

Hortonworks

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
2

	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
3

	

	

Title HDP Developer: Pig and Hive

Version: GA

Date: March, 2015

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software Foundation.

The contents of his course and all its related materials, including lab exercises and files
are Copyright © Hortonworks, Inc. 2015 All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form by any means electronic, photocopy, recording or otherwise without prior written
permission of Hortonworks.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
4

	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
5

	

	

Table	
 of	
 Contents	
 	

Understanding	
 Hadoop	
 ...	
 11	
 	

Lesson	
 	
 	
 	
 	
 Objectives	
 ..	
 11	
 	

Additional	
 	
 	
 	
 	
 Content	
 ..	
 11	
 	

The	
 Three	
 Vs	
 of	
 Big	
 Data	
 ...	
 12	
 	

Six	
 Key	
 Hadoop	
 Data	
 Types	
 ...	
 14	
 	

About	
 	
 	
 Use	
 	
 	
 Cases	
 	
 ...	
 15	
 	

Sentiment	
 	
 	
 Use	
 	
 	
 Case	
 ...	
 15	
 	

Geolocation	
 	
 	
 Use	
 	
 	
 Case	
 	
 ...	
 18	
 	

About	
 	
 	
 	
 	
 Hadoop	
 ...	
 22	
 	

Relational	
 	
 Databases	
 	
 vs.	
 	
 Hadoop	
 	
 ..	
 23	
 	

About	
 	
 	
 Hadoop	
 	
 	
 2	
 ..	
 23	
 	

New	
 	
 in	
 	
 Hadoop	
 	
 2.x	
 	
 ..	
 24	
 	

The	
 Hadoop	
 Ecosystem	
 ...	
 25	

The	
 Hortonworks	
 Data	
 Platform	
 (HDP)	
 ..	
 26	

The	
 	
 Path	
 	
 to	
 	
 ROI	
 	
 ..	
 27	
 	

Review	
 	
 	
 	
 	
 Questions	
 ..	
 28	
 	

Lab:	
 Start	
 an	
 HDP	
 2.1	
 Cluster	
 ..	
 29	
 	

Objective:	
 Start	
 an	
 HDP	
 cluster	
 in	
 your	
 VM	
 ...	
 29	
 	

The	
 Hadoop	
 Distributed	
 File	
 System	
 (HDFS)	
 ...	
 31	
 	

Lesson	
 	
 	
 	
 	
 Objectives	
 ..	
 31	
 	

Additional	
 	
 	
 	
 	
 Content	
 ..	
 31	
 	

Hadoop	
 	
 	
 vs.	
 	
 	
 RDBMS	
 ..	
 33	
 	

An	
 Example	
 of	
 Disk	
 Read	
 Performance	
 ...	
 34	
 	

HDFS	
 	
 	
 	
 Components	
 	
 	
 ..	
 35	
 	

Understanding	
 	
 	
 Block	
 	
 	
 Storage	
 	
 	
 ...	
 36	
 	

Demonstration:	
 Understanding	
 Block	
 Storage	
 ...	
 37	

Objective:	
 To	
 understand	
 how	
 data	
 is	
 partitioned	
 into	
 blocks	
 and	
 stored	
 in	
 HDFS	
 	
 37	

The	
 	
 	
 	
 	
 NameNode	
 	
 ...	
 38	
 	

The	
 	
 	
 	
 DataNodes	
 	
 ...	
 40	
 	

DataNode	
 	
 	
 	
 	
 Failure	
 	
 ...	
 41	
 	

HDFS	
 	
 	
 	
 Commands	
 	
 	
 ...	
 42	
 	

Examples	
 	
 of	
 	
 HDFS	
 	
 Commands	
 	
 ...	
 43	
 	

HDFS	
 	
 	
 File	
 	
 	
 Permissions	
 	
 ..	
 44	
 	

Review	
 	
 	
 	
 	
 Questions	
 ..	
 45	
 	

Lab:	
 	
 Using	
 	
 HDFS	
 	
 Commands	
 	
 	
 ..	
 46	
 	

Objective:	
 Become	
 familiar	
 with	
 adding,	
 removing,	
 and	
 viewing	
 files	
 in	
 HDFS	
 	
 46	
 	

Inputting	
 Data	
 into	
 HDFS	
 ..	
 47	
 	

Lesson	
 	
 	
 	
 	
 Objectives	
 ..	
 47	
 	

Additional	
 	
 	
 	
 	
 Content	
 ..	
 47	
 	

The	
 	
 	
 Hadoop	
 	
 	
 Client	
 ...	
 48	
 	

WebHDFS	
 	
 	
 	
 	
 ..	
 49	
 	

Overview	
 	
 	
 of	
 	
 	
 Flume	
 	
 ..	
 50	
 	

A	
 	
 	
 Flume	
 	
 	
 Example	
 	
 ...	
 51	
 	

Overview	
 	
 	
 of	
 	
 	
 Sqoop	
 	
 ..	
 52	
 	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
6

	

	

	

The	
 Sqoop	
 Import	
 Tool .. 53	

Importing	
 a	
 Table ... 53	

Importing	
 Specific	
 Columns ... 55	

Importing	
 from	
 a	
 Query ... 56	

The	
 Sqoop	
 Export	
 Tool ... 57	

Exporting	
 to	
 a	
 Table ... 58	

Review	
 Questions ... 59	

Lab:	
 Importing	
 RDBMS	
 Data	
 into	
 HDFS .. 60	

Objective:	
 Import	
 data	
 from	
 a	
 database	
 into	
 HDFS ... 60	

Lab:	
 Exporting	
 HDFS	
 Data	
 to	
 a	
 RDBMS ... 60	

Objective:	
 Export	
 data	
 from	
 HDFS	
 into	
 a	
 MySQL	
 table	
 using	
 Sqoop .. 60	

The	
 MapReduce	
 Framework .. 61	

Lesson	
 Objectives ... 61	

Additional	
 Content ... 61	

Overview	
 of	
 MapReduce .. 62	

Understanding	
 MapReduce .. 64	

The	
 Key/Value	
 Pairs	
 of	
 MapReduce .. 67	

WordCount	
 in	
 MapReduce ... 68	

Demonstration:	
 Understanding	
 MapReduce .. 69	

Objective:	
 To	
 understand	
 how	
 MapReduce	
 works .. 69	

The	
 Map	
 Phase .. 70	

The	
 Reduce	
 Phase ... 72	

Review	
 Questions ... 74	

Lab:	
 Running	
 a	
 MapReduce	
 Job ... 75	

Objective:	
 Run	
 a	
 Java	
 MapReduce	
 job ... 75	

Introduction	
 to	
 Pig ... 77	

Lesson	
 Objectives ... 77	

Additional	
 Content ... 77	

About	
 Pig .. 78	

Pig	
 Latin ... 79	

The	
 Grunt	
 Shell ... 79	

Demonstration:	
 Understanding	
 Pig .. 80	

Objective:	
 To	
 understand	
 Pig	
 scripts	
 and	
 relations ... 80	

Pig	
 Latin	
 Relation	
 Names .. 81	

Pig	
 Latin	
 Field	
 Names ... 81	

Pig	
 Data	
 Types ... 82	

Pig	
 Complex	
 Types .. 83	

Defining	
 a	
 Schema .. 84	

Lab:	
 Getting	
 Started	
 with	
 Pig .. 85	

Objective:	
 Use	
 Pig	
 to	
 navigate	
 through	
 HDFS	
 and	
 explore	
 a	
 dataset ... 85	

The	
 GROUP	
 Operator ... 86	

GROUP	
 ALL .. 87	

Relations	
 without	
 a	
 Schema ... 88	

The	
 FOREACH	
 GENERATE	
 Operator .. 89	

Specifying	
 Ranges	
 in	
 FOREACH ... 90	

Field	
 Names	
 in	
 a	
 FOREACH .. 90	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
7

	

	

FOREACH	
 with	
 Groups ... 91	

The	
 FILTER	
 Operator ... 92	

The	
 LIMIT	
 Operator ... 94	

Review	
 Questions ... 95	

Lab:	
 Exploring	
 Data	
 with	
 Pig .. 96	

Objective:	
 Use	
 Pig	
 to	
 navigate	
 through	
 HDFS	
 and	
 explore	
 a	
 dataset ... 96	

Advanced	
 Pig	
 Programming ... 97	

Lesson	
 Objectives ... 97	

Additional	
 Content ... 97	

The	
 ORDER	
 BY	
 Operator ... 98	

The	
 CASE	
 Operator ... 100	

Parameter	
 Substitution ... 101	

The	
 DISTINCT	
 Operator .. 102	

Using	
 PARALLEL .. 103	

The	
 FLATTEN	
 Operator ... 104	

Lab:	
 Splitting	
 a	
 Dataset .. 106	

Objective:	
 Research	
 the	
 White	
 House	
 visitor	
 data	
 and	
 look	
 for	
 members	
 of	
 Congress 106	

Nested	
 FOREACH ... 107	

About	
 Joins ... 108	

Performing	
 an	
 Inner	
 Join .. 108	

Performing	
 an	
 Outer	
 Join ... 110	

Replicated	
 Joins ... 112	

The	
 COGROUP	
 Operator .. 113	

Pig	
 User-­‐-­‐-­‐Defined	
 Functions .. 115	

A	
 UDF	
 Example .. 116	

Invoking	
 a	
 UDF .. 116	

Tips	
 for	
 Optimizing	
 Pig	
 Scripts .. 117	

Lab:	
 Joining	
 Datasets .. 118	

Objective:	
 Join	
 two	
 datasets	
 in	
 Pig .. 118	

Lab:	
 Preparing	
 Data	
 for	
 Hive .. 118	

Objective:	
 Transform	
 and	
 export	
 a	
 dataset	
 for	
 use	
 with	
 Hive .. 118	

Overview	
 of	
 the	
 DataFu	
 Library .. 119	

Computing	
 Quantiles .. 120	

Demonstration:	
 Computing	
 PageRank ... 121	

Objective:	
 To	
 understand	
 how	
 to	
 use	
 the	
 PageRank	
 UDF	
 in	
 DataFu .. 121	

Review	
 Questions ... 122	

Lab:	
 Analyzing	
 Clickstream	
 Data ... 123	

Objective:	
 Become	
 familiar	
 with	
 using	
 the	
 DataFu	
 library	
 to	
 sessionize	
 clickstream	
 data 123	

Lab:	
 Analyzing	
 Stock	
 Market	
 Data	
 using	
 Quantiles ... 123	

Objective:	
 Use	
 DataFu	
 to	
 compute	
 quantiles .. 123	

Hive	
 Programming ... 125	

Lesson	
 Objectives ... 125	

Additional	
 Content ... 125	

About	
 Hive .. 126	

Comparing	
 Hive	
 to	
 SQL .. 127	

Hive	
 Architecture .. 128	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
8

	

	

Submitting	
 Hive	
 Queries .. 129	

Defining	
 a	
 Hive-­‐-­‐-­‐Managed	
 Table .. 130	

Defining	
 an	
 External	
 Table ... 130	

Defining	
 a	
 Table	
 LOCATION ... 131	

Loading	
 Data	
 into	
 a	
 Hive	
 Table .. 132	

Performing	
 Queries .. 133	

Lab:	
 Understanding	
 Hive	
 Tables ... 134	

Objective:	
 Understand	
 how	
 Hive	
 table	
 data	
 is	
 stored	
 in	
 HDFS ... 134	

Hive	
 Partitions .. 135	

Hive	
 Buckets .. 136	

Skewed	
 Tables ... 137	

Demonstration:	
 Understanding	
 Partitions	
 and	
 Skew ... 138	

Objective:	
 To	
 understand	
 how	
 Hive	
 partitioning	
 and	
 skewed	
 tables	
 work 138	

Sorting	
 Data ... 139	

Using	
 Distribute	
 By ... 139	

Storing	
 Results	
 to	
 a	
 File .. 141	

Specifying	
 MapReduce	
 Properties ... 141	

Lab:	
 Analyzing	
 Big	
 Data	
 with	
 Hive .. 142	

Objective:	
 Analyze	
 the	
 White	
 House	
 visitor	
 data ... 142	

Lab:	
 Understanding	
 MapReduce	
 in	
 Hive .. 142	

Objective:	
 To	
 understand	
 how	
 Hive	
 queries	
 get	
 executed	
 as	
 MapReduce	
 jobs 142	

Hive	
 Join	
 Strategies .. 143	

Shuffle	
 Joins ... 143	

Map	
 (Broadcast)	
 Joins .. 144	

Sort-­‐-­‐-­‐Merge-­‐-­‐-­‐Bucket	
 (SMB)	
 Joins .. 145	

Invoking	
 a	
 Hive	
 UDF ... 146	

Computing	
 ngrams	
 in	
 Hive .. 147	

Demonstration:	
 Computing	
 ngrams ... 148	

Objective:	
 To	
 understand	
 how	
 to	
 compute	
 ngrams using	
 Hive .. 148	

Review	
 Questions ... 149	

Lab:	
 Joining	
 Datasets	
 in	
 Hive .. 150	

Objective:	
 Perform	
 a	
 join	
 of	
 two	
 datasets	
 in	
 Hive .. 150	

Lab:	
 Computing	
 ngrams	
 of	
 Emails	
 in	
 Avro	
 Format .. 150	

Objective:	
 Use	
 Hive	
 to	
 compute	
 ngrams ... 150	

Using	
 HCatalog .. 151	

Lesson	
 Objectives ... 151	

Additional	
 Content ... 151	

About	
 HCatalog .. 152	

HCatalog	
 in	
 the	
 Ecosystem .. 153	

Defining	
 a	
 New	
 Schema ... 154	

Using	
 HCatLoader	
 with	
 Pig .. 154	

Using	
 HCatStorer	
 with	
 Pig .. 154	

The	
 Pig	
 SQL	
 Command ... 154	

Review	
 Questions ... 155	

Lab:	
 Using	
 HCatalog	
 with	
 Pig .. 156	

Objective:	
 Use	
 HCatalog	
 to	
 provide	
 the	
 schema	
 for	
 a	
 Pig	
 relation ... 156	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
9

	

	

Advanced	
 Hive	
 Programming .. 157	

Lesson	
 Objectives ... 157	

Additional	
 Content ... 157	

Performing	
 a	
 Multi-­‐-­‐-­‐Table/File	
 Insert .. 158	

Understanding	
 Views ... 160	

Defining	
 Views .. 161	

Using	
 Views ... 161	

The	
 TRANSFORM	
 Clause .. 162	

The	
 OVER	
 Clause ... 163	

Using	
 Windows .. 164	

Hive	
 Analytics	
 Functions .. 165	

Lab:	
 Advanced	
 Hive	
 Programming ... 166	

Objective:	
 To	
 understand	
 how	
 some	
 of	
 the	
 more	
 advanced	
 features	
 of	
 Hive	
 work 166	

Hive	
 File	
 Formats .. 167	

Hive	
 SerDes ... 167	

Hive	
 ORC	
 Files ... 168	

Computing	
 Table	
 Statistics ... 169	

Hive	
 Cost	
 Based	
 Optimization ... 170	

Vectorization ... 171	

Using	
 HiveServer2 .. 172	

Understanding	
 Hive	
 on	
 Tez .. 173	

Using	
 Tez	
 for	
 Hive	
 Queries ... 173	

Demonstration:	
 Hive	
 Optimizations ... 174	

Objective:	
 To	
 become	
 familiar	
 with	
 some	
 ways	
 to	
 optimize	
 Hive .. 174	

Hive	
 Optimization	
 Tips .. 175	

Hive	
 Query	
 Tunings .. 176	

Review	
 Questions ... 177	

Lab:	
 Streaming	
 Data	
 with	
 Hive	
 and	
 Python .. 178	

Objective:	
 Use	
 a	
 custom	
 reducer	
 script	
 to	
 optimize	
 a	
 Hive	
 query .. 178	

Hadoop	
 2	
 and	
 YARN ... 179	

Lesson	
 Objectives ... 179	

Additional	
 Content ... 179	

About	
 HDFS	
 Federation ... 180	

Multiple	
 Federated	
 NameNodes .. 180	

Multiple	
 Namespaces .. 181	

Overview	
 of	
 HDFS	
 High	
 Availability .. 181	

Quorum	
 Journal	
 Manager ... 182	

Configuring	
 Automatic	
 Failover .. 183	

About	
 YARN .. 184	

Open-­‐-­‐-­‐source	
 YARN	
 Use	
 Cases ... 184	

The	
 Components	
 of	
 YARN .. 185	

Lifecycle	
 of	
 a	
 YARN	
 Application .. 186	

A	
 Cluster	
 View	
 Example ... 187	

Review	
 Questions ... 188	

Lab:	
 Running	
 a	
 YARN	
 Application ... 189	

Objective:	
 To	
 run	
 a	
 YARN	
 application ... 189	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
10

	

	

Defining	
 Workflow	
 with	
 Oozie ... 191	

Lesson	
 Objectives ... 191	

Additional	
 Content ... 191	

Overview	
 of	
 Oozie ... 192	

Defining	
 an	
 Oozie	
 Workflow .. 193	

Pig	
 Actions ... 194	

Hive	
 Actions .. 195	

MapReduce	
 Actions .. 196	

Submitting	
 a	
 Workflow	
 Job .. 198	

Fork	
 and	
 Join	
 Nodes ... 199	

Defining	
 an	
 Oozie	
 Coordinator	
 Job ... 200	

Schedule	
 a	
 Job	
 Based	
 on	
 Time ... 200	

Schedule	
 a	
 Job	
 Based	
 on	
 Data	
 Availability .. 201	

Review	
 Questions ... 202	

Lab:	
 Defining	
 an	
 Oozie	
 Workflow .. 203	

Objective:	
 Define	
 and	
 run	
 an	
 Oozie	
 workflow .. 203	

Hadoop	
 Streaming .. 205	

Lesson	
 Objectives ... 205	

Hadoop	
 Streaming .. 206	

Running	
 a	
 Hadoop	
 Streaming	
 Job ... 207	

Appendix	
 A:	
 Lesson	
 Review	
 Quiz	
 Answers .. 209	

Understanding	
 Hadoop:	
 Review	
 Answers ... 209	

The	
 Hadoop	
 Distributed	
 File	
 System	
 (HDFS):	
 Review	
 Answers ... 210	

Inputting	
 Data	
 into	
 HDFS:	
 Review	
 Answers .. 211	

The	
 MapReduce	
 Framework:	
 Review	
 Answers .. 212	

Introduction	
 to	
 Pig:	
 Review	
 Answers ... 213	

Advanced	
 Pig	
 Programming:	
 Review	
 Answers ... 215	

Hive	
 Programming:	
 Review	
 Answers ... 217	

Using	
 HCatalog:	
 Review	
 Answers .. 219	

Advanced	
 Hive	
 Programming:	
 Review	
 Answers .. 220	

Hadoop	
 2	
 and	
 YARN:	
 Review	
 Answers ... 221	

Defining	
 Workflow	
 with	
 Oozie:	
 Review	
 Answers .. 222	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
11

	

	

	

Understanding Hadoop

Lesson Objectives
This lesson covers an overview of big data, Hadoop, and the Hortonworks Data Platform.

After completing this lesson, students should be able to:

• Describe the Three Vs of Big Data

• Describe the Six Key Hadoop Data Types

• Describe Use Cases

• Describe Hadoop

• Describe the Hortonworks Data Platform (HDP)

• Describe the Path to ROI

Additional Content
• Quiz: Lesson Review

• Lab: Start an HDP 2.3 Cluster

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
12

	

	

The Three Vs of Big Data
Big data is a common buzzword in the world of IT nowadays, and it is important to understand
what the term means.

Big data describes the realization of greater business intelligence by storing, processing, and
analyzing data that was previously ignored or siloed due to the limitations of traditional data-
management technologies.

Notice from this definition that there is more to big data than just a lot of data, and there is
more to big data than just storing it.

Processing If you are just storing a lot of data, then you probably do not have a

use case for big data. Big data is data that you want to be able to
process and use as part of a business application

Analyzing In addition to making the data a part of your applications, big data

is also data that you want to analyze (i.e. mine the data) to find
information that was otherwise unknown

The characteristics of big data are often defined as the three Vs:

Variety Any type of structured or unstructured data

Volume Terabytes and petabytes (and even exabytes) of data

Velocity Data flows in to your organization at increasing rates

Note: A common aspect of big data is that it is often data that was otherwise
ignored in your business because you did not have the capability to store,
process, and analyze it.

For example, your customers’ personal information stored in an RDBMS and
used in online transactions is not big data. However, the three terabytes of web-
log files from millions of visits to your website over the last ten years is probably
big data.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
13

	

	

Big data includes all types of data:

Structured The data has a schema, or a schema can be easily assigned to it

Semi-structured Has some structure, but typically columns are often missing or

rows have their own unique columns

Unstructured Data that has no structure, like JPGs, PDF files, audio and video
files, etc.

Big data also has two inherent characteristics:

Time based A piece of data is something known at a certain moment in time,

and that time is an important element. For example, you might live
in San Francisco and tweet about a restaurant that you enjoy. If
you later move to New York, the fact that you once liked a
restaurant in San Francisco does not change

Immutable Because of its connection to a point in time, the truthfulness of the

data does not change. We look at changes in big data as new
entries, not updates of existing entries

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
14

	

	

Six Key Hadoop Data Types

6	
 Key	
 Hadoop	
 Data	
 Types	
 	

	

The type of big data that ends up in Hadoop typically fits into one of the following categories:

Sentiment Understand how your customers feel about your brand and

products right now

Clickstream Capture and analyze website visitors’ data trails and optimize your
website

Sensor/Machine Discover patterns in data streaming automatically from remote

sensors and machines

Geographic Analyze location-based data to manage operations where they
occur

Server Logs Research log files to diagnose and process failures and prevent

security breaches

Text Understand patterns in text across millions of web pages, emails,
and documents

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
15

	

	

About Use Cases

Sentiment Use Case

Sentiment	
 Use	
 Cases	

	

The goal was to determine how the public felt about the debut of the Iron Man 3 movie using
Twitter, and how the movie company might better promote the movie based on the initial
feedback. Here are the steps that were performed:

1) Use Flume to get the Twitter feeds into HDFS.

2) Use HCatalog to define a shareable schema for the data.

3) Use Hive to determine sentiment.

4) Use an Excel bar graph to visualize the volume of tweets.

5) Use MS PowerView to view sentiment by country on a map.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
16

	

	

Getting	
 Twitter	
 Feeds	
 into	
 Hadoop	

	

Flume was used to input the Twitter feeds into Hadoop. Once the data was in HDFS, HCatalog
was used to define a schema:

There were a lot of Hive queries used to create the final result. Hive looks like SQL. For
example:

CREATE EXTERNAL TABLE tweets_raw (
id BIGINT,
created_at STRING,
source STRING,
favorited BOOLEAN,
retweet_count INT,
text STRING

)

CREATE TABLE tweetsbi
STORED AS RCFile
AS
SELECT

t.*,
case s.sentiment

when 'positive' then 2
when 'neutral' then 1
when 'negative' then 0

end as sentiment
FROM tweets_clean t LEFT OUTER JOIN tweets_sentiment s on t.id = s.id;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
17

	

	

The result was imported into Power View. The following graph shows the volume of tweets
over the opening weekend of the movie:

View	
 Spikes	
 in	
 Tweet	
 Volume	

	

The sentiment of the tweets was graphed by country:

View	
 Sentiment	
 by	
 Country	

	

	

	

Reference: Visit http://hortonworks.com/hadoop-tutorial/how-to-refine-and-
visualize-sentiment-data/ to watch a video that walks through the steps above.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
18

	

	

	

Geolocation Use Case
A trucking company collects sensor data from its trucks based on GPS coordinates and logs
driving events like speed, acceleration, stopping too quickly, driving too close to other
vehicles, and so on. These events get collected and put into Hadoop for analysis. The goal of
the trucking company is to reduce fuel costs and improve driver safety by recognizing high-risk
drivers.

• Flume is used to get the raw sensor data into Hadoop

• Sqoop is used to get the data about each vehicle from an RDBMS into Hadoop

• HCatalog contains all of the schema definitions

• Hive is used to analyze the gas mileage of trucks

• Pig is used to compute a risk factor for each truck driver based on his/her events
• Excel is used to create bar graphs and maps showing where and how often events are

occurring

Getting	
 the	
 Raw	
 Data	
 into	
 Hadoop	

	

Flume was used to input the data into HDFS. The data collected from the trucks looks like:

truckid
driverid
event
latitude
longitude
city
state
velocity
event_indicator (0 or 1)
idling_indicator (0 or 1)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
19

	

	

For example:

The details of the trucks and drivers are stored in a relational database. Sqoop was used to
import the relational data into HDFS, and HCatalog was used to define schemas for this data:

Getting	
 the	
 Truck	
 Data	
 into	
 Hadoop	

A5 A5 unsafe following distance 41.526509 -124.038407 Klamath California 33 1 0
A54 A54 normal 35.373292 -119.018712 Bakersfield California 19 0 0
A48 A48 overspeed 38.752124 -121.288006 Roseville California 77 1 0

create table trucks (
driverid string,
truckid string,
model string,
monthyear_miles int,
monthyear_gas int,
total_miles int,
total_gas double,
mileage double
);

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
20

	

	

	

Lots of Hive queries were used to evaluate the data. Hive looks like SQL:

Pig is a scripting language that has an SQL-like look to it. Pig was used to compute the risk
factor of each driver:

CREATE TABLE truck_mileage AS
SELECT truckid, rdate, miles, gas,

miles/gas mpg
FROM trucks
LATERAL VIEW stack(54,

'jun13',jun13_miles,jun13_gas,'may13',may13_miles,may13_gas,'apr13',apr13_miles,apr13_
gas,...
) dummyalias AS rdate, miles, gas;

 a = LOAD 'events'
 using org.apache.hive.hcatalog.pig.HCatLoader();
 b = filter a by event != 'Normal';
c = foreach b

generate driverid, event, (int) '1' as occurance;
d = group c by driverid;
e = foreach d generate group as driverid,

SUM(c.occurance) as t_occ;
f = LOAD 'trucks'
 using org.apache.hive.hcatalog.pig.HCatLoader();
g = foreach f generate driverid,

((int) apr09_miles + (int) apr10_miles) as t_miles;
join_d = join e by (driverid), g by (driverid);
final_data = foreach join_d generate

$0 as driverid, (float) $1/$3*1000 as riskfactor;
store final_data into 'riskfactor'

using org.apache.hive.hcatalog.pig.HCatStorer();

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
21

	

	

Using Power View, the risks were displayed in a bar graph:

Risk	
 Factors	
 Viewed	
 in	
 a	
 Graph	

	

The risk factors were also plotted on a map:

Risk	
 Factors	
 Viewed	
 on	
 a	
 Map	

	

	

	

Reference: Visit http://hortonworks.com/hadoop-tutorial/geolocation-data-profit-
from-predictive-analytics/ to view a video of the trucking company geolocation
use case.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
22

	

	

	

About Hadoop
Apache Hadoop, http://hadoop.apache.org/, is one such system. Hadoop ties together a cluster
of commodity machines with local storage using free and open-source software to store and
process vast amounts of data at a fraction of the cost of any other system.

Framework for
solving data-intensive
processes

Meaning the bottleneck was waiting to read data from the disk.
The potential bottlenecks in a computing system are CPU, RAM,
network, and disk IO. Hadoop was designed to solve the problem
of disk IO

Designed to scale
massively

To scale massively, it is important things are as simple as possible,
provide redundancy, and avoid the need for any sharing of a single
system, such as locking files for operations. To meet these goals,
the Hadoop file system is “write once” and files are immutable

Hadoop is very fast
for big jobs

Hadoop does scale. A 20-node cluster with 10 disks per machine
running a large MapReduce job will have close to 200 disks
reading and processing data all at once. The relative speed of work
done in parallel when compared to a non-parallel system will be
significant

Variety of processing
engines

Big data on Hadoop can be processed using multiple different
processing engines, including Tez, Spark and Storm.

Designed for
hardware and
software failures

Which is accomplished by “sharing nothing.” Core Hadoop
systems are designed to share as little information about state as
possible. DataNodes do not know what file a block belongs to. A
map task writes to a temporary directory, and that data is thrown
away at failure. A task is either running to success or it fails
completely, and subsequent attempts do not acquire state from
the failed task

All of these features put together create a powerful data processing framework that not only
stores large amounts of data but also processes large amounts of data in a relatively short
amount of time.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
23

	

	

Relational Databases vs. Hadoop

Relational	
 Database	
 vs.	
 Hadoop	

	

Understanding how schemas work in Hadoop might help you better understand how Hadoop
is different from relational databases:

• With a relational database, a schema must exist before the data is written to the database,
which forces the data to fit into a particular model

• With Hadoop, data is input into HDFS in its raw format without any schema. When data is
retrieved from HDFS, a schema can be applied then to fit the specific use case and needs
of your application

About Hadoop 2
Hadoop 2.x refers to the next generation of Hadoop. As expected, the Hadoop framework has
grown to meet the demands of its own popularity and usage, and 2.x reflects the natural
maturing of the open-source project.

The Apache Hadoop 2.x project (the open-source version number) consists of the following
modules:

Hadoop Common The utilities that provide support for the other Hadoop modules

HDFS The Hadoop Distributed File System

YARN A framework for job scheduling and cluster resource management

MapReduce For processing large data sets in a scalable and parallel fashion

Important: Hadoop is not meant to replace your relational database. Hadoop is
for storing big data, which is often the type of data that you would otherwise not
store in a database due to size or cost constraints. You will still have your
database for relational, transactional data.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
24

	

	

New in Hadoop 2.x

HADOOP 1.x HADOOP 2.x

What’s	
 New	
 in	
 Hadoop	
 2.x?	

	

There are two exciting and significant additions to the Hadoop framework:

HDFS HA and
Federation

Provides a name service that is scalable and reliable

YARN Stands for Yet Another Resource Negotiator. It divides the two
major functions of the JobTracker (resource management and job
lifecycle management) into separate components

A key issue with Hadoop 1.x was providing a NameNode that was highly available. Hadoop 2.x
provides an HA NameNode.

