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Apache HBase Overview 
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Apache HBase is Part of Data Access in the Hadoop 
Ecosystem 
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Learning Objectives 

•  When you complete this lesson you should be able to: 
– Describe the reason why HBase was created 
– List HBase features 
– List the components in the HBase architecture 
– Describe an HBase table as a set of key-value mappings 
–  Identify HBase as either a row- or column-oriented database 
– Describe HBase operation 
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Apache HBase 
•  Apache HBase is a non-relational (NoSQL) database. 

– HBase was created for hosting very large tables with billions of 
rows and millions of columns. 

•  Apache HBase: 
– Provides random, real-time data access 
– Allows table inserts, updates, and deletes 
– Runs on top of the Hadoop distributed file system 

•  HBase data is automatically replicated by HDFS for higher availability. 
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HBase Architecture 
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Key-Value Mappings 
– HBase contains maps of keys and their values.   

•  key > value 
•  If you know the key, you can retrieve the value. 

– Keys are multi-part. 
•   (column family name, rowID, column qualifier, timestamp) > value 

–  column family name – determines storage properties 
»  All data in the same column family is stored together on disk. 

–  rowID – used to access data and divide table data into regions 
» Regions are maintained on separate RegionServer nodes. 

–  column qualifier – the column name, which is just a label in the multi-part key 
»  In any given row, one or more columns might or might not exist. 

–  timestamp – used to version the data and support data updates 
» Readers can request any available version of the data.  
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Rows and Columns 
•  Rows and columns are implemented differently than in most relational 

databases. 
–  A multi-part key identifies a cell with a value. 
–  Because a table is just a set of key>value mappings, a row is nothing more than a 

logical collection of values that share a rowkey. 
–  A column is just an additional label for a value and is included in the multi-part key. 
–  Sparse tables are possible because not every cell requires a key>value mapping. 

Column Family 1 Column Family 2 

rowkey Col 1 Col 2 Col 3 Col 4 Col 5 

key1 valueA valueB valueC valueD valueE 

key2 valueF valueG valueH valueI valueJ 

key3 valueK valueL valueM valueN valueO 

(key1, Column Family 1, Col 1, timestamp) > column value 1 

(key1, Column Family 1, Col 2, timestamp) > column value 2 

HBase Table Mappings 

HBase Table Conceptual View 
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HBase is a Column-Oriented Database 

•  A column-oriented database stores column items together 
on disk. 
– A row-oriented relational database stores row items together on 

disk. 
•  Column-oriented databases are well suited for: 

– Fast column operations.  For example: 
•  Calculating the sum or aggregate of an entire column of data 
•  Finding the 50 largest items in a column of 2 billion records. 

– Sparse datasets, which are common in big data use cases.  
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HBase Operation Overview 

– HBase operations include 
put, get, delete, and scan. 

•  There is no structured query 
language (SQL). 

– Writes initially go to to in-
memory memstore. 

– Writes are immediately 
logged to disk for durability. 

– Writes are regularly flushed 
from memstore to a 
storefile on disk. 
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Apache Phoenix 

– Apache Phoenix: 
•  Is not part of HBase  
•  Is a SQL skin over HBase that provides low-

latency access to HBase 
–  Phoenix enables querying and managing HBase 

tables using SQL. 
–  It compiles your SQL commands into a series of 

HBase scans. 

•  Supports using existing or creating new HBase 
tables 

–  The table metadata that supports SQL-like operation 
is stored in a companion HBase table. 

