‘ ‘)).map(lambda x: (x,1)) 
kv_rdd.collect() 
[(this, 1), (is, 1), (my, 1), (list, 1), (and, 1), … (list,1)] 

Performing Actions on a Pair RDD 
A	
  common	
  action	
  taken	
  on	
  Pair	
  RDDs	
  is	
  the	
  reduceByKey()	
  function.	
  	
  It	
  performs	
  reduce	
  actions	
  on	
  all	
  
values	
  with	
  the	
  same	
  key	
  and	
  collapses	
  them	
  all	
  down	
  to	
  a	
  single	
  KVP	
  with	
  only	
  the	
  value	
  being	
  updated	
  by	
  
whatever	
  function	
  is	
  used	
  in	
  the	
  operation.	
  	
  Like	
  with	
  the	
  less	
  complex	
  reduce()	
  action,	
  the	
  function	
  still	
  
must	
  be	
  commutative	
  and	
  associative.	
  	
  The	
  easily	
  understood	
  Word	
  Count	
  functionality	
  helps	
  in	
  
understanding	
  this	
  operation.	
  
kv_rdd.reduceByKey(lambda a,b: a+b).collect() 
[('this', 1), ('my', 1), ('and', 1), ('list', 2), ('a', 1), ('it', 1),  
('is', 2), ('nice', 1)] 

 

	
  

Note:	
  These	
  simple	
  examples	
  might	
  lead	
  one	
  to	
  believe	
  that	
  the	
  keys	
  and/or	
  
values	
  must	
  be	
  primitive	
  values,	
  but	
  in	
  fact,	
  they	
  can	
  be	
  very	
  complex	
  &	
  nested	
  
tuple	
  structures.	
  
Keys	
  &	
  Values	
  can	
  contain	
  rich	
  tuples.	
  

The	
  following	
  example	
  implements	
  the	
  familiar	
  Word	
  Count	
  use	
  case,	
  but	
  introduces	
  some	
  additional	
  data	
  
elements	
  to	
  both	
  sides	
  of	
  the	
  KVP	
  being	
  utilized.	
  
suess = ['I do not like green eggs and ham I do not like them Sam I am'] 
parallelSuess = sc.parallelize(suess) 
parallelSuess.take(1) 
['I do not like green eggs and ham I do not like them Sam I am'] 
 
suessWords = parallelSuess.flatMap(lambda sentence: sentence.split(' ')) 
suessWords.take(5) 
['I', 'do', 'not', 'like', 'green'] 
 
notSimplePair = suessWords.map(lambda word: ((word,'theKey'),('theVal',1))) 
notSimplePair.sortByKey(ascending=False).take(5) 
[(('them', 'theKey'), ('theVal', 1)), (('not', 'theKey'), ('theVal', 1)), (('not', 
'theKey'), ('theVal', 1)), (('like', 'theKey'), ('theVal', 1)), (('like', 'theKey'), 
('theVal', 1))] 
 
notSimplePair.reduceByKey(lambda oneValue,anotherValue: ('n/a', oneValue[1] + 
anotherValue[1])).sortByKey(ascending=False).collect() 
[(('them', 'theKey'), ('theVal', 1)), (('not', 'theKey'), ('n/a', 2)), (('like', 
'theKey'), ('n/a', 2)), (('ham', 'theKey'), ('theVal', 1)), (('green', 'theKey'), 
('theVal', 1)), (('eggs', 'theKey'), ('theVal', 1)), (('do', 'theKey'), ('n/a', 2)), 
(('and', 'theKey'), ('theVal', 1)), (('am', 'theKey'), ('theVal', 1)), (('Sam', 
'theKey'), ('theVal', 1)), (('I', 'theKey'), ('n/a', 3))] 

pyspark Tips  
The	
  following	
  suggestions	
  may	
  make	
  your	
  experience	
  using	
  pyspark	
  more	
  navigable:	
  	
  

• Take	
  advantage	
  of	
  your	
  command	
  history	
  by	
  utilizing	
  the	
  "up	
  arrow"	
  key	
  similar	
  to	
  the	
  Linux	
  shell	
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• Instead	
  of	
  initially	
  chaining	
  together	
  a	
  long	
  list	
  of	
  methods,	
  consider	
  creating	
  temporary	
  variable,	
  or	
  at	
  
least	
  adding	
  one	
  method	
  at	
  a	
  time	
  and	
  using	
  take()	
  to	
  see	
  if	
  it	
  appears	
  each	
  operation	
  is	
  working	
  as	
  
expected	
  before	
  adding	
  another	
  method	
  

• Leverage	
  dir()	
  to	
  get	
  a	
  list	
  of	
  current	
  variables	
  –	
  like	
  with	
  Pig's	
  aliases	
  command,	
  there	
  will	
  be	
  
additional	
  system-­‐oriented	
  variable	
  names	
  present	
  

• Consider	
  triming	
  down	
  the	
  extra	
  "noise"	
  by	
  calling	
  sc.setLogLevel('WARN')	
  to	
  eliminate	
  INFO	
  
messages	
  

 
 

Review Questions 
5) What are the three ways we can create an RDD? 

__________________________________________________________________ 
6) What are the two types of operations we can perform on an RDD?  Give example of each. 

__________________________________________________________________ 
7) What is functional programming? 

__________________________________________________________________ 
8) What is Lazy Execution?  

__________________________________________________________________  
9) What does the R stand for in RDD?  What does that mean?  

__________________________________________________________________  

Review Answers 
10) What are the three ways we can create an RDD? 