Federation provides the ability to configure multiple NameNodes, and therefore multiple
namespaces, to provide a distribution of workloads since the NameNodes can now scale
horizontally.

YARN provides a logical separation of duties for negotiating and executing jobs across a
Hadoop cluster. The end result of YARN is a new, more generic resource-management
framework that works with more than just MapReduce jobs.

MapReduce%	

(cluster*resource*management*	

*&*data*processing)*	

HDFS%	

(redundant,*reliable*storage)*	

MapReduce%	

(data*processing)*	

Others%	

(data*processing)*	

YARN%	

(cluster*resource*management)*	

HDFS%	

(redundant,*reliable*storage)*	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
25

	

	

The Hadoop Ecosystem

The	
 Hadoop	
 Ecosystem	

	

Hadoop is more than HDFS and MapReduce. There is a large group of technologies and
frameworks that are associated with Hadoop, including:

Pig A scripting language that simplifies the creation of MapReduce

jobs, and excels at exploring and transforming data

Hive Provides SQL-like access to your big data

HBase A Hadoop database

Accumulo A robust, scalable, high-performance data-storage and retrieval
system, built on Hadoop and Zookeeper

Ambari Provisioning, managing, and monitoring Apache Hadoop clusters

Sqoop Efficiently transfers bulk data between Hadoop and RDBMS

Falcon A data processing and management solution, designed for pipeline
coordination, lifecycle management, and data discovery

Oozie A workflow scheduler system to manage Apache Hadoop jobs

Solr A standalone enterprise search server with a REST-like API

Flume Efficiently collects, aggregates, and moves log data

ZooKeeper An open-source server that enables highly reliable distributed

coordination

Mahout An Apache project whose goal is to build scalable-machine
learning libraries

Storm Framework that provides real-time processing of streams of data

Spark A fast and general engine for large-scale data processing

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
26

	

	

The Hortonworks Data Platform (HDP)

The	
 Hortonworks	
 Data	
 Platform	
 (HDP)	

	

The Hortonworks Data Platform, or HDP for short, is the only 100% open-source data-
management platform for Apache Hadoop and is the most stable and reliable Apache Hadoop
distributor. It delivers the cost effectiveness of Hadoop and the advanced services required for
enterprise deployments.

The key features of HDP include:

High Availability HA is now achievable in HDP 2.x without the use of an outside
technology

Open-Source Cluster
Management

HDP includes Apache Ambari, the only open-source operations
tool that allows you to provision, manage, and monitor a Hadoop
cluster of any size

Metadata Services &
HCatalog

HCatalog provides metadata services and a REST interface that
provides an additional SQL-like interface to Hadoop

Data Integration
Services

Including Sqoop, Flume, and WebHDFS

ODBC Done Right Hive has a free high-performance ODBC driver that includes an
SQL engine so you can interact with nearly every BI tool, including
all SQL-92 interfaces

Note: Apache Hadoop has become a core component of the enterprise data
architecture as a complement to existing data-management systems.
Accordingly, HDP is designed to easily inter-operate so you can extend your
existing investments in applications, tools, and processes with Hadoop.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
27

	

	

The Path to ROI

The	
 Path	
 to	
 ROI	

	

Along with the tools and frameworks in the Hadoop ecosystem, there are also the individuals
who must push the data through Hadoop, answer questions, and find hidden gems within the
big data. The path to ROI in Hadoop involves several steps and roles, including:

Put the data into
HDFS

Because you do not need to apply a schema to the data, it is best
to keep it in its raw format and to try not to force a structure on the
data that may only fit a few use cases. By keeping all of the original
raw data, you leave the door open for answers to future questions
that you may not have thought to ask yet

Explore and
Transform

Often the raw data needs to be transformed. Pig is an excellent
tool for exploring the raw data and transforming it into a structure
more suitable for your specific use case

Answer questions Hive is a great tool for performing queries on structured data. The
Hive query language is essentially SQL, so it is familiar and
comfortable to use for data analysts

Find hidden gems The real ROI comes from mining the data, a task that fits under the

moniker of data science. The data scientist uses a variety of tools
and frameworks, including Java, MapReduce, R, Mahout, Python,
and other tools and scripting languages

Note: The diagram above is meant only to show a typical use case of how data
might flow through Hadoop and how the various elements of the Hadoop
ecosystem are typically used. There are certainly many other scenarios and use
cases, along with many other tools available for answering questions and mining
big data.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
28

	

	

Review Questions
1) What are 1,024 petabytes known as? _

2) What are 1,024 exabytes known as? __________________________

3) List the three Vs of big data: ___

4) Sentiment is one of the six key types of big data. List the other five:

5) What technology might you use to stream Twitter feeds into Hadoop?

6) What technology might you use to define, store, and share the schemas of your big data
stored in Hadoop?

7) What are the two main new components in Hadoop 2.x?

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
29

	

	

Lab: Start an HDP 2.3 Cluster

Objective: Start an HDP cluster in your VM
See page 7 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
30

	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
31

	

	

The Hadoop Distributed File System (HDFS)

Lesson Objectives
This lesson covers the details of how files are stored and maintained in the Hadoop Distributed
File System (HDFS).

After completing this lesson, students should be able to:

• Describe HDFS

• Describe How to Understand Block Storage

• Describe the NameNode

• Describe the DataNodes

• Describe HDFS Commands

Additional Content
• Demonstration: Understanding Block Storage

• Quiz: Lesson Review

• Lab: Using HDFS Commands

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
32

	

	

About HDFS

What	
 is	
 HDFS?	

	

Data in Hadoop is stored on a filesystem referred to as HDFS or the Hadoop Distributed File
System. With HDFS, data is broken down into chunks and distributed across a cluster of
machines.

HDFS has the following characteristics:

• Primary storage system for Hadoop: it stores large files as small blocks

• Designed to be deployed on low-cost hardware
• Designed to scale easily and effectively (adding more nodes increases both storage space

and computing throughput)

• Reliability: data is replicated so that disk failover is not only acceptable but expected and
handled seamlessly

Note: HDFS is the data-storage mechanism for Hadoop. In Hadoop 2.x, YARN is
referred to as the data operating system.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
33

	

	

Hadoop vs. RDBMS

Hadoop	
 vs.	
 RDBMS	

	

To help better understand how Hadoop works, let’s compare it to something you may be very
familiar with: a relational database. From a very high level, the difference between Hadoop and
RDBMS is:

• A relational database uses complex in-memory data structures to avoid the expense of disk
access

• Hadoop uses a collection of disks to parallelize the expense of disk access
Using indexes optimizes a relational database’s performance by avoiding disk access. In order
to store a lot of data and access it efficiently, RDBMS uses a smaller, organized representation
of the data (an index) that can be loaded into memory and can allow a lightning-fast lookup as
to whether or not a disk seek and read is needed. This works very well up to the point that your
index no longer fits in RAM or up to the point that your final result set, or the operations
performed while generating this result set, require a lot of disk access.

Hadoop looks at this problem in another way. Hadoop assumes that the operation will require
reading a significant amount of data off of disk. To avoid seeks, Hadoop simply reads the
entire file.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
34

	

	

An Example of Disk Read Performance
Suppose a RDBMS had to process a 500G data file. The time it takes to read this data off of
disk would be 61 minutes. This assumes a transfer rate of 1030Mbps. (Source:
http://www.calctool.org/CALC/prof/computing/transfer_time). Typically you would look at your
queries, add some indexes, and try to optimize the access to avoid this disk seek.

In Hadoop, this file could be stored as 2,000 256Mb chunks. If we processed it in Hadoop
doing a single search for records matching a pattern, then Hadoop would perform 2,000
individual file reads. Each of these 2,000 tasks will require 1.9 seconds of disk read. A cluster
of 40 DataNodes with eight disks each (so a total of 320 disks) will get an average six or seven
of these file chunk reads, for a total transfer time of 14 seconds. The bottleneck of processing
this 500G file has been taken from 60 minutes to seven times 1.9 seconds, or roughly 14
seconds.

Note: This doesn’t mean the overall MapReduce job would take 14 seconds.
This example is ignoring the overhead of both MapReduce and RDBMS and is
only comparing the amount of time spent reading from disk. Regardless of the
overhead, this demonstrates how Hadoop reads large amounts of data in an
extremely efficient manner.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
35

	

	

HDFS Components
A Hadoop instance consists of a cluster of HDFS machines often referred to as the Hadoop
cluster or the HDFS cluster. There are two main components of an HDFS cluster:

NameNode The “master” node of HDFS that manages the data (without

actually storing it) by determining and maintaining how the chunks
of data are distributed across the DataNodes.

DataNode Stores the chunks of data and is responsible for replicating the

chunks across other DataNodes.

The NameNode and DataNode are daemon processes running in the cluster. Some important
concepts involving the NameNode and DataNodes:

• A NameNode represents a single namespace. A cluster can have multiple NameNodes if
multiple namespaces are desired

• Data never resides on or passes through the NameNode. Your big data only resides on
DataNodes

• DataNodes are referred to as “slave” daemons to the NameNode and are constantly
communicating their state with the NameNode

• The NameNode keeps track of how the data is broken down into chunks on the DataNodes

• The default chunk size is 128MB (but is configurable)

• The default replication factor is three (and is also configurable), which means each chunk of
data is replicated across three DataNodes

• DataNodes communicate with other DataNodes (through commands from the NameNode) to
achieve data replication

Note: HDFS supports a traditional hierarchical file organization. A user or an
application can create directories and store files inside these directories.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
36

	

	

Understanding Block Storage

Understand	
 Block	
 Storage	

	

Putting a file into HDFS involves the following steps:

1) A client application sends a request to the NameNode that specifies where they want to put
the file in the filesystem.

2) The NameNode determines how the data is broken down into blocks and which DataNodes
will be used to store those blocks. That information is given to the client application.

3) The client application communicates directly with each DataNode, writing the blocks onto
the DataNodes.

4) The DataNodes replicate the newly created blocks based on instructions from the
NameNode.

You can specify the block size for each file using the dfs.blocksize property. If you do not
specify a block size at the file level, the global value of dfs.blocksize defined in hdfs-
site.xml is used.

Important: Notice that the data never actually passes through the NameNode.
The client program that is uploading the data into HDFS performs I/O directly
with the DataNodes. The NameNode only stores the metadata of the filesystem,
but is not responsible for storing or transferring the data.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
37

	

	

Demonstration: Understanding Block Storage

Objective: To understand how data is partitioned into blocks and stored in HDFS
See page 15 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
38

	

	

The NameNode

The	
 NameNode	

	

HDFS has a master/slave architecture. An HDFS cluster consists of a single NameNode, which is
a master server that manages the filesystem namespace and regulates access to files by
clients.

The NameNode has the following characteristics:

• Acts as the master of the DataNodes

• Executes filesystem namespace operations, like opening, closing, and renaming files and
directories

• Determines the mapping of blocks to DataNodes

• Maintains the filesystem namespace

The NameNode performs these tasks by maintaining two files:

fsimage_N Contains the entire filesystem namespace, including the mapping of

blocks to files and filesystem properties

edits_N A transaction log that persistently records every change that

occurs to filesystem metadata

When the NameNode starts up, it enters safemode (a read-only mode). It loads the fsimage_N
and edits_N from disk, applies all the transactions from the edits_N to the in-memory
representation of the fsimage_N, and flushes out this new version into a new fsimage_N+1 on
disk.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
39

	

	

ssh namenode
[namenode ~]# ls -la /hadoop/hdfs/namenode/current/
total 1048
-rw-r--r-- 1 hdfs hdfs 1048576 edits_inprogress_0000000000000000001
-rw-r--r-- 1 hdfs hdfs 336 fsimage_0000000000000000000
-rw-r--r-- 1 hdfs hdfs 62 fsimage_0000000000000000000.md5
-rw-r--r-- 1 hdfs hdfs 2 seen_txid
-rw-r--r-- 1 hdfs hdfs 202 VERSION

For example, initially you will have an fsimage_0 file and an edits_inprogress_1 file. When
the merging occurs, the transactions in edits_1 are merged with fsimage_0 and a new
fsimage_1 file is created. In addition, a new empty edits_2 file is created for all future
transactions that occur after the creation of fsimage_1.

This process is called a checkpoint. Once the NameNode has successfully checkpointed, it will
leave safemode, thus enabling writes.

Note: On your classroom VM, you can view the fsimage and edit files in the
/hadoop/hdfs/namenode/current folder on the namenode machine:

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
40

	

	

The DataNodes

The	
 DataNodes	

	

HDFS exposes a filesystem namespace and allows user data to be stored in files. Internally, a
file is split into one or more blocks and these blocks are stored in a set of DataNodes.

The NameNode determines the mapping of blocks to DataNodes. The DataNodes are
responsible for:

• Handling read and write requests from application clients

• Performing block creation, deletion, and replication upon instruction from the NameNode
(The NameNode makes all decisions regarding replication of blocks)

• Sending heartbeats to the NameNode

• Sending a Blockreport to the NameNode

The NameNode periodically receives a Heartbeat and a Blockreport from each of the
DataNodes in the cluster. Receipt of a Heartbeat implies that the DataNode is functioning
properly. A Blockreport contains a list of all blocks on a DataNode.

DataNodes have the following characteristics:

• The DataNode has no knowledge about HDFS files

• It stores each block of HDFS data in a separate file on its local filesystem

• The DataNode does not create all files in the same local directory. Instead, it uses a
discovery technique to determine the optimal number of files per directory and creates
subdirectories appropriately

• When a DataNode starts up, it scans through its local file system, generates a list of all
HDFS data blocks that correspond to each of these local files, and then sends this
information to the NameNode (as a Blockreport)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
41

	

	

DataNode Failure

DataNode	
 Failure	

	

The primary objective of HDFS is to store data reliably even in the presence of failures. Hadoop
is designed to recover gracefully from a disk failure or the network failure of a DataNode:

• If a DataNode fails to send a Heartbeat to the NameNode, that DataNode is labeled as dead

• Any data that was registered to a dead DataNode is not available to HDFS anymore

• The NameNode does not send new I/O requests to a dead DataNode, and its blocks are
replicated to live DataNodes

DataNode death typically causes the replication factor of some blocks to fall below their
specified value. The NameNode constantly tracks which blocks need to be replicated and
initiates replication whenever necessary.

Reference: For tips on configuring a network for a Hadoop cluster, visit
http://hortonworks.com/kb/best-practices-for-cluster-network-configuration/.

Note: It is possible that a block of data fetched from a DataNode arrives
corrupted, either from a disk failure or network error. HDFS implements
checksum checking on the contents of HDFS files. When a client creates an
HDFS file, it computes a checksum of each block of the file and stores these
checksums in a separate hidden file in the same HDFS namespace. When a client
retrieves file contents, it verifies that the data it received from each DataNode
matches the checksum stored in the associated checksum file. If not, then the
client can opt to retrieve that block from another DataNode that has a replica of
that block.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
42

	

	

HDFS Commands
The hdfs application is a Hadoop client application that allows you to issue commands to
HDFS from a command line. The hdfs application has the following syntax:
hdfs dfs -command <args>

A command is one of the following:

Use the help option for a description of a command. For example:

hdfs dfs
Usage: hadoop fs [generic options]

[-appendToFile <localsrc> ... <dst>]
[-cat [-ignoreCrc] <src> ...]
[-checksum <src> ...]
[-chgrp [-R] GROUP PATH...]
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-copyFromLocal [-f] [-p] <localsrc> ... <dst>]
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src>...<localdst>]
[-count [-q] <path> ...]
[-cp [-f] [-p] <src> ... <dst>]
[-createSnapshot <snapshotDir> [<snapshotName>]]
[-deleteSnapshot <snapshotDir> <snapshotName>]
[-df [-h] [<path> ...]]
[-du [-s] [-h] <path> ...]
[-expunge]
[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-getfacl [-R] <path>]
[-getmerge [-nl] <src> <localdst>]
[-help [cmd ...]]
[-ls [-d] [-h] [-R] [<path> ...]]
[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ... <dst>]
[-moveToLocal <src> <localdst>]
[-mv <src> ... <dst>]
[-put [-f] [-p] <localsrc> ... <dst>]
[-renameSnapshot <snapshotDir> <oldName> <newName>]
[-rm [-f] [-r|-R] [-skipTrash] <src> ...]
[-rmdir [--ignore-fail-on-non-empty] <dir> ...]
[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]
[-setrep [-R] [-w] <rep> <path> ...]
[-stat [format] <path> ...]
[-tail [-f] <file>]
[-test -[defsz] <path>]
[-text [-ignoreCrc] <src> ...]
[-touchz <path> ...]
[-usage [cmd ...]]

hdfs dfs -help put
-put [-f] [-p] <localsrc> ... <dst>: Copy files from the local file system

into fs. Copying fails if the file already
exists, unless the -f flag is given. Passing
-p preserves access and modification times,
ownership and the mode. Passing -f overwrites
the destination if it already exists.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
43

	

	

Examples of HDFS Commands
The following mkdir command makes a new directory named mydata:
hdfs dfs -mkdir mydata

This put command copies a local file named numbers.txt into mydata in HDFS:
hdfs dfs -put numbers.txt mydata/

Use the ls command to view the contents of the mydata folder:

hdfs dfs -ls mydata
Found 1 items
-rw-r--r-- 3 root root 2549 2013-08-29 mydata/numbers.txt

Note: The logs for HDFS are, by default, in the /var/log/hadoop/hdfs folder.
Hadoop uses log4j via the Apache Commons Logging framework for logging.

Note: The hdfs dfs command is the same command as hadoop fs, and you
may see the two used interchangeably.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
44

	

	

HDFS File Permissions

HDFS	
 File	
 Permissions	

	

HDFS implements a permissions model for files and directories that shares much of the POSIX
model:

• Each file and directory is associated with an owner and a group
• The file or directory has separate permissions for the user that is the owner, for other users

that are members of the group, and for all other users

• For files, the r permission is required to read the file and the w permission is required to
write or append to the file

• For directories, the r permission is required to list the contents of the directory, the w
permission is required to create or delete files or directories, and the x permission is
required to access a child of the directory

The output of the ls and ls -R commands shows the file permissions:

drwxr-xr-x - root root
-rw-r--r-- 3 root root
-rw-r--r-- 3 root root

0 2013-08-29 03:23 /user/root/mydata
2549 2013-08-29 03:23 /user/root/mydata/numbers.txt

3613198 2013-08-28 21:55 /user/root/stocks.csv

Note: HDFS also supports ACLs, which provide even finer-grained authorization
capabilities.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
45

	

	

Review Questions
1) Which component of HDFS is responsible for maintaining the namespace of the distributed

filesystem? _________________________

2) What is the default file-replication factor in HDFS?

3) True or False: To input a file into HDFS, the client application passes the data to the
NameNode, which then divides the data into blocks and passes the blocks to the
DataNodes.

4) Which property is used to specify the block size of a file stored in HDFS?

5) The NameNode maintains the namespace of the filesystem using which two sets of files?
__

6) What does the following command do?
hdfs dfs -ls -R /user/thomas/

__

7) What does the following command do?
hdfs dfs -ls /user/thomas/

__

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
46

	

	

Lab: Using HDFS Commands

Objective: Become familiar with adding, removing, and viewing files in HDFS
See page 19 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
47

	

	

Inputting Data into HDFS

Lesson Objectives
This lesson covers the various ways to input data into the Hadoop Distributed File System,
including the Sqoop and Flume frameworks.

After completing this lesson, students should be able to:

• Describe the Options for Data Input

• Describe Flume

• Describe Sqoop

• Use Sqoop to transfer data between HDFS and a relational database

Additional Content
• Quiz: Lesson Review

• Lab: Importing RDBMS Data into HDFS

• Lab: Exporting HDFS Data to a RDBMS

• Lab: Importing Log Data into HDFS using Flume

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
48

	

	

Options for Data Input

Options	
 for	
 Data	
 Input	

	

Typically the first task in using a Hadoop cluster is getting your big data into HDFS. You have
several options to choose from, and typically you may need to use more than one tool
depending on the sources of your big data.

In this unit, we will discuss some of the common techniques for inputting data into a Hadoop
cluster.

The Hadoop Client
As you have already seen, the hadoop client works well for inputting files from a local file

Best Practice: When putting data into Hadoop, do not forget one of the
essentials of Hadoop: no schema is applied when the data goes in. In other
words, keep your big data in its raw format and worry about applying structure
and schema to it later when you transform and analyze the data.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
49

	

	

system into HDFS.
Usage: hdfs dfs -put <localsrc> ... <dst>

Obviously you do not have a 2 Petabyte file sitting around on your local hard drive that you
want to store into HDFS, but the put command is still an extremely useful tool that you will use
on a regular basis when doing development.

Note: The put command also reads input from stdin and writes to a specified
file in HDFS. Just use a dash “-“ for the localsrc:
hdfs dfs -put - myinput.txt

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
50

	

	

WebHDFS
WebHDFS is a REST API for accessing all of the HDFS file system interfaces. WebHDFS supports
all HDFS user operations, including reading files, writing to files, making directories, changing
permissions, and renaming. With WebHDFS, you can use common tools, like curl, wget, or any
web services client, to access the files in a Hadoop cluster.

Some of the features of WebHDFS include:

Secure
Authentication

Uses Kerberos (SPNEGO) and Hadoop delegation tokens for
authentication

Data Locality Redirects the file read and file write calls to the corresponding
Datanodes. It uses the full bandwidth of the Hadoop cluster for
streaming data

Built into Hadoop Runs inside NameNode and DataNodes, so there are no additional

servers to install

The syntax for an HTTP request looks like:
http://host:port/webhdfs/v1/<PATH>?op=...

For example, the following GET request reads a file named /test/mydata.txt:
http://host:port/webhdfs/v1/test/mydata.txt?op=OPEN

The following PUT request makes a new directory in HDFS named /user/root/data:
http://host:port/webhdfs/v1/user/root/data?op=MKDIRS

The following is a POST request that appends the posted data to the file named
/test/mydata.txt:
http://host:port/webhdfs/v1/test/mydata.txt?op=APPEND

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
51

	

	

Overview of Flume

Overview	
 of	
 Flume	

	

Flume is an open-source Apache project that is a system for efficiently collecting, aggregating,
and moving large amounts of log data from many different sources into HDFS. You can also
customize Flume to work with network traffic data, social-media-generated data, email
messages, and pretty much any data source possible.

Flume uses a producer-consumer model for handling events where the Source is the producer
and the Sink is the consumer of the events. Examples of a Source include:

• System log files

• Network traffic log files

• Website traffic logs

• Twitter feeds and other social media sources
The events travel through an asynchronous Channel to a Sink. Examples of a Sink include:

• HDFS

• HBase

A Channel drains into a Sink, but because it is asynchronous the Channel is not required to
send events to the Sink at the same rate that it receives them from the Source. This allows for
a Source to not have to wait for Flume to store the event in its final destination, which can
improve performance by decoupling the Sink from the Source.

Note: A Flume process can consist of more than one Agent with a single Source
and Sink. You can have multiple Agents that aggregate data from multiple
Sources, and you can configure multiple Sinks that output events to different
destinations.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
52

	

	

A Flume Example
To use Flume, you start an Agent. An Agent has a configuration file associated with it that
defines its Sources and Sinks. The command to start an Agent looks like:
flume-ng agent -n my_agent -c conf -f myagent.conf

The code myagent.conf is the configuration file.

The following Agent config file demonstrates streaming a web server’s log file into HDFS as a
sequence file:

• The name of the Agent is my_agent

• The names of the Sink, Source, and Channel are arbitrary

• This Flume Agent has one Source named webserver

• The webserver Source is of type exec, which means it executes a given Unix command. In
this example, it executes the tail command on the httpd access log file

• The Agent has one Sink named mycluster, which sends the events to a sequence file in a
specified folder in HDFS

• The Agent has one Channel named memoryChannel

• The memoryChannel is configured with a memory type, which means it stores the events in
memory. Notice that it is configured with a capacity of 10,000. No more than 10,000 events
can fit in this Channel

• Other options for a Channel include a database, a file, or you can define your own custom
Channel

• Other options for a Sink include a system log (as INFO events), an IRC destination, local
files, HBase, and Elastic Search

my_agent.sources = webserver
my_agent.channels = memoryChannel
my_agent.sinks = mycluster

my_agent.sources.webserver.type = exec
my_agent.sources.webserver.command = tail -F

/var/log/hadoop/hdfs/hdfs-audit.log
my_agent.sources.webserver.batchSize = 1
my_agent.sources.webserver.channels = memoryChannel

my_agent.channels.memoryChannel.type = memory
my_agent.channels.memoryChannel.capacity = 10000

my_agent.sinks.mycluster.type = hdfs
my_agent.sinks.mycluster.channel = memoryChannel
my_agent.sinks.mycluster.hdfs.path =

hdfs://127.0.0.1:8020/hdfsaudit/

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
53

	

	

Overview of Sqoop

Overview	
 of	
 Sqoop	

	

Sqoop is a tool designed to transfer data between Hadoop and external structured
datastores like RDBMS and data warehouses. Using Sqoop, you can provision the data from
an external system into HDFS. Sqoop uses a connector-based architecture that supports
plugins that provide connectivity to additional external systems.

As you can see in the diagram, Sqoop uses MapReduce to distribute its work across the
Hadoop cluster:

• The sqoop command line executes a Sqoop job

• Map tasks (4 by default) execute the command in Sqoop

• Plugins are used to communicate with the outside data source. The data source provides
the schema, and Sqoop generates and executes SQL statements using JDBC or other
connectors

HDP provides the following connectors for Sqoop:

• Teradata

• MySQL

• Oracle JDBC connector

• Netezza
A Sqoop connector for the SQL Server is also available from Microsoft: SQL Server R2
connector

Note: Using MapReduce to perform Sqoop commands provides parallel
operation as well as fault tolerance.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
54

	

	

The Sqoop Import Tool
With Sqoop, you can import data from a relational database system into HDFS:

• The input to the import process is a database table
• Sqoop will read the table row by row into HDFS. The output of this import process is a set

of files containing a copy of the imported table

• The import process is performed in parallel. For this reason, the output will be in multiple
files

• These files may be delimited text files (for example, with commas or tabs separating each
field) or binary Avro or SequenceFiles containing serialized record data

The import command looks like:
sqoop import (generic-args) (import-args)

The import command has the following requirements:

• Must specify a connect string using the --connect argument

• Can include credentials in the connect string, using the --username and --password
arguments

• Must specify either a table to import using --table or the result of an SQL query using --
query

Importing a Table
The following Sqoop command imports a database table named StockPrices into a folder in
HDFS named /data/stockprices:

Based on the import command above:

• The connect string in this example is for MySQL. The database name is nyse

• The --table argument is the name of the table in the NYSE database

• The --target-dir is where the data will be imported into HDFS

• The default number of map tasks for Sqoop is four, so the result of this import will be in four
files

• The --as-textfile argument imports the data as plain text

sqoop import
--connect jdbc:mysql://host/nyse
--table StockPrices
--target-dir /data/stockprice/
--as-textfile

Note: You can use --as-avrodatafile to import the data to Avro files and use
--as-sequencefile to import the data to sequence files.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
55

	

	

Other useful import arguments include:

--columns A comma-separated list of the columns in the table to import (as

opposed to importing all columns, which is the default behavior)

--fields-
terminated-by

Specify the delimiter. Sqoop uses a comma by default

--append The data is appended to an existing dataset in HDFS

--split-by The column used to determine how the data is split between

mappers. If you do not specify a split-by column, then the
primary key column is used

-m The number of map tasks to use

--query Use instead of –table. The imported data are the resulting records

from the given SQL query

--compress Enables compression

--direct Sqoop will attempt the direct import channel, which may be higher

performance than using JDBC

Note: The import command shown here looks like it was entered over multiple
lines, but you have to enter this entire Sqoop command on a single command line.

Reference: Visit
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html for a list of all
arguments available for the import command.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
56

	

	

Importing Specific Columns
Use the --columns argument to specify which columns from the table to import. For example:

Based on the import command above:

How many columns will be in imported? ______________

How many files will be created in /data/dailyhighs/? ______________

Which column will Sqoop use to split the data up between the mappers?

Answer: The StockSymbol column.

sqoop import
--connect jdbc:mysql://host/nyse
--table StockPrices
--columns StockSymbol,Volume,High,ClosingPrice
--target-dir /data/dailyhighs/
--as-textfile
--split-by StockSymbol
-m 10

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
57

	

	

Importing from a Query
Use the --query argument to specify which rows to select from a table. For example:

Based on the command above:

• Only rows whose Volume column is greater than 1,000,000 will be imported

• The $CONDITIONS token must appear somewhere in the WHERE clause of your SQL query
so that the data can be split between mappers

• If you use --query, then you must also specify a --split-by column or the Sqoop
command will fail to execute

sqoop import
--connect jdbc:mysql://host/nyse
--query "SELECT * FROM StockPrices s
WHERE s.Volume >= 1000000
AND \$CONDITIONS"
--target-dir /data/highvolume/
--as-textfile
--split-by StockSymbol

Note: Using --query is limited to simple queries where there are no ambiguous
projections and no OR conditions in the WHERE clause. Use of complex queries
(such as queries that have sub-queries or joins leading to ambiguous projections)
can lead to unexpected results.

Important: You either use --query or --table, but attempting to define both
results in an error.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
58

	

	

The Sqoop Export Tool
Sqoop’s export process will read a set of delimited text files from HDFS in parallel, parse them
into records, and insert them as new rows in a target database table. The syntax for the export
command is:
sqoop export (generic-args) (export-args)

The Sqoop export tool runs in three modes:

Insert Mode The records being exported are inserted into the table using an
SQL INSERT statement

Update Mode An UPDATE SQL statement is executed for existing rows, and an

INSERT can be used for new rows

Call Mode A stored procedure is invoked for each record

The mode used is determined by the arguments specified:

--table The table to populate in the database. This table must already exist
in the database. If no --update-key is defined, the command is
executed in Insert Mode

--update-key The primary key column for supporting updates. If you define this

argument, the Update Mode is used and existing rows are updated
with the exported data

--call Invokes a stored procedure for every record, thereby using Call

Mode. If you define --call, do not define the --table argument
or an error will occur

The following are sqoop export arguments:

--export-dir The directory in HDFS that contains the data to export

--input-fields-
terminated-by

The input field delimiter. A comma is the default

--update-mode Specifies how updates are performed when new rows are found
with non-matching keys in the database. Values are updateonly
(the default) and allowinsert

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
59

	

	

Exporting to a Table
The following Sqoop command exports the data in the /data/logfiles/ folder in HDFS to a
table named LogData:

Based on the command above:

• The table LogData needs to already exist in the mylogs database

• The column values are determined by the delimiter, which is a tab in this example

• All files in the /data/logfiles/ directory will be exported

• Sqoop will perform this job using four mappers, but you can specify the number to use with
the -m argument

sqoop export
--connect jdbc:mysql://host/mylogs
--table LogData
--export-dir /data/logfiles/
--input-fields-terminated-by "\t"

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
60

	

	

Review Questions
1) What tool would work best for importing data from a relational database into HDFS?