•  Uses a JDBC driver to provide access to HBase 
HBase 
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HBase Shell Commands 
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Invoking the hbase shell tool 
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hbase shell as a client 
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Invoking hbase shell 

• From within a Linux shell, run hbase with ‘shell’ as an argument 
–  #hbase shell 
–  must have hbase directory in your Linux PATH environment variable 

• Opens a subshell with its own command line interpreter 
– Type help to see a detailed list of available commands 
– Take advantage of tab completion 
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Command Categories 
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Hbase shell command categories 

• General – high level commands 
• DDL – Data Definition Language commands 
• DML – Data Manipulation commands 
• Tools – Cluster administrator commands 
• Replication – Replication administration commands 
• Snapshots – Snapshot management 
• Security – Authorization Control Lists (ACLs) 
• Visibility labels – Manage cell visibility coprocessor configuration 
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General Commands 
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General Commands 

• Shows status of the cluster 
hbase> status 
hbase> status ‘simple’ 

Hbase> status ‘summary’ 

hbase> status ‘detailed’ 

 

Output this Hbase version 
hbase> version 

 

Show current Hbase user (taken from the Linux username) 
hbase> whoami 
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Table Management Commands 
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create and describe 

•  Create a table  
–  provide at least the table name and column family name 
hbase> create ‘t1’, {NAME => ‘f1’, VERSIONS => 5} 

hbase> create ‘t1’, {NAME => ‘f1’},{NAME => ‘f2’}, 
{NAME => ‘f3’} 

•  Describe the named table 
hbase> describe ‘t1’ 
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alter 

•  Alter a table or column family schema 
•  Provide the table name and a dictionary specifying new 

columns family schema 

hbase> alter ‘t1’, NAME => ‘f1’, VERSIONS => 5 

•  Changes or adds the ‘f1’ column family in table ‘t1’ from the 
current value to keep a maximum of 5 cell VERSIONS 
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disable 
•  Disable the named table 
hbase> disable ‘t1’ 

•  Disable all tables matching the given regular expression 
hbase> disable_all ‘t.*’ 

•  Verify the named table is disabled 
hbase> is_disabled ‘t1’ 
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drop 
•  Drop named table 
hbase> drop ‘t1’ 

 
•  Disable all tables matching the given regular expression 

hbase> drop_all ‘t.*’ 
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enable 
•  Enable named table 
hbase> enable ‘t1’ 
 
•  Enable all tables matching the given regex 

hbase> enable_all ‘t.*’ 
 
•  Verify named table enabled 
hbase> is_enabled ‘t1’ 
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Additional Commands 
Query if the named table exists 
hbase> exists ‘t1’ 

 

List all tables in HBase (use parameters to filter results) 
hbase> list ‘t1’ 
hbase> list ‘abc.*’  

 

Show all filters in HBase 
hbase> show_filters ‘t1’ 
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Data Manipulation Commands 
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put 

•  Put a cell value at specified table/row/column and optionally 
timestamp 

hbase> put ‘t1’, ‘r1’, ‘c1’, ‘value’, ts1 
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get 

•  Retrieve row or cell contents 
•  Can specify table name, row and optionally a dictionary of 

column(s), timestamp, timerange and versions 

hbase> get 't1', 'r1' 
hbase> get 't1', 'r1', {TIMERANGE => [ts1, ts2]} 
hbase> get 't1', 'r1', {COLUMN => 'c1'} 
hbase> get 't1', 'r1', {COLUMN => ['c1', 'c2', 'c3']} 
hbase> get 't1', 'r1', {COLUMN => 'c1', TIMESTAMP => ts1} 
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scan 

•  Scan a table 
•  Pass table name and optionally a dictionary of scanner specs 

hbase> scan '.META.’ 
hbase> scan 't1', {COLUMNS => ['c1', 'c2'],  
  LIMIT => 10, STARTROW => 'xyz'} 
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delete and deleteall 

• Mark a cell for deletion at the specified table/row/column 
– Optionally timestamp coordinates - Must match coordinates exactly 

hbase> delete ‘t1’, ‘r1’, ‘c1’, ts1 
 

• Delete all cells in a given row 
– Pass table name, row and optionally column and timestamp 

hbase> deleteall ‘t1’, ‘r1’ 
hbase> deleteall ‘t1’, ‘r1’, ‘c1’ 

hbase> deleteall ‘t1’, ‘r1’, ‘c1’, ts1 

 