__________________________________________________________________ 
Answer: From a filesystem/db, parallelizing a collection, from another RDD 
 

11) What are the two types of operations we can perform on an RDD?  Give example of each. 
__________________________________________________________________ 
Answer: Action (count, collect, take) and Transformation (map, flatMap, filter) 
 

12) What is functional programming? 
__________________________________________________________________ 
Answer: Functional programming allows us to build applications on functions and not objects, 
passing functions as inputs to other functions, functions have inputs and outputs – no side 
effects, no “state” 
 

13) What is Lazy Execution?  
__________________________________________________________________  
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Answer: Lazy execution means Spark doesn’t process data until it has to when an action is 
performed 
 

14) What does the R stand for in RDD?  What does that mean?  
__________________________________________________________________  
Answer: R stands for Resilient.  We’re able to recompute the data using lineage in case we 
were to lose part of it 
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Spark SQL and DataFrames 
 
Lesson Objectives  

This	
  lesson	
  explores	
  the	
  additional	
  Spark	
  ecosystem	
  framework	
  called	
  Spark	
  SQL	
  and	
  its	
  tightly	
  coupled	
  
DataFrame	
  API.	
  	
  Upon	
  completion	
  of	
  this	
  lesson,	
  students	
  should	
  be	
  able	
  to:	
  	
  

• Load	
  multiple	
  types	
  of	
  data	
  

• Perform	
  SQL	
  queries	
  within	
  pyspark	
  

• Utilize	
  DataFrame	
  operations	
  

• Understand	
  some	
  of	
  the	
  optimization	
  engine	
  

Additional Content 
• Lab:	
  Exploring	
  Spark	
  SQL	
  

Spark SQL Overview 

	
  
What	
  is	
  Apache	
  Spark?	
  

Spark	
  SQL	
  is	
  Spark's	
  integrated	
  module	
  for	
  working	
  with	
  structured	
  data.	
  	
  In	
  addition	
  to	
  the	
  following	
  
bullets,	
  Spark	
  SQL	
  features	
  a	
  uniform	
  data	
  access	
  approach	
  and	
  Hive	
  compatibility.	
  	
  

• It	
  is	
  a	
  module	
  built	
  on	
  top	
  of	
  Spark	
  Core	
  

• Provides	
  a	
  programming	
  abstraction	
  for	
  distributed	
  processing	
  of	
  large-­‐scale	
  structured	
  data	
  in	
  Spark	
  

• Data	
  is	
  described	
  as	
  a	
  DataFrame	
  with	
  row,	
  columns	
  and	
  a	
  schema	
  

• Data	
  manipulation	
  and	
  access	
  is	
  available	
  with	
  two	
  mechanisms	
  

o SQL	
  Queries	
  

o DataFrames	
  API	
  

The DataFrame Abstraction 
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• A	
  DataFrame	
  is	
  inspired	
  by	
  the	
  dataframe	
  concept	
  in	
  R	
  (dplr,	
  Dataframe)	
  and	
  Python	
  (pandas),	
  but	
  
stored	
  using	
  RDDs	
  underneath	
  in	
  a	
  distributed	
  manner	
  

• A	
  DataFrame	
  is	
  organized	
  into	
  names	
  columns	
  –	
  an	
  RDD	
  of	
  "Row"	
  objects	
  

• The	
  DataFrame	
  API	
  is	
  available	
  in	
  Scala,	
  Java,	
  Python	
  and	
  R	
  

	
  
Visual	
  Representation	
  of	
  a	
  DataFrame	
  

DataFrame Primary Sources 
• DataFrames	
  from	
  Hive	
  data	
  

o Reading	
  from	
  Hive	
  tables	
  

o Writing	
  to	
  Hive	
  tables	
  

• DataFrames	
  from	
  file	
  

o Built-­‐in:	
  JSON,	
  JDBC,	
  Parquet,	
  HDFS	
  

o External	
  plug-­‐in:	
  CSV,	
  HBase,	
  Avro,	
  memsql,	
  elasticsearch	
  

SQLContext and HiveContext 
To	
  use	
  Spark	
  SQL	
  from	
  your	
  Spark	
  application,	
  an	
  instance	
  of	
  the	
  SQLContext	
  class	
  must	
  be	
  instantiated.	
  	
  
In	
  pyspark,	
  the	
  following	
  code	
  has	
  already	
  been	
  executed	
  for	
  you	
  at	
  start	
  up.	
  
from pyspark.sql import SQLContext 
sqlContext = SQLContext(sc) 
This	
  allows	
  subsequent	
  use	
  of	
  the	
  needed	
  SQLContext	
  object	
  through	
  the	
  sqlContext	
  variable	
  
created	
  for	
  you.	
  	
  Alternatively,	
  you	
  can	
  create	
  a	
  HiveContext	
  instance	
  to	
  connect	
  with	
  Hive.	
  
from pyspark.sql import HiveContext 
hc = HiveContext(sc) 

	
  

	
  

Note:	
  Since	
  HiveContext	
  is	
  a	
  specialized	
  subclass	
  of	
  SQLContext	
  you	
  can	
  
use	
  it	
  in	
  place	
  of	
  the	
  already	
  instantiated	
  sqlContext	
  reference	
  for	
  
consistency.	
  

Data Manipulation and Access Options 
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As	
  stated	
  previously,	
  accessing	
  and	
  manipulating	
  data	
  is	
  available	
  via	
  two	
  options.	
  

DataFrames API 
The	
  following	
  illustrates	
  an	
  example	
  of	
  using	
  the	
  DataFrame	
  API:	
  
from pyspark.sql import HiveContext 
hc = HiveContext(sc) 
 
hc.sql(“use demo”) 
df1 = hc.table(“crimes”) 
 .select(“year”, “month”, “day”, “category”) 
 .filter(“year > 2014”).head(5) 

SQL Syntax 
The	
  following	
  illustrates	
  an	
  example	
  of	
  using	
  the	
  SQL	
  syntax:	
  
from pyspark.sql import HiveContext 
hc = HiveContext(sc) 
 
hc.sql(“use demo”) 
df1 = hc.sql(“““ 
 SELECT year, month, day, category 
   FROM crimes 
  WHERE year > 2014”””).head(5) 

	
  

	
  

Note:	
  When	
  the	
  SQL	
  statement	
  spans	
  more	
  than	
  one	
  line,	
  wrap	
  it	
  with	
  three	
  sets	
  
of	
  double-­‐quotes.	
  	
  Otherwise,	
  a	
  single	
  set	
  of	
  double-­‐quotes	
  is	
  sufficient.	
  