2) What tool would work best for putting a file on your local filesystem into HDFS?

3) List the three main components of a typical Flume agent:

__

4) What is the default number of map tasks for a Sqoop job? ____________

5) How do you specify a different number of mappers in a Sqoop job?

__

6) What is the purpose of the $CONDITIONS value in the WHERE clause of a Sqoop query?

__

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
61

	

	

Lab: Importing RDBMS Data into HDFS

Objective: Import data from a database into HDFS
See page 25 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Lab: Exporting HDFS Data to a RDBMS

Objective: Export data from HDFS into a MySQL table using Sqoop
See page 29 of the HDP Developer: Apache Pig and Hive Lab Booklet.

	

	

Lab: Importing Log Data into HDFS using Flume

Objective: Import data from a log file into HDFS using Flume
See page 29 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
62

	

	

The MapReduce Framework

Lesson Objectives
This lesson covers the details of the MapReduce programming paradigm.

After completing this lesson, students should be able to:

• Describe MapReduce

• Describe the Map Phase

• Describe the Reduce Phase

Additional Content
• Demo: Understanding MapReduce

• Quiz: Lesson Review

• Lab: Running a MapReduce Job

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
63

	

	

Overview of MapReduce

Overview	
 of	
 MapReduce	

	

MapReduce is a software framework for developing applications that process large amounts of
data in parallel across a distributed environment. As its name implies, a MapReduce program
consists of two main phases: a map phase and a reduce phase:

Map phase Data is input into the mapper, where it is transformed and prepared

for the reducer

Reduce phase Retrieves the data from the mapper and performs the desired

computations or analyses

To write a MapReduce program, you define a mapper class to handle the map phase and a
reducer class to handle the reduce phase.

Note: The shuffle/sort phase of MapReduce is a part of the framework, so it
does not require any programming on your part.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
64

	

	

Some important concepts to understand about MapReduce:

• The map and reduce tasks run in their own JVM on the DataNodes

• The mapper inputs key/value pairs from HDFS files and outputs intermediate key/value
pairs. The data types of the input and output pairs can be different

• After all of the mappers finish executing, the intermediate key/value pairs go through a
shuffle-and-sort phase where all of the values that share a key are combined and sent
to the same reducer

• The reducer inputs the intermediate <key, value> pairs and outputs its own <key,
value> pairs, which are typically written to HDFS

• The number of mappers is determined by the input format

• The number of reducers is determined by the MapReduce job configuration

• A Partitioner is used to determine which <key, value> pairs are sent to which reducer

• A Combiner can be optionally configured to combine the output of the mapper, which can
increase performance by decreasing the network traffic of the shuffle and sort phase

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
65

	

	

Understanding MapReduce

Understanding	
 MapReduce	

	

The map phase involves running map tasks on NodeManagers. The main purpose of the map
phase is to read all of the input data. The goal (in order to gain the best performance) is to
achieve data locality, where a map task runs on a DataNode where its Input Split (or at least
most of the split) is stored.

• A block of data rarely maps exactly to an Input Split, but it is often close, especially
when processing text data. Records that spill over to a subsequent block have to be pulled
over the network so the map task can process the entire record, but this is normally an
acceptable overhead

• The number of map tasks in a MapReduce job is based on the number of Input Splits

• If no NodeManager is available where a specific block resides, then you lose data locality
and the block has to be pulled across the network

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
66

	

	

Understanding	
 MapReduce	
 -­‐-­‐-­‐	
 	
 	
 continued	

	

• Map tasks output <key, value> pairs, which are written to a temporary file on the local

filesystem

• When a map task finishes, its output becomes immediately available to the reduce tasks.
Each reducer asks each mapper for the <key, value> pairs designated for that reducer.
This designating of records is called partitioning

• As a reducer reads-in its <key, value> pairs, the values are aggregated into a collection
and the entire input to the reducer is sorted by keys. This is referred to as the
shuffle/sort phase

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
67

	

	

Understanding	
 MapReduce	
 -­‐-­‐-­‐	
 	
 	
 continued	

	

The main purpose of the reduce phase is typically business logic: going through the data
output by the mappers and answering a question or solving a problem. The <key, value>
pairs coming into the reducer are combined by key, meaning each key is presented once to
the reducer along with all of the values that belong to that key.

• Reducers also output <key, value> pairs

• The output of a reducer is typically a file in HDFS. For example, if you have five
reducers, the output will be five different files

• The number of reduce tasks in a MapReduce job is a setting that you get to choose

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
68

	

	

The Key/Value Pairs of MapReduce

The	
 Key/Value	
 Pairs	
 of	
 MapReduce	

	

The data types of the <key, value> pairs in a MapReduce job look like:

<K1, V1> Input to the mapper

<K2, V2> Output from the mapper

<K2, Iterable<V2>> Input to the reducer

<K3, V3> Output from the reducer

Note: Keys are constantly being compared and sorted in MapReduce, and both
keys and values get serialized and deserialized between the map and reduce
phases.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
69

	

	

WordCount in MapReduce

WordCount	
 in	
 MapReduce	

	

The “Hello, World” of Hadoop programming is the word-count application, which reads in a
text file and counts the number of occurrences of each distinct word.

The diagram above shows how the <key,value> pairs of the word-count application are
passed through the MapReduce job.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
70

	

	

Demonstration: Understanding MapReduce

Objective: To understand how MapReduce works
See page 33 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
71

	

	

The Map Phase

The	
 Map	
 Phase	

	

The data is passed into the mapper as a <key, value> pair generated by an InputFormat
instance. The key and value are determined by the specific InputFormat that you configure.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
72

	

	

Here is how data flows through the map phase:

• The InputFormat determines where the input data needs to be split between the mappers,
and then it generates an InputSplit instance for each split

• MapReduce spawns a map task for each InputSplit generated by the InputFormat

• Each <key, value> pair generated by the InputFormat is passed to the map method of
the mapper class

• The map method outputs a <key, value> pair that is serialized into an unsorted buffer in
memory

• When the buffer fills up, or when the map task is complete, the <key, value> pairs in the
buffer are sorted then spilled to the disk

• If more than one spill file was created, these files are merged into a single file of sorted
<key, value> pairs

• The sorted records in the spill file wait to be retrieved by a reducer

Note: The size of the mapper’s output memory buffer is configurable with the
mapreduce.task.io.sort.mb property. A spill occurs when the buffer
reaches a certain capacity configured by the
mapreduce.map.sort.spill.percent property.

Important: Spilling to disk cannot be entirely avoided because there is always
one spill to disk when the mapper is complete. However, the ideal scenario is
to avoid any intermediate spills. If an intermediate spill occurs, those <key,
value> pairs need to be written to disk, then read and rewritten one more time,
which results in three times the disk I/O for those spilled records

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
73

	

	

The Reduce Phase

The	
 Reduce	
 Phase	

	

The reducer fetches the records from the mapper and uses them to generate and output
another set of <key, value> pairs that are output to HDFS (or some other configurable
location).

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
74

	

	

The reduce phase can actually be broken down in three phases:

Shuffle Also referred to as the fetch phase, this is when reducers retrieve

the output of the mappers. All records with the same key are
combined and sent to the same reducer

Sort This phase happens simultaneously with the shuffle phase. As

the records are fetched and merged, they are sorted by key

Reduce The reduce method is invoked for each key, with the records

combined into an iterable collection

Here is how data flows through the reduce phase:

• As mappers finish their tasks, the reducers start fetching the records and storing them into
a buffer in their JVM’s memory

• If the buffer fills, it is spilled to disk

• Once all mappers complete and the reducer has fetched all its relevant input, all spill
records are merged and sorted (along with any records still in the buffer)

• The reduce method is invoked on the reducer for each key

• The output of the reducer is written to HDFS (or wherever the output was configured to be
sent)

Some comments about the reduce phase:

• All records that share the same key are sent to the same reducer

• During shuffling, the records are sorted by key and the values are combined into a
collection

• The values in the collection are not sorted by default

• The number of reducers is determined by the mapreduce.job.reduces property

• A MapReduce job does not require a reducer. Setting the number of reducers to zero
results in the mapper sending its output directly to HDFS

• A reducer can actually start fetching the output of mappers after the first mappers finish
(but others are still working). This is done using threads, and the number of threads is
configurable with the mapreduce.reduce.shuffle.parallelcopies property

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
75

	

	

Review Questions
1) What are the three main phases of a MapReduce job? ________

__

2) Suppose the mappers of a MapReduce job output <key,value> pairs that are of type
<integer,string>. What will the pairs look like that are processed by the corresponding
reducers? ___

3) What happens if all the <key,value> pairs output by a mapper do not fit into the memory of
the mapper? __

4) What determines the number of mappers of a MapReduce job? _____________

__

5) What determines the number of reducers of a MapReduce job? ____________

__

6) True or False: The shuffle/sort phase sorts the keys and values as they are passed to
the reducer. __

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
76

	

	

Lab: Running a MapReduce Job

Objective: Run a Java MapReduce job
See page 35 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
77

	

	

Hadoop Streaming

Lesson Objectives
This lesson covers an overview of the streaming capabilities of Hadoop.

After completing this lesson, students should be able to:

• Hadoop Streaming

• Running a Hadoop Streaming Job

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
78

	

	

Hadoop Streaming

Hadoop	
 Streaming	

	

Hadoop Streaming is a part of HDP, and it allows you to create and run MapReduce jobs with
any executable or script as the mapper and/or the reducer. Streaming allows you to take
advantage of the benefits of MapReduce while using any scripting language you like.

Here is how Hadoop Streaming works:

• The MapReduce job starts as any other job, with the input splits sending key/value pairs
to a map task

• The Streaming mapper converts the key/value pairs into lines of text and sends each line
of text to the stdin of the mapper process

• The Streaming mapper reads each line of text from the stdout of the process and
converts the line to a key/value pair using a tab as the delimiter between the key and the
value

• Similarly, the Streaming reducer converts the input key/values pairs into lines of text
and sends them to the stdin of the reducer process

• The output from stdout of the process is converted to key/value pairs (using a tab as the
delimiter) and output by the Streaming reducer

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
79

	

	

Running a Hadoop Streaming Job
The command to run a Hadoop Streaming job looks like the following (entered on a single
command line):

For example, the following command executes a Streaming job that uses cat as the mapper
and grep as its reducer:

> hadoop jar hadoop-streaming.jar
-input input_directories
-output output_directories
-mapper mapper_script
-reducer reducer_script

hadoop jar hadoop-streaming.jar
-input test/data.txt
-output streamtest
-mapper /bin/cat
-reducer 'grep -i hadoop'

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
80

	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
81

	

	

Introduction to Pig

Lesson Objectives
This lesson covers the Pig framework and describes how to load and transform data using the
Pig programming language.

After completing this lesson, students should be able to:

• Describe Pig

• Define a Schema

• Describe the GROUP Operator

• Describe the FOREACH GENERATE Operator

• Describe the FILTER Operator

• Describe the LIMIT Operator

Additional Content
• Demo: Understanding Pig

• Lab: Getting Started with Pig

• Quiz: Lesson Review

• Lab: Exploring Data with Pig

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
82

	

	

About Pig

What	
 is	
 Pig?	

	

Apache Pig, http://pig.apache.org/, is a Hadoop platform for creating MapReduce jobs. Pig
uses a high-level SQL-like programming language named Pig Latin. The benefits of Pig include
the ability to:

• Run a MapReduce job with a few simple lines of code
• Process structured data with a schema, or Pig can process unstructured data without a

schema (Pigs eat anything)

• Use a familiar SQL-like syntax in Pig Latin

• Read and write data from HDFS with Pig scripts

• Create code with a data flow language, a logical solution for many MapReduce algorithms

The developers of Pig published their philosophy to summarize the goals of Pig using
comparisons to actual pigs:

Pigs eat anything Pig can process any data, structured or unstructured

Pigs live anywhere Pig can run on any parallel data processing framework, so Pig

scripts do not have to run just on Hadoop

Pigs are domestic
animals

Pig is designed to be easily controlled and modified by its users

Pigs fly Pig is designed to process data quickly

Note: Pig was created at Yahoo! to make it easier to analyze the data in your
HDFS without the complexities of writing a traditional MapReduce program.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
83

	

	

Pig Latin
Pig Latin is a high-level data flow scripting language. Pig Latin scripts can be executed in one
of three ways:

Pig script Write a Pig Latin program in a text file and execute it using the pig

executable

Grunt shell Enter Pig statements manually one at a time from a CLI tool known
as the Grunt interactive shell

Embedded in Java Use the PigServer class to execute a Pig query from within Java

code

Pig executes in a unique fashion: some commands build on previous commands, while certain
commands trigger a MapReduce job.

• During execution, each statement is processed by the Pig interpreter

• If a statement is valid, it gets added to a logical plan built by the interpreter

• The steps in the logical plan do not actually execute until a DUMP or STORE command is
used

The Grunt Shell

The	
 Grunt	
 Shell	

	

Grunt is an interactive shell that enables users to enter Pig Latin statements and also interact
with HDFS. To enter the Grunt shell, run the pig executable in the PIG_HOME\bin folder:

The Grunt shell provides tab completion for commands (unfortunately there is no tab
completion for files or folders), as well as command-line history and editing.

pig
grunt>

Note: You can run HDFS commands directly from the Grunt shell, which also
has the concept of a “present working directory” with the ability to change
directories using the cd command.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
84

	

	

Demonstration: Understanding Pig

Objective: To understand Pig scripts and relations
See page 37 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
85

	

	

Pig Latin Relation Names
Each processing step of a Pig Latin script results in a new data set, referred to as a relation.
You assign names to relations, and the name of a relation is referred to as its alias. For
example, consider the following Pig Latin statement:
stocks = LOAD 'mydata.txt' using TextLoader();

The alias stocks is assigned to the relation created by the LOAD statement, which in this
statement is a line of text from the mydata.txt file. The stocks alias now represents the
collection of records in mydata.txt.

Relation names (aliases) are not variables, even though they look like variables. You can
reassign an alias to a different relation, but that is not recommended.

Pig Latin Field Names
You can also define field names when using the LOAD command to define a relation. Use the AS
keyword to define field names:
salaries = LOAD 'salary.data' USING PigStorage(',') AS (gender, age, income, zip);

The alias for this relation is salaries, and salaries has four field names: gender, age, income
and zip.

Field names can be used in subsequent processing commands. For example, when filtering a
relation, you can refer to its fields in the BY clause, as shown in the following statement:
highsalaries = FILTER salaries BY income > 1000000;

Field names contain the values of the current record as the data passes through the pipeline of
the Pig application. The highsalaries relation will contain all records whose income field is
greater than 1,000,000.

Both field names and relation names must satisfy the following naming criteria:

• Must start with an alphabetic character

• Can contain alphabetic and numeric characters, as well as the underscore (_) character

• Can only contain ASCII characters

Note: TextLoader is a simple way of loading each line of text in a file into a
record, no matter what the format of the data is.

Important: Field names and relation names are case sensitive in your Pig Latin
scripts. User Defined Functions (UDFs) are also case sensitive. However, Pig
Latin keywords (like LOAD and AS) are not case sensitive.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
86

	

	

Pig Data Types
Pig has six built-in scalar data types:

int A 32-bit signed integer

long A 64-bit signed integer

float A 32-bit floating-point number

double A 64-bit floating-point number

chararray Strings of Unicode characters (represented as java.lang.String

objects)

bytearray A blob or array of bytes

boolean Can be either true or false (case-sensitive)

datetime A date and time stored in the format 1970-01-

01T00:00:00.000+00:00

bigdecimal and
biginteger

For performing precision arithmetic

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
87

	

	

Pig Complex Types
Pig has three complex types:

Tuple Ordered set of fields. A tuple is analogous to a row in an SQL

table, with the fields being SQL columns

Bag Unordered collection of tuples

Map Collection of key value pairs

Tuples are indicated by parentheses. For example, the following tuple has four fields:
(OH,Mark,Twain,31225)

Bags are constructed using curly braces, and commas separate the tuples within the bag.
The following bag has three tuples in it:

Maps are key/value pairs where the key must be a unique chararray type and the value can
be any data. Maps are formed using square brackets, with a hashtag between the key and
value. The following map has three key#value pairs:
[state#OH,name#Mark Twain,zip#31225]

As you can see in the demonstration, the complex types can be nested. For example, a bag
can be an element of a tuple, which is the result of the GROUP BY operator:
(CA,{(CA,Ulf),(CA,manish),(CA,Brian)})

{(OH,Mark,Twain,31225),(UK,Charles,Dickens,42207),
(ME,Robert,Frost,11496)}

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
88

	

	

Defining a Schema
Pig will eat any kind of data, but if your data has a known structure to it, then you can define a
schema for it. The schema is typically defined when you load the data using the AS keyword.

For example:

The customers relation has six fields, and each field is a specific data type.

The schema can also specify complex types. For example, suppose we have the following
dataset in a file named ‘bag_demo.txt’:

The corresponding relation might look like:

The salaries relation is a tuple of three fields: the first field is a chararray named gender, the
second field is an int named age, and the third field is a bag named details.

Pig is very lenient when it comes to schemas:

• If you define a schema, then Pig will perform error-checking with it
• If you do not define a schema, Pig will make its best guess as to how the data should be

treated

customers = LOAD 'customer_data' AS (firstname:
chararray,lastname:chararray,house_number:int,
street:chararray,phone:long,payment:double);

Note: If you load a customer record that has more than six fields, the extra fields
will be truncated. If you load a customer record that has fewer than six fields, it
will pad the end of the record with nulls.

F,66,{(41000,95103),(33000,57701)}
M,40,{(76000,95102)}
F,58,{(95000,95103,(60000,95105)}
M,85,{(14000,95102),(0,95105),(2000,94040)}

salaries = LOAD 'bag_demo.txt' AS (gender:chararray, age:int,
details:bag{(salary:double,zip:long)});

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
89

	

	

Lab: Getting Started with Pig

Objective: Use Pig to navigate through HDFS and explore a dataset
See page 41 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
90

	

	

The GROUP Operator

The	
 GROUP	
 Operator	

	

One of the most common operators in Pig is GROUP, which collects all records with the same
value for a provided key and puts them together into a bag. The result of a GROUP operation is
a relation that includes one tuple per group. This tuple contains two fields:

• The first field is named "group" and is the same type as the group key

• The second field takes the name of the original relation and is type bag

Suppose we have the following data set:

Let’s group the records together by age:

The salariesbyage relation has two fields. The first is group, which will be an int because
age is an int, followed by the salaries field as a tuple:

The records will look like:

F,66,41000,95103
M,40,76000,95102
F,58,95000,95103
F,68,60000,95105
M,85,14000,95102
...

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray,
age:int,salary:double,zip:int);
salariesbyage = GROUP salaries BY age;

> DESCRIBE salariesbyage;
salariesbyage: {group:int, salaries:{(gender: chararray, age: int,salary: double,zip:
int)}}

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
91

	

	

> DUMP salariesbyage;
(17,{(F,17,0.0,95050),(M,17,0.0,95103),(M,17,0.0,95102)})
(19,{(M,19,0.0,95050)})
(22,{(F,22,90000.0,95102)})
(23,{(M,23,89000.0,95105),(M,23,64000.0,94041)})

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
92

	

	

You can also group a relation by multiple keys. The keys must be listed in parentheses. For
example:

Notice the group field is a tuple containing both gender and age. The resulting records in the
mygroup relation look like:

GROUP ALL

GROUP	
 ALL	

	

You can group all of the records of a relation into a single tuple using the ALL option. For
example:

In this case, the value of group will be the chararray “all” followed by a bag of all records:

> mygroup = GROUP salaries BY (gender,age);
> describe mygroup;
mygroup: {group: (gender: chararray,age: int),salaries: {(gender: chararray,age:
int,salary: double,zip: int)}}

((M,17),{(M,17,0.0,95103),(M,17,0.0,95102)})
((M,19),{(M,19,0.0,95050)})
((M,23),{(M,23,64000.0,94041),(M,23,89000.0,95105)})

> allsalaries = GROUP salaries ALL;
> describe allsalaries;
allsalaries: {group: chararray,salaries: {(gender: chararray,age:
 int,salary: double,zip: int)}}

(all,{(F,66,41000.0,95103),(M,40,76000.0,95102),(F,58,95000.0,95103),(F,68,60000.0,951
05),(M,85,14000.0,95102),(M,14,0.0,95105),(M,52,2000.0,94040),(M,67,99000.0,94040),(F,
43,11000.0,94041),(F,37,65000.0,94040),(M,72,83000.0,94041),(M,68,15000.0,95103),(F,74
,37000.0,95105),(F,15,0.0,95050),(F,83,0.0,94040),(F,30,10000.0,95101),(M,19,0.0,95050
),(M,23,89000.0,95105),(M,1,0.0,95050),(F,4,0.0,95103)})

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
93

	

	

Relations without a Schema

Relations	
 without	
 a	
 Schema	

	

If you do not define a schema, then the fields of a relation are specified using an index that
starts at $0. This works well for datasets that have a lot of columns or for data that is not
structured.

The following relation has four columns but does not define a schema:
salaries = LOAD 'salaries.txt' USING PigStorage(',');

Notice what the output is when you try to describe this relation:

The following relation groups salaries by its fourth field:
salariesgroup = GROUP salaries BY $3;

Notice the salariesgroup relation does not have a schema for its salaries field:

Why is the datatype of group bytearray? ____________________________________

Answer: Because the salaries relation does not have a schema, the data type of the field
used for grouping is the default bytearray type.

> DESCRIBE salaries;
Schema for salaries unknown.

> describe salariesgroup
salariesgroup: {group: bytearray,salaries: {()}}

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
94

	

	

The FOREACH GENERATE Operator

The	
 FOREACH	
 GENERATE	
 Operator	

	

The FOREACH...GENERATE operator transforms records based on a set of expressions that you
define. The operator works on each record in the data set (as in, “for each record”). The result
of a FOREACH is a new tuple, typically with a different schema.

The FOREACH operator is a great tool for transforming your data into different data sets. The
expression in a FOREACH can contain fields, constants, mathematical expressions, the result of
invoking a Pig function, and many other variations and nestings.

Let’s look at an example. The following command takes in the salaries relation and generates a
new relation that only contains two of the columns in salaries:

The records in the A relation look like:

You can perform mathematical computations in the GENERATE clause:
B = FOREACH salaries GENERATE salary, salary * 0.07;

The resulting relation contains each salary along with the salary multiplied by 7%:

> A = FOREACH salaries GENERATE age, salary;
> DESCRIBE A;
A: {age: int,salary: double}

(66,84000.0)
(39,3000.0)
(84,14000.0)

(69000.0,4830.000000000001)
(91000.0,6370.000000000001)
(0.0,0.0)
(48000.0,3360.0000000000005)
(3000.0,210.00000000000003)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
95

	

	

Specifying Ranges in FOREACH
In the GENERATE clause, you can specify a range of values, which is useful when working with
datasets that have a large number of fields. For example:

The C relation will contain three fields: age, salary, and zip:

You can also specify an open-ended range:

D will contain age, salary, and zip. E will contain gender, age, and salary.

This syntax also works well with large relations that do not have a schema:

Field Names in a FOREACH
A relation created from a FOREACH statement is a new tuple. Pig infers the data types of the
fields in the new tuple, but sometimes the names of the fields are not inferred. In the following
simple projection, Pig will use the same field name as the original relation:

However, in the following projection, Pig cannot determine a field name for the second value in
the new tuple:

Notice the second field in D only has a datatype, but no name. You would have to use the $1
to refer to this field in D.

You can use the AS keyword to assign a name to the fields in the new tuple. For example:

Notice the second field in E has the name bonus.

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray,
age:int,salary:double,zip:int);
C = FOREACH salaries GENERATE age..zip;

> describe C;
C: {age: int,salary: double,zip: int}

D = FOREACH salaries GENERATE age..;
E = FOREACH salaries GENERATE ..salary;

customer = LOAD 'data/customers';
F = FOREACH customer GENERATE $12..$23;

> salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray,
age:int,salary:double,zip:int);
> C = FOREACH salaries GENERATE zip, salary;
> DESCRIBE C;
C: {zip: int,salary: double}

> D = FOREACH salaries GENERATE zip, salary * 0.10;
> DESCRIBE D;
D: {zip: int,double}

> E = FOREACH salaries GENERATE zip, salary * 0.10 AS bonus;
> DESCRIBE E;
E: {zip: int,bonus: double}

Note: You can use the AS keyword for any of the fields in the GENERATE clause,
even if Pig can infer the field name.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
96

	

	

FOREACH with Groups

FOREACH	
 with	
 Groups	

	

Let’s look at an example of a Pig script that performs a FOREACH operation on a group:

The salariesbygender relation has two fields: group and a bag named salaries:

Since there are only two possible values of group (M or F), then there will be at most two rows.
The following FOREACH counts the number of tuples in each salaries bag:
J = FOREACH salariesbygender GENERATE group, COUNT(salaries);

The J relation looks like:
J: {group: chararray,long}

The output of J is:

This means our salaries.txt file contains 24 female records and 26 male records.

If you need to specifically refer to a field inside the bag of a group relation, you use the dot
operator. For example, suppose we only want to refer to the salary field in the salaries bag
of the salariesbygender relation:
K = FOREACH salariesbygender GENERATE group, MAX(salaries.salary);

The K relation will contain the group (so either M or F) and the maximum salary field in that
particular salaries bag. The output of running this code is:

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS (gender:chararray,
age:int,salary:double,zip:int);
salariesbygender = GROUP salaries BY gender;

salariesbygender: {group: chararray,salaries: {(gender: chararray,age: int,salary:
double,zip: int)}}

(F,24)
(M,26)

(F,95000.0)
(M,99000.0)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
97

	

	

The FILTER Operator

The	
 FILTER	
 Operator	

	

The FILTER operator selects tuples from a relation based on specified Boolean expressions.
Use FILTER to select the rows you want, or filter out the rows you do not. The FILTER operator
looks like:
FILTER alias BY expression;

For example, the following command filters the salaries relation to contain only those tuples
whose salary field is greater than 10,000:
G = FILTER salaries BY salary >= 10000.0;

Conditions can be combined using AND or OR:
H = FILTER salaries BY gender == 'F' AND age >= 50;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
98

	

	

Use the NOT operator to reverse a condition. Suppose we have the following dataset:

The following NOT operator filters out all rows that match a regular expression:

The no_b relation will contain all records that do not contain the letter ‘b’ or ‘B’:

SD
NV
CO
CA
IL
OH
CA
CA
CO

Rich
Barry
George
Ulf
Danielle
Tom
Manish
Brian
Mark

> employees = LOAD 'pigdemo.txt' AS (state:chararray, name:chararray);
> no_b = FILTER employees BY NOT name MATCHES '.*b|B.*';

(SD,Rich)
(CO,George)
(CA,Ulf)
(IL,Danielle)
(OH,Tom)
(CA,Manish)
(CO,Mark)

Note: The FILTER command does not change the schema of a relation or the
structure. It only narrows down the number of records belonging to that relation.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
99

	

	

The LIMIT Operator
The LIMIT command limits the number of output tuples for a relation:

Note that there is no guarantee which three tuples will be returned, and the tuples that are
returned can change from one run to the next. Using the data shown earlier, the output of one
of the executions was:

employees = LOAD 'pigdemo.txt' AS (state:chararray, name:chararray);
emp_group = GROUP employees BY state;
L = LIMIT emp_group 3;

(CA,{(CA,Ulf),(CA,manish),(CA,Brian)})
(CO,{(CO,George),(CO,Mark)})
(IL,{(IL,Danielle)})

Note: If you define an ORDER BY (discussed in the next lesson) immediately
before the LIMIT, then you will be guaranteed to get the same results each time.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved. 10
0

	

	

Review Questions
1) List two Pig commands that cause a logical plan to execute:

2) Which Pig command stores the output of a relation into a folder in HDFS?

Suppose the prices.csv file looks like:

And assume we have the following relation defined:

Explain what each of the following Pig commands or relations do:

3) describe prices; __

4) A = group prices by symbol;___

5) B = foreach prices generate symbol as x, volume as y;

__

6) C = foreach A generate group, SUM(prices.volume);

__

7) D = foreach prices generate symbol..price;

__

8) Write a Pig relation that only contains prices with a volume greater than 3,000:

__

XFR,2004-05-13,22.90,400
XFR,2004-05-12,22.60,400000
XFR,2004-05-11,22.80,2600
XFR,2004-05-10,23.00,3800
XFR,2004-05-07,23.55,2900
XFR,2004-05-06,24.00,2200

prices = load 'prices.csv' using PigStorage(',')
as (symbol:chararray, date:chararray, price:double, volume:int);

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved. 10
1

	

	

Lab: Exploring Data with Pig

Objective: Use Pig to navigate through HDFS and explore a dataset
See page 45 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved. 10
2

	

	

Advanced Pig Programming

Lesson Objectives
This lesson covers some of the more advanced features of Pig, including sorting,
parallelization, joins, and user-defined functions.

