
10/5/16	

1	

Page 1 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

HBase Intro

Page 2 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Copyright © 2012 - 2015 Hortonworks, Inc. All rights reserved.

The contents of this course and all its lessons and related materials, including
handouts to audience members, are Copyright © 2012 - 2015 Hortonworks, Inc.
No part of this publication may be stored in a retrieval system, transmitted or
reproduced in any way, including, but not limited to, photocopy, photograph, magnetic,
electronic or other record, without the prior written permission of Hortonworks, Inc.
This instructional program, including all material provided herein, is supplied without
any guarantees from Hortonworks, Inc. Hortonworks, Inc. assumes no liability for
damages or legal action arising from the use or misuse of contents or details contained
herein.
Linux® is the registered trademark of Linus Torvalds in the United States and other
Countries.
Java® is a registered trademark of Oracle and/or its affiliates.
All other trademarks are the property of their respective owners.

10/5/16	

2	

Page 3 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Apache HBase Overview

Page 4 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Apache HBase is Part of Data Access in the Hadoop
Ecosystem

 HDP 2.1
Hortonworks Data Platform

		

Provision,	
Manage	&	
Monitor	

	
Ambari	

Zookeeper	

Scheduling	
	

Oozie	

Data	Workflow,	
Lifecycle	&	
Governance	

	
Falcon	
Sqoop	
Flume	
NFS	

WebHDFS	
YARN	:	Data	OperaFng	System	

DATA		MANAGEMENT	

DATA		ACCESS	GOVERNANCE	&	
INTEGRATION	 OPERATIONS	

Script	
	
Pig	
	
	

Search	
	

Solr	
	
	

SQL	
	

Hive	
HCatalog	

	
	

NoSQL	
	

HBase	
	
	
	

Stream	
		

Storm	

	
	
	

Others	
	

Spark,		
	

ISV	engines	

1	 °	 °	 °	 °	 °	 °	 °	 °	 °	

°	 °	 °	 °	 °	 °	 °	 °	 °	 °	

°	 °	 °	 °	 °	 °	 °	 °	 °	 °	

°	

°	

N	

HDFS		
(Hadoop	Distributed	File	System)	

Batch	
	

Map	
Reduce	

	
	

SECURITY	

AuthenFcaFon	
AuthorizaFon	
AccounFng	

Data	ProtecFon	
	

Storage:	HDFS	
Resources:	YARN	
Access:	Hive,	…		
Pipeline:	Falcon	
Cluster:	Knox	

Deployment Choice

Linux Windows On-Premise Cloud

Tez
Tez

10/5/16	

3	

Page 5 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Learning Objectives

•  When you complete this lesson you should be able to:
– Describe the reason why HBase was created
– List HBase features
– List the components in the HBase architecture
– Describe an HBase table as a set of key-value mappings
–  Identify HBase as either a row- or column-oriented database
– Describe HBase operation

Page 6 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Apache HBase
•  Apache HBase is a non-relational (NoSQL) database.

– HBase was created for hosting very large tables with billions of
rows and millions of columns.

•  Apache HBase:
– Provides random, real-time data access
– Allows table inserts, updates, and deletes
– Runs on top of the Hadoop distributed file system

•  HBase data is automatically replicated by HDFS for higher availability.

10/5/16	

4	

Page 7 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

HBase Architecture

table

row
row
row

region1

row
row
row

region2

row
row
row

region3

RegionServer

RegionServer

RegionServer HMaster

ZooKeeper
Cluster

HBase
client

Java
API

REST
interface

Thrift
gateway

HBase
shell

Standby
HMaster

Page 8 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Key-Value Mappings
– HBase contains maps of keys and their values.

•  key > value
•  If you know the key, you can retrieve the value.

– Keys are multi-part.
•  (column family name, rowID, column qualifier, timestamp) > value

–  column family name – determines storage properties
»  All data in the same column family is stored together on disk.

–  rowID – used to access data and divide table data into regions
» Regions are maintained on separate RegionServer nodes.

–  column qualifier – the column name, which is just a label in the multi-part key
»  In any given row, one or more columns might or might not exist.

–  timestamp – used to version the data and support data updates
» Readers can request any available version of the data.

10/5/16	

5	

Page 9 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Rows and Columns
•  Rows and columns are implemented differently than in most relational

databases.
–  A multi-part key identifies a cell with a value.
–  Because a table is just a set of key>value mappings, a row is nothing more than a

logical collection of values that share a rowkey.
–  A column is just an additional label for a value and is included in the multi-part key.
–  Sparse tables are possible because not every cell requires a key>value mapping.

Column Family 1 Column Family 2

rowkey Col 1 Col 2 Col 3 Col 4 Col 5

key1 valueA valueB valueC valueD valueE

key2 valueF valueG valueH valueI valueJ

key3 valueK valueL valueM valueN valueO

(key1, Column Family 1, Col 1, timestamp) > column value 1

(key1, Column Family 1, Col 2, timestamp) > column value 2

HBase Table Mappings

HBase Table Conceptual View

Page 10 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

HBase is a Column-Oriented Database

•  A column-oriented database stores column items together
on disk.
– A row-oriented relational database stores row items together on

disk.
•  Column-oriented databases are well suited for:

– Fast column operations. For example:
•  Calculating the sum or aggregate of an entire column of data
•  Finding the 50 largest items in a column of 2 billion records.