DataFrames vs Spark Core  
Spark	
  SQL	
  uses	
  and	
  extensible	
  cost-­‐based	
  optimizer	
  (CBO)	
  called	
  Catalyst.	
  	
  This	
  CBO	
  engine	
  understands	
  the	
  
structure	
  of	
  data	
  &	
  semantics	
  of	
  operations	
  and	
  performs	
  optimizations	
  accordingly	
  with	
  results	
  like	
  those	
  
shown	
  below	
  compared	
  with	
  Spark	
  Core's	
  RDD	
  processing.	
  	
  

	
  
DataFrame	
  Performance	
  Comparison	
  

Again,	
  much	
  of	
  the	
  performance	
  gains	
  are	
  due	
  to	
  the	
  Catalyst	
  optimizer	
  that	
  features	
  the	
  following	
  
functionality	
  and	
  highlights:	
  

• Query	
  or	
  DataFrame	
  operations	
  are	
  modeled	
  as	
  a	
  tree	
  

• Logical	
  plan	
  is	
  created	
  and	
  optimized	
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• Various	
  physical	
  plans	
  are	
  created	
  then	
  the	
  best	
  one	
  is	
  chosen	
  based	
  on	
  overall	
  cost	
  

• Code	
  generation	
  and	
  execution	
  

	
  
Catalyst	
  Architecture	
  

Creating DataFrames 
There	
  are	
  multiple	
  ways	
  to	
  create	
  DataFrames	
  (DF)	
  as	
  the	
  following	
  subsections	
  identify.	
  

Create DF from Hive 
An	
  entire	
  Hive	
  table	
  could	
  be	
  loaded	
  to	
  create	
  a	
  DataFrame:	
  
df = hc.table("patients") 

Alternatively,	
  a	
  DataFrame	
  could	
  be	
  created	
  from	
  the	
  results	
  of	
  a	
  SQL	
  query	
  such	
  as	
  these	
  examples	
  show:	
  
df1 = hc.sql("SELECT * FROM patients WHERE age > 50") 
 
df2 = hc.sql(""" 
 SELECT col1 AS timestamp, SUBSTR(date,1,4) AS year, event 
   FROM events 
  WHERE year > 2014""") 

Create DF from a File 
With	
  the	
  built-­‐in	
  adapters	
  and	
  an	
  extensible	
  framework,	
  virtually	
  any	
  file	
  format	
  could	
  be	
  read	
  to	
  create	
  a	
  
DataFrame.	
  	
  	
  
Here	
  are	
  two	
  approaches	
  for	
  reading	
  from	
  a	
  JSON	
  file:	
  
df = hc.read.json("somefile.json") 
 
df = hc.read.format("json").load("somefile.json") 

	
  

	
  

Note:	
  There	
  are	
  two	
  syntax	
  options	
  for	
  reading	
  files	
  types.	
  	
  The	
  following	
  model	
  
can	
  be	
  used	
  for	
  well-­‐known	
  and	
  tested	
  file	
  formats:	
  
hc.read.TECH-NAME(“FILE-NAME”) 
The	
  more	
  extensible	
  syntax	
  follows:	
  	
  
hc.read.format(“TECH-NAME”).load(“FILE-NAME”) 

Examples	
  reading	
  from	
  Parquet	
  and	
  CSV	
  files	
  using	
  the	
  built-­‐in	
  and	
  external	
  plug-­‐in	
  models,	
  respectively:	
  
dfParquet = hc.read.parquet("somefile.parquet") 
 
dfCSV = hc.read.format("com.databricks.spark.csv") 
  .options(header='true').load("somefile.csv") 

Create DF from an RDD 
You	
  can	
  create	
  an	
  RDD	
  of	
  Row	
  objects	
  and	
  then	
  use	
  its	
  toDF()	
  function:	
  
from pyspark.sql import Row 
 
rdd = sc.parallelize([Row(name='Alice', age=12, height=80), 
     Row(name='Bob',   age=15, height=120)]) 
df = rdd.toDF() 

Another	
  approach	
  would	
  be	
  to	
  let	
  Spark	
  SQL	
  infer	
  the	
  schema	
  using	
  the	
  createDataFrame()	
  function:	
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rdd = sc.parallelize([('Alice',12,80), ('Bob',15,120)]) 
 
df = hc.createDataFrame(rdd, ['name', 'age', 'height']) 

Create DF from a Text File 
When	
  you	
  have	
  a	
  file	
  with	
  some	
  known	
  structure	
  and	
  format	
  you	
  can	
  read	
  the	
  file	
  into	
  an	
  RDD	
  and	
  then	
  
leverage	
  the	
  same	
  available	
  options	
  to	
  convert	
  it	
  to	
  a	
  DataFrame.	
  
from pyspark.sql import Row 
 
lines = sc.textFile("examples/src/main/resources/people.txt") 
parts = lines.map(lambda l: l.split(",")) 
people = parts.map(lambda p: Row(name=p[0], age=int(p[1]))) 
 
# Infer the schema, and register the DataFrame as a table. 
schemaPeople = sqlContext.inferSchema(people) 
schemaPeople.registerTempTable("people") 
 
# SQL can be run over DataFrames that have been registered as a table. 
teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19") 

While	
  this	
  course	
  has	
  focused	
  on	
  Python	
  and	
  pyspark,	
  the	
  following	
  Scala	
  example	
  is	
  being	
  presented	
  for	
  
this	
  same	
  scenario	
  to	
  show	
  how	
  it	
  can	
  benefit	
  from	
  defining	
  a	
  full	
  class	
  on	
  the	
  fly	
  (or	
  defined	
  elsewhere)	
  to	
  
provide	
  "column"	
  names	
  &	
  data	
  types	
  and	
  then	
  constructing	
  a	
  new	
  one	
  for	
  each	
  row	
  during	
  the	
  second	
  
map	
  transformation	
  below	
  
val sqlContext = new org.apache.spark.sql.SQLContext(sc) 
// this is used to implicitly convert an RDD to a DataFrame. 
import sqlContext.implicits._ 
 
case class Person(name: String, age: Int) 
 
val people = sc.textFile("examples/src/main/resources/people.txt") 
 .map(_.split(",")) 
 .map(p => Person(p(0), p(1).trim.toInt)).toDF() 

DataFrame Operations  
Now	
  that	
  we	
  have	
  reviewed	
  several	
  ways	
  to	
  create	
  DataFrames,	
  this	
  section	
  will	
  present	
  some	
  common	
  
operations	
  that	
  can	
  be	
  made	
  on	
  these	
  structures.	
  