After completing this lesson, students should be able to:

• Describe the ORDER BY Operator

• Describe the CASE Operator

• Describe the DISTINCT Operator

• Describe How to Use PARALLEL

• Describe the FLATTEN Operator

• Describe Nested FOREACH

• Describe Joins

• Describe the COGROUP Operator

• Describe Pig User-Defined Functions

Additional Content
• Lab: Splitting a Dataset

• Lab: Joining Datasets

• Lab: Preparing Data for Hive

• Demo: Computing PageRank

• Quiz: Lesson Review

• Lab: Analyzing Clickstream Data

• Lab: Analyzing Stock Market Data using Quantiles

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved. 10
3

	

	

The ORDER BY Operator

The	
 ORDER	
 BY	
 Operator	

	

The ORDER BY command allows you to sort the data in a relation:

The records in the byage relation will be sorted by age:

You can use DESC or ASC in the BY clause. You can also order by multiple fields:
agesalary = ORDER salaries BY age ASC, salary ASC;

The output is similar to byage, except the salary field is sorted in ascending order. Compare
the two outputs of the records with age = 23:

salaries = LOAD 'salaries.txt' USING PigStorage(',') AS
(gender:chararray,age:int,salary:double,zip:chararray);

byage = ORDER salaries BY age ASC;

(M,19,0.0,95050)
(F,22,90000.0,95102)
(M,23,89000.0,95105)
(M,23,64000.0,94041)
(F,30,10000.0,95101)
(M,31,95000.0,94041)

(M,19,0.0,95050)
(F,22,90000.0,95102)
(M,23,64000.0,94041)
(M,23,89000.0,95105)
(F,30,10000.0,95101)
(M,31,95000.0,94041)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved. 10
4

	

	

A = ORDER visitors BY lastname DESC;
B = FILTER A BY age >= 21;

Note: The resulting output of an ORDER BY relation is a total ordering, which
means the data will be sorted across all output files. In other words, part-r-
00000 will contain the first set of ordered tuples then part-r-00001 will
continue where the first records left off and so on.

Important: If you define a relation with an ordering then process that relation in
another expression, the ordering is no longer guaranteed. For example:

The records in B are no longer guaranteed to be ordered by lastname in
descending order.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
101

	

	

The CASE Operator

The	
 CASE	
 Operator	

	

Pig has a CASE operator that allows you to make decisions within a FOREACH GENERATE
statement. A CASE clause contains an arbitrary number of WHEN...THEN clauses and contains
an END statement to denote the end of the CASE.

For example:

bonuses = FOREACH salaries GENERATE salary, (
CASE

WHEN salary >= 70000.00 THEN salary * 0.10
WHEN salary < 70000.00 AND salary >= 30000.0

THEN salary * 0.05
WHEN salary < 30000.0 THEN 0.0

END) AS bonus;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
100

	

	

Parameter Substitution
Pig provides a parameter substitution feature that allows your Pig scripts to refer to values that
can be defined at runtime, either from the command line or in a properties file. A parameter is a
value that starts with a dollar sign ($).

For example, $INPUTFILE is a parameter in the following LOAD statement:
stocks = load '$INPUTFILE' USING PigStorage(',');

When you execute the script, specify a value for $INPUTFILE using the -p switch:
> pig -p INPUTFILE=NYSE_daily_prices_A.csv myscript.pig

Use the -param_file switch if your properties are stored in a text file:
> pig -param_file stock.params myscript.pig

The text file stock.params looks like this:
INPUTFILE=NYSE_daily_prices_A.csv

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
102

	

	

The DISTINCT Operator

The	
 DISTINCT	
 Operator	

	

The DISTINCT operator removes duplicate tuples in a relation. The syntax is:
DISTINCT alias;

Suppose we have the following data:

Applying DISTINCT removes the duplicates:

The tuples in unique_emp are:

SD
NV
SD
CO
CA
SD
CA
CO

Rich
Barry
Rich
George
Ulf
Rich
Ulf
George

employees = LOAD 'employees.txt';
unique_emp = DISTINCT employees;

(CA,Ulf)
(CO,George)
(NV,Barry)
(SD,Rich)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
103

	

	

Using PARALLEL
The PARALLEL operator is a clause used to determine the number of reducers in the
subsequent MapReduce job for that particular operation.

The syntax for the PARALLEL clause is:
PARALLEL n;

In this clause, n is the number of reducers. For example:

The JOIN operation will use 20 reducers, and the ORDER operation will use five reducers.

You can use the default_parallel property to set the number of reducers at the script level.
As an example, there will be eight reducers for each reduce task in the following Pig script:

A = LOAD 'data1';
B = LOAD 'data2';
C = JOIN A by $1, B by $3 PARALLEL 20;
D = ORDER C BY $0 PARALLEL 5;

SET default_parallel 8;
A = LOAD 'data1';
B = LOAD 'data2';
C = JOIN A by $1, B by $3;
D = ORDER C BY $0;

Note: Some operators have a reduce phase, like GROUP, ORDER BY,
DISTINCT, JOIN, LIMIT, and COGROUP. But some Pig operators do not require
a reduce phase; these are LOAD, FOREACH, FILTER, and SAMPLE. For those
types of operators, it does not make sense to specify a PARALLEL value.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
104

	

	

The FLATTEN Operator

The	
 FLATTEN	
 Operator	

	

The FLATTEN operator removes the nesting of nested tuples and bags. You invoke FLATTEN
like a function, passing in the tuple or bag that you want to flatten:
FLATTEN(relation)

The FLATTEN operator is best understood by an example. Suppose we have the following data
set:

The Pig Latin statements below load the data using a schema. Notice the states are in a bag:

The output of the employees relation is the following:

Rich remote {(SD),(CA)}
Ulf onsite {(CA)}
Tom remote {(OH),(NY)}
Barry remote {(NV),(NY)}

> employees = LOAD 'locations.txt' AS (
name:chararray,
location:chararray,
states:bag{t:tuple(state:chararray)});
> describe employees;
employees: {name: chararray,location: chararray,states: {t: (state: chararray)}}

(Rich,remote,{(SD),(CA)})
(Ulf,onsite,{(CA)})
(Tom,remote,{(OH),(NY)})
(Barry,remote,{(NV),(NY)})

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
105

	

	

Notice that each record has a bag containing one or more states. If you flatten the states field
in the employees relation, each entry in the bag becomes its own full record:

The FLATTEN operator produces a cross-product of every record in the bag, with all of the
other expressions in the GENERATE clause. The output of flat_employees is:

flat_employees = FOREACH employees GENERATE name,
location, FLATTEN(states) AS state;

(Rich,remote,SD)
(Rich,remote,CA)
(Ulf,onsite,CA)
(Tom,remote,OH)
(Tom,remote,NY)
(Barry,remote,NV)
(Barry,remote,NY)

Note: The example here flattened a bag, but you can also flatten a nested tuple,
which simply removes the nesting so that each field in the tuple is at the top
level. Suppose a tuple looks like:
(1, (2, 3))

After this tuple was flattened, it would look like:
(1,2,3)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
106

	

	

Lab: Splitting a Dataset

Objective: Research the White House visitor data and look for members of
Congress
See page 51 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
107

	

	

Nested FOREACH
A nested FOREACH (also known as an inner foreach) is a FOREACH statement that contains a
nested block of code. The nested block of code has the following criteria:

• Can contain CROSS, DISTINCT, FILTER, FOREACH, LIMIT, and ORDER BY operations

• Must end with a GENERATE statement

The syntax looks like:

The following example shows how to count unique entries in a group using a nested FOREACH.
The data is daily stock prices from the New York Stock Exchange (NYSE); each row looks like:
NYSE,AEA,2010-02-08,4.42,4.42,4.21,4.24,205500,4.24

The first field is the exchange name, and the second field is the stock symbol. These are the
only two fields we need for our problem:

• The dailyA_grp contains all of the stock symbols grouped by exchange

• Within the FOREACH, the symbols relation takes the bag dailyA.symbol and produces a
new relation that is a bag with tuples that only have the field symbol

• The unique_symbol relation is also a list of symbols but with all of the duplicates removed

• The GENERATE statement projects the group (which is “NYSE” in this example) and the
number of values in unique_symbol

The output is:
(NYSE,203)

This means there are 203 unique stock symbols in the NYSE_daily_prices_A.csv file.

FOREACH nested_alias {
alias = nested_operation;
alias = nested_operation;
GENERATE expression;

};

dailyA = LOAD 'NYSE_daily_prices_A.csv' USING
PigStorage(',') AS (exchange,symbol);

dailyA_grp = GROUP dailyA BY exchange;
unique_symbols = FOREACH dailyA_grp {

symbols = dailyA.symbol;
unique_symbol = DISTINCT symbols;
GENERATE group, COUNT(unique_symbol);

};

Note: Another common task inside a nested FOREACH is ORDER BY. For example:
dailyA = LOAD 'NYSE_daily_prices_A.csv' USING

PigStorage(',') AS (exchange,symbol,date);
dailyA_grp = GROUP dailyA BY symbol;
result = FOREACH dailyA_grp {

sorted = ORDER dailyA BY date ASC;
first_traded_date = LIMIT sorted 1;
GENERATE group, first_traded_date;

};

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
108

	

	

About Joins

Performing an Inner Join

Performing	
 an	
 Inner	
 Join	

	

Joins are a common occurrence in data processing. The JOIN operation in Pig performs both
inner and outer joins of two data sets using keys indicated for each input. If the keys are equal
then the two rows are joined.

An inner join in Pig looks like the following:
alias = JOIN alias1 BY key1, alias2 BY key2;

Let’s look at an example. Suppose we have the following file containing states and first names:

The second data set contains first names and departments:

SD
NV
CO
CA
OH

Rich
Barry
George
Ulf
Tom

Rich Sales
Ulf Management
Tom Marketing
Barry Sales
Rich Marketing

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
109

	

	

The following Pig Latin commands perform an inner join on these two data sets using the first
name in both data sets as the key:

Notice the innerjoin relation contains all fields from both data sets in the join. The ::
operator is needed to avoid ambiguity when the two data sets share the same field names (like
firstname in this example).

The output of innerjoin is:

locations = LOAD 'pigdemo.txt' AS
(state:chararray,firstname:chararray);

depts = LOAD 'joindemo.txt' AS
(firstname:chararray,dept:chararray);

innerjoin = JOIN locations BY firstname, depts BY firstname;

> describe innerjoin;
innerjoin:{

locations::state: chararray,
locations::firstname: chararray,
depts::firstname: chararray,
depts::dept: chararray

}

(OH,Tom,Tom,Marketing)
(CA,Ulf,Ulf,Management)
(SD,Rich,Rich,Sales)
(SD,Rich,Rich,Marketing)
(NV,Barry,Barry,Sales)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
110

	

	

Performing an Outer Join

Performing	
 an	
 Outer	
 Join	

	

An outer join in Pig uses the OUTER keyword, along with either LEFT, RIGHT, or FULL. The
syntax looks like:
alias = JOIN alias1 BY key1 [LEFT|RIGHT|FULL] OUTER, alias2 BY key2;

Note: The main difference between an inner join and an outer join is that records
that do not have a match on the other side are included in the outer join. Pig
inserts null values into the missing fields.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
111

	

	

Let’s look at an example using the same data from the previous example:

In this case, no records on either side will be omitted. The output looks like:

If you perform a LEFT join, you get all records from the left data set, but non-matching records
in the right data set are omitted:

In our simple example, the result of leftjoin is the same as FULL OUTER because our data on
the right does not contain any records that are non-matching:

outerjoin = JOIN locations BY firstname FULL OUTER,
depts BY firstname;

(OH,Tom,Tom,Marketing)
(CA,Ulf,Ulf,Management)
(SD,Rich,Rich,Sales)
(SD,Rich,Rich,Marketing)
(NV,Barry,Barry,Sales)
(CO,George,,)

leftjoin = JOIN locations BY firstname LEFT OUTER,
depts BY firstname;

(OH,Tom,Tom,Marketing)
(CA,Ulf,Ulf,Management)
(SD,Rich,Rich,Sales)
(SD,Rich,Rich,Marketing)
(NV,Barry,Barry,Sales)
(CO,George,,)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
112

	

	

Replicated Joins
A replicated join is useful when one of the data sets in the join is small enough to fit into
memory. This results in a map-side join, saving an enormous amount of network traffic during
the shuffle/sort phase of the resulting MapReduce job.

To take advantage of a replicated join, list the smaller data set last in the BY clause and follow it
with a USING ‘replicated’ statement. For example:

The departments data set will be distributed across all map tasks (using a feature of
MapReduce called a LocalResource), and the join will occur in the map side instead of on the
reduce side.

replicatedjoin = JOIN locations BY firstname,
depts BY firstname USING 'replicated';

Best Practice: Use replicated joins whenever you can. The increase in
performance is noticeable. Just be careful: if the data set does not fit in the
memory, the underlying MapReduce will generate an error and fail.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
113

	

	

The COGROUP Operator

The	
 COGROUP	
 Operator	

	

The COGROUP operator is actually identical to the GROUP operator, except we use COGROUP when
grouping together more than one relation. For each input, the result of a COGROUP is a record
with a key and one bag. You can think of a COGROUP as the first half of a JOIN: the keys are
collected, but the cross-product is not performed.

Let’s look at an example using the locations and departments data:

Notice the schema of the cgroup relation consists of a key followed by a bag for each data set.
The output of cgroup is:

> cgroup = COGROUP locations BY firstname,
departments BY firstname;

> DESCRIBE cgroup;
cgroup: {group: chararray,
locations: {

(state: chararray,
firstname: chararray)

},
departments: {

(firstname: chararray,
dept: chararray)}

}

(Tom,{(OH,Tom)},{(Tom,Marketing)})
(Ulf,{(CA,Ulf)},{(Ulf,Management)})
(Rich,{(SD,Rich)},{(Rich,Sales),(Rich,Marketing)})
(Barry,{(NV,Barry)},{(Barry,Sales)})
(George,{(CO,George)},{})

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
114

	

	

You could use the cgroup relation to count the number of records that would occur in the
join’s result:

The first number is the inner join count, and the second number is the outer join count:

counters = FOREACH cgroup GENERATE group, COUNT(locations),
COUNT(departments);

(Tom,1,1)
(Ulf,1,1)
(Rich,1,2)
(Barry,1,1)
(George,1,0)

Note: The only difference between GROUP and COGROUP is the readability. If you
see GROUP, that implies the grouping of a single relation. If you see COGROUP, that
implies the grouping of two or more relations.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
115

	

	

Pig User-Defined Functions
The Pig API has a large collection of built-in functions for performing common tasks and
computations. However, some Pig scripts may require User-Defined Functions (UDFs) to
complete their tasks. Pig UDFs can be written in six languages:

• Java

• Jython

• Python

• JRuby

• JavaScript

• Groovy

You write a UDF in Java following these steps:

1) Write a Java class that extends EvalFunc.

2) Deploy the class in a JAR file.

3) Register the JAR file in the Pig script using the REGISTER command.

4) Optionally define an alias for the UDF using the DEFINE command.

Reference: The Pig API Javadocs are at:

http://pig.apache.org/docs/r0.14.0/api/

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
116

	

	

A UDF Example
Let’s take a look at an example. The following UDF adds a comma between two input strings:

• The CONCAT_COMMA class extends EvalFunc

• The generic of EvalFunc represents the data type of the return value. Notice the exec
method returns a String

• The exec method is called when the UDF is invoked from the Pig script

• The input parameter is a Tuple instance, which allows for an arbitrary number of
arguments.

• The get method of Tuple is used to retrieve the arguments passed in

Invoking a UDF
Before you can invoke a UDF, the function needs to be registered by your Pig script so that the
Pig compiler knows where to find the definition of the UDF. Use the REGISTER command to
register a JAR:
register my.jar;

You can specify a relative path or a full path to the JAR file. Once the JAR is registered, call the
UDF using its fully qualified class name:

As an option, you can use the DEFINE command to define an alias that simplifies the syntax for
invoking the UDF:
DEFINE CONCAT_COMMA com.hortonworks.udfs.CONCAT_COMMA();

Now you can invoke the UDF using the alias:
x = FOREACH logevents GENERATE CONCAT_COMMA(level, code);

package com.hortonworks.udfs;

public class CONCAT_COMMA extends EvalFunc<String> {

@Override
public String exec(Tuple input) throws IOException {

String first = input.get(0).toString().trim();
String second = input.get(1).toString().trim();

return first + ", " + second;

}
}

x = FOREACH logevents
GENERATE com.hortonworks.udfs.CONCAT_COMMA(level, code);

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
117

	

	

Tips for Optimizing Pig Scripts
Here are a few best practices that can make the difference in the performance of Pig scripts:

Filter early and often Getting rid of data as quickly as possible will improve the

performance by reducing the amount of data that gets shuffled and
sorted across the network

Project early and
often

Use a FOREACH to remove unwanted or unused fields in your
records as soon as possible

Drop nulls before a
join

Filter out null records before the JOIN. The gain can be significant,
even if you have a small percentage of null values

Use replicated joins
whenever possible

A map-side join is always much more efficient than a reduce-side
join

Optimize regular
join ordering

Make sure that the table with the largest number of tuples per key
Is the last table in your query

Use PARALLEL
properly

Know your cluster. Setting this value too high can actually slow
down the job, and setting it too low is not a good use of your
cluster’s resources

Use compression Enable the compression of the temporary data files used between
map/reduce tasks and jobs by setting
mapreduce.map.output.compress to true and specifying a
compression codec with
mapreduce.map.output.compress.codec. Enable compression of
the output files between MapReduce jobs within a Pig processing
pipeline by setting the pig.tmpfilecompression and
pig.tmpfilecompression.codec properties

Choose the right data
types

If you are treating a field as a specific data type, define the type in
the LOAD statement with a schema. This will avoid unnecessary
data-type conversions later

Tip: When you start Pig, a special file named .pigbootup is searched for in the
user’s home folder and executed. The .pigbootup file is a great place to
configure properties, register JAR files, define UDFs, and perform any other task
that can be applied globally to all of your Pig scripts.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
118

	

	

Lab: Joining Datasets

Objective: Join two datasets in Pig
See page 55 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Lab: Preparing Data for Hive

Objective: Transform and export a dataset for use with Hive
See page 61 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
119

	

	

Overview of the DataFu Library
The DataFu library is an open-source library of Pig UDFs for performing data analysis on
Hadoop. DataFu contains UDFs for:

• Bag operations, like append and concatenate

• Set operations, like union and intersect

• Running PageRank on a collection of graphs

• Statistical computations, like quantiles and variance

• Sessionization functions for working with page views
To use the functions in the DataFu library, you need to register the DataFu JAR file, just like
you would with any other Pig UDF library:
register
/usr/hdp/current/pig-
client/lib/datafu.jar;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
120

	

	

Computing Quantiles
A quantile is a set of points from the cumulative distribution function of a random variable,
taken at regular intervals. The number of points, n, is the name of the quantile. For example: If
n = 4, you have a four-quantile (commonly called a quartile). If n = 5, you have a five-quantile,
and so on.

The datafu library has a quantile UDF named datafu.pig.stats.Quantile that computes a
quantile based on provided intervals and passed in to the UDF’s constructor. For example, an
evenly distributed five-quantile function would be defined as:

You can also instantiate a Quantile by passing in the number of evenly-spaced ranges. For
example, the above Quintile could also be defined as:
define Quintile datafu.pig.stats.Quantile('6');

Quintiles are what five-quantiles are called, but we could have used any alias. Invoking this
UDF requires passing in a sorted bag. This is typically accomplished using a nested FOREACH.

Here is what the entire Pig script might look like for computing the quintiles of a collection of
high temperatures gathered at various weather stations:

The output for each location is going to be six values, which define five equally numerous
subsets of the high temperatures:

For example, in Toronto you have an equal number of days where the high temperature was
between -7.22 and -3.48 degrees Celsius, between -3.48 and 13.6 degrees Celsius, between
13.6 and 16.05 degrees Celsius, and so on.

define Quintile datafu.pig.stats.Quantile('0.0','0.20',
'0.40','0.60','0.80','1.0');

register /usr/hdp/current/pig-client/lib/datafu.jar;

define Quintile datafu.pig.stats.Quantile('0.0','0.20',

'0.40','0.60','0.80','1.0');

temperatures = LOAD 'data.txt' AS (

location:chararray,
hightemp:double,
lowtemp:double

);

temps_filter = FILTER temperatures BY hightemp is not null;
temps_group = GROUP temps_filter BY location;

quintiles = FOREACH temps_group {

sorted = ORDER temps_filter BY hightemp;
GENERATE group AS location,

Quintile(sorted.hightemp) AS quant;
}

dump quintiles;

(Toronto,(-7.22,-3.48,13.6,16.05,19.49,24.5))
(Moscow,(-9.0,-2.04,5.5,18.975,21.205,24.98))
(NorthPole,(-20.5,-14.6,-8.76,-2.57,1.475,2.445,3.61))
(Houston,(40.9,51.12,69.41,82.75,94.55,105.87))
(IntlFalls,(-14.41,-4.25,-1.15,12.15,17.6,21.73))

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
121

	

	

Demonstration: Computing PageRank

Objective: To understand how to use the PageRank UDF in DataFu
See page 63 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
122

	

	

Review Questions
1) If a relation is sorted using ORDER BY and the resulting MapReduce job runs with three

reducers, how is the output actually sorted? __________________________

Suppose the prices.csv file looks like:

And assume we have the following relation defined:

Explain what each of the following Pig commands or relations do:

2) F = foreach prices generate

(CASE

WHEN volume > 3000 THEN volume

WHEN volume <= 3000 THEN -1

END) AS high_volume;
__

3) G = distinct prices; __

4) H = GROUP prices BY symbol;

I = foreach H {

J = filter prices by volume > 3000;

GENERATE group, SUM(J.price);

};

5) What is the benefit of the using ‘replicated’ clause in a Pig join?

6) Why is filtering and projecting a relation early a performance benefit in Pig?

XFR,2004-05-13,22.90,400
XFR,2004-05-12,22.60,400000
XFR,2004-05-11,22.80,2600
XFR,2004-05-10,23.00,3800
XFR,2004-05-07,23.55,2900
XFR,2004-05-06,24.00,2200

prices = load 'prices.csv' using PigStorage(',')
as (symbol:chararray, date:chararray, price:double, volume:int);

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
123

	

	

Lab: Analyzing Clickstream Data

Objective: Become familiar with using the DataFu library to sessionize
clickstream data
See page 67 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Lab: Analyzing Stock Market Data using Quantiles

Objective: Use DataFu to compute quantiles
See page 71 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
124

	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
125

	

	

Hive Programming

Lesson Objectives
This lesson covers the details of the Hive framework and HiveQL programming language.

After completing this lesson, students should be able to:

• Describe Hive

• Describe How to Define Tables

• Describe How to Perform Queries

• Describe How to Sort Data

• Describe How to Join Data and Hive Join Strategies

Additional Content
• Lab: Understanding Hive Tables

• Demo: Understanding Partitions and Skew

• Lab: Analyzing Big Data with Hive

• Demo: Computing ngrams

• Lab: Joining Datasets in Hive

• Lab: Computing ngrams of Emails in Avro Format

• Quiz: Lesson Review

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
126

	

	

About Hive
Apache Hive, http://hive.apache.org/, is a data warehouse system for Hadoop. Hive is not a
relational database; it only maintains metadata information about your big data stored on HDFS.
Hive allows you to treat your big data as tables and perform SQL-like operations on the data
using a scripting language called HiveQL.

• Hive is not a database, but it uses a database (called the metastore) to store the tables that
you define. Hive uses Derby by default

• A Hive table consists of a schema stored in the metastore and data stored on HDFS

• Hive converts HiveQL commands into MapReduce or Tez jobs (similar to how Pig Latin
scripts execute with Pig)

• One of the key benefits of HiveQL is its similarity to SQL. Data analysts familiar with SQL
can run MapReduce jobs by writing SQL-like queries, something they are already
comfortable doing

• You can easily perform ad hoc custom queries on HDFS using Hive
Pig and Hive have quite a few similarities, so you might be wondering which framework to
choose for your particular application. For most use cases:

• Pig is a good choice for ETL jobs, where unstructured data is reformatted so that it is easier
to define a structure to it

• Hive is a good choice when you want to query data that has a certain known structure to it
In other words, you will likely benefit from using both Pig and Hive. Pig is great for moving data
around and restructuring it, while Hive is great for performing analyses on the data.

Note: Hive does not make any promises regarding performance. The benefit of
Hive is its simplicity in being able to define and run a MapReduce or Tez job,
but the queries are not meant to execute in real time. Even the simplest of Hive
queries can take several minutes to execute (just like any MapReduce job), and
large Hive queries can feasibly take hours to run.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
127

	

	

Comparing Hive to SQL

SQL$Datatypes$	
 	
 SQL$Seman.cs$	

INT$	
 	
 SELECT,$LOAD,$INSERT$from$query$	

TINYINT/SMALLINT/BIGINT$	
 	
 ExpressionsinWHEREandHAVING$	

BOOLEAN$	
 	
 GROUP$BY,$ORDER$BY,$SORTBY	

FLOAT$	
 	
 CLUSTER$BY,$DISTRIBUTEBY	

DOUBLE$	
 	
 SubIqueriesinFROM$clause$	

STRING$	
 	
 GROUP$BY,$ORDERBY	

BINARY$	
 	
 ROLLUPandCUBE$	

TIMESTAMP$	
 	
 UNION$	

ARRAY,$MAP,$STRUCT,$UNION$	
 	
 LEFT,$RIGHT$and$FULL$INNER/OUTER$	

JOIN$	

DECIMAL$	
 	
 CROSS$JOIN,$LEFT$SEMI$JOIN$	

CHAR$	
 	
 Windowing$funcOons$(OVER,$RANK,$	

etc.)$	

VARCHAR$	
 	
 SubIqueriesforIN/NOT$IN,$HAVING$	

DATE$	
 	
 EXISTS$/$NOT$EXISTS$	

Comparing	
 Hive	
 to	
 SQL	

	

Hive provides basic SQL functionality using Tez/MapReduce to execute queries. Hive supports
standard SQL clauses:

Hive also supports basic DDL commands:
CREATE/ALTER/DROP TABLE/DATABASE

Some of the limitations of Hive include:

• Index and view support are limited (discussed in detail later)

• The data in Hive is read only (no updates)

• Datatypes do not line up with traditional SQL types

• New partitions can be inserted, but not individual rows

INSERT INTO
SELECT
FROM … JOIN … ON
WHERE
GROUP BY
HAVING
ORDER BY
LIMIT

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
128

	

	

Hive Architecture
Hive queries are submitted to a HiveServer2 process that typically runs on a master node in the
cluster.

Hive	
 Architecture	

	

Issuing Commands Using the Hive CLI, a Web interface, or a Hive JDBC/ODBC client,
a Hive query is submitted to the HiveServer

Hive Query Plan The Hive query is compiled, optimized, and planned as a

Tez/MapReduce job

Tez/MapReduce
Job Executes

The corresponding Tez or MapReduce job is executed on the
Hadoop cluster

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
129

	

	

Submitting Hive Queries
Hive queries are written using the HiveQL language, an SQL-like scripting language that
simplifies the creation of Tez/MapReduce jobs. With HiveQL, data analysts can focus on
answering questions about the data, and let the Hive framework convert the HiveQL into a
Tez/MapReduce job.

You have two options for executing HiveQL commands:

Hive CLI The Hive command line interface allows you to enter commands
directly into the Hive shell or write the commands in a text file and
execute the file

Beeline A new JDBC client that works with HiveServer2. The Beeline shell

works in embedded mode (just like the Hive CLI) and also remote
mode, where you connect to a HiveServer2 process using Thrift

The Hive CLI shell is started using the hive executable:

Use the -f flag to specify a file that contains a Hive script:
$ hive -f myquery.hive

Beeline is started using the beeline executable:

$ hive
hive>

$ beeline –u url –n username –p password
beeline>

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
130

	

	

Defining a Hive-Managed Table
A Hive table allows you to add structure to your otherwise unstructured data in HDFS. Use the
CREATE TABLE command to define a Hive table, similar to creating a table in SQL.

For example, the following HiveQL creates a new Hive-managed table named customer:

• The customer table has four columns

• ROW FORMAT is either DELIMITED or SERDE

• Hive supports the following data types: TINYINT, SMALLINT, INT, BIGINT, BOOLEAN,
FLOAT, DOUBLE, DECIMAL, STRING, VARCHAR, CHAR, BINARY, DATE and TIMESTAMP

• Hive also has four complex data types: ARRAY, MAP, STRUCT, and UNIONTYPE

Defining an External Table
The following CREATE statement creates an external table named salaries:

An external table is just like a Hive-managed table, except that when the table is dropped, Hive
will not delete the underlying /apps/hive/warehouse/salaries folder.

CREATE TABLE customer (
customerID INT,
firstName STRING,
lastName STRING,
birthday TIMESTAMP,

) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

CREATE EXTERNAL TABLE salaries (
gender string,
age int,
salary double,
zip int

)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
131

	

	

Defining a Table LOCATION
Hive does not have to store the underlying data in /apps/hive/warehouse. Instead, the files
for a Hive table can be stored in a folder anywhere in HDFS by defining the LOCATION clause.
For example:

In the table above, the table data for salaries will be whatever is in the
/user/train/salaries directory.

CREATE EXTERNAL TABLE salaries (
gender string,
age int,
salary double,
zip int

)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LOCATION '/user/train/salaries/';

Important: The sole difference in behavior between external tables and Hive-
managed tables is when they are dropped. If you drop a Hive-managed table,
then its underlying data is deleted from HDFS. If you drop an external table, then
its underlying data remains in HDFS (even if the LOCATION was in
/apps/hive/warehouse/).

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
132

	

	

Loading Data into a Hive Table
The data for a Hive table resides in HDFS. To associate data with a table, use the LOAD DATA
command. The data does not actually get “loaded” into anything, but the data does get
moved:

• For Hive-managed tables, the data is moved into a special Hive subfolders of
/apps/hive/warehouse

• For external tables, the data is moved to the folder specified by the LOCATION clause in the
table’s definition

The LOAD DATA command can load files from the local file system (using the LOCAL qualifier) or
files already in HDFS. For example, the following command loads a local file into a table named
customers:
LOAD DATA LOCAL INPATH '/tmp/customers.csv' OVERWRITE INTO TABLE customers;

The OVERWRITE option deletes any existing data in the table and replaces it with the new data.
If you want to append data to the table’s existing contents, simply leave off the OVERWRITE
keyword.