– Sparse datasets, which are common in big data use cases.

10/5/16	

6	

Page 11 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

HBase Operation Overview

– HBase operations include
put, get, delete, and scan.

•  There is no structured query
language (SQL).

– Writes initially go to to in-
memory memstore.

– Writes are immediately
logged to disk for durability.

– Writes are regularly flushed
from memstore to a
storefile on disk.

new
data

memstore

memory

storefile log file

immediate
(durability)

later based on
memstore size

HDFS

Page 12 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Apache Phoenix

– Apache Phoenix:
•  Is not part of HBase
•  Is a SQL skin over HBase that provides low-

latency access to HBase
–  Phoenix enables querying and managing HBase

tables using SQL.
–  It compiles your SQL commands into a series of

HBase scans.

•  Supports using existing or creating new HBase
tables

–  The table metadata that supports SQL-like operation
is stored in a companion HBase table.

•  Uses a JDBC driver to provide access to HBase
HBase

user
data

table

meta
data

table

HBase client

table
schema

table
data

SQL queries

Phoenix

SQL HBase scans

10/5/16	

7	

Page 13 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

HBase Shell Commands

Page 14 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Invoking the hbase shell tool

10/5/16	

8	

Page 15 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

hbase shell as a client

Page 16 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Invoking hbase shell

• From within a Linux shell, run hbase with ‘shell’ as an argument
–  #hbase shell
–  must have hbase directory in your Linux PATH environment variable

• Opens a subshell with its own command line interpreter
– Type help to see a detailed list of available commands
– Take advantage of tab completion

10/5/16	

9	

Page 17 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Command Categories

Page 18 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Hbase shell command categories

• General – high level commands
• DDL – Data Definition Language commands
• DML – Data Manipulation commands
• Tools – Cluster administrator commands
• Replication – Replication administration commands
• Snapshots – Snapshot management
• Security – Authorization Control Lists (ACLs)
• Visibility labels – Manage cell visibility coprocessor configuration

10/5/16	

10	

Page 19 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

General Commands

Page 20 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

General Commands

• Shows status of the cluster
hbase> status
hbase> status ‘simple’

Hbase> status ‘summary’

hbase> status ‘detailed’

Output this Hbase version
hbase> version

Show current Hbase user (taken from the Linux username)
hbase> whoami

10/5/16	

11	

Page 21 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Table Management Commands

Page 22 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

create and describe

•  Create a table
–  provide at least the table name and column family name
hbase> create ‘t1’, {NAME => ‘f1’, VERSIONS => 5}

hbase> create ‘t1’, {NAME => ‘f1’},{NAME => ‘f2’},
{NAME => ‘f3’}

•  Describe the named table
hbase> describe ‘t1’

10/5/16	

12	

Page 23 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

alter

•  Alter a table or column family schema
•  Provide the table name and a dictionary specifying new

columns family schema

hbase> alter ‘t1’, NAME => ‘f1’, VERSIONS => 5

•  Changes or adds the ‘f1’ column family in table ‘t1’ from the
current value to keep a maximum of 5 cell VERSIONS

Page 24 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

disable
•  Disable the named table
hbase> disable ‘t1’

•  Disable all tables matching the given regular expression
hbase> disable_all ‘t.*’

•  Verify the named table is disabled
hbase> is_disabled ‘t1’

10/5/16	

13	

Page 25 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

drop
•  Drop named table
hbase> drop ‘t1’

•  Disable all tables matching the given regular expression

hbase> drop_all ‘t.*’

Page 26 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

enable
•  Enable named table
hbase> enable ‘t1’

•  Enable all tables matching the given regex

hbase> enable_all ‘t.*’

•  Verify named table enabled
hbase> is_enabled ‘t1’

10/5/16	

14	

Page 27 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Additional Commands
Query if the named table exists
hbase> exists ‘t1’

List all tables in HBase (use parameters to filter results)
hbase> list ‘t1’
hbase> list ‘abc.*’

Show all filters in HBase
hbase> show_filters ‘t1’

Page 28 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Data Manipulation Commands

10/5/16	

15	

Page 29 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

put

•  Put a cell value at specified table/row/column and optionally
timestamp

hbase> put ‘t1’, ‘r1’, ‘c1’, ‘value’, ts1

Page 30 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

get

•  Retrieve row or cell contents
•  Can specify table name, row and optionally a dictionary of

column(s), timestamp, timerange and versions

hbase> get 't1', 'r1'
hbase> get 't1', 'r1', {TIMERANGE => [ts1, ts2]}
hbase> get 't1', 'r1', {COLUMN => 'c1'}
hbase> get 't1', 'r1', {COLUMN => ['c1', 'c2', 'c3']}
hbase> get 't1', 'r1', {COLUMN => 'c1', TIMESTAMP => ts1}