	
  
DataFrames	
  for	
  Illustration	
  Purposes	
  

Inspecting Content 
As	
  DataFrames	
  are	
  backed	
  by	
  RDDs,	
  you	
  still	
  have	
  access	
  to	
  first()	
  and	
  take()	
  as	
  before:	
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df1.first() 
Row(age=23, cid=u’104’, name=u’Bob’, state=u’nc’) 
 
df1.take(2) 
[Row(age=45, cid=u’104’, name=u’Ram’, state=u’fl’) 
Row(age=15, cid=u’102’, name=u’Bob’, state=u’ny’)] 

You	
  also	
  can	
  now	
  leverage	
  some	
  new,	
  DataFrame	
  API	
  specific,	
  method	
  calls.	
  

• limit()	
  reduces	
  the	
  DataFrame	
  to	
  a	
  specified	
  number	
  of	
  rows	
  

o Result	
  is	
  still	
  a	
  DataFrame,	
  not	
  a	
  Python	
  result	
  list	
  

• show()	
  prints	
  the	
  first	
  n	
  rows	
  to	
  the	
  console	
  in	
  a	
  formatted	
  manner	
  

	
  
Sample	
  show()	
  Output	
  

Inspecting Schema 
Expected	
  operations	
  to	
  understand	
  the	
  metadata	
  for	
  the	
  DataFrame	
  are	
  also	
  available:	
  
# Display column names 
df1.columns 
[u’age’, u’cid’, u’name’, u’state’] 
 
# Display column names and types 
df1.dtypes   
 [('age', 'bigint'), ('cid', 'string'), ('name', 'string'), ('state', 'string')]  
 
# Display detailed schema 
df1.schema   
StructType(List(StructField(age,LongType,true), 
StructField(cid,StringType,true), 
StructField(name,StringType,true), 
StructField(state,StringType,true)))  

Counting Rows 
Obviously,	
  you	
  can	
  count	
  all	
  the	
  rows	
  in	
  a	
  DataFrame,	
  too:	
  
df1.count() 
4 

	
  

	
  

Important:	
  count()	
  returns	
  the	
  number	
  of	
  non-­‐duplicate	
  rows.	
  
Use	
  df1.rdd.count()	
  to	
  return	
  the	
  number	
  of	
  actual	
  rows.	
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Removing Duplicates 
The	
  DataFrame	
  API	
  offers	
  a	
  couple	
  of	
  ways	
  to	
  remove	
  duplicates:	
  
# Remove duplicate rows 
df1.distinct().show() 
 
# Remove duplicate rows by key 
df1.drop_duplicates(["name"]).show()   

	
  

	
  

Note:	
  Using	
  show()	
  without	
  a	
  parameter	
  results	
  in	
  the	
  top	
  20	
  rows	
  being	
  
returned.	
  

Saving DataFrames 
There	
  are	
  multiple	
  ways	
  to	
  save	
  DataFrames	
  such	
  as	
  those	
  presented	
  below.	
  
# Write full file 
df.write.format(“parquet”).save(“output.parquet”) * 
df.write.format(“com.databricks.spark.avro”).save(“output.avro”) 
 
# Write only some columns 
df.select(“name”,”age”).write.format(“json”).save(“namesAndAges.json”) 
 
# To partition, just specific the column(s) to partition by 
df.write.partitionBy(“name”,”age”).parquet(“partitionNameAndAge.parquet”) 
df.write.partitionBy(“name”,”age”).format(“avro”).save(“partitionNameAndAge.parquet”) 
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Defining Workflow with Oozie 
 
Lesson Objectives 
This lesson covers how to implement a Hadoop workflow using the Apache Oozie framework. 

After completing this lesson, students should be able to: 

• Describe Oozie 

• Describe an Oozie Coordinator Job 
 
Additional Content 
• Quiz: Lesson Review 

• Lab: Defining an Oozie Workflow 
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Overview of Oozie 
Oozie, http://oozie.apache.org, is an open-source Apache project that provides a framework 
for coordinating and scheduling Hadoop jobs. Oozie is not restricted to just MapReduce jobs; 
you can use Oozie to schedule Pig, Hive, Sqoop, Streaming jobs, and even Java programs. 

Oozie has two main capabilities: 
 

Oozie Workflow A collection of actions (defined in a workflow.xml file) 
 

Oozie Coordinator A recurring workflow (defined in a coordinator.xml file) 
 

Behind the scenes, Oozie is a Java web application that runs in a Tomcat instance. You run 
Oozie as a service then start workflows using the oozie command. 

We will now discuss the details of defining an Oozie workflow.xml file. 
 

  

Reference: For more information on the Apache Oozie project, visit their website 
at http://oozie.apache.org/. 
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Defining an Oozie Workflow 
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Defining	
  and	
  Oozie	
  Workflow	
  
	
  

An Oozie workflow consists of a workflow.xml file and the necessary files required by the 
workflow. The workflow is put into HDFS with the following directory structure: 

 

 
• The config-default.xml file is optional and contains properties shared by all workflows 

• Each workflow can also have a job.properties file (not put into HDFS) for job-specific 
properties 

As you will soon discover, most of your time spent defining an Oozie workflow is in writing 
workflow.xml. A workflow definition consists of two main entries: 

 
Control flow nodes For determining the execution path. A fork node splits one path 

into multiple paths. A join node waits until every path of a previous 
fork node arrives to it 

 
Action nodes For executing a job or task 

/appdir/workflow.xml 
/appdir/config-default.xml 
/appdir/lib/files.jar 
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Pig Actions 
The pig action starts a Pig job. The workflow job will wait until the Pig job completes before 
continuing to the next action. Here is an example of a simple workflow that only contains a 
single Pig script as one of its actions: 