If the data is already in HDFS, then leave off the LOCAL keyword:
LOAD DATA INPATH '/user/train/customers.csv' OVERWRITE INTO TABLE customers;

In either case above, the file customers.csv is moved either into HDFS in a subfolder of
/apps/hive/warehouse or to the table’s LOCATION folder, and the contents of customers.csv
are now associated with the customers table.

You can also insert data into a Hive table that is the result of a query, which is a common
technique in Hive. The syntax looks like:

The birthdays table will contain all customers whose birthday column is not null.

INSERT INTO TABLE birthdays
SELECT firstName, lastName, birthday
FROM customers
WHERE birthday IS NOT NULL;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
133

	

	

Performing Queries
Let’s take a look at some sample queries to demonstrate what HiveQL looks like. The following
SELECT statement selects all records from the customers table:
SELECT * FROM customers;

You can use the familiar WHERE clause to specify which rows to select from a table:

One nice benefit of Hive is its ability to join data in a simple fashion. The JOIN command in
HiveQL is similar to its SQL counterpart. For example, the following statement performs an
inner join on two tables:

To perform an outer join, use the OUTER keyword:

In the SELECT above, a row will be returned for every customer, even those without any orders.

FROM customers
SELECT firstName, lastName, address, zip
WHERE orderID > 0
ORDER BY zip;

Note: The FROM clause in Hive can appear before or after the SELECT clause.

SELECT customers.*, orders.*
FROM customers
JOIN orders ON (

customers.customerID = orders.customerID
);

SELECT customers.*, orders.*
FROM customers
LEFT OUTER JOIN orders
ON (customers.customerID = orders.customerID);

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
134

	

	

Lab: Understanding Hive Tables

Objective: Understand how Hive table data is stored in HDFS
See page 75 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
135

	

	

Hive Partitions
Hive manages the data in its tables using files in HDFS. You can define a table to have a
partition, which results in the underlying data being stored in files partitioned by a specified
column (or columns) in the table. Partitioning the data can greatly improve the performance of
queries because the data is already separated into files based on the column value, which can
decrease the number of mappers and greatly decrease the amount of shuffling and sorting of
data in the resulting Tez/MapReduce job.

Use the partitioned by clause to define a partition when creating a table:

This will result in each department having its own subfolder in the underlying warehouse folder
for the table:

create table employees (id int, name string, salary double)
partitioned by (dept string);

/apps/hive/warehouse/employees
/dept=hr/
/dept=support/
/dept=engineering/
/dept=training/

Note: You can partition by multiple columns, which results in subfolders within
the subfolders of the table’s warehouse directory.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
136

	

	

Hive Buckets

Hive	
 Buckets	

	

Hive tables can be organized into buckets, which imposes extra structure on the table and the
way the underlying files are stored. Bucketing has two key benefits:

More efficient queries Especially when performing joins on the same bucketed columns

More efficient
sampling

Because the data is already split up into smaller pieces

Buckets are created using the clustered by clause. For example, the following table has 16
buckets that are clustered by the id column:

How does Hive determine which bucket to put a record into? If you have n buckets, the
buckets are numbered 0 to n-1 and Hive hashes the column value and then uses the modulo
operator on the hash value.

create table employees (id int, name string, salary double)
clustered by (id) into 16 buckets;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
137

	

	

Skewed Tables
In Hive, skew refers to one or more columns in a table that have values that appear very often.
If you know a column is going to have heavy skew, you can specify this in the table’s schema:

By specifying the values with heavy skew, Hive will split those out into separate files
automatically and take this fact into account during queries so that it can skip whole files if
possible.

In the Customers table above, records with a zip of 57701 or 57702 will be stored in separate
files because the assumption is that there will be a large number of customers in those two ZIP
codes.

CREATE TABLE Customers (
id int,
username string,
zip int

)
SKEWED BY (zip) ON (57701, 57702)
STORED as DIRECTORIES;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
138

	

	

Demonstration: Understanding Partitions and Skew

Objective: To understand how Hive partitioning and skewed tables work
See page 81 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
139

	

	

Sorting Data
HiveQL has two sorting clauses:

ORDER BY A complete ordering of the data, which is accomplished by using a

single reducer

SORT BY Data output is sorted per reducer

The syntax for the two clauses looks like:
select * from table_name [order | sort] by column_name;

The syntax for both is identical; only the behavior is different. If there is more than one
reducer, sort by provides a partial sorting of the data by reducer but not a total ordering.

Order by implements a total ordering across all reducers. To obtain a parallel total ordering
across multiple reducers in Hive, you have to set the following property:
hive.optimize.sampling.orderby=true

If you do not set the property above then the total ordering is achieved by using one reducer.
In that situation, you must add a LIMIT clause to the Hive query to limit the size of the output
so that it can be managed by a single reducer.

Using Distribute By
Hive uses the columns in distribute by to distribute the rows among reducers. In other
words, all rows with the same distribute by columns will go to the same reducer. For
example, suppose you have the following table named salaries with the schema (gender,
age, salary, zip):

F 66 41000.0 95103
M 40 76000.0 95102
F 58 95000.0 95103
F 68 60000.0 95105
M
...

85 14000.0 95102

Note that distribute by is typically used in conjunction with an insert statement (or also
when using Hadoop streaming with custom mappers and/or reducers). The following
command demonstrates distribute by on the age column:

Records with the same age will go to the same reducer.

set mapreduce.job.reduces=2;
insert overwrite table mytable

select gender, age, salary from salaries
distribute by age;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
140

	

	

insert overwrite table myoutput_table
from dataset

select *
cluster by age;

The distribute by does not guarantee any type of clustering of the records. For example, a
reducer might get:

The two records with age = 66 are sent to the same reducer, but they are not adjacent. You
can use sort by to cluster records with the same distribute by column together:

The records with the same age will now appear together in the reducer’s output:

M,66,84000.0
F,58,95000.0
M,40,76000.0
F,66,41000.0

insert overwrite table mytable
select gender, age, salary from salaries
distribute by age
sort by age;

F,58,95000.0
M,66,84000.0
F,66,41000.0
M,68,15000.0
F,68,60000.0
M,72,83000.0

Note: If you use distribute by followed with a sort by on the same column,
you can use cluster by and get the same result. For example, the following
statement has the same result as the previous Hive statement above:

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
141

	

	

Storing Results to a File
The following command outputs the results of a query to a file in HDFS. For example:

You can also output the results of a query to a file on the local file system by adding the LOCAL
keyword:

Specifying MapReduce Properties
Keep in mind that a Hive query is actually a MapReduce job behind the scenes. You can
specify some of the properties of that underlying MapReduce job in Hive using the SET
command.

You can either set the property in the Hive script:
SET mapreduce.job.reduces = 12

Or you can set properties at the command line using the hiveconf flag:
hive -f myscript.hive -hiveconf mapreduce.job.reduces =12

You can use hivevar for parameter substitution. For example:
SELECT * FROM names WHERE age = ${age}

Specify age using either SET or the hivevar flag:
hive -f myscript.hive -hivevar age=33

INSERT OVERWRITE DIRECTORY '/user/train/ca_or_sd/' select name, state from names where
state = 'CA' or state = 'SD';

INSERT OVERWRITE LOCAL DIRECTORY '/tmp/myresults/' SELECT * FROM bucketnames ORDER BY
age;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
142

	

	

Lab: Analyzing Big Data with Hive

Objective: Analyze the White House visitor data
See page 85 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
143

	

	

Hive Join Strategies

Hive	
 Join	
 Strategies	

	

Some important concepts to understand when performing joins and laying out your Hive data:

• Shuffle joins always work in the sense that if you cannot perform a more efficient type of
join, two tables can always be joined using a shuffle join

• A map join is very efficient and ideal if one side of the join is a small enough dataset to fit
into memory

• If a map join is not an option, then the next best option is a sort-merge-bucket join, which
we will discuss in more detail

Shuffle Joins

Shuffle	
 Joins	

	

A shuffle join is the default join technique for Hive, and it works with any data sets (no matter
how large). Identical keys are shuffled to the same reducer, and the join is performed on the
reduce side. This is the most expensive join from a network utilization standpoint because all
records from both sides of the join need to be processed by a mapper and then shuffled and
sorted, even the records that are not a part of the result set.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
144

	

	

Map (Broadcast) Joins

Map	
 (Broadcast)	
 Joins	

	

If one of the datasets is small enough to fit into memory, then it can be distributed (broadcast)
to each mapper and perform the join in the map phase. This greatly reduces the number of
records being shuffled and sorted because only records that appear in the result set will be
passed on to a reducer.

A map join has a special C-style comment syntax for providing a hint to the Hive engine:

select /*+ MAPJOIN(states) */ customers.*, states.*
from customers
join states on (customers.state = states.state);

Important: In HDP 2.x, Hive joins are automatically optimized without the need
for providing hints.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
145

	

	

hive.auto.convert.sortmerge.join=true;
hive.optimize.bucketmapjoin = true;
hive.optimize.bucketmapjoin.sortedmerge = true;
hive.auto.convert.sortmerge.join.noconditionaltask = true;

Sort-Merge-Bucket (SMB) Joins

Sort-­‐-­‐-­‐Merge-­‐-­‐-­‐Bucket	
 (SMB)	
 Joins	

	

If you have two datasets that are too large for a map-side join, an efficient technique for joining
them is to sort the two datasets into buckets. The trick is to cluster and sort by the same join
key.

This provides two major optimization benefits:

• Sorting by the join key makes joins easy. All possible matches reside in the same area on
disk

• Hash bucketing a join key ensures all matching values reside on the same node. Equi-joins
can then run with no shuffle

For this to work properly, the number of bucket columns has to equal the number of join
columns. This means that, in general, you will need to specifically define your Hive tables to fit
the requirements of a sort-merge-bucket join, which implies you are aware at design time of
the columns that will be most commonly used in join statements.

Note: An SMB join can be converted to an SMB map join. This requires the
following configuration settings enabled. (Note that these settings are already set
to true in HDP 2.x):
hive.auto.convert.sortmerge.join=true;
hive.optimize.bucketmapjoin = true;
hive.optimize.bucketmapjoin.sortedmerge = true;
hive.auto.convert.sortmerge.join.noconditionaltask = true;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
146

	

	

Invoking a Hive UDF
Similar to Pig, Hive has the ability to use User-Defined Functions written in Java to perform
computations that would otherwise be difficult (or impossible) to perform using the built-in Hive
functions and SQL commands.

To invoke a UDF from within a Hive script, you need to:

• Register the JAR file that contains the UDF class and

• Define an alias for the function using the CREATE TEMPORARY FUNCTION command.

For example, the following Hive commands demonstrate how to invoke the ComputeShipping
UDF defined above:

ADD JAR /myapp/lib/myhiveudfs.jar;
CREATE TEMPORARY FUNCTION ComputeShipping

AS 'hiveudfs.ComputeShipping';
FROM orders SELECT address, description, ComputeShipping(zip, weight);

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
147

	

	

Computing ngrams in Hive
An ngram is a subsequence of text within a large document. The “n” represents the length of
the subsequence. The result of an ngram is a frequency distribution

For example, when n is 2 it’s called a bigram, and it represents the occurrence of two adjacent
terms. A trigram is when n is 3 and represents three adjacent terms, and so on.

Hive contains an ngram function for computing the frequency distribution. For example:
select ngrams(sentences(val),2,100) from mytable;

The above command computes a bigram of the data in the val column of mytable, returning a
frequency distribution of the top 100 results.

Hive also contains a context_ngram function, which computes ngrams based on a context
string that appears around the subsequence of text. For example:

The above command generates a frequency distribution of the top 100 words that follow the
expression “error code.”

select context_ngrams(sentences(val),
array("error","code",null),
100)

from mytable;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
148

	

	

Demonstration: Computing ngrams

Objective: To understand how to compute ngrams using Hive

See page 95 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
149

	

	

Review Questions
1) A Hive table consists of a schema stored in the Hive and data stored

in .

2) True or False: The Hive metastore requires an underlying SQL database.

3) What happens to the underlying data of a Hive-managed table when the table is dropped?
__

4) True or False: A Hive external table must define a LOCATION.

5) List three different ways data can be loaded into a Hive table:

6) When would you use a skewed table?

7) Suppose you have the following table definition:

What will the folder structure in HDFS look like for the movies table?

8) Explain the output of the following query:
select * from movies order by title;

9) What does the following Hive query compute?

10) What does the following Hive query compute?

create table movies (title string, rating string,
length double) partitioned by (genre string);

from mytable
select explode(ngrams(sentences(val),3,100)) as myresult;

from mytable
select explode(context_ngrams(sentences(val),

array("I","liked",null),10)) as myresult;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
150

	

	

Lab: Joining Datasets in Hive

Objective: Perform a join of two datasets in Hive
See page 99 of the HDP Developer: Apache Pig and Hive Lab Booklet.

Lab: Computing ngrams of Emails in Avro Format

Objective: Use Hive to compute ngrams
See page 103 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
151

	

	

Using HCatalog

Lesson Objectives
This lesson covers the details of how HCatalog is used to provide a central repository for
defining and sharing schemas for data stored in Hadoop.

After completing this lesson, students should be able to:

• About HCatalog

• HCatalog in the Ecosystem

• Defining a New Schema

• Using HCatLoader with Pig

• Using HCatStorer with Pig

Additional Content
• Quiz: Lesson Review

• Lab: Using HCatalog with Pig

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
152

	

	

About HCatalog

What	
 Is	
 HCatalog?	

	

One of the most attractive qualities of Hadoop is its flexibility to require schema on read, not on
write. HCatalog helps Hadoop deliver on this promise. It is a metadata- and table-
management system for Hadoop. HCatalog has the following features:

• Makes the Hive metastore available to users of other tools on Hadoop

• Provides connectors for MapReduce and Pig so that users of those tools can read data
from and write data to Hive’s warehouse

• Allows users to share data and metadata across Hive, Pig, and MapReduce

• Provides a relational view through an SQL-like language (HiveQL) to data within Hadoop
• Allows users to write their applications without being concerned about how or where the

data is stored

• Insulates users from schema- and storage-format changes

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
153

	

	

HCatalog in the Ecosystem

HCatalog	
 in	
 the	
 Ecosystem	

	

HCatalog provides a consistent data model for the various tools that use Hadoop. It also
provides table abstraction, which abstracts some of the details about your data like:

• How the data is stored

• Where the data resides on the filesystem

• What format that data is in

• What the schema is of the data
Having this information available to Hadoop tools in a consistent fashion can simplify the
software development process and also bring consistency of algorithms and results across all
of the tools and frameworks used in your Hadoop environment.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
154

	

	

Defining a New Schema
HCatalog is an extension of Hive that exposes the Hive metadata to other tools and
frameworks. To define a new HCatalog schema, you simply define a table in Hive.

This means you already have HCatalog schemas defined. The benefit of HCatalog is not in the
defining of schemas but in its ability to expose the schemas and make them available to
frameworks outside of Hive.

Using HCatLoader with Pig
HCatalog provides two interfaces for use by Pig scripts to read and write data in HCatalog-
managed tables:

HCatLoader To read data from HCatalog-managed tables

HCatStorer To write data to HCatalog-managed tables

For example, the following Pig Latin command loads a table named employees managed by
HCatalog:
emp_relation = LOAD 'employees' USING org.apache.hive.hcatalog.pig.HCatLoader();

Notice that you do not provide a schema when loading a relation with HCatalog. The schema
of the relation emp_relation is whatever the schema is of the employees table.

Using HCatStorer with Pig
Similarly, if you have a relation that you want to store into an HCatalog-managed table, you
use the STORE command along with the USING clause with HCatStorer:

The Pig SQL Command
Pig has an SQL command that you can use to run Hive DDL commands. For example, you
could create a table from within a Pig script (or the Grunt shell) using the following command:

STORE customer_projection INTO 'customers' USING
org.apache.hive.hcatalog.pig.HCatStorer();

Important: For the above command to execute successfully, the field names of
the customer_projection relation must match the column names of the
customers table. You will see how this works in the upcoming lab.

grunt> sql create table movies (
title string,
rating string,
length double)

partitioned by (genre string)
stored as ORC;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
155

	

	

Review Questions
1) Where does HCatalog store its schema information? ______________________

2) List three programming frameworks that can readily access an HCatalog schema:

3) What Java class does Pig use to load data from an HCatalog table?

4) True or False: HCatalog is now merged with Hive.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
156

	

	

Lab: Using HCatalog with Pig

Objective: Use HCatalog to provide the schema for a Pig relation
See page 109 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
157

	

	

Advanced Hive Programming

Lesson Objectives
This lesson covers some of the more advanced features of Hive programming, including views,
the windowing functions, and the various optimization capabilities of Hive.

After completing this lesson, students should be able to:

• Describe How to Perform a Multi-Table/File Insert

• Describe Views

• Describe How to Use Windows

• Describe How to Compute Table Statistics

• Describe How to Use HiveServer2

• Describe How to Understand Hive on Tez

Additional Content
• Lab: Advanced Hive Programming

• Quiz: Lesson Review

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
158

	

	

Performing a Multi-Table/File Insert

Performing	
 a	
 Multi-­‐-­‐-­‐Table/File	
 Insert	

	

Hive queries are converted into one or more MapReduce jobs and executed on a Hadoop
cluster. Your Hive query might result in a map-only job, in a single mapper and a single
reducer, or in multiple mappers and multiple reducers. Each MapReduce job requires a lot of
work on the cluster, and some Hive queries can take a very long time (hours) to execute.

One clever trick you can use when querying Big Data using Hive is to perform a multi-table or
multi-file insert, where you essentially run multiple queries within a single MapReduce job. The
queries do not even need to process the same tables.

Consider the following simple Hive query that selects all White House visitors for the year 2013.

Now suppose we have the following query on a different table named congress:
insert overwrite directory 'ca_congress' select * from congress where state='CA' ;

As expected, each query above requires a MapReduce job.

Notice in the following Hive query that we perform both selects in the same query:

insert overwrite directory '2013_visitors' select * from wh_visits where
visit_year='2013' ;

insert overwrite directory '2013_visitors' select * from wh_visits where
visit_year='2013'
insert overwrite directory 'ca_congress' select * from congress where state='CA' ;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
159

	

	

Notice the only difference is that the semicolon was removed after the first query, which means
the Hive code above is a single statement. The important result is that the above Hive
command runs as a single MapReduce job. Two output folders are created (2013_visitors
and ca_congress) and the data from two separate Hive tables are processed, but all in a single
MapReduce job.

The following example demonstrates querying from the same table, with one result being
output to another table and the other result getting written to HDFS:

Note: Using a multi-file insert may seem a bit odd, but it is important to
understand how Hive queries relate to underlying MapReduce jobs. In general,
you can gain a lot of performance by running two tasks at the same time instead
of running two separate MapReduce jobs.

from visitors
INSERT OVERWRITE TABLE gender_sum

SELECT visitors.gender, count_distinct(visitors.userid)
GROUP BY visitors.gender

INSERT OVERWRITE DIRECTORY '/user/tmp/age_sum'

SELECT visitors.age, count_distinct(visitors.userid)
GROUP BY visitors.age;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
160

	

	

Understanding Views

Understanding	
 Views	

	

A view in Hive is defined by a SELECT statement and allows you to treat the result of the query
like a table. The table does not actually exist, and the query does not execute until the
statement that refers to the view is executed.

Use cases for using views include:

• Define a view to reduce the complexity of a query. For example, a nested SELECT
statement can be defined separately as a view

• Restrict a user’s access to the subset of an actual Hive table by defining a view that
contains only the columns and rows that the user needs

Note: Depending on the query, a view gets combined (optimized) into the query
that is using the view or the view may have to be executed in its own
MapReduce job. For example, if the view query contains an ORDER BY then it will
execute in its own MapReduce job.

Note: Views in Hive are non-materialized, so you can use them without concern
of creating more work for the resulting MapReduce job.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
161

	

	

Defining Views
A view is defined using the CREATE VIEW statement. For example, the following Hive statement
defines a view named 2010_visitors:

The 2010_visitors is a view that represents people that visited the White House in the year
2010.

A view is not a table in Hive with actual data, but a view can be treated like a table. For
example, you can run the DESCRIBE command on a view to see its schema:

A view will also show up in your list of tables. Notice the output of the SHOW TABLES

command:

Similar to a table, you can delete a view using the DROP VIEW command:
DROP VIEW 2010_visitors;

Using Views
You can use a view in a query just like you would use a table. For example, the following query
uses the 2010_visitors view to find visitors to the President:

CREATE VIEW 2010_visitors AS
SELECT fname, lname, time_of_arrival, info_comment
FROM wh_visits
WHERE

cast(substring(time_of_arrival,6,4) AS int) >= 2010
AND

cast(substring(time_of_arrival,6,4) AS int) < 2011;

hive> describe 2010_visitors;
OK
fname string
lname string
time_of_arrival string
info_comment string

None
None
None
None

hive> show tables;
OK
2010_visitors
wh_visits

Note: Views can also contain partitions, just like tables. This allows you to define
views that behave exactly like your underlying tables, even tables that are
partitioned.

from 2010_visitors
select *
where info_comment like "%CONGRESS%"
order by lname;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
162

	

	

Notice that you could have performed the above query without using a view. Instead, you
could have defined a longer WHERE clause or a nested SELECT statement. However, using a
view keeps the SQL easier to read. This is obviously a simple example, but it demonstrates the
power and usefulness of views. Hive will determine the best way to convert the above
command into one or more MapReduce jobs at runtime .

The TRANSFORM Clause
You can write your own custom mappers or reducers and use them in Hive using the
TRANSFORM clause. For example, the following example shows data being processed by a
Python script named splitwords.py in a SELECT clause and then that result being processed
by countwords.py.

By default, columns will be transformed to STRING and delimited by a tab before being fed to
the user script. The output of the script will be treated as tab-separated STRING columns.

You can achieve a similar result using the MAP and REDUCE clauses:

add file splitwords.py;
add file countwords.py;

FROM (

FROM mytable
SELECT TRANSFORM(keywords) USING 'python splitwords.py'
AS word, count
CLUSTER BY word

) wc
INSERT OVERWRITE TABLE word_count
SELECT TRANSFORM (wc.word, wc.count)
USING 'python countwords.py'
AS word, count;

add file splitwords.py;
add file countwords.py;

FROM (

FROM mytable
MAP keywords USING 'python splitwords.py'
AS word, count
CLUSTER BY word

) wc
INSERT OVERWRITE TABLE word_count
REDUCE wc.word, wc.count USING 'python countwords.py'
AS word, count;

Note: Using MAP and REDUCE as an alias to SELECT TRANSFORM may not have the
exact affect that you desire, since there is no guarantee that your specified script
will be executed during a map or reduce phase. The end result of your query will
likely be the same, but MAP does not force a map phase, and REDUCE does not
force a reduce phase.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
163

	

	

The OVER Clause

The	
 OVER	
 Clause	

	

Hive 0.11 introduced windowing capabilities to the Hive QL. Similar to an aggregate function
(like GROUP BY), a window function performs a calculation across a set of table rows that are
somehow related, except that a window function does not cause rows to become grouped into
a single output row; the rows retain their separate identities.

This is best demonstrated by the OVER clause, as you can see in the result above. The GROUP
BY statement finds the maximum price of each order, and the results are aggregated into a
single row for each unique cid.

The OVER clause does not aggregate the result but instead maintains each row of data and
outputs the maximum price of the each cid group.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
164

	

	

Using Windows

Using	
 Windows	

	

The OVER clause allows you to define a window over which to perform a specific calculation.
For example, the following Hive statement computes the sum of each order, but the sum is not
computed over all prices in an order. Instead, the sum is computed over a window that
includes the current row and the two preceding rows, as ordered by the price column.

Study the output carefully and see if you can verify that the result is what you expected based
on the query.

The FOLLOWING statement is used to specify rows after the current row:

Use the UNBOUNDED statement to specify all prior or following rows:

SELECT cid, sum(price) OVER (PARTITION BY cid ORDER BY price ROWS BETWEEN 2 PRECEDING
AND CURRENT ROW) FROM orders;

SELECT cid, sum(price) OVER (PARTITION BY cid ORDER BY price ROWS BETWEEN 2 PRECEDING
AND 3 FOLLOWING) FROM orders;

SELECT cid, sum(price) OVER (PARTITION BY cid ORDER BY price ROWS BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW) FROM orders;

Note: Hive window functions also include the LEAD and LAG functions for
specifying the number of rows to lead ahead or lag behind in the window. Their
usage is identical to the SQL standard.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
165

	

	

Hive Analytics Functions

Hive	
 Analytics	
 Functions	

	

Hive 0.11 also added the following SQL standard analytics functions:

RANK Returns the rank of each row within the partition of a result set

DENSE_RANK Returns the rank of rows within the partition of a result set without

any gaps in the ranking

PERCENT_RANK Calculates the relative rank of a row within a group of rows

ROW_NUMBER Returns the sequential number of a row within a partition of a result

set

CUME_DIST Calculates the number of rows with values lower than or equal to

the value of r, divided by the number of rows evaluated in the
partition for a row r

NTILE Distributes the rows in an ordered partition into a specified number

of groups. For each row, NTILE returns the number of the group to
which the row belongs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
166

	

	

Lab: Advanced Hive Programming

Objective: To understand how some of the more advanced features of Hive work
See page 113 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
167

	

	

Hive File Formats
As you have seen, Hive does not store data. The data for a table is stored in HDFS in one of
the following formats:

Text file Comma, tab, or other delimited file types

SequenceFile Serialized key/value pairs that can quickly be deserialized in

Hadoop

RCFile A record columnar file that organizes data by columns (as opposed

to the traditional database row format)

ORC File The optimized row columnar format that improves the efficiency of

Hive by a considerable amount (discussed in more detail in the
next section)

Using the STORED AS clause, you specify a file format when you create the table:

For example, the following table is for data using the RCFile format:

Hive SerDes
SerDe is short for serializer/deserializer and refers to how records read in from a table
(deserialized) and written back out to HDFS (serialized). Records can be stored in any custom
format you want by writing Java classes, or you can use one of the several built-in SerDes,
including:

AvroSerDe For reading and writing files using an Avro schema

RegexSerDe For using a regular expression to deserialize data

ColumnarSerDe For columnar-based storage supported by RCFiles

OrcSerDe For reading and writing to ORC files

There are quite a few built-in SerDes, so check the documentation for a complete list.

CREATE TABLE tablename (
...
) STORED AS fileformat;

CREATE TABLE names
(fname string, lname string)

STORED AS RCFile;

Note: There are third-party SerDes available as well, so do a search online
before attempting to develop a custom SerDe that might already be available.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
168

	

	

Using SerDes requires the ROW FORMAT SERDE clause. For example, the following table is for
data stored in the Avro format:

Hive ORC Files
The Optimized Row Columnar (ORC) file format, http://orc.apache.org, provides a highly
efficient way to store Hive data. It was designed to overcome limitations of the other Hive
file formats. Using ORC files improves performance when Hive is reading, writing, and
processing data.

File formats in Hive are specified at the table level. Use the AS keyword and specify the ORC
file format:

You can also modify the file format of an existing table:
ALTER TABLE tablename SET FILEFORMAT ORC;

And you can specify ORC as the default file format of new tables:
SET hive.default.fileformat=Orc

ORC files have three main components:

• Stripe

• Footer

• Postscript
Here are the features of these components:

• An ORC file is broken down into sets of rows called stripes
• The default stripe size is 64 MB in Hive 0.14. Large stripe sizes enable efficient reads of

columns

• An ORC file contains a footer that contains the list of stripe locations

• The footer also contains column data like the count, min, max, and sum

• At the end of the file, the postscript holds compression parameters and the size of the
compressed footer

CREATE TABLE emails (
from_field string,
sender string,
email_body string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS
INPUTFORMAT

'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'

OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'

TBLPROPERTIES (
'avro.schema.url'='hdfs//nn:8020/emailschema.avsc');

CREATE TABLE tablename (
...
) AS ORC;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
169

	

	

Computing Table Statistics
Hive can store table and partition statistics in its metastore. There are two types of table
statistics currently supported by Hive:

Table and partition
statistics

Number of rows, number of files, raw data size, and number of
partitions

Column Level Top K
statistics

Number of null values, number of true/false values, maximum and
minimum values, estimate of number of distinct values, average
column length, maximum column length, and height balanced
histograms

The ANALYZE TABLE command gathers statistics for a table, a partition, and columns and
writes them to the Hive metastore. To compute table statistics, the syntax looks like:
ANALYZE TABLE tablename COMPUTE STATISTICS;

For computing column statistics, use the following syntax:

For computing stats on partitions, use the PARTITION command:
ANALYZE TABLE tablename PARTITION(part1, part2,..) COMPUTE STATISTICS

The ANALYZE command runs a MapReduce job that processes the entire table. The table and
partition stats are outputed to the command window:

You can also view these stats for a table by running the DESCRIBE command:

You can also specify one or more partitions to view details for at the partition level:
DESCRIBE EXTENDED tablename PARTITION(part1=value1, part2=value2);

Important: Column statistics are computed using the top K algorithm, hence
the name Top K statistics. Column statistics is still a work in progress and has
not been included in the current stable release of Hive.

ANALYZE TABLE tablename COMPUTE STATISTICS FOR COLUMNS column_name_1, column_name_2,
...

Table default.customers stats: [num_partitions: 0, num_files: 11, num_rows: 891048,
total_size: 4605775, raw_data_size: 0]

DESCRIBE FORMATTED tablename
DESCRIBE EXTENDED tablename

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
170

	

	

analyze table tweets compute statistics
for columns sender, topic;

Hive Cost Based Optimization
In the first phase of Calcite and CBO in Hive, Calcite is used to reorder joins and to pick the
right join algorithm to reduce query latency. Table cardinality and boundary statistics are used
for this cost-based optimization.