10/5/16	

17	

Page 33 © Hortonworks Inc. 2011 – 2015. All Rights Reserved 

count 

• Count the number of rows in a table 
–  Note: it may take a long time to complete 
– Invokes a MapReduce job 
– Interval parameter specifies how often to display the current count 
– Scan caching is on by default (cache size is in rows) 

hbase> count ‘t1’ 
hbase> count ‘t1’, INTERVAL => 100000 
hbase> count ‘t1’, CACHE => 1000 
hbase> count ‘t1’, INTERVAL => 10, CACHE => 1000 
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get_counter 

•  Return a counter cell value at the specified table/row/column 
coordinates 

hbase> get-counter ‘t1’, ‘r1’, ‘c1’ 
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incr 

•  Increments a cell value at a specified table/row/column 
coordinates 

hbase> incr ‘t1’, ‘r1’, ‘c1’ 
hbase> incr ‘t1’, ‘r1’, ‘c1’, 1  
hbase> incr ‘t1’, ‘r1’, ‘c1’, 10 
hbase> # increments a cell value in table ‘t1’ at ‘r1’ 
hbase> # under column ‘c1’ by 1 – or by 10 
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truncate 

•  Multi-step process to clear all data from a table 
•  Disables, drops and creates the specified table with the 

identical schema 

hbase> truncate ‘t1’ 
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Key-Value Pairs 
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Basic Unit of Storage 
• Consider an HBase table as a multi-dimensional map 

– Tables contain rows 
– A row is a row-key and one or more columns with an associated value 
– A column is described as a column family and a column qualifier 

-  A column family is a group of column qualifiers 

-  A column qualifier is a unique name for a column within the column family 
-  The column is referenced in the format <column-family>:<column-qualifier> 

– A cell is that which is described by a row and column and contains a value and a timestamp 
– A timestamp is an identifier of when the value was written and represents a value’s version 

• All of that mapping is contained in a Java object called KeyValue 
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Attributes stored in KeyValue 
• KeyValue stores: 

– row – an array of bytes that uniquely identifies a row in an HBase column-family table 
– column family – a preferably short string that identifies a family of column qualifiers 
– column qualifier – an arbitrarily long array of bytes that uniquely identifies a column in a 

column-family 
– timestamp – An integer that indicates when the key-value was inserted into the table 
– type – indicates the cell type; e.g. put or delete 
– sequenceId – a monotonically increasing unique identifier given to each cell in the table to 

help maintain data consistency in the Memstore. 
– Value – an array of bytes that constitutes the value  

• KeyValue objects are of variable size 
– default allocation of 64kb; however 
– If larger than 64kb will be processed (i.e. read) as a monolithic block. 
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Row keys 
• Uniquely identifies a row in a table 
• The basis for sorting KeyValues in Hbase 

– Behaves somewhat like a primary key in RDBMS 

• Must be unique 
• Row-key design is extremely important 

– Impacts performance 
– Impacts region splitting 

• An arbitrary array of bytes; not necessarily human-readable 
• Examples: 

– row-1 
– 12965059333%row-1 
– 9adfeb08cde8418abc0dg8f8ea21de4gf8ab92ecd876efa 



10/5/16	

21	

Page 41 © Hortonworks Inc. 2011 – 2015. All Rights Reserved 

Column Families 
• A grouping of columns 
• A row spans all column families 
• All cells in a column family are stored together in HDFS files 
• Number of column families acts as a multiplier on the number of files in HDFS 
• Consider 1-3 column families per table 

– Some sources suggest “low 10s” as an upper limit 
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Columns grouped in column families 
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Column Qualifiers 
• An arbitrary string of bytes 

– Not necessarily human-readable 

• No upper bound to number of column qualifiers in a column family 
• Not defined at table creation time 

– Column qualifiers can be added throughout the life of the table 

• Possibly difficult to conceptualize boundless column qualifiers when thinking in terms 
of spreadsheet-style layout 
– Consider all column qualifiers to be stored sequentially in a single column family 
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Column qualifiers in column families 
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Timestamps 

• By default, generated at server; client can override 
• Establishes versioning of cell values 
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Lab 
 