 

 
• Every workflow must define a <start> and <end> 

• This workflow has one action named transform_whitehouse_visitors 

• A workflow looks almost identical to the run method of a MapReduce job, except the job 
properties are specified in XML 

• The <delete> function is a convenient way to delete an existing output folder 

• The <ok> tag determines where the flow should go if the job completes successfully. The 
<error> tag defines where to go if the job fails 

• Parameters use the ${} syntax and represent values defined outside of workflow.xml. For 
example, ${resourceManager} is the server name and port number where the 
ResourceManager is running. Instead of hard-coding this value, you define it in an external 
properties file (the job.properties file) 

• The Oozie framework provides functions also, like wf:user(), which returns the name of 
the user running the job, and wf:lastErrorNode(), which returns the DataNode where the 
most recent error occurred. View the Oozie Documentation for a complete list of functions 

<workflow-app xmlns="uri:oozie:workflow:0.2" 
name="whitehouse-workflow"> 

 
<start to="transform_whitehouse_visitors"/> 

 
<action name="transform_whitehouse_visitors"> 

<pig> 
<job-tracker>${resourceManager}</job-tracker> 
<name-node>${nameNode}</name-node> 
<prepare> 

<delete path="wh_visits"/> 
</prepare> 
<script>whitehouse.pig</script> 

</pig> 
<ok to="end"/> 
<error to="fail"/> 

</action> 
<kill name="fail"> 

<message>Job failed, error 
message[${wf:errorMessage(wf:lastErrorNode())}] 

</message> 
</kill> 
<end name="end"/> 

</workflow-app> 
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Hive Actions 
The hive action runs a Hive job. It looks similar to a pig action: 

 

 
• The congress.hive script will execute when this action is executed 

• The hive-site.xml file needs to be packaged in the workflow and needs to contain the 
various properties for connecting to Hive 

• This action compresses the output of the map tasks 

<action name="find_congress_visits"> 
<hive xmlns="uri:oozie:hive-action:0.5"> 

<job-tracker>${resourceManager}</job-tracker> 
<name-node>${nameNode}</name-node> 
<prepare> 

<delete path="congress_visits"/> 
</prepare> 
<job-xml>hive-site.xml</job-xml> 
<configuration> 

<property> 
<name>mapreduce.map.output.compress</name> 
<value>true</value> 

</property> 
</configuration> 
<script>congress.hive</script> 

</hive> 
<ok to="end"/> 
<error to="fail"/> 

</action> 
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MapReduce Actions 
Let’s take a look at an example of a map-reduce action: 

 

 

<action name="payroll-job"> 
<map-reduce> 

<job-tracker>${resourceManager}</job-tracker> 
<name-node>${nameNode}</name-node> 
<prepare> 

<delete path="${nameNode}/user/${wf:user()}/payroll/result"/> 
</prepare> 
<configuration> 

<property> 
<name>mapreduce.job.queuename</name> 
<value>${queueName}</value> 

</property> 
<property> 

<name>mapred.mapper.new-api</name> 
<value>true</value> 

</property> 
<property> 

<name>mapred.reducer.new-api</name> 
<value>true</value> 

</property> 
<property> 

<name>mapreduce.job.map.class</name> 
<value>payroll.PayrollMapper</value> 

</property> 
<property> 

<name>mapreduce.job.reduce.class</name> 
<value>payroll.PayrollReducer</value> 

</property> 
<property> 

<name>mapreduce.job.inputformat.class</name> 
<value> 

org.apache.hadoop.mapreduce.lib.input.TextInputFormat 
</value> 

</property> 
<property> 

<name>mapreduce.job.outputformat.class</name> 
<value> 

org.apache.hadoop.mapreduce.lib.output.NullOutputFormat 
</value> 

</property> 
<property> 
<name>mapreduce.job.output.key.class</name> 
<value>payroll.EmployeeKey</value> 

</property> 
<property> 
<name>mapreduce.job.output.value.class</name> 
<value>payroll.Employee</value> 

</property> 
<property> 

<name>mapreduce.job.reduces</name> 
<value>20</value> 

</property> 
<property> 

<name> 
mapreduce.input.fileinputformat.inputdir 

</name> 
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Notice a <map-reduce> job consists of properties you would expect, like the map class, reduce 
class, input and output formats, number of reduce tasks, etc. 

<value> 
${nameNode}/user/${wf:user()}/payroll/input 

</value> 
</property> 
<property> 

<name> 
mapreduce.output.fileoutputformat.outputdir 

</name> 
<value> 

${nameNode}/user/${wf:user()}/payroll/result</value> 
</property> 
<property> 

<name>taxCode</name> 
<value>${taxCode}</value> 

</property> 
</configuration> 

</map-reduce> 
<ok to="compute-tax"/> 
<error to="fail"/> 

</action> 
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Submitting a Workflow Job 
Oozie has a command-line tool named oozie for submitting and executing workflows. The 
command looks like: 
# oozie job -config job.properties -run  

The code job.properties contains the properties passed in to the workflow. Note that the 
workflow is typically deployed in HDFS and job.properties is typically kept on the local 
filesystem. 

Notice the command above does not specify which Oozie workflow to execute. This is 
specified by the oozie.wf.application.path property: 
oozie.wf.application.path=hdfs://node:8020/path/to/app  

Here is an example of a job.properties file: 
 

 
The resourceManager property was used in workflow.xml for the <job-tracker> value. 
Similarly, the nameNode property became the <name-node> value and the queueName property 
ended up as the value of mapreduce.job.queuename in workflow.xml. You define your 
application-specific properties in job.properties 

oozie.wf.application.path=hdfs://node:8020/path/to/app 
 
#Hadoop ResourceManager 
resourceManager=node:8050 
 
#Hadoop fs.default.name 
nameNode=hdfs://node:8020/ 
 
#Hadoop mapred.queue.name 
queueName=default 
 
#Application-specific properties 
taxCode=2012 
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Fork and Join Nodes 
Oozie has fork and join nodes for controlling workflow. For example: 

 

 

<fork name="forking"> 
<path start="firstparalleljob"/> 
<path start="secondparalleljob"/> 

</fork> 
<action name="firstparallejob"> 

<map-reduce> 
... 