Suppose you want to use CBO on a table named tweets that has columns named sender and
topic that are commonly used in your Hive JOIN queries. First you need to analyze the table:
analyze table tweets compute statistics;

Second, compute the column statistics for sender and topic:

Third, set the following properties to enable CBO:

set hive.compute.query.using.stats=true;
set hive.cbo.enable=true;
set hive.stats.fetch.column.stats=true;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
171

	

	

Vectorization

Vectorization	

	

Vectorization is a new feature that allows Hive to process a batch of up to 1,024 rows together
instead of processing one row at a time. Each batch consists of a column vector, which is
usually an array of primitive types. Operations are performed on the entire column vector,
improving the instruction pipelines and cache usage.

To take advantage of vectorization, your table needs to be in the ORC format and you need to
enable vectorization with the following property:
hive.vectorized.execution.enabled=true

When vectorization is enabled, Hive examines the query and the data to determine whether
vectorization can be supported. If it cannot be supported, Hive will execute the query with
vectorization turned off.

Note: Vectorization is a joint effort between Hortonworks and Microsoft. The
improvements from vectorization, in addition to the new ORC file format, have
helped increase the speed of Hive queries by a magnitude.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
172

	

	

Using HiveServer2

Using	
 HiveServer2	

	

As we discussed earlier, Hive queries are submitted to a HiveServer process. Older versions
of Hive used the hiveserver process, which can only process one request at a time. HDP 2.x
ships with HiveServer2, a Thrift-based implementation that allows multiple concurrent
connections and also supports Kerberos authentication.

• A new HiveServer2 instance is started with the hiveserver2 binary, or it can be run as a
service

• Settings are defined in hive-site.xml, except for the bind host and port, which can be
defined using the HIVE_SERVER2_THRIFT_BIND_HOST and HIVE_SERVER2_THRIFT_PORT
environment variables. This allows you to run multiple HiveServer2 instances on the same
machine

For example:

The above command runs a hiveserver2 instance on port 12345.

set HIVE_SERVER2_THRIFT_PORT=12345
hive --service hiveserver2

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
173

	

	

Understanding Hive on Tez

Understanding	
 Hive	
 on	
 Tez	

	

Tez, http://tez.apache.org, provides a general-purpose, highly customizable framework that
simplifies data-processing tasks across both small-scale (low-latency) and large-scale (high-
throughput) workloads in Hadoop. It generalizes the MapReduce paradigm to a more powerful
framework by providing the ability to execute a complex DAG of tasks for a single job.

As you can see in the diagram above, a Hive query without Tez can consist of multiple
MapReduce jobs. Tez performs a Hive query in a single job, avoiding the intermediate writes to
disk that were a result of the multiple MapReduce jobs.

Using Tez for Hive Queries
To use Tez for a Hive query, you need to define the following property in your Hive script or in
hive-site.xml:
set hive.execution.engine=tez;

Note that this property is set to mr by default.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
174

	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
175

	

	

Hive Optimization Tips
• Divide data amongst different files that can be pruned out by using partitions, buckets, and

skews

• Use the ORC file format

• Sort and Bucket on common join keys

• Use map (broadcast) joins whenever possible

• Increase the replication factor for hot data (which reduces latency)

• Take advantage of Tez
Above are some helpful design tips for improving the speed of Hive queries.

Note: Hive has a special file called the .hiverc file that gets executed each time
you launch a Hive shell. This makes the .hiverc file a great place for adding
custom configuration settings that you use all the time or for loading JAR files
that contain frequently used UDFs. The file is saved in the Hive conf directory,
which is /etc/hive/conf for an HDP installation.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
176

	

	

hive.optimize.mapjoin.mapreduce=true;
hive.optimize.bucketmapjoin=true;
hive.optimize.bucketmapjoin.sortedmerge=true;
hive.auto.convert.join=true;
hive.auto.convert.sortmerge.join=true;
hive.auto.convert.sortmerge.join.noconditionaltask=true;

Hive Query Tunings
Hive has a lot of parameters that can be set globally in hive-site.xml or at the script level
using the set command. Here are some of the more important parameters to improve the
performance of your Hive queries:

mapreduce.input.fileinputformat.split.maxsize

and
mapreduce.input.fileinputformat.split.minsize

If the min is too large, you will have
too few mappers; if the max is too
small, you will have too many
mappers

mapreduce.tasks.io.sort.mb Increase this value to avoid disk spills

Always set the following properties:

When bucketing data, set the following properties:

hive.enforce.bucketing=true;
hive.enforce.sorting=true;

Important: In HDP, these values are set to true by default. You can verify by
viewing the properties in hive-site.xml. If a property is not set, just use the set
command in your Hive script. For example:
set hive.optimize.mapjoin.mapreduce=true;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
177

	

	

Review Questions
1) What is the benefit of performing two insert queries in the same Hive command?

2) True or False: Hive views are materialized when they are defined. ________________

3) Suppose an employees table has 200 rows and its department column has 15 distinct
values. How many rows would be in the result set of the following query? _________

4) Explain what the following query is computing:

__

__

5) Which Hive file format provides the best performance? ________

6) What does DAG stand for? __

from employees
select fname,lname,MAX(salary)
over (partition by department);

from employees
select fname,lname,AVG(salary)
over (partition by department order by salary

rows between 5 preceding and current row);

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
178

	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
179

	

	

Hadoop 2 and YARN

Lesson Objectives
This lesson covers the newer features of Hadoop 2, like YARN, HDFS Federation, and
NameNode high availability.

After completing this lesson, students should be able to:

• Define HDFS Federation

• Explain how NameNode HA is implemented

• Define YARN

Additional Content
• Quiz: Lesson Review

• Lab: Running a YARN Application

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
180

	

	

About HDFS Federation
Hadoop 2.x introduces a scaling mechanism for the NameNode referred to as HDFS Federation.
As opposed to a single NameNode (which was used in Hadoop 1.x), the new Hadoop
infrastructure provides for multiple NameNodes that run independently of each other providing:

Scalability NameNodes can now scale horizontally, allowing you to improve the

performance of NameNode tasks by distributing reads and writes
across a cluster of NameNodes

Namespaces The ability to define multiple Namespaces allows for the organizing

and separating of your big data

Multiple Federated NameNodes

Multiple	
 Federated	
 NameNodes	

	

The NameNodes are federated: that is, the NameNodes are independent and don’t require
coordination with each other.

The DataNodes are used as common storage for blocks by all of the NameNodes. The
NameNodes and DataNodes communicate as follows:

• Each DataNode registers with all of the NameNodes in the cluster

• DataNodes send periodic heartbeats and block reports to the NameNodes

• NameNodes send commands to the DataNodes

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
181

	

	

Multiple Namespaces

Multiple	
 Namespaces	

	

Benefits of multiple Namespaces include:

Scalability Having multiple independent Namespaces is what makes scaling
possible in Hadoop 2.x

File Management You can now associate your big data with a Namespace, making it

easier to manage and maintain files

Overview of HDFS High Availability
Prior to Hadoop 2.0, the NameNode was a single point of failure in an HDFS cluster. Each
cluster had a single NameNode, and if that machine or process became unavailable, the cluster
as a whole would be unavailable until the NameNode was either restarted or brought up on a
separate machine.

The HDFS High Availability (HA) feature addresses this issue by providing the option of running
two redundant NameNodes in the same cluster in an Active/Passive configuration with a hot
standby. This allows a fast failover to a new NameNode in the case that a machine crashes or a
graceful administrator-initiated failover occurs for the purpose of planned maintenance.

You can now achieve NameNode HA by configuring your cluster to use the Quorum Journal
Manager (QJM), which we will discuss next.

Note: A NameNode can only define one namespace.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
182

	

	

Quorum Journal Manager

Quorum	
 Journal	
 Manager	

	

Two separate machines are configured as NameNodes. At any point in time, exactly one of the
NameNodes is in an Active state and the other is in a Standby state. The Active NameNode is
responsible for all client operations in the cluster, while the Standby is simply acting as a slave,
maintaining enough state to provide a fast failover if necessary.

• Both nodes communicate with a group of separate daemons called JournalNodes

• All Namespace modifications are logged durably to a majority of the JournalNode daemons
(hence the name Quorum)

• As the Standby Node sees the edits in the JournalNodes, it applies them to its own
namespace

Note: In the event of a failover, the Standby must read all of the edits from the
JounalNodes before promoting itself to the Active state. This ensures that the
namespace state is fully synchronized before a failover occurs.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
183

	

	

Configuring Automatic Failover

Configuring	
 Automatic	
 Failover	

	

Up to this point, you have a Quorum Journal Manager, but note that it requires manual failover.
If you want your HA NameNodes to failover automatically, you need to configure ZooKeeper.

More specifically, you need the following within your cluster:

ZooKeeper An odd number of ZooKeeper daemons that monitor when a

NameNode fails

ZKFailoverController
(ZKFC)

A new component that is a ZooKeeper client that monitors and
manages the state of a NameNode

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
184

	

	

About YARN
YARN takes Hadoop beyond just MapReduce for data processing. You will still be able to
execute MapReduce jobs across your Hadoop cluster, but YARN provides a generic framework
that allows for any type of application to execute on the big data across your clusters.

Open-source YARN Use Cases

Tez Improves the execution of MapReduce jobs

Slider Deploy existing frameworks on YARN

Storm For real-time computing

Spark A MapReduce-like cluster computing framework designed for low-

latency iterative jobs and interactive use from an interpreter

Apache Giraph A graph-processing platform

Now that Hadoop can run applications beyond MapReduce, there are countless possibilities
for the type of processing that can be done on data stored in HDFS. Above are some open-
source projects that are currently being ported onto YARN for use in Hadoop 2.x.

You can expect other computing frameworks to be developed once YARN becomes prevalent.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
185

	

	

The Components of YARN

The	
 Components	
 of	
 YARN	

	

YARN consists of the following main components:

• ResourceManager

• NodeManager

• ApplicationsMaster

The ResourceManager typically runs on its own machine and is responsible for scheduling and
allocating resources. The two main components of the ResourceManager are:

• Scheduler

• Applications Manager (AsM)
The ResourceManager is the central controlling authority for resource management and makes
allocation decisions:

• It has a pluggable scheduler that allows for different algorithms (such as capacity and fair
scheduling) to be used as necessary

• It tries to optimize the cluster (i.e. use all resources all the time) based on the constraints of
the scheduler

The ResourceManager allocates resources for applications but does not manage the lifecycle
of applications. Instead, applications are managed by an ApplicationMaster that runs on a
node in the cluster. Each application running in the cluster requires its own
ApplicationMaster.

Note: If you are familiar with Hadoop 1.x, note that YARN splits up the
functionality of the JobTracker into two separate processes:

ResourceManager A daemon process that allocates cluster resources to
applications

ApplicationMaster A per-application process that provides the runtime for
executing applications

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
186

	

	

Lifecycle of a YARN Application
A YARN application has the following lifecycle:

Lifecycle	
 of	
 a	
 YARN	
 Application	

	

• It all starts with a client submitting a new Application Request to the Resource Manager

(RM)

• The ApplicationsManager (AsM) finds an available DataNode on the cluster that is not
too busy

• That node’s NodeManager (NM) creates an instance of the ApplicationMaster (AM)

• The AM then sends a request to the RM, asking for specific resources, like memory and CPU
requirements. The RM replies with a list of Containers, which includes the specific
DataNodes to start the Containers

• The AM starts a Container on each DataNode as instructed by the RM. The Container
performs a task, as directed by the AM

As the tasks are being performed by the Containers, the client application can request status
updates directly from the ApplicationMaster.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
187

	

	

A Cluster View Example

A	
 Cluster	
 View	
 Example	

	

Answer the following questions:

1) How many applications are running on the cluster above? _____________

2) How many containers are being used by the application controlled by the AM on Node 2?

3) Node 8 appears to have two Containers running on it. Is this allowed in YARN?

4) Is it possible that a Container could be executed on the same node as its corresponding
AM? ___

Answers:

1) Two

2) Four

3) Certainly

4) Yes. It all depends on the availability of resources on a node.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
188

	

	

Review Questions
1) True or False: A NameNode can contain multiple namespaces.

2) What is the key benefit of the new YARN framework?

__

3) What are the three main components of YARN? ____________________________

__

4) What happens if a Container fails to complete its task in a YARN application?

__

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
189

	

	

Lab: Running a YARN Application

Objective: To run a YARN application
See page 129 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
190

	

	

Introducing Apache Spark

Lesson Objectives
This	
 lesson	
 introduces	
 the	
 core	
 Apache	
 Spark	
 framework	
 as	
 the	
 ecosystem	
 of	
 projects	
 that	
 rely	
 upon	
 it.	
 	

After	
 completing	
 this	
 lesson,	
 students	
 should	
 be	
 able	
 to:	
 	

• Describe	
 the	
 origin	
 of	
 Apache	
 Spark	

• Understand	
 the	
 rapid	
 growth	
 of	
 the	
 Spark	
 ecosystem	

• Recognize	
 some	
 of	
 the	
 use	
 cases	
 for	
 Spark	

• Describe	
 some	
 major	
 differences	
 between	
 Spark	
 and	
 MapReduce	

Additional Content
• Quiz:	
 Lesson	
 Review	

What is Apache Spark?

	

What	
 is	
 Apache	
 Spark?	

Apache	
 Spark	
 started	
 as	
 a	
 research	
 paper	
 in	
 2009	
 by	
 a	
 graduate	
 student	
 at	
 Berkley.	
 	
 The	
 framework	

surfaced	
 as	
 part	
 of	
 the	
 evolving	
 Berkeley	
 Data	
 Analytics	
 Stack	
 (BDAS).	
 	
 Spark	
 was	
 created	
 to	
 be	
 a	
 general-­‐
purpose	
 data	
 processing	
 engine,	
 focused	
 on	
 in-­‐memory	
 distributed	
 computing	
 use-­‐cases.	
 	
 	

The	
 Berkley	
 research	
 paper	
 and	
 BDAS	
 started	
 because	
 of	
 the	
 struggles	
 current	
 users	
 were	
 having	
 with	

certain	
 use	
 cases	
 in	
 the	
 MapReduce	
 framework.	
 	
 	

The	
 following	
 is	
 a	
 timeline	
 of	
 some	
 of	
 the	
 major	
 moments	
 in	
 Spark's	
 creation:	

• 2009:	
 BDAS	
 research	
 project	

• June	
 2013:	
 Accepted	
 as	
 an	
 Apache	
 Incubator	
 project	

• February	
 2014:	
 Became	
 a	
 top-­‐level	
 Apache	
 project	

• December	
 2014:	
 Spark	
 became	
 part	
 of	
 the	
 HDP	
 stack	
 with	
 version	
 2.2	

	

Note:	
 Spark	
 took	
 many	
 concepts	
 from	
 MapReduce	
 and	
 implemented	
 them	
 in	
 a	

new	
 ways.	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
191

	

	

Spark	
 is	
 a	
 general	
 data-­‐processing	
 engine	
 focused	
 on	
 in-­‐memory	
 distributed	
 computing	
 uses	
 cases.	
 	
 Spark	

API's	
 are	
 available	
 in	
 Scala,	
 Python,	
 Java	
 and	
 recently	
 were	
 added	
 for	
 R.	
 	

The Spark Ecosystem

The	
 Spark	
 Ecosystem	

Spark	
 consists	
 of	
 a	
 core	
 library.	
 	
 Spark	
 SQL,	
 Streaming,	
 ML-­‐Lib	
 (for	
 machine	
 learning	
 applications)	
 and	

GraphX	
 were	
 built	
 upon	
 it.	
 	
 Spark	
 SQL	
 and	
 is	
 Dataframe	
 concept	
 have	
 exploded	
 in	
 popularity	
 recently	
 as	

there	
 have	
 been	
 many	
 performance	
 improvements.	
 	
 GraphX	
 is	
 very	
 new	
 and	
 currently	
 not	
 supported	
 by	

anyone.	

Why Spark?
Spark	
 was	
 built	
 with	
 the	
 developer	
 in	
 mind.	
 	
 Spark	
 has	
 very	
 elegant	
 high-­‐level	
 APIs,	
 which	
 seek	
 to	
 minimize	

the	
 “plumbing”	
 that	
 developers	
 traditionally	
 have	
 to	
 worry	
 about.	
 	
 Spark	
 provides	
 APIs	
 that	
 allow	

developers	
 to	
 focus	
 on	
 the	
 business	
 logic;	
 not	
 the	
 framework	
 internals.	
 	
 	

Spark	
 has	
 brought	
 forward	
 in-­‐memory	
 computation	
 for	
 Hadoop	
 which	
 has	
 been	
 very	
 effective	
 for	
 iterative	

computations.	
 	
 This	
 allows	
 large	
 amounts	
 of	
 data	
 to	
 be	
 stored	
 in	
 memory	
 and	
 to	
 be	
 quickly	
 accessed.	
 	
 Some	

applications	
 have	
 seen	
 as	
 much	
 as	
 a	
 100x	
 speed	
 increase	
 due	
 to	
 these	
 new	
 abilities.	
 	
 	

One	
 of	
 the	
 biggest	
 drivers	
 for	
 adoption	
 from	
 the	
 development	
 community	
 is	
 that	
 Spark	
 provides	
 a	
 single	

framework	
 for	
 most	
 data	
 processing	
 needs.	
 	
 This	
 allows	
 for	
 a	
 single	
 programmatic	
 approach	
 to	
 be	
 utilized	

for	
 importing,	
 transforming	
 and	
 exporting	
 data	
 for	
 a	
 wide	
 variety	
 of	
 workloads	
 including	
 the	
 following:	

• ML-­‐Lib	
 for	
 Data	
 Scientists	

• Spark	
 SQL	
 for	
 Data	
 Analysts	

• Spark	
 Streaming	
 for	
 micro	
 batch	
 use	
 cases	

• Spark	
 Core,	
 SQL,	
 Streaming,	
 ML-­‐Lib	
 and	
 GraphX	
 for	
 data-­‐processing	
 applications	

The	
 features	
 (all	
 in	
 open	
 source),	
 plus	
 its	
 performance	
 improvements	
 for	
 many	
 scenarios	
 and	
 the	
 full	

integration	
 with	
 Hadoop	
 are	
 the	
 cornerstones	
 for	
 the	
 rapid	
 adoption	
 of	
 Spark.	

Who Uses Spark!?
The	
 following	
 real	
 world	
 uses	
 for	
 Spark	
 help	
 to	
 explain	
 its	
 applicability	
 and	
 flexibility:	

NASA	
 JPL NASA'	
 Jet	
 Propulsion	
 Laboratory	
 receives	
 10+	
 TB	
 of	
 data	
 daily	
 from	

Instrument	
 and	
 Ground	
 Systems	
 for	
 Earth	
 Monitoring	
 and	
 runs	

multiple	
 kinds	
 of	
 jobs	
 ranging	
 from	
 long	
 running	
 to	
 sub	
 second.	
 	
 JPL	

created	
 SciSpark	
 library	
 to	
 allow	
 for	
 interactive	
 computation	
 and	

exploration	
 possible	
 using	
 scientific	
 processing.	
 	
 SciSpark	
 provides	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
192

	

	

support	
 for	
 scientific	
 data	
 formats	
 and	
 created	
 a	
 new	
 type	
 of	
 RDD	

called	
 a	
 scientific	
 RDD	
 (sRDD).	

eBay eBay	
 uses	
 Spark	
 on	
 clusters	
 close	
 to	
 2000	
 nodes,	
 with	
 100	
 TB	
 Ram	

and	
 20,000	
 cores.	
 	
 Ebay	
 leverages	
 Spark	
 for	
 interrogation	
 of	

complex	
 data,	
 data	
 modeling	
 and	
 data	
 scoring	
 among	
 other	
 things.	
 	

eBay	
 uses	
 ML-­‐Llib	
 to	
 cluster	
 sellers	
 together	
 via	
 Kmeans.	
 	
 By	

clustering	
 sellers	
 together,	
 they’re	
 able	
 to	
 increase	
 the	
 user	

experience	
 by	
 helping	
 users	
 find	
 products	
 they	
 may	
 like	
 more,	
 and	

provide	
 alternatives	
 or	
 recommendations.	
 	
 In	
 addition,	
 eBay	
 uses	

SQL	
 with	
 Spark,	
 to	
 increase	
 the	
 performance	
 of	
 their	
 queries.	
 	
 They	

report	
 that	
 the	
 queries	
 are	
 running	
 at	
 least	
 5x	
 faster	
 than	
 their	
 Hive	

counterparts.	

Conviva Conviva	
 provides	
 monitoring	
 and	
 optimization	
 for	
 online	
 video	

provides.	
 	
 Customers	
 include	
 ESPN,	
 Yahoo,	
 Microsoft,	
 Comcast	

amongst	
 many	
 others.	
 	
 They	
 use	
 Spark	
 to	
 process	
 150gb	
 /	
 week	
 of	

compressed	
 summary	
 data.	
 	
 They	
 found	
 Spark	
 to	
 be	
 30x	
 faster	
 than	

Hive.	
 	
 Processing	
 time	
 went	
 from	
 24	
 hours	
 to	
 45	
 minutes	
 for	
 their	

weekly	
 Geo	
 Report.	
 	
 Biggest	
 speed	
 up	
 came	
 from	
 reducing	
 disk	

reads,	
 and	
 storing	
 only	
 relevant	
 data	
 in	
 memory.	
 	
 30%	
 of	
 their	

reports	
 currently	
 use	
 Spark,	
 as	
 of	
 2012.	

Yahoo! Yahoo	
 has	
 a	
 cluster	
 with	
 over	
 35k	
 servers,	
 150PB	
 of	
 data	
 spanning	

800m	
 users.	
 	
 Yahoo	
 needs	
 a	
 way	
 to	
 quickly	
 learn	
 about	
 users	
 and	

provide	
 a	
 personalized	
 homepage	
 to	
 increase	
 the	
 user	
 experience.	
 	

Yahoo’s	
 data	
 scientists	
 leveraged	
 spark	
 to	
 create	
 models	
 to	
 find	

what	
 news	
 stories	
 would	
 appeal	
 to	
 each	
 users.	
 	
 These	
 models	
 need	

to	
 run	
 fast,	
 really	
 fast.	
 	
 With	
 Spark	
 they	
 were	
 able	
 to	
 create	
 models	

in	
 under	
 an	
 hour	
 which	
 greatly	
 enhanced	
 Yahoo's	
 ability	
 to	
 provide	

personalized	
 news	
 stories	
 to	
 users.	

Spark vs MapReduce
As	
 the	
 following	
 diagram	
 suggests,	
 some	
 use	
 cases	
 that	
 can	
 benefit	
 from	
 Spark's	
 in-­‐memory	
 data	
 storage	

can	
 achieve	
 up	
 to	
 100x	
 performance	
 improvements.	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
193

	

	

	

Potential	
 Improvements	

Just	
 as	
 important	
 is	
 developer	
 productivity.	
 	
 The	
 following	
 provides	
 the	
 source	
 code	
 of	
 the	
 quintessential	

Hadoop	
 "Word	
 Count"	
 example	
 as	
 written	
 in	
 the	
 Java	
 MapReduce	
 API.	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
194

	

	

Conversely,	
 here	
 is	
 Word	
 Count	
 implemented	
 with	
 Spark.	

	

In	
 fairness,	
 this	
 high-­‐level	
 API	
 should	
 be	
 compared	
 to	
 something	
 like	
 Pig.	
 	
 Here's	
 the	
 analogous	
 version	
 in	

that	
 language.	

	

Why is Spark faster?

Spark	
 is	
 faster	
 than	
 MapReduce	
 for	
 several	
 reasons.	
 	
 First,	
 and	
 the	
 biggest,	
 is	
 Spark	
 can	
 cache	
 data	
 into	

memory.	
 	
 Reading	
 from	
 memory	
 is	
 measured	
 in	
 nanoseconds,	
 reading	
 from	
 disk	
 is	
 measured	
 in	

milliseconds.	
 	
 Quite	
 the	
 increase	
 in	
 speed	
 is	
 seen	
 from	
 there.	
 	
 	

In	
 addition,	
 the	
 scheduling	
 of	
 tasks	
 in	
 Spark	
 has	
 greatly	
 decreased	
 from	
 MapReduce.	
 	
 Spark	
 has	
 dedicated	

resources,	
 so	
 scheduling	
 of	
 tasks	
 doesn’t	
 require	
 a	
 resource	
 request.	
 	
 Because	
 of	
 this,	
 scheduling	
 has	
 gone	

from	
 15-­‐20s	
 to	
 15-­‐20ms.	
 	
 	

In	
 Spark,	
 you	
 can	
 have	
 multiple	
 reduces	
 and	
 maps	
 in	
 a	
 row.	
 	
 You	
 do	
 not	
 need	
 a	
 map	
 phase	
 for	
 every	
 reduce	

phase.	
 	
 Skipping	
 this	
 extra	
 map	
 save	
 reading	
 and	
 writing	
 data	
 to	
 disk.	
 	

Spark Growth is Massive
Spark	
 is	
 a	
 top	
 level	
 project	
 at	
 Apache	
 as	
 of	
 February	
 2014.	
 	
 Spark's	
 previous	
 release	
 (as	
 of	
 November	
 2015)	

had	
 over	
 1000	
 commits	
 with	
 230	
 developers	
 contributing.	
 	
 Spark	
 is	
 one	
 of	
 the	
 largest	
 open	
 source	
 projects	

currently	
 at	
 Apache.	
 	
 Releases	
 of	
 spark	
 are	
 independent	
 of	
 the	
 major	
 Hadoop	
 distributions,	
 with	
 an	
 average	

.x	
 release	
 of	
 Spark	
 every	
 three	
 months.	
 	
 	

Spark	
 is	
 growing	
 massively	
 and	
 many	
 new	
 features,	
 along	
 with	
 bug	
 fixes	
 and	
 internal	
 optimizations,	
 are	

being	
 release	
 all	
 the	
 time.	
 	
 One	
 of	
 the	
 biggest	
 jumps	
 in	
 Spark	
 usability	
 was	
 the	
 new	
 feature	
 of	
 Spark	
 SQL	
 and	

Dataframes.	

Spark and HDP
As	
 stated	
 earlier,	
 Spark	
 was	
 introduced	
 into	
 the	
 Hortonworks	
 Data	
 Platform	
 (HDP)	
 in	
 December	
 2014.	
 	
 The	

following	
 bullets	
 reference	
 some	
 key	
 version	
 points	
 for	
 both	
 HDP	
 and	
 Spark:	

• HDP	
 2.3.2	
 –	
 Spark	
 1.4.1	

• HDP	
 2.2.8	
 –	
 Spark	
 1.3.1	

• HDP	
 2.2.4	
 –	
 Spark	
 1.2.1	

	

Review Questions
1) What are some of the reasons Spark is faster than MapReduce?

__

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
195

	

	

2) What distribution of HDP includes Spark 1.4.1? _______________________
3) What are the four libraries that build upon Spark Core?

__
4) Name another benefit to using Spark vs MapReduce?

__

Review Answers
1) What are some of the reasons Spark is faster than MapReduce?

__
Answer: Task scheduling, in-memory data caching, can link multiple maps and reduces
together, less reading & writing to HDFS

2) What distribution of HDP includes Spark 1.4.1? _______________________
Answer: HDP 2.3.2

3) What are the four libraries that build upon Spark Core?
__
Answer: GraphX, Spark SQL, ML-Lib and Spark Streaming

4) Name another benefit to using Spark vs MapReduce?
__
Answer: High-level API, many committers and/or rapid improvements & bug fixes

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
196

	

	

Programming with Apache Spark

Lesson Objectives
This	
 lesson	
 explains	
 the	
 basics	
 of	
 programming	
 with	
 Apache	
 Spark.	
 	
 Upon	
 completion	
 of	
 this	
 lesson,	

students	
 should	
 be	
 able	
 to:	
 	

• Start	
 the	
 Spark	
 shell	

• Understand	
 what	
 an	
 RDD	
 is	

• Load	
 data	
 from	
 HDFS	
 and	
 create	
 a	
 Word	
 Count	
 application	

• Know	
 the	
 differences	
 between	
 Transformation	
 and	
 Action	
 operations	

• Explain	
 lazy	
 evaluation	

Additional Content
• Quiz:	
 Lesson	
 Review	

• Lab:	
 Getting	
 Started	
 with	
 Apache	
 Spark	

Starting the Apache Shell
The	
 fastest	
 way	
 to	
 get	
 started	
 with	
 Apache	
 Spark	
 is	
 using	
 a	
 command-­‐line	
 based	
 Spark	
 shell	
 application.	
 	
 In	

addition	
 to	
 learning	
 Spark,	
 the	
 shells	
 are	
 great	
 for	
 debugging,	
 exploring	
 data,	
 and	
 when	
 building	

applications.	
 	
 Spark	
 has	
 two	
 shells	
 available,	
 one	
 for	
 Python	
 and	
 one	
 for	
 Scala.	

In	
 order	
 to	
 start	
 the	
 scala	
 shell,	
 the	
 user	
 needs	
 to	
 enter	
 “spark-­‐shell”	
 on	
 the	
 command	
 line.	

In	
 order	
 to	
 start	
 the	
 python	
 shell,	
 the	
 user	
 needs	
 to	
 enter	
 “pyspark”	
 on	
 the	
 command	
 line.	
 	
 We	
 will	
 focus	
 on	

python	
 in	
 this	
 lesson	
 and	
 use	
 pyspark	
 for	
 the	
 labs	
 in	
 this	
 course.	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
197

	

	

	

The	
 pyspark	
 RPEL	

Generally	
 speaking,	
 a	
 shell	
 is	
 often	
 referred	
 to	
 as	
 a	
 REPL,	
 which	
 stands	
 for	
 Read	
 –	
 Evaluate	
 –	
 Print	
 –	
 Loop.	
 	

This	
 lesson	
 will	
 refer	
 to	
 the	
 two	
 shells	
 as	
 the	
 REPL	
 to	
 avoid	
 confusion.	

	

Reference:	
 Spark's	
 Programming	
 Guide,	

http://spark.apache.org/docs/1.4.1/programming-­‐guide.html,	
 is	
 an	
 invaluable	

resource	
 for	
 this	
 lesson.	

Working with the Spark Context
For	
 any	
 application	
 to	
 become	
 a	
 Spark	
 application,	
 an	
 instance	
 of	
 the	
 SparkContext	
 class	
 must	
 be	

instantiated.	
 	