Using HBase Shell Commands 
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Configuring HBase for High Availability 
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HBase High Availability 
• HBase architecture is designed for durability and availability of data 

– Durability: Using HDFS as the data store provides multiple replicas of HBase table data 
– Availability: Master server monitors and maintains running Regionservers 

• Some vulnerabilities still exist: 
– Failure of the Master server itself 
– Unavailable table data when the failure of a Regionserver requires moving the region to a 

new Regionserver 
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Backup Master servers 
• A failure of a Master server is survivable for a short period of time 

– Not a component in the client’s read or write path 
– Data is still available unless a Regionserver crashes 
– Region/Regionserver assignments not stored in Master server memory 

-  Persisted in  .META. table 

-  Location of .META. table stored in Zookeeper 

• A Backup Master server can monitor the health/status of the primary Master and take 
over Master functions when failure is detected 
– Presence of an ephemeral Zookeeper znode indicates a healthy Master 
– Backup Masters “queue up” for takeover in a Zookeeper znode 

• Starting a Backup Master is no different than starting the Primary Master 
– Self-discovery through Zookeeper indicates role of any newly started Master 
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Backup Master in Ambari 

• Select “Add HBase Master” in Service Actions pulldown menu 
• Choose the node for Backup Master 
• Start the Backup Master 
• View the status of the HBase cluster in the HBase Services screen 



10/5/16	

26	

Page 51 © Hortonworks Inc. 2011 – 2015. All Rights Reserved 

High Availability reads 
• Database theory states that a database can have two of the following three attributes: 

– Consistency – how robust is the database in maintaining data consistency between what is 
written and what is stored? 

– Availability – how robust is the database in providing access to data stores in the event of 
failures of components?  

– Partition – how survivable is the database when the data store is partitioned – either by 
design or by failure?  

• HBase is inherently P, because it’s data is distributed across table regions 
• HBase writes are highly Consistent within a row, because a single Regionserver 

manages an entire row 
• HBase Availability is problematic when a Regionserver fails 
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Write consistency 
•  In reality, HBase is neither fully Consistent nor fully Available 
• Writes are consistent because a client communicates with a single Regionserver to 

write a row of data 
• On the other hand, rows are assigned to regions which are partitioned across 

Regionservers 
– A client’s write of row A may succeed, while row B may fail 
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Region replicas 

• Availability of a row of table data is directly affected by the health of the Regionserver 
• Availability during reads is greatly enhanced by distributed Regionservers, Region 

Replicas, and HDFS replication 
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Region replication 
• Region replication is an asynchronous 
write of new row data to one or more 
replicas 

• At any point in time, the state of the 
replication is unknown, but in the long 
term consistency is maintained 

• Administrators configure the number of 
replicas on a per-table basis 

• Replication happens out of the primary 
region’s WAL 

• Clients opt for: 
– Strong consistency (lower availability) 
– Timeline consistency (higher availabilty) 
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Strong consistency 
• When CONSISTENCY = STRONG 

• Client submits read to Replica ID=0 
– Response only comes from primary 

-  Not guaranteed an answer 

– An answer is guaranteed to be 
consistent 
-  Contains a Stale flag set to false 

•  If no response comes in 10ms 
– Client submits reads to replica regions 

-  An answer is likely 

– Stale flag set to true 
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Timeline consistency 
• When CONSISTENCY = TIMELINE 

– Client submits read to all replica IDs 
-  Highly likely to receive an answer 
-  Not guaranteed the answer is consistent 

• First replica to respond wins 
– If from Primary replica 

-  Consistency is assured 

-  Stale flag set to false 
– If from non-primary replica 

-  Consistency is unknown 

-  Stale flag set to true 
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Configuring region replication 
• Region replication is always enabled 

– REGION_REPLICATION defaults to 1 

• Activated on a per-table basis 
– REGION_REPLICATION set to 2 or higher 

• Set programmatically in Java clients 
• Set in schema in hbase shell 

– hbase> create 't1', 'cf1', {REGION_REPLICATION => 3} 