</map-reduce> 
<ok to="joining"/> 
<error to="kill"/> 

</action> 
<action name="secondparalleljob"> 

<map-reduce> 
... 

</map-reduce> 
<ok to="joining"/> 
<error to="kill"/> 

</action> 
<join name="joining" to="nextaction"/> 
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Defining an Oozie Coordinator  Job 
Oozie Coordinator is a component of Oozie that allows you to define jobs that are recurring 
Oozie workflows. These recurring jobs can be triggered by two types of events: 

 
time Similar to a cron job 

 
data availability The job triggers when a specified directory is created 

An Oozie Coordinator job consists of two files: 

coordinator.xml The definition of the Coordinator application 
 
coordinator.properties For defining the job’s properties 

 

Schedule a Job Based on Time 
Let’s take a look at an example of a coordinator.xml file. The following Coordinator is 
triggered based on time: 

 

 
• The frequency is in minutes, so this job runs once a day 

• Note the Oozie Coordinator has utility functions (similar to the Oozie workflow) like 
${coord:days(1)} for specifying the frequency in days 

• The job starts at midnight on Jan 1, 2013, and runs every day for a year 

• The <app-path> specifies the job to run, which is an Oozie workflow job 

You submit an Oozie Coordinator job similar to submitting a workflow job: 
# oozie job -config coordinator.properties -run   

The coordinator.properties file contains the path to the coordinator app: 
oozie.coord.application.path=hdfs://node:8020/path/to/app   

<coordinator-app name="tf-idf" 
frequency="1440" 
start="2013-01-01T00:00Z" 
end="2013-12-31T00:00Z" 
timezone="UTC" 
xmlns="uri:oozie:coordinator:0.1"> 

<action> 
<workflow> 

<app-path> 
hdfs://node:8020/home/train/tfidf/workflow 

</app-path> 
</workflow> 

</action> 
</coordinator-app> 
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Schedule a Job Based on Data Availability 
The following Coordinator application triggers a workflow job when a directory named 
hdfs://node:8020/job/result/ gets created: 

 

 
This Coordinator app is scheduled to run once a day. If the folder 
hdfs://node:8020/job/result/ exists, the <action> executes, which in this example is an 
Oozie workflow deployed in the hdfs://node:8020/myapp folder. 

The assumption here is that some MapReduce job executes once a day at an unspecified time. 
When that job runs, it deletes the hdfs://node:8020/job/result directory and then creates 
a new one, which triggers the Coordinator to run. This Coordinator runs once a day, and if 
/job/result exists, the /myapp workflow will execute. 

Note: Oozie also supports the scheduling of jobs similar to how cron jobs are 
scheduled. 

<coordinator-app name="file_check" 
frequency="1440" start="2012-01-01T00:00Z" 
end="2015-12-31T00:00Z" timezone="UTC" 
xmlns="uri:oozie:coordinator:0.1"> 
<datasets> 

<dataset name="input1"> 
<uri-template> 

hdfs://node:8020/job/result/ 
</uri-template> 

</dataset> 
</datasets> 
<action> 

<workflow> 
<app-path>hdfs://node:8020/myapp/</app-path> 

</workflow> 
</action> 

</coordinator-app> 
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Review Questions 
1) What are the two main capabilities of Oozie?    

__________________________________________________________________ 

2) What file is required to be a part of an Oozie workflow?    

3) List three common Oozie workflow actions: ______________________________ 

__________________________________________________________________ 

4) What two types of events can be used to trigger an Oozie coordinator job? 

__________________________________________________________________ 
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Lab: Defining an Oozie  Workflow 

Objective: Define and run an Oozie workflow 
See page 133 of the HDP Developer: Apache Pig and Hive Lab Booklet. 
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Appendix A: Lesson Review Quiz Answers 
 
Understanding  Hadoop:  Review Answers 
1) What are 1,024 petabytes known as? 

Answer: 1,024 petabytes = 1 Exabyte 
 
 

2) What are 1,024 exabytes known as? 

Answer: 1,024 Exabytes = 1 Zettabyte 

And for what it’s worth: 

1,024 Zettabytes = 1 Yottabyte 

1,024 Yottabytes = 1 Brontobyte 

1,024 Brontobytes = 1 Geopbyte 
 
 

3) List the three Vs of big data: 

Answer: Variety, Volume, and Velocity 
 
 

4) Sentiment is one of the six key types of big data. List the other five: 

Answer: Clickstream 

Sensor and machine data 

Location-based (geographic) data 

Server logs 

Text (web pages, emails, documents, etc.) 
 
 

5) What technology might you use to stream Twitter feeds into Hadoop? 

Answer: Flume is commonly used for importing Twitter feeds into a Hadoop cluster 
 
 

6) What technology might you use to define, store, and share the schemas of your big data 
stored in Hadoop? 

Answer: HCatalog is designed to easily store and share schemas for your big data. 
 
 

7) What are the two main new components in Hadoop 2.x? 

Answer: HDFS Federation and YARN. 
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The Hadoop Distributed File System (HDFS): Review    Answers 
1) Which component of HDFS is responsible for maintaining the namespace of the distributed 

filesystem? 

Answer: NameNode 
 
 

2) What is the default file-replication factor in HDFS? 

Answer: 3 
 
 

3) True or False: To input a file into HDFS, the client application passes the data to the 
NameNode, which then divides the data into blocks and passes the blocks to the 
DataNodes. 

Answer: False. A file’s data in HDFS never passes through the NameNode. Client 
applications read and write directly from the DataNodes. 

 
 

4) Which property is used to specify the block size of a file stored in HDFS? 

Answer: dfs.blocksize 
 
 

5) The NameNode maintains the namespace of the filesystem using which two sets of files? 