 In	
 pyspark,	
 the	
 following	
 code	
 has	
 already	
 been	
 executed	
 for	
 you	
 at	
 start	
 up.	

conf = SparkConf().setAppName(appName).setMaster(master)
sc = SparkContext(conf=conf)

This	
 allows	
 subsequent	
 use	
 of	
 the	
 needed	
 SparkContext	
 object	
 through	
 the	
 sc	
 variable	
 created	
 for	
 you.	
 	

This	
 class	
 has	
 many	
 APIs	
 that	
 can	
 be	
 used	
 for	
 accessing	
 configurations:	

• sc.appName()	
 sets	
 the	
 application	
 name	

• sc.master()	
 determines	
 what	
 kind	
 of	
 Spark	
 Master	
 (local	
 or	
 YARN	
 enabled)	
 is	
 in	
 use	

• sc.version()	
 displays	
 to	
 the	
 user	
 which	
 version	
 of	
 Spark	
 they	
 are	
 utilizing	

The	
 context	
 object	
 also	
 has	
 APIs	
 that	
 perform	
 operations	
 such	
 as	
 the	
 following	
 which	
 will	
 be	
 discussed	

further:	

• sc.parallelize()	
 creates	
 an	
 RDD	
 from	
 local	
 data	

• sc.textFile()	
 creates	
 an	
 RDD	
 from	
 a	
 text	
 file	
 residing	
 on	
 HDFS	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
198

	

	

• sc.stop()	
 stops	
 the	
 SparkContext	
 object	

	

Reference:	
 More	
 details	
 on	
 the	
 SparkContect	
 class	
 used	
 in	
 pyspark	
 are	
 available	
 at	

http://spark.apache.org/docs/1.4.1/api/python/pyspark.html#pyspark.SparkContext.	

The Resilient Distributed Dataset
The	
 Resilient	
 Distributed	
 Dataset	
 (RDD)	
 is	
 an	
 immutable	
 collection	
 of	
 objects	
 (or	
 records)	
 that	
 can	
 be	

operated	
 on	
 in	
 parallel.	
 	
 RDD's	
 adhere	
 to	
 these	
 key	
 attributes	
 that	
 make	
 up	
 their	
 namesake:	

Resilient Can	
 be	
 recreated	
 from	
 parent	
 RDDs	
 –	
 and	
 RDD	
 keeps	
 its	
 lineage	

information.	

Distributed Partitions	
 of	
 data	
 are	
 distributed	
 across	
 nodes	
 in	
 the	
 cluster.	

Dataset A	
 set	
 of	
 data	
 than	
 can	
 be	
 accessed.	

Each	
 RDD	
 is	
 composed	
 of	
 one,	
 or	
 more,	
 partitions.	
 	
 The	
 user	
 can	
 control	
 the	
 number	
 of	
 partitions,	
 by	

increasing	
 partitions,	
 the	
 user	
 increase	
 the	
 parallelism.	

RDD’s	
 are	
 not	
 a	
 physical	
 entity.	
 	
 They	
 are	
 a	
 set	
 of	
 instructions	
 on	
 how	
 to	
 transform	
 data.	
 	
 The	
 only	
 time	
 an	

RDD	
 every	
 physically	
 exists	
 is	
 when	
 the	
 data	
 is	
 cached	
 into	
 memory.	

For	
 HDFS	
 files,	
 the	
 RDD	
 partitions	
 will	
 be	
 aligned	
 with	
 the	
 file’s	
 blocks	
 thus	
 leveraging	
 the	
 same	
 kind	
 of	

parallelism	
 that	
 Hadoop	
 is	
 famous	
 for.	

Creating an RDD
A	
 common	
 way	
 to	
 create	
 an	
 RDD	
 is	
 to	
 simple	
 read	
 a	
 text	
 file.	
 	
 This	
 file	
 can	
 exist	
 in	
 a	
 variety	
 of	
 place	
 such	
 as	

HDFS,	
 S3	
 or	
 the	
 local	
 filesystem	
 and	
 can	
 be	
 loaded	
 from	
 a	
 single	
 line:	

rdd1 = sc.textFile("file:/path/to/file.txt)
rdd2 = sc.textFile("hdfs://namenode:8020/mydata/data.txt")
The	
 method	
 can	
 also	
 accept	
 a	
 comma	
 separated	
 list	
 of	
 files,	
 or	
 a	
 wildcard	
 list	
 of	
 files:	

rdd3 = sc.textFile("mydata/*.txt")
rdd4 = sc.textFile("data1.txt,data2.txt")

Working with RDDs and Lazy Evaluation
RDDs	
 have	
 the	
 following	
 two	
 types	
 of	
 operations:	

Transformations The	
 RDD	
 is	
 transformed	
 into	
 a	
 new	
 RDD.	

Actions An	
 action	
 is	
 performed	
 on	
 the	
 RDD	
 and	
 the	
 result	
 is	
 returned	
 to	
 the	

application	
 or	
 saved	
 somewhere.	

Transformations	
 are	
 lazy:	
 they	
 do	
 not	
 compute	
 until	
 an	
 action	
 is	
 performed.	
 	
 This	
 is	
 an	
 important	
 concept	
 of	

Spark.	
 	
 Spark	
 likes	
 to	
 do	
 the	
 least	
 amount	
 of	
 work	
 possible	
 and	
 will	
 only	
 process	
 data	
 when	
 it	
 is	
 forced	
 too.	

Transformation Example
Using	
 Word	
 Count	
 as	
 an	
 example,	
 the	
 following	
 lines	
 of	
 Spark	
 code	
 illustrates	
 multiple	
 transformation	
 that	

work	
 toward	
 building	
 possible	
 directed	
 acyclic	
 graphs	
 (DAG),	
 the	
 mechanism	
 to	
 describe	
 the	
 job	
 flow	
 steps,	

for	
 eventual	
 execution.	

file = sc.textFile("hdfs://some-text-file”)
counts = file.flatMap(lambda line: line.split(" ")) \
 .map(lambda word: (word, 1)) \
 .reduceByKey(lambda a, b: a + b)

Action Example
The	
 save	
 operation	
 below	
 writes	
 the	
 newly	
 created	
 text	
 file	
 back	
 to	
 HDFS	
 which	
 constitutions	
 an	
 action	
 that	

triggers	
 execution	
 of	
 the	
 whole	
 DAG.	

counts.saveAsTextFile("hdfs://wordcount-out”)

Restating	
 this,	
 lazy	
 evaluation	
 means	
 that	
 transformations	
 will	
 be	
 only	
 executed	
 when	
 actions	
 are	
 called.	
 	

While	
 build	
 a	
 pipeline,	
 spark	
 creates	
 a	
 DAG	
 of	
 the	
 transformations.	
 	
 When	
 an	
 action	
 is	
 called	
 on	
 an	
 RDD,	
 it	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
199

	

	

triggers	
 the	
 execution	
 of	
 the	
 entire	
 finalized	
 DAG.	
 	
 	

	

Reference:	
 The	
 keyword	
 lambda	
 is	
 Python's	
 approach	
 for	
 small	
 anonymous	

functions	
 that	
 can	
 be	
 used	
 wherever	
 function	
 objects	
 are	
 required.	

See	
 https://docs.python.org/2/tutorial/controlflow.html#lambda-­‐expressions	
 for	

more	
 on	
 this	
 approach.	

Functional Programming
Spark	
 uses	
 functional	
 programming	
 which	
 this	
 allows	
 the	
 user	
 to	
 process	
 data	
 in	
 parallel.	
 	
 Functional	

programming	
 is	
 a	
 paradigm	
 shift	
 from	
 object-­‐oriented	
 programing	
 and	
 the	
 following	
 are	
 some	
 of	
 its	

architectural	
 tenants:	
 	

• Programs	
 are	
 built	
 on	
 functions	
 instead	
 of	
 objects	

• Mutation	
 is	
 forbidden	
 –	
 all	
 variables	
 are	
 final	

• Functional	
 purity	
 –	
 if	
 you	
 pass	
 A	
 into	
 a	
 function,	
 you're	
 always	
 getting	
 back	
 B	

• Functions	
 have	
 input	
 and	
 output	
 only	
 –	
 no	
 state	
 or	
 side	
 effects	

• Passing	
 functions	
 as	
 input	
 to	
 other	
 functions	

• Anonymous	
 functions	
 –	
 undefined	
 functions	
 passed	
 inline	

	

Reference:	
 Please	
 visit	
 https://en.wikipedia.org/wiki/Functional_programming	

for	
 a	
 more	
 thorough	
 explanation	
 of	
 the	
 functional	
 programming	
 paradigm.	

Common Spark Actions
As	
 a	
 reminder,	
 Spark	
 action	
 operations	
 trigger	
 execution.	
 	
 This	
 section	
 presents	
 several	
 common	
 actions.	

count() Action
The	
 count()	
 action	
 returns	
 the	
 number	
 of	
 elements	
 in	
 an	
 RDD.	

data = [5, 12, -4 , 7, 20]
rdd= sc.parallelize(data)
rdd.count()

5

reduce() Action
The	
 reduce()	
 action's	
 aggregation	
 of	
 elements	
 of	
 an	
 RDD	
 using	
 a	
 defined	
 function	
 has	
 many	
 use	
 cases	
 in	

Spark	
 applications.	
 	
 The	
 reducing	
 logically	
 happens	
 over	
 and	
 over	
 with	
 only	
 two	
 of	
 the	
 RDD	
 elements	
 at	
 a	

time.	
 	
 Once	
 those	
 two	
 have	
 been	
 reduced,	
 then	
 the	
 outcome	
 will	
 be	
 part	
 of	
 another	
 logical	
 reduce	
 step	

until	
 all	
 elements	
 have	
 been	
 accounted	
 for.	

This	
 concept	
 of	
 having	
 multiple	
 passes	
 on	
 the	
 reduce	
 phase	
 is	
 similar	
 to	
 the	
 Java	
 MapReduce	
 API's	

Combiner.	
 	
 Because	
 of	
 this,	
 the	
 function	
 used	
 by	
 the	
 reduce	
 must	
 be	
 both	
 commutative	
 and	
 associative.	
 	
 For	

example,	
 a+b = b+a.	
 	
 A	
 richer	
 example	
 shows	
 that	
 a+(b+c) = (a+b)+c.	
 	
 The	
 following	
 show	

examples	
 of	
 the	
 reduce()	
 action.	

Dataset:[5, 12, -4 , 7, 20]

rdd.reduce(lambda a, b : a+b)
40

rdd.reduce(lambda a, b: a if (a>b) else b)
20
The	
 reason	
 for	
 the	
 requirement	
 to	
 be	
 commutative	
 and	
 associative	
 is	
 that	
 Spark	
 does	
 not	
 guarantee	
 the	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
200

	

	

order	
 in	
 which	
 the	
 data	
 will	
 be	
 processed.	

	

Definitions:	
 	

Commutative	
 =	
 (of	
 a	
 binary	
 operation)	
 having	
 the	
 property	
 that	
 one	
 term	

operating	
 on	
 a	
 second	
 is	
 equal	
 to	
 the	
 second	
 operating	
 on	
 the	
 first,	
 as	
 a x b =
b x a	
 	

Associative	
 =	
 (of	
 an	
 operation	
 on	
 a	
 set	
 of	
 elements)	
 giving	
 an	
 equivalent	

expression	
 when	
 elements	
 are	
 grouped	
 without	
 change	
 of	
 order,	
 as	
 (a + b) +
c = a + (b + c)	

The	
 following	
 diagram	
 presents	
 this	
 concept	
 of	
 commutative	
 and	
 associative	
 as	
 a	
 visual	
 example.	

	

Visual	
 depiction	
 of	
 Commutative	
 &	
 Associative	

Other Useful Spark Actions
The	
 following	
 are	
 additional	
 Spark	
 actions	
 that	
 are	
 leveraged	
 heavily.	

• first()	
 returns	
 the	
 first	
 element	
 in	
 the	
 RDD	

• take()	
 returns	
 the	
 first	
 n	
 elements	
 of	
 the	
 RDD	

• collect()	
 returns	
 all	
 the	
 elements	
 in	
 the	
 RDD	
 to	
 the	
 driver	

• saveAsTextFile()	
 writes	
 the	
 RDD	
 to	
 a	
 file	

Dataset:[5, 12, -4 , 7, 20]

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
201

	

	

rdd.first()
5
rdd.take(3)
[5, 12, -4]

rdd.saveAsTextFile(“myfile”)

	

	

Important:	
 Make	
 sure	
 you	
 only	
 call	
 collect()	
 on	
 small	
 datasets	
 or	
 risk	
 crashing	

your	
 shell/application.	

Common Spark Transformation
As	
 a	
 reminder,	
 Spark	
 transformation	
 operations	
 create	
 new	
 RDDs	
 from	
 existing	
 ones.	
 	
 Transformations	
 are	

lazy	
 and	
 processing	
 does	
 not	
 occur	
 until	
 an	
 action	
 is	
 called	
 on	
 the	
 RDD,	
 or	
 a	
 subsequent	
 RDD.	
 	

Transformation	
 create	
 a	
 recipe,	
 or	
 lineage,	
 that	
 Spark	
 uses	
 to	
 process	
 the	
 data.	
 	
 Spark	
 will	
 pipeline	
 data	

through	
 these	
 transformations.	

map() Transformation
The	
 map()	
 transformation	
 applies	
 a	
 function	
 to	
 each	
 element	
 of	
 an	
 RDD.	
 	
 It	
 takes	
 a	
 one	
 input	
 to	
 one	
 output	

approach.	

rdd = sc.parallelize([1, 2, 3, 4, 5])

rdd.map(lambda x: x*2+1).collect()

[3, 5, 7, 9, 11]

flatMap() Transformation
We	
 just	
 saw	
 an	
 example	
 of	
 a	
 map	
 operation	
 and	
 flatMap()	
 is	
 another	
 very	
 important	
 transformation	

that	
 is	
 used	
 heavily.	
 	
 flatMap()	
 applies	
 a	
 function	
 to	
 each	
 element	
 of	
 the	
 RDD	
 and	
 returns	
 a	
 collection.	
 	

The	
 main	
 difference	
 between	
 map()	
 and	
 flatMap()	
 are	
 the	
 outputs.	
 	
 This	
 transformation	
 takes	
 a	
 one	

input	
 to	
 many	
 output	
 approach.	

rdd = sc.parallelize([1, 2, 3, 4, 5])

rdd.map(lambda x: [x, x*2]).collect()
[(1,2), (2, 4), (3,6), (4,8), (5,10)]

rdd.flatMap(lambda x: [x, x*2]).collect()
[1, 2, 2, 4, 3, 6, 4, 8, 5, 10]
The	
 reason	
 for	
 the	
 requirement	
 to	
 be	
 commutative	
 and	
 associative	
 is	
 that	
 Spark	
 does	
 not	
 guarantee	
 the	

order	
 in	
 which	
 the	
 data	
 will	
 be	
 processed.	

filter() Transformation
The	
 filter()	
 transformation	
 keeps	
 elements	
 based	
 on	
 a	
 predicate.	
 	
 It	
 will	
 include	
 the	
 current	
 element	
 of	

the	
 RDD	
 being	
 evaluated	
 in	
 the	
 new	
 RDD	
 when	
 the	
 function	
 being	
 used	
 evaluates	
 to	
 true.	

rdd = sc.parallelize([1, 2, 3, 4, 5])

rdd.map(lambda x: x*2+1).collect()

[3, 5, 7, 9, 11]

(Key Value) Pair RDDs
Pair	
 RDDs	
 are	
 a	
 different	
 type	
 of	
 RDD	
 than	
 previously	
 discussed.	
 	
 A	
 Pair	
 RDD,	
 or	
 Key	
 Value	
 Pair	
 (KVP)	
 RDD,	
 is	

an	
 RDD	
 whose	
 elements	
 comprise	
 a	
 pair	
 of	
 values	
 –	
 key	
 and	
 value.	
 	
 Pair	
 RDDs	
 are	
 very	
 useful	
 for	
 many	

applications.	
 	
 We	
 can	
 create	
 KVPs	
 then	
 allow	
 group	
 operations	
 to	
 occur	
 based	
 on	
 the	
 key.	
 	
 Examples	
 of	

these	
 operations	
 include	
 join(),	
 groupByKey()	
 and	
 reduceByKey()	
 which	
 will	
 be	
 explained	

further.	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
202

	

	

Creating Pair RDDs
Pair	
 RDDs	
 are	
 often	
 created	
 from	
 regular	
 RDDs	
 by	
 using	
 the	
 map()	
 or	
 flatMap()	
 transformation	

operations	
 as	
 shown	
 in	
 the	
 following	
 example:	

wordlist = ‘this is my list and it is a nice list’
rdd1 = sc.parallelize([wordlist])

kv_rdd = rdd1.flatMap(lambda x: x.split(‘ ‘)).map(lambda x: (x,1))
kv_rdd.collect()
[(this, 1), (is, 1), (my, 1), (list, 1), (and, 1), … (list,1)]

Performing Actions on a Pair RDD
A	
 common	
 action	
 taken	
 on	
 Pair	
 RDDs	
 is	
 the	
 reduceByKey()	
 function.	
 	
 It	
 performs	
 reduce	
 actions	
 on	
 all	

values	
 with	
 the	
 same	
 key	
 and	
 collapses	
 them	
 all	
 down	
 to	
 a	
 single	
 KVP	
 with	
 only	
 the	
 value	
 being	
 updated	
 by	

whatever	
 function	
 is	
 used	
 in	
 the	
 operation.	
 	
 Like	
 with	
 the	
 less	
 complex	
 reduce()	
 action,	
 the	
 function	
 still	

must	
 be	
 commutative	
 and	
 associative.	
 	
 The	
 easily	
 understood	
 Word	
 Count	
 functionality	
 helps	
 in	

understanding	
 this	
 operation.	

kv_rdd.reduceByKey(lambda a,b: a+b).collect()
[('this', 1), ('my', 1), ('and', 1), ('list', 2), ('a', 1), ('it', 1),
('is', 2), ('nice', 1)]

	

Note:	
 These	
 simple	
 examples	
 might	
 lead	
 one	
 to	
 believe	
 that	
 the	
 keys	
 and/or	

values	
 must	
 be	
 primitive	
 values,	
 but	
 in	
 fact,	
 they	
 can	
 be	
 very	
 complex	
 &	
 nested	

tuple	
 structures.	

Keys	
 &	
 Values	
 can	
 contain	
 rich	
 tuples.	

The	
 following	
 example	
 implements	
 the	
 familiar	
 Word	
 Count	
 use	
 case,	
 but	
 introduces	
 some	
 additional	
 data	

elements	
 to	
 both	
 sides	
 of	
 the	
 KVP	
 being	
 utilized.	

suess = ['I do not like green eggs and ham I do not like them Sam I am']
parallelSuess = sc.parallelize(suess)
parallelSuess.take(1)
['I do not like green eggs and ham I do not like them Sam I am']

suessWords = parallelSuess.flatMap(lambda sentence: sentence.split(' '))
suessWords.take(5)
['I', 'do', 'not', 'like', 'green']

notSimplePair = suessWords.map(lambda word: ((word,'theKey'),('theVal',1)))
notSimplePair.sortByKey(ascending=False).take(5)
[(('them', 'theKey'), ('theVal', 1)), (('not', 'theKey'), ('theVal', 1)), (('not',
'theKey'), ('theVal', 1)), (('like', 'theKey'), ('theVal', 1)), (('like', 'theKey'),
('theVal', 1))]

notSimplePair.reduceByKey(lambda oneValue,anotherValue: ('n/a', oneValue[1] +
anotherValue[1])).sortByKey(ascending=False).collect()
[(('them', 'theKey'), ('theVal', 1)), (('not', 'theKey'), ('n/a', 2)), (('like',
'theKey'), ('n/a', 2)), (('ham', 'theKey'), ('theVal', 1)), (('green', 'theKey'),
('theVal', 1)), (('eggs', 'theKey'), ('theVal', 1)), (('do', 'theKey'), ('n/a', 2)),
(('and', 'theKey'), ('theVal', 1)), (('am', 'theKey'), ('theVal', 1)), (('Sam',
'theKey'), ('theVal', 1)), (('I', 'theKey'), ('n/a', 3))]

pyspark Tips
The	
 following	
 suggestions	
 may	
 make	
 your	
 experience	
 using	
 pyspark	
 more	
 navigable:	
 	

• Take	
 advantage	
 of	
 your	
 command	
 history	
 by	
 utilizing	
 the	
 "up	
 arrow"	
 key	
 similar	
 to	
 the	
 Linux	
 shell	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
203

	

	

• Instead	
 of	
 initially	
 chaining	
 together	
 a	
 long	
 list	
 of	
 methods,	
 consider	
 creating	
 temporary	
 variable,	
 or	
 at	

least	
 adding	
 one	
 method	
 at	
 a	
 time	
 and	
 using	
 take()	
 to	
 see	
 if	
 it	
 appears	
 each	
 operation	
 is	
 working	
 as	

expected	
 before	
 adding	
 another	
 method	

• Leverage	
 dir()	
 to	
 get	
 a	
 list	
 of	
 current	
 variables	
 –	
 like	
 with	
 Pig's	
 aliases	
 command,	
 there	
 will	
 be	

additional	
 system-­‐oriented	
 variable	
 names	
 present	

• Consider	
 triming	
 down	
 the	
 extra	
 "noise"	
 by	
 calling	
 sc.setLogLevel('WARN')	
 to	
 eliminate	
 INFO	

messages	

Review Questions
5) What are the three ways we can create an RDD?

__
6) What are the two types of operations we can perform on an RDD? Give example of each.

__
7) What is functional programming?

__
8) What is Lazy Execution?

__
9) What does the R stand for in RDD? What does that mean?

__

Review Answers
10) What are the three ways we can create an RDD?

__
Answer: From a filesystem/db, parallelizing a collection, from another RDD

11) What are the two types of operations we can perform on an RDD? Give example of each.
__
Answer: Action (count, collect, take) and Transformation (map, flatMap, filter)

12) What is functional programming?
__
Answer: Functional programming allows us to build applications on functions and not objects,
passing functions as inputs to other functions, functions have inputs and outputs – no side
effects, no “state”

13) What is Lazy Execution?
__

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
204

	

	

Answer: Lazy execution means Spark doesn’t process data until it has to when an action is
performed

14) What does the R stand for in RDD? What does that mean?
__
Answer: R stands for Resilient. We’re able to recompute the data using lineage in case we
were to lose part of it

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
205

	

	

Spark SQL and DataFrames

Lesson Objectives

This	
 lesson	
 explores	
 the	
 additional	
 Spark	
 ecosystem	
 framework	
 called	
 Spark	
 SQL	
 and	
 its	
 tightly	
 coupled	

DataFrame	
 API.	
 	
 Upon	
 completion	
 of	
 this	
 lesson,	
 students	
 should	
 be	
 able	
 to:	
 	

• Load	
 multiple	
 types	
 of	
 data	

• Perform	
 SQL	
 queries	
 within	
 pyspark	

• Utilize	
 DataFrame	
 operations	

• Understand	
 some	
 of	
 the	
 optimization	
 engine	

Additional Content
• Lab:	
 Exploring	
 Spark	
 SQL	

Spark SQL Overview

	

What	
 is	
 Apache	
 Spark?	

Spark	
 SQL	
 is	
 Spark's	
 integrated	
 module	
 for	
 working	
 with	
 structured	
 data.	
 	
 In	
 addition	
 to	
 the	
 following	

bullets,	
 Spark	
 SQL	
 features	
 a	
 uniform	
 data	
 access	
 approach	
 and	
 Hive	
 compatibility.	
 	

• It	
 is	
 a	
 module	
 built	
 on	
 top	
 of	
 Spark	
 Core	

• Provides	
 a	
 programming	
 abstraction	
 for	
 distributed	
 processing	
 of	
 large-­‐scale	
 structured	
 data	
 in	
 Spark	

• Data	
 is	
 described	
 as	
 a	
 DataFrame	
 with	
 row,	
 columns	
 and	
 a	
 schema	

• Data	
 manipulation	
 and	
 access	
 is	
 available	
 with	
 two	
 mechanisms	

o SQL	
 Queries	

o DataFrames	
 API	

The DataFrame Abstraction

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
206

	

	

• A	
 DataFrame	
 is	
 inspired	
 by	
 the	
 dataframe	
 concept	
 in	
 R	
 (dplr,	
 Dataframe)	
 and	
 Python	
 (pandas),	
 but	

stored	
 using	
 RDDs	
 underneath	
 in	
 a	
 distributed	
 manner	

• A	
 DataFrame	
 is	
 organized	
 into	
 names	
 columns	
 –	
 an	
 RDD	
 of	
 "Row"	
 objects	

• The	
 DataFrame	
 API	
 is	
 available	
 in	
 Scala,	
 Java,	
 Python	
 and	
 R	

	

Visual	
 Representation	
 of	
 a	
 DataFrame	

DataFrame Primary Sources
• DataFrames	
 from	
 Hive	
 data	

o Reading	
 from	
 Hive	
 tables	

o Writing	
 to	
 Hive	
 tables	

• DataFrames	
 from	
 file	

o Built-­‐in:	
 JSON,	
 JDBC,	
 Parquet,	
 HDFS	

o External	
 plug-­‐in:	
 CSV,	
 HBase,	
 Avro,	
 memsql,	
 elasticsearch	

SQLContext and HiveContext
To	
 use	
 Spark	
 SQL	
 from	
 your	
 Spark	
 application,	
 an	
 instance	
 of	
 the	
 SQLContext	
 class	
 must	
 be	
 instantiated.	
 	

In	
 pyspark,	
 the	
 following	
 code	
 has	
 already	
 been	
 executed	
 for	
 you	
 at	
 start	
 up.	

from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
This	
 allows	
 subsequent	
 use	
 of	
 the	
 needed	
 SQLContext	
 object	
 through	
 the	
 sqlContext	
 variable	

created	
 for	
 you.	
 	
 Alternatively,	
 you	
 can	
 create	
 a	
 HiveContext	
 instance	
 to	
 connect	
 with	
 Hive.	

from pyspark.sql import HiveContext
hc = HiveContext(sc)

	

	

Note:	
 Since	
 HiveContext	
 is	
 a	
 specialized	
 subclass	
 of	
 SQLContext	
 you	
 can	

use	
 it	
 in	
 place	
 of	
 the	
 already	
 instantiated	
 sqlContext	
 reference	
 for	

consistency.	

Data Manipulation and Access Options

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
207

	

	

As	
 stated	
 previously,	
 accessing	
 and	
 manipulating	
 data	
 is	
 available	
 via	
 two	
 options.	

DataFrames API
The	
 following	
 illustrates	
 an	
 example	
 of	
 using	
 the	
 DataFrame	
 API:	

from pyspark.sql import HiveContext
hc = HiveContext(sc)

hc.sql(“use demo”)
df1 = hc.table(“crimes”)
 .select(“year”, “month”, “day”, “category”)
 .filter(“year > 2014”).head(5)

SQL Syntax
The	
 following	
 illustrates	
 an	
 example	
 of	
 using	
 the	
 SQL	
 syntax:	

from pyspark.sql import HiveContext
hc = HiveContext(sc)

hc.sql(“use demo”)
df1 = hc.sql(“““
 SELECT year, month, day, category
 FROM crimes
 WHERE year > 2014”””).head(5)

	

	

Note:	
 When	
 the	
 SQL	
 statement	
 spans	
 more	
 than	
 one	
 line,	
 wrap	
 it	
 with	
 three	
 sets	

of	
 double-­‐quotes.	
 	
 Otherwise,	
 a	
 single	
 set	
 of	
 double-­‐quotes	
 is	
 sufficient.	

DataFrames vs Spark Core
Spark	
 SQL	
 uses	
 and	
 extensible	
 cost-­‐based	
 optimizer	
 (CBO)	
 called	
 Catalyst.	
 	
 This	
 CBO	
 engine	
 understands	
 the	

structure	
 of	
 data	
 &	
 semantics	
 of	
 operations	
 and	
 performs	
 optimizations	
 accordingly	
 with	
 results	
 like	
 those	

shown	
 below	
 compared	
 with	
 Spark	
 Core's	
 RDD	
 processing.	
 	

	

DataFrame	
 Performance	
 Comparison	

Again,	
 much	
 of	
 the	
 performance	
 gains	
 are	
 due	
 to	
 the	
 Catalyst	
 optimizer	
 that	
 features	
 the	
 following	

functionality	
 and	
 highlights:	

• Query	
 or	
 DataFrame	
 operations	
 are	
 modeled	
 as	
 a	
 tree	

• Logical	
 plan	
 is	
 created	
 and	
 optimized	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
208

	

	

• Various	
 physical	
 plans	
 are	
 created	
 then	
 the	
 best	
 one	
 is	
 chosen	
 based	
 on	
 overall	
 cost	

• Code	
 generation	
 and	
 execution	

	

Catalyst	
 Architecture	

Creating DataFrames
There	
 are	
 multiple	
 ways	
 to	
 create	
 DataFrames	
 (DF)	
 as	
 the	
 following	
 subsections	
 identify.	

Create DF from Hive
An	
 entire	
 Hive	
 table	
 could	
 be	
 loaded	
 to	
 create	
 a	
 DataFrame:	

df = hc.table("patients")

Alternatively,	
 a	
 DataFrame	
 could	
 be	
 created	
 from	
 the	
 results	
 of	
 a	
 SQL	
 query	
 such	
 as	
 these	
 examples	
 show:	

df1 = hc.sql("SELECT * FROM patients WHERE age > 50")

df2 = hc.sql("""
 SELECT col1 AS timestamp, SUBSTR(date,1,4) AS year, event
 FROM events
 WHERE year > 2014""")

Create DF from a File
With	
 the	
 built-­‐in	
 adapters	
 and	
 an	
 extensible	
 framework,	
 virtually	
 any	
 file	
 format	
 could	
 be	
 read	
 to	
 create	
 a	

DataFrame.	
 	
 	

Here	
 are	
 two	
 approaches	
 for	
 reading	
 from	
 a	
 JSON	
 file:	

df = hc.read.json("somefile.json")

df = hc.read.format("json").load("somefile.json")

	

	

Note:	
 There	
 are	
 two	
 syntax	
 options	
 for	
 reading	
 files	
 types.	
 	