Answer: The fsimage_N and edits_N files 
 
 

6) What does the following command do? 
hdfs dfs -ls -R /user/thomas/  

Answer: Recursively lists the contents of /user/thomas in HDFS and all of its subfolders 
 
 

7) What does the following command do? 
hdfs dfs -ls /user/thomas/  

Answer: Lists the file and folders in /user/thomas, but not recursively. (The files in the 
subfolders of /user/thomas are not listed.) 
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Inputting Data into HDFS: Review   Answers 
1) What tool would work best for importing data from a relational database into HDFS? 

Answer: Sqoop 
 
 

2) What tool would work best for putting a file on your local filesystem into HDFS? 

Answer: The Hadoop client (hdfs dfs -put command) 
 
 

3) List the three main components of a typical Flume agent: 

Answer: A Flume agent consists of a source, channel, and sink 
 
 

4) What is the default number of map tasks for a Sqoop job? 

Answer: Four map tasks by default 
 
 

5) How do you specify a different number of mappers in a Sqoop job? 

Answer: The -m option is for specifying the number of mappers. 
 
 

6) What is the purpose of the $CONDITIONS value in the WHERE clause of a Sqoop query? 

Answer: The $CONDITIONS value is used internally by Sqoop to specify LIMIT and OFFSET 
clauses so the data can be split up amongst the map tasks 
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The MapReduce Framework: Review   Answers 
1) What are the three main phases of a MapReduce job? 

Answer: Map phase, shuffle/sort phase, and reduce phase 
 
 

2) Suppose the mappers of a MapReduce job output <key,value> pairs that are of type 
<integer,string>. What will the pairs look like that are processed by the corresponding 
reducers? 

Answer: The pairs coming into the reducer will look like <integer, 
(string,string,string,...)> 

 
 

3) What happens if all the <key,value> pairs output by a mapper do not fit into the memory of 
the mapper? 

Answer: When the map output buffer reaches a threshold, the <key,value> pairs are 
spilled to disk, meaning they are written to a temporary file on the local filesystem. 

 
 

4) What determines the number of mappers of a MapReduce job? 

Answer: The number of mappers is determined by the input splits. 
 
 

5) What determines the number of reducers of a MapReduce job? 

Answer: You get to choose the number of reducers. 
 
 

6) True or False: The shuffle/sort phase sorts the keys and values as they are passed to 
the reducer. 

Answer: False. The keys are sorted, but the values are not. 
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Introduction to Pig: Review  Answers 
1) List two Pig commands that cause a logical plan to execute: 

Answer: STORE, DUMP, and ILLUSTRATE all cause a logical plan to execute 
 
 

2) Which Pig command stores the output of a relation into a folder in HDFS? 

Answer: STORE 
 
 

Suppose the prices.csv file looks like: 
 

 
And assume we have the following relation defined: 

 

 
Explain what each of the following Pig commands or relations do: 

3) describe prices; 

Answer: prices: {symbol: chararray,date: chararray,price: double,volume: 
int} 

 
 

4)   A = group prices by symbol;_______________________________ 

Answer: The result is a collection of bags, with a bag for each distinct symbol. The A 
relation looks like: 

 

 
 
 

5) B = foreach prices generate symbol as x, volume as y; 

Answer: The B relation is a projection of the symbol and volume fields of prices. The 
schema was also changed. B looks like: 

B: {x: chararray,y: int}  

XFR,2004-05-13,22.90,400 
XFR,2004-05-12,22.60,400000 
XFR,2004-05-11,22.80,2600 
XFR,2004-05-10,23.00,3800 
XFR,2004-05-07,23.55,2900 
XFR,2004-05-06,24.00,2200 

prices = load 'prices.csv' using PigStorage(',') 
as (symbol:chararray, date:chararray, price:double, volume:int); 

A: {group: chararray,prices: {(symbol: chararray,date: chararray,price: 
double,volume: int)}} 
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6) C = foreach A generate group, SUM(prices.volume); 

________________________________________________________________ 

Answer: C is a projection of A. The group field is the symbol field of prices, and the SUM 
function adds up the volume field of each group of symbols. The C relation looks like: 

C: {group: chararray,long}  

The output of C looks like: 
(XFR,411900)  

 
 

7) D = foreach prices generate symbol..price; 

________________________________________________________________ 

Answer: D is a projection of all fields of prices between symbol and price. The D relation 
looks like: 

D: {symbol: chararray,date: chararray,price: double}  
 
 

8) Write a Pig relation that only contains prices with a volume greater than 3,000: 

________________________________________________________________ 

Answer: E = filter prices by volume > 3000; 
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Advanced Pig Programming: Review   Answers 
1) If a relation is sorted using ORDER BY and the resulting MapReduce job runs with three 

reducers, how is the output actually sorted? 

Answer: The ORDER BY command generates a total ordering, meaning that the records will 
be sorted across all three reducers, with the output of reducer 1 containing the first set 
of sorted records, reducer 2 containing the second set, and so on. 

 
 

Suppose the prices.csv file looks like: 
 

 
And assume we have the following relation defined: 

 

 
Explain what each of the following Pig commands or relations do: 

2) F = foreach prices generate 

(CASE 

WHEN volume > 3000 THEN volume 

WHEN volume <= 3000 THEN -1 

END) AS high_volume; 

________________________________________________________________ 

Answer: The output of F looks like: 
 

 
 
 

3) G = distinct prices; 

Answer: The DISTINCT operator removes duplicate records, but the prices relation does 
not contain any duplicates, so in this example the G relation is identical to the prices 
relation. 

XFR,2004-05-13,22.90,400 
XFR,2004-05-12,22.60,400000 
XFR,2004-05-11,22.80,2600 
XFR,2004-05-10,23.00,3800 
XFR,2004-05-07,23.55,2900 
XFR,2004-05-06,24.00,2200 

prices = load 'prices.csv' using PigStorage(',') 
as (symbol:chararray, date:chararray, price:double, volume:int); 

(-1) 
(400000) 
(-1) 
(3800) 
(-1) 
(-1) 
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4) H = GROUP prices BY symbol; 

I = foreach H { 

J = filter prices by volume > 3000; 

GENERATE group, SUM(J.price); 

}; 

Answer: The output of I is (XFR,45.6), which is the sum of the prices fields for each 
record where the volume is greater than 3,000. 