 The	
 following	
 model	

can	
 be	
 used	
 for	
 well-­‐known	
 and	
 tested	
 file	
 formats:	

hc.read.TECH-NAME(“FILE-NAME”)
The	
 more	
 extensible	
 syntax	
 follows:	
 	

hc.read.format(“TECH-NAME”).load(“FILE-NAME”)

Examples	
 reading	
 from	
 Parquet	
 and	
 CSV	
 files	
 using	
 the	
 built-­‐in	
 and	
 external	
 plug-­‐in	
 models,	
 respectively:	

dfParquet = hc.read.parquet("somefile.parquet")

dfCSV = hc.read.format("com.databricks.spark.csv")
 .options(header='true').load("somefile.csv")

Create DF from an RDD
You	
 can	
 create	
 an	
 RDD	
 of	
 Row	
 objects	
 and	
 then	
 use	
 its	
 toDF()	
 function:	

from pyspark.sql import Row

rdd = sc.parallelize([Row(name='Alice', age=12, height=80),
 Row(name='Bob', age=15, height=120)])
df = rdd.toDF()

Another	
 approach	
 would	
 be	
 to	
 let	
 Spark	
 SQL	
 infer	
 the	
 schema	
 using	
 the	
 createDataFrame()	
 function:	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
209

	

	

rdd = sc.parallelize([('Alice',12,80), ('Bob',15,120)])

df = hc.createDataFrame(rdd, ['name', 'age', 'height'])

Create DF from a Text File
When	
 you	
 have	
 a	
 file	
 with	
 some	
 known	
 structure	
 and	
 format	
 you	
 can	
 read	
 the	
 file	
 into	
 an	
 RDD	
 and	
 then	

leverage	
 the	
 same	
 available	
 options	
 to	
 convert	
 it	
 to	
 a	
 DataFrame.	

from pyspark.sql import Row

lines = sc.textFile("examples/src/main/resources/people.txt")
parts = lines.map(lambda l: l.split(","))
people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))

Infer the schema, and register the DataFrame as a table.
schemaPeople = sqlContext.inferSchema(people)
schemaPeople.registerTempTable("people")

SQL can be run over DataFrames that have been registered as a table.
teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")

While	
 this	
 course	
 has	
 focused	
 on	
 Python	
 and	
 pyspark,	
 the	
 following	
 Scala	
 example	
 is	
 being	
 presented	
 for	

this	
 same	
 scenario	
 to	
 show	
 how	
 it	
 can	
 benefit	
 from	
 defining	
 a	
 full	
 class	
 on	
 the	
 fly	
 (or	
 defined	
 elsewhere)	
 to	

provide	
 "column"	
 names	
 &	
 data	
 types	
 and	
 then	
 constructing	
 a	
 new	
 one	
 for	
 each	
 row	
 during	
 the	
 second	

map	
 transformation	
 below	

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._

case class Person(name: String, age: Int)

val people = sc.textFile("examples/src/main/resources/people.txt")
 .map(_.split(","))
 .map(p => Person(p(0), p(1).trim.toInt)).toDF()

DataFrame Operations
Now	
 that	
 we	
 have	
 reviewed	
 several	
 ways	
 to	
 create	
 DataFrames,	
 this	
 section	
 will	
 present	
 some	
 common	

operations	
 that	
 can	
 be	
 made	
 on	
 these	
 structures.	

	

DataFrames	
 for	
 Illustration	
 Purposes	

Inspecting Content
As	
 DataFrames	
 are	
 backed	
 by	
 RDDs,	
 you	
 still	
 have	
 access	
 to	
 first()	
 and	
 take()	
 as	
 before:	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
210

	

	

df1.first()
Row(age=23, cid=u’104’, name=u’Bob’, state=u’nc’)

df1.take(2)
[Row(age=45, cid=u’104’, name=u’Ram’, state=u’fl’)
Row(age=15, cid=u’102’, name=u’Bob’, state=u’ny’)]

You	
 also	
 can	
 now	
 leverage	
 some	
 new,	
 DataFrame	
 API	
 specific,	
 method	
 calls.	

• limit()	
 reduces	
 the	
 DataFrame	
 to	
 a	
 specified	
 number	
 of	
 rows	

o Result	
 is	
 still	
 a	
 DataFrame,	
 not	
 a	
 Python	
 result	
 list	

• show()	
 prints	
 the	
 first	
 n	
 rows	
 to	
 the	
 console	
 in	
 a	
 formatted	
 manner	

	

Sample	
 show()	
 Output	

Inspecting Schema
Expected	
 operations	
 to	
 understand	
 the	
 metadata	
 for	
 the	
 DataFrame	
 are	
 also	
 available:	

Display column names
df1.columns
[u’age’, u’cid’, u’name’, u’state’]

Display column names and types
df1.dtypes
 [('age', 'bigint'), ('cid', 'string'), ('name', 'string'), ('state', 'string')]

Display detailed schema
df1.schema
StructType(List(StructField(age,LongType,true),
StructField(cid,StringType,true),
StructField(name,StringType,true),
StructField(state,StringType,true)))

Counting Rows
Obviously,	
 you	
 can	
 count	
 all	
 the	
 rows	
 in	
 a	
 DataFrame,	
 too:	

df1.count()
4

	

	

Important:	
 count()	
 returns	
 the	
 number	
 of	
 non-­‐duplicate	
 rows.	

Use	
 df1.rdd.count()	
 to	
 return	
 the	
 number	
 of	
 actual	
 rows.	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
211

	

	

Removing Duplicates
The	
 DataFrame	
 API	
 offers	
 a	
 couple	
 of	
 ways	
 to	
 remove	
 duplicates:	

Remove duplicate rows
df1.distinct().show()

Remove duplicate rows by key
df1.drop_duplicates(["name"]).show()

	

	

Note:	
 Using	
 show()	
 without	
 a	
 parameter	
 results	
 in	
 the	
 top	
 20	
 rows	
 being	

returned.	

Saving DataFrames
There	
 are	
 multiple	
 ways	
 to	
 save	
 DataFrames	
 such	
 as	
 those	
 presented	
 below.	

Write full file
df.write.format(“parquet”).save(“output.parquet”) *
df.write.format(“com.databricks.spark.avro”).save(“output.avro”)

Write only some columns
df.select(“name”,”age”).write.format(“json”).save(“namesAndAges.json”)

To partition, just specific the column(s) to partition by
df.write.partitionBy(“name”,”age”).parquet(“partitionNameAndAge.parquet”)
df.write.partitionBy(“name”,”age”).format(“avro”).save(“partitionNameAndAge.parquet”)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
191

	

	

Defining Workflow with Oozie

Lesson Objectives
This lesson covers how to implement a Hadoop workflow using the Apache Oozie framework.

After completing this lesson, students should be able to:

• Describe Oozie

• Describe an Oozie Coordinator Job

Additional Content
• Quiz: Lesson Review

• Lab: Defining an Oozie Workflow

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
192

	

	

Overview of Oozie
Oozie, http://oozie.apache.org, is an open-source Apache project that provides a framework
for coordinating and scheduling Hadoop jobs. Oozie is not restricted to just MapReduce jobs;
you can use Oozie to schedule Pig, Hive, Sqoop, Streaming jobs, and even Java programs.

Oozie has two main capabilities:

Oozie Workflow A collection of actions (defined in a workflow.xml file)

Oozie Coordinator A recurring workflow (defined in a coordinator.xml file)

Behind the scenes, Oozie is a Java web application that runs in a Tomcat instance. You run
Oozie as a service then start workflows using the oozie command.

We will now discuss the details of defining an Oozie workflow.xml file.

Reference: For more information on the Apache Oozie project, visit their website
at http://oozie.apache.org/.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
193

	

	

Defining an Oozie Workflow

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
194

	

	

Start%	
 Ac+on%	

Ac+on%	

Ac+on%	

Ac+on%	

End%	

Fork%	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
195

	

	

Defining	
 and	
 Oozie	
 Workflow	

	

An Oozie workflow consists of a workflow.xml file and the necessary files required by the
workflow. The workflow is put into HDFS with the following directory structure:

• The config-default.xml file is optional and contains properties shared by all workflows

• Each workflow can also have a job.properties file (not put into HDFS) for job-specific
properties

As you will soon discover, most of your time spent defining an Oozie workflow is in writing
workflow.xml. A workflow definition consists of two main entries:

Control flow nodes For determining the execution path. A fork node splits one path

into multiple paths. A join node waits until every path of a previous
fork node arrives to it

Action nodes For executing a job or task

/appdir/workflow.xml
/appdir/config-default.xml
/appdir/lib/files.jar

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
196

	

	

Pig Actions
The pig action starts a Pig job. The workflow job will wait until the Pig job completes before
continuing to the next action. Here is an example of a simple workflow that only contains a
single Pig script as one of its actions:

• Every workflow must define a <start> and <end>

• This workflow has one action named transform_whitehouse_visitors

• A workflow looks almost identical to the run method of a MapReduce job, except the job
properties are specified in XML

• The <delete> function is a convenient way to delete an existing output folder

• The <ok> tag determines where the flow should go if the job completes successfully. The
<error> tag defines where to go if the job fails

• Parameters use the ${} syntax and represent values defined outside of workflow.xml. For
example, ${resourceManager} is the server name and port number where the
ResourceManager is running. Instead of hard-coding this value, you define it in an external
properties file (the job.properties file)

• The Oozie framework provides functions also, like wf:user(), which returns the name of
the user running the job, and wf:lastErrorNode(), which returns the DataNode where the
most recent error occurred. View the Oozie Documentation for a complete list of functions

<workflow-app xmlns="uri:oozie:workflow:0.2"
name="whitehouse-workflow">

<start to="transform_whitehouse_visitors"/>

<action name="transform_whitehouse_visitors">

<pig>
<job-tracker>${resourceManager}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>

<delete path="wh_visits"/>
</prepare>
<script>whitehouse.pig</script>

</pig>
<ok to="end"/>
<error to="fail"/>

</action>
<kill name="fail">

<message>Job failed, error
message[${wf:errorMessage(wf:lastErrorNode())}]

</message>
</kill>
<end name="end"/>

</workflow-app>

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
197

	

	

Hive Actions
The hive action runs a Hive job. It looks similar to a pig action:

• The congress.hive script will execute when this action is executed

• The hive-site.xml file needs to be packaged in the workflow and needs to contain the
various properties for connecting to Hive

• This action compresses the output of the map tasks

<action name="find_congress_visits">
<hive xmlns="uri:oozie:hive-action:0.5">

<job-tracker>${resourceManager}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>

<delete path="congress_visits"/>
</prepare>
<job-xml>hive-site.xml</job-xml>
<configuration>

<property>
<name>mapreduce.map.output.compress</name>
<value>true</value>

</property>
</configuration>
<script>congress.hive</script>

</hive>
<ok to="end"/>
<error to="fail"/>

</action>

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
198

	

	

MapReduce Actions
Let’s take a look at an example of a map-reduce action:

<action name="payroll-job">
<map-reduce>

<job-tracker>${resourceManager}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>

<delete path="${nameNode}/user/${wf:user()}/payroll/result"/>
</prepare>
<configuration>

<property>
<name>mapreduce.job.queuename</name>
<value>${queueName}</value>

</property>
<property>

<name>mapred.mapper.new-api</name>
<value>true</value>

</property>
<property>

<name>mapred.reducer.new-api</name>
<value>true</value>

</property>
<property>

<name>mapreduce.job.map.class</name>
<value>payroll.PayrollMapper</value>

</property>
<property>

<name>mapreduce.job.reduce.class</name>
<value>payroll.PayrollReducer</value>

</property>
<property>

<name>mapreduce.job.inputformat.class</name>
<value>

org.apache.hadoop.mapreduce.lib.input.TextInputFormat
</value>

</property>
<property>

<name>mapreduce.job.outputformat.class</name>
<value>

org.apache.hadoop.mapreduce.lib.output.NullOutputFormat
</value>

</property>
<property>
<name>mapreduce.job.output.key.class</name>
<value>payroll.EmployeeKey</value>

</property>
<property>
<name>mapreduce.job.output.value.class</name>
<value>payroll.Employee</value>

</property>
<property>

<name>mapreduce.job.reduces</name>
<value>20</value>

</property>
<property>

<name>
mapreduce.input.fileinputformat.inputdir

</name>

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
199

	

	

Notice a <map-reduce> job consists of properties you would expect, like the map class, reduce
class, input and output formats, number of reduce tasks, etc.

<value>
${nameNode}/user/${wf:user()}/payroll/input

</value>
</property>
<property>

<name>
mapreduce.output.fileoutputformat.outputdir

</name>
<value>

${nameNode}/user/${wf:user()}/payroll/result</value>
</property>
<property>

<name>taxCode</name>
<value>${taxCode}</value>

</property>
</configuration>

</map-reduce>
<ok to="compute-tax"/>
<error to="fail"/>

</action>

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
200

	

	

Submitting a Workflow Job
Oozie has a command-line tool named oozie for submitting and executing workflows. The
command looks like:
oozie job -config job.properties -run

The code job.properties contains the properties passed in to the workflow. Note that the
workflow is typically deployed in HDFS and job.properties is typically kept on the local
filesystem.

Notice the command above does not specify which Oozie workflow to execute. This is
specified by the oozie.wf.application.path property:
oozie.wf.application.path=hdfs://node:8020/path/to/app

Here is an example of a job.properties file:

The resourceManager property was used in workflow.xml for the <job-tracker> value.
Similarly, the nameNode property became the <name-node> value and the queueName property
ended up as the value of mapreduce.job.queuename in workflow.xml. You define your
application-specific properties in job.properties

oozie.wf.application.path=hdfs://node:8020/path/to/app

#Hadoop ResourceManager
resourceManager=node:8050

#Hadoop fs.default.name
nameNode=hdfs://node:8020/

#Hadoop mapred.queue.name
queueName=default

#Application-specific properties
taxCode=2012

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
201

	

	

Fork and Join Nodes
Oozie has fork and join nodes for controlling workflow. For example:

<fork name="forking">
<path start="firstparalleljob"/>
<path start="secondparalleljob"/>

</fork>
<action name="firstparallejob">

<map-reduce>
...

</map-reduce>
<ok to="joining"/>
<error to="kill"/>

</action>
<action name="secondparalleljob">

<map-reduce>
...

</map-reduce>
<ok to="joining"/>
<error to="kill"/>

</action>
<join name="joining" to="nextaction"/>

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
200

	

	

Defining an Oozie Coordinator Job
Oozie Coordinator is a component of Oozie that allows you to define jobs that are recurring
Oozie workflows. These recurring jobs can be triggered by two types of events:

time Similar to a cron job

data availability The job triggers when a specified directory is created

An Oozie Coordinator job consists of two files:

coordinator.xml The definition of the Coordinator application

coordinator.properties For defining the job’s properties

Schedule a Job Based on Time
Let’s take a look at an example of a coordinator.xml file. The following Coordinator is
triggered based on time:

• The frequency is in minutes, so this job runs once a day

• Note the Oozie Coordinator has utility functions (similar to the Oozie workflow) like
${coord:days(1)} for specifying the frequency in days

• The job starts at midnight on Jan 1, 2013, and runs every day for a year

• The <app-path> specifies the job to run, which is an Oozie workflow job

You submit an Oozie Coordinator job similar to submitting a workflow job:
oozie job -config coordinator.properties -run

The coordinator.properties file contains the path to the coordinator app:
oozie.coord.application.path=hdfs://node:8020/path/to/app

<coordinator-app name="tf-idf"
frequency="1440"
start="2013-01-01T00:00Z"
end="2013-12-31T00:00Z"
timezone="UTC"
xmlns="uri:oozie:coordinator:0.1">

<action>
<workflow>

<app-path>
hdfs://node:8020/home/train/tfidf/workflow

</app-path>
</workflow>

</action>
</coordinator-app>

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
201

	

	

Schedule a Job Based on Data Availability
The following Coordinator application triggers a workflow job when a directory named
hdfs://node:8020/job/result/ gets created:

This Coordinator app is scheduled to run once a day. If the folder
hdfs://node:8020/job/result/ exists, the <action> executes, which in this example is an
Oozie workflow deployed in the hdfs://node:8020/myapp folder.

The assumption here is that some MapReduce job executes once a day at an unspecified time.
When that job runs, it deletes the hdfs://node:8020/job/result directory and then creates
a new one, which triggers the Coordinator to run. This Coordinator runs once a day, and if
/job/result exists, the /myapp workflow will execute.

Note: Oozie also supports the scheduling of jobs similar to how cron jobs are
scheduled.

<coordinator-app name="file_check"
frequency="1440" start="2012-01-01T00:00Z"
end="2015-12-31T00:00Z" timezone="UTC"
xmlns="uri:oozie:coordinator:0.1">
<datasets>

<dataset name="input1">
<uri-template>

hdfs://node:8020/job/result/
</uri-template>

</dataset>
</datasets>
<action>

<workflow>
<app-path>hdfs://node:8020/myapp/</app-path>

</workflow>
</action>

</coordinator-app>

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
202

	

	

Review Questions
1) What are the two main capabilities of Oozie?

__

2) What file is required to be a part of an Oozie workflow?

3) List three common Oozie workflow actions: ______________________________

__

4) What two types of events can be used to trigger an Oozie coordinator job?

__

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
203

	

	

Lab: Defining an Oozie Workflow

Objective: Define and run an Oozie workflow
See page 133 of the HDP Developer: Apache Pig and Hive Lab Booklet.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
204

	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
205

	

	

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
206

	

	

Appendix A: Lesson Review Quiz Answers

Understanding Hadoop: Review Answers
1) What are 1,024 petabytes known as?

Answer: 1,024 petabytes = 1 Exabyte

2) What are 1,024 exabytes known as?

Answer: 1,024 Exabytes = 1 Zettabyte

And for what it’s worth:

1,024 Zettabytes = 1 Yottabyte

1,024 Yottabytes = 1 Brontobyte

1,024 Brontobytes = 1 Geopbyte

3) List the three Vs of big data:

Answer: Variety, Volume, and Velocity

4) Sentiment is one of the six key types of big data. List the other five:

Answer: Clickstream

Sensor and machine data

Location-based (geographic) data

Server logs

Text (web pages, emails, documents, etc.)

5) What technology might you use to stream Twitter feeds into Hadoop?

Answer: Flume is commonly used for importing Twitter feeds into a Hadoop cluster

6) What technology might you use to define, store, and share the schemas of your big data
stored in Hadoop?

Answer: HCatalog is designed to easily store and share schemas for your big data.

7) What are the two main new components in Hadoop 2.x?

Answer: HDFS Federation and YARN.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
207

	

	

The Hadoop Distributed File System (HDFS): Review Answers
1) Which component of HDFS is responsible for maintaining the namespace of the distributed

filesystem?

Answer: NameNode

2) What is the default file-replication factor in HDFS?

Answer: 3

3) True or False: To input a file into HDFS, the client application passes the data to the
NameNode, which then divides the data into blocks and passes the blocks to the
DataNodes.

Answer: False. A file’s data in HDFS never passes through the NameNode. Client
applications read and write directly from the DataNodes.

4) Which property is used to specify the block size of a file stored in HDFS?

Answer: dfs.blocksize

5) The NameNode maintains the namespace of the filesystem using which two sets of files?

Answer: The fsimage_N and edits_N files

6) What does the following command do?
hdfs dfs -ls -R /user/thomas/

Answer: Recursively lists the contents of /user/thomas in HDFS and all of its subfolders

7) What does the following command do?
hdfs dfs -ls /user/thomas/

Answer: Lists the file and folders in /user/thomas, but not recursively. (The files in the
subfolders of /user/thomas are not listed.)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
208

	

	

Inputting Data into HDFS: Review Answers
1) What tool would work best for importing data from a relational database into HDFS?

Answer: Sqoop

2) What tool would work best for putting a file on your local filesystem into HDFS?

Answer: The Hadoop client (hdfs dfs -put command)

3) List the three main components of a typical Flume agent:

Answer: A Flume agent consists of a source, channel, and sink

4) What is the default number of map tasks for a Sqoop job?

Answer: Four map tasks by default

5) How do you specify a different number of mappers in a Sqoop job?

Answer: The -m option is for specifying the number of mappers.

6) What is the purpose of the $CONDITIONS value in the WHERE clause of a Sqoop query?

Answer: The $CONDITIONS value is used internally by Sqoop to specify LIMIT and OFFSET
clauses so the data can be split up amongst the map tasks

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
209

	

	

The MapReduce Framework: Review Answers
1) What are the three main phases of a MapReduce job?

Answer: Map phase, shuffle/sort phase, and reduce phase

2) Suppose the mappers of a MapReduce job output <key,value> pairs that are of type
<integer,string>. What will the pairs look like that are processed by the corresponding
reducers?

Answer: The pairs coming into the reducer will look like <integer,
(string,string,string,...)>

3) What happens if all the <key,value> pairs output by a mapper do not fit into the memory of
the mapper?

Answer: When the map output buffer reaches a threshold, the <key,value> pairs are
spilled to disk, meaning they are written to a temporary file on the local filesystem.

4) What determines the number of mappers of a MapReduce job?

Answer: The number of mappers is determined by the input splits.

5) What determines the number of reducers of a MapReduce job?

Answer: You get to choose the number of reducers.

6) True or False: The shuffle/sort phase sorts the keys and values as they are passed to
the reducer.

Answer: False. The keys are sorted, but the values are not.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
210

	

	

Introduction to Pig: Review Answers
1) List two Pig commands that cause a logical plan to execute:

Answer: STORE, DUMP, and ILLUSTRATE all cause a logical plan to execute

2) Which Pig command stores the output of a relation into a folder in HDFS?

Answer: STORE

Suppose the prices.csv file looks like:

And assume we have the following relation defined:

Explain what each of the following Pig commands or relations do:

3) describe prices;

Answer: prices: {symbol: chararray,date: chararray,price: double,volume:
int}

4) A = group prices by symbol;_______________________________

Answer: The result is a collection of bags, with a bag for each distinct symbol. The A
relation looks like:

5) B = foreach prices generate symbol as x, volume as y;

Answer: The B relation is a projection of the symbol and volume fields of prices. The
schema was also changed. B looks like:

B: {x: chararray,y: int}

XFR,2004-05-13,22.90,400
XFR,2004-05-12,22.60,400000
XFR,2004-05-11,22.80,2600
XFR,2004-05-10,23.00,3800
XFR,2004-05-07,23.55,2900
XFR,2004-05-06,24.00,2200

prices = load 'prices.csv' using PigStorage(',')
as (symbol:chararray, date:chararray, price:double, volume:int);

A: {group: chararray,prices: {(symbol: chararray,date: chararray,price:
double,volume: int)}}

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
211

	

	

6) C = foreach A generate group, SUM(prices.volume);

__

Answer: C is a projection of A. The group field is the symbol field of prices, and the SUM
function adds up the volume field of each group of symbols. The C relation looks like:

C: {group: chararray,long}

The output of C looks like:
(XFR,411900)

7) D = foreach prices generate symbol..price;

__

Answer: D is a projection of all fields of prices between symbol and price. The D relation
looks like:

D: {symbol: chararray,date: chararray,price: double}

8) Write a Pig relation that only contains prices with a volume greater than 3,000:

__

Answer: E = filter prices by volume > 3000;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
212

	

	

Advanced Pig Programming: Review Answers
1) If a relation is sorted using ORDER BY and the resulting MapReduce job runs with three

reducers, how is the output actually sorted?

Answer: The ORDER BY command generates a total ordering, meaning that the records will
be sorted across all three reducers, with the output of reducer 1 containing the first set
of sorted records, reducer 2 containing the second set, and so on.

Suppose the prices.csv file looks like:

And assume we have the following relation defined:

Explain what each of the following Pig commands or relations do:

2) F = foreach prices generate

(CASE

WHEN volume > 3000 THEN volume

WHEN volume <= 3000 THEN -1

END) AS high_volume;

__

Answer: The output of F looks like:

3) G = distinct prices;

Answer: The DISTINCT operator removes duplicate records, but the prices relation does
not contain any duplicates, so in this example the G relation is identical to the prices
relation.

XFR,2004-05-13,22.90,400
XFR,2004-05-12,22.60,400000
XFR,2004-05-11,22.80,2600
XFR,2004-05-10,23.00,3800
XFR,2004-05-07,23.55,2900
XFR,2004-05-06,24.00,2200

prices = load 'prices.csv' using PigStorage(',')
as (symbol:chararray, date:chararray, price:double, volume:int);

(-1)
(400000)
(-1)
(3800)
(-1)
(-1)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
213

	

	

4) H = GROUP prices BY symbol;

I = foreach H {

J = filter prices by volume > 3000;

GENERATE group, SUM(J.price);

};

Answer: The output of I is (XFR,45.6), which is the sum of the prices fields for each
record where the volume is greater than 3,000.

5) What is the benefit of the using ‘replicated’ clause in a Pig join?

Answer: The result is a map-side join, which greatly improves the resulting join operation in
MapReduce by limiting network traffic in the shuffle/sort phase to only records that will
appear in the result.

6) Why is filtering and projecting a relation early a performance benefit in Pig?

Answer: Filtering limits the number of records, and projecting limits the size of the records,
which greatly improves both network traffic and processing time of the resulting
MapReduce job.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
214

	

	

Hive Programming: Review Answers
1) A Hive table consists of a schema stored in the Hive and data stored

in .

Answer: A Hive table consists of a schema stored in the Hive metastore and data stored in
HDFS.

2) True or False: The Hive metastore requires an underlying SQL database.

Answer: True. Hive uses an in-memory database called Derby by default, but you can
configure Hive to use any SQL database.

3) What happens to the underlying data of a Hive-managed table when the table is dropped?

Answer: The data and folders are deleted from HDFS.

4) True or False: A Hive external table must define a LOCATION.

Answer: False. An external table can use an external location, but it can also use the Hive
warehouse folder.

5) List three different ways data can be loaded into a Hive table:

Answer: There are several ways to load data into a Hive table, including manually copying
files into the table’s folder in HDFS; using the LOAD DATA command; and inserting data as
the result of a query.

6) When would you use a skewed table?

Answer: Skewed tables make sense when your data is naturally skewed, where a small
number of columns contain a disproportionate amount of records.

7) Suppose you have the following table definition:

What will the folder structure in HDFS look like for the movies table?

Answer: Within /apps/hive/warehouse/movies will be subfolders named /genre=value.
For example, /genre=scifi, /genre=comedy, /genre=drama, etc.

create table movies (title string, rating string,
length double) partitioned by (genre string);

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
215

	

	

8) Explain the output of the following query:
select * from movies order by title;

Answer: The order by clause causes the output to be totally ordered by title across all
output files.

9) What does the following Hive query compute?

Answer: The ngram output from this query is called a trigram, because the result will be
sets of three words. The 100 argument specifies you want the top 100 trigrams from this
dataset.

10) What does the following Hive query compute?

Answer: The output of this query is the top 10 words in the dataset that follow the phrase
“I liked.”

from mytable
select explode(ngrams(sentences(val),3,100)) as myresult;

from mytable
select explode(context_ngrams(sentences(val),

array("I","liked",null),10)) as myresult;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
216

	

	

Using HCatalog: Review Answers
1) Where does HCatalog store its schema information?

Answer: In the Hive metastore.

2) List three programming frameworks that can readily access an HCatalog schema:

Answer: Pig, Hive, and Java MapReduce programs can all easily use the schemas shared
by HCatalog.

3) What Java class does Pig use to load data from an HCatalog table?

Answer: The HCatLoader class; more specifically,
org.apache.hive.hcatalog.pig.HCatLoader.

4) True or False: HCatalog is now merged with Hive.

Answer: True. HCatalog is now a part of Hive.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
217

	

	

Advanced Hive Programming: Review Answers
1) What is the benefit of performing two insert queries in the same Hive command?

Answer: Two queries that would normally require two MapReduce jobs can be combined
and accomplished in a single MapReduce job.

2) True or False: Hive views are materialized when they are defined.

Answer: False. Hive views are not materialized until they are used in another query.

3) Suppose an employees table has 200 rows and its department column has 15 distinct
values. How many rows would be in the result set of the following query?

Answer: 200. The OVER clause causes the group aggregation to not occur, so each
employees row will be output. There will only be 15 salary values, the maximum salary in
each department.

4) Explain what the following query is computing:

Answer: The result will contain the fname, lname, and the average salary of this
employee and the five preceding employees whose salaries are less than or equal to the
current employee.

5) Which Hive file format provides the best performance?

Answer: ORC files are a part of the Stinger Initiative and provide the best performance for
Hive queries.

6) What does DAG stand for?

Answer: DAG = Directed Acyclic Graph. Hive queries are processed into a series of jobs that
look like a DAG.

from employees
select fname,lname,MAX(salary)
over (partition by department);

from employees
select fname,lname,AVG(salary)
over (partition by department order by salary

rows between 5 preceding and current row);

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
218

	

	

Hadoop 2 and YARN: Review Answers
1) True or False: A NameNode can contain multiple namespaces.

Answer: False. A NameNode can represent only a single namespace.

2) What is the key benefit of the new YARN framework?

Answer: Hadoop jobs are no longer restricted to MapReduce. With YARN, any type of
computing paradigm can be implemented to run on Hadoop.

3) What are the three main components of YARN?

Answer: ResourceManager, NodeManager, and ApplicationMaster

4) What happens if a Container fails to complete its task in a YARN application?

Answer: It is up to the ApplicationMaster to request a new Container from the
ResourceManager and attempt the task again.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.
219

	

	

Defining Workflow with Oozie: Review Answers
1) What are the two main capabilities of Oozie?

Answer: Oozie Workflow, for defining Hadoop job workflows; and the Oozie coordinator, for
scheduling recurring workflows.

2) What file is required to be a part of an Oozie workflow?

Answer: Each Oozie workflow must contain a workflow.xml configuration file.

3) List three common Oozie workflow actions:

Answer: <pig>, <hive>, and <map-reduce>

4) What two types of events can be used to trigger an Oozie coordinator job?

Answer: Time based, where a job executes at a specific time; or data based, where a job
executes if data is available in a specific location.