 
 

5) What is the benefit of the using ‘replicated’ clause in a Pig join? 

Answer: The result is a map-side join, which greatly improves the resulting join operation in 
MapReduce by limiting network traffic in the shuffle/sort phase to only records that will 
appear in the result. 

 
 

6) Why is filtering and projecting a relation early a performance benefit in Pig? 

Answer: Filtering limits the number of records, and projecting limits the size of the records, 
which greatly improves both network traffic and processing time of the resulting 
MapReduce job. 
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Hive  Programming:  Review Answers 
1) A Hive table consists of a schema stored in the Hive  and data stored 

in  . 

Answer: A Hive table consists of a schema stored in the Hive metastore and data stored in 
HDFS. 

 
 

2) True or False: The Hive metastore requires an underlying SQL database. 

Answer: True. Hive uses an in-memory database called Derby by default, but you can 
configure Hive to use any SQL database. 

 
 

3) What happens to the underlying data of a Hive-managed table when the table is dropped? 

Answer: The data and folders are deleted from HDFS. 
 
 

4) True or False: A Hive external table must define a LOCATION. 

Answer: False. An external table can use an external location, but it can also use the Hive 
warehouse folder. 

 
 

5) List three different ways data can be loaded into a Hive table: 

Answer: There are several ways to load data into a Hive table, including manually copying 
files into the table’s folder in HDFS; using the LOAD DATA command; and inserting data as 
the result of a query. 

 
 

6) When would you use a skewed table? 

Answer: Skewed tables make sense when your data is naturally skewed, where a small 
number of columns contain a disproportionate amount of records. 

 
 

7) Suppose you have the following table definition: 
 

 
What will the folder structure in HDFS look like for the movies table? 

Answer: Within /apps/hive/warehouse/movies will be subfolders named /genre=value. 
For example, /genre=scifi, /genre=comedy, /genre=drama, etc. 

create table movies (title string, rating string, 
length double) partitioned by (genre string); 
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8) Explain the output of the following query: 
select * from movies order by title;  

Answer: The order by clause causes the output to be totally ordered by title across all 
output files. 

 
 

9) What does the following Hive query compute? 
 

 
Answer: The ngram output from this query is called a trigram, because the result will be 
sets of three words. The 100 argument specifies you want the top 100 trigrams from this 
dataset. 

 
 

10) What does the following Hive query compute? 
 

 
Answer: The output of this query is the top 10 words in the dataset that follow the phrase 
“I liked.” 

from mytable 
select explode(ngrams(sentences(val),3,100)) as myresult; 

from mytable 
select explode(context_ngrams(sentences(val), 

array("I","liked",null),10)) as myresult; 
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Using  HCatalog:  Review Answers 
1) Where does HCatalog store its schema information? 

Answer: In the Hive metastore. 
 
 

2) List three programming frameworks that can readily access an HCatalog schema: 

Answer: Pig, Hive, and Java MapReduce programs can all easily use the schemas shared 
by HCatalog. 

 
 

3) What Java class does Pig use to load data from an HCatalog table? 

Answer: The HCatLoader class; more specifically, 
org.apache.hive.hcatalog.pig.HCatLoader. 

 
 

4) True or False: HCatalog is now merged with Hive. 

Answer: True. HCatalog is now a part of Hive. 
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Advanced Hive Programming: Review   Answers 
1) What is the benefit of performing two insert queries in the same Hive command? 

Answer: Two queries that would normally require two MapReduce jobs can be combined 
and accomplished in a single MapReduce job. 

 
 

2) True or False: Hive views are materialized when they are defined. 

Answer: False. Hive views are not materialized until they are used in another query. 
 
 

3) Suppose an employees table has 200 rows and its department column has 15 distinct 
values. How many rows would be in the result set of the following query? 

 

 
Answer: 200. The OVER clause causes the group aggregation to not occur, so each 
employees row will be output. There will only be 15 salary values, the maximum salary in 
each department. 

 
 

4) Explain what the following query is computing: 
 

 
Answer: The result will contain the fname, lname, and the average salary of this 
employee and the five preceding employees whose salaries are less than or equal to the 
current employee. 

 
 

5) Which Hive file format provides the best performance? 

Answer: ORC files are a part of the Stinger Initiative and provide the best performance for 
Hive queries. 

 
 

6) What does DAG stand for? 

Answer: DAG = Directed Acyclic Graph. Hive queries are processed into a series of jobs that 
look like a DAG. 

from employees 
select fname,lname,MAX(salary) 
over (partition by department); 

from employees 
select fname,lname,AVG(salary) 
over (partition by department order by salary 

rows between 5 preceding and current row); 
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Hadoop 2 and YARN: Review  Answers 
1) True or False: A NameNode can contain multiple namespaces. 

Answer: False. A NameNode can represent only a single namespace. 
 
 

2) What is the key benefit of the new YARN framework? 

Answer: Hadoop jobs are no longer restricted to MapReduce. With YARN, any type of 
computing paradigm can be implemented to run on Hadoop. 

 
 

3) What are the three main components of YARN? 

Answer: ResourceManager, NodeManager, and ApplicationMaster 
 
 

4) What happens if a Container fails to complete its task in a YARN application? 

Answer: It is up to the ApplicationMaster to request a new Container from the 
ResourceManager and attempt the task again. 
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Defining Workflow with Oozie: Review   Answers 
1) What are the two main capabilities of Oozie? 

Answer: Oozie Workflow, for defining Hadoop job workflows; and the Oozie coordinator, for 
scheduling recurring workflows. 

 
 

2) What file is required to be a part of an Oozie workflow? 

Answer: Each Oozie workflow must contain a workflow.xml configuration file. 
 
 

3) List three common Oozie workflow actions: 

Answer: <pig>, <hive>, and <map-reduce> 
 
 

4) What two types of events can be used to trigger an Oozie coordinator job? 

Answer: Time based, where a job executes at a specific time; or data based, where a job 
executes if data is available in a specific location. 