10/5/16	

16	

Page 31 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

scan

•  Scan a table
•  Pass table name and optionally a dictionary of scanner specs

hbase> scan '.META.’
hbase> scan 't1', {COLUMNS => ['c1', 'c2'],
 LIMIT => 10, STARTROW => 'xyz'}

Page 32 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

delete and deleteall

• Mark a cell for deletion at the specified table/row/column
– Optionally timestamp coordinates - Must match coordinates exactly

hbase> delete ‘t1’, ‘r1’, ‘c1’, ts1

• Delete all cells in a given row
– Pass table name, row and optionally column and timestamp

hbase> deleteall ‘t1’, ‘r1’
hbase> deleteall ‘t1’, ‘r1’, ‘c1’

hbase> deleteall ‘t1’, ‘r1’, ‘c1’, ts1

10/5/16	

17	

Page 33 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

count

• Count the number of rows in a table
–  Note: it may take a long time to complete
– Invokes a MapReduce job
– Interval parameter specifies how often to display the current count
– Scan caching is on by default (cache size is in rows)

hbase> count ‘t1’
hbase> count ‘t1’, INTERVAL => 100000
hbase> count ‘t1’, CACHE => 1000
hbase> count ‘t1’, INTERVAL => 10, CACHE => 1000

Page 34 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

get_counter

•  Return a counter cell value at the specified table/row/column
coordinates

hbase> get-counter ‘t1’, ‘r1’, ‘c1’

10/5/16	

18	

Page 35 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

incr

•  Increments a cell value at a specified table/row/column
coordinates

hbase> incr ‘t1’, ‘r1’, ‘c1’
hbase> incr ‘t1’, ‘r1’, ‘c1’, 1
hbase> incr ‘t1’, ‘r1’, ‘c1’, 10
hbase> # increments a cell value in table ‘t1’ at ‘r1’
hbase> # under column ‘c1’ by 1 – or by 10

Page 36 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

truncate

•  Multi-step process to clear all data from a table
•  Disables, drops and creates the specified table with the

identical schema

hbase> truncate ‘t1’

10/5/16	

19	

Page 37 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Key-Value Pairs

Page 38 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Basic Unit of Storage
• Consider an HBase table as a multi-dimensional map

– Tables contain rows
– A row is a row-key and one or more columns with an associated value
– A column is described as a column family and a column qualifier

-  A column family is a group of column qualifiers

-  A column qualifier is a unique name for a column within the column family
-  The column is referenced in the format <column-family>:<column-qualifier>

– A cell is that which is described by a row and column and contains a value and a timestamp
– A timestamp is an identifier of when the value was written and represents a value’s version

• All of that mapping is contained in a Java object called KeyValue

10/5/16	

20	

Page 39 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Attributes stored in KeyValue
• KeyValue stores:

– row – an array of bytes that uniquely identifies a row in an HBase column-family table
– column family – a preferably short string that identifies a family of column qualifiers
– column qualifier – an arbitrarily long array of bytes that uniquely identifies a column in a

column-family
– timestamp – An integer that indicates when the key-value was inserted into the table
– type – indicates the cell type; e.g. put or delete
– sequenceId – a monotonically increasing unique identifier given to each cell in the table to

help maintain data consistency in the Memstore.
– Value – an array of bytes that constitutes the value

• KeyValue objects are of variable size
– default allocation of 64kb; however
– If larger than 64kb will be processed (i.e. read) as a monolithic block.

Page 40 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Row keys
• Uniquely identifies a row in a table
• The basis for sorting KeyValues in Hbase

– Behaves somewhat like a primary key in RDBMS

• Must be unique
• Row-key design is extremely important

– Impacts performance
– Impacts region splitting

• An arbitrary array of bytes; not necessarily human-readable
• Examples:

– row-1
– 12965059333%row-1
– 9adfeb08cde8418abc0dg8f8ea21de4gf8ab92ecd876efa

10/5/16	

21	

Page 41 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Column Families
• A grouping of columns
• A row spans all column families
• All cells in a column family are stored together in HDFS files
• Number of column families acts as a multiplier on the number of files in HDFS
• Consider 1-3 column families per table

– Some sources suggest “low 10s” as an upper limit

Page 42 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Columns grouped in column families

10/5/16	

22	

Page 43 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Column Qualifiers
• An arbitrary string of bytes

– Not necessarily human-readable

• No upper bound to number of column qualifiers in a column family
• Not defined at table creation time

– Column qualifiers can be added throughout the life of the table

• Possibly difficult to conceptualize boundless column qualifiers when thinking in terms
of spreadsheet-style layout
– Consider all column qualifiers to be stored sequentially in a single column family

Page 44 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Column qualifiers in column families

10/5/16	

23	

Page 45 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Timestamps

• By default, generated at server; client can override
• Establishes versioning of cell values

Page 46 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Lab

Using HBase Shell Commands

10/5/16	

24	

Page 47 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Configuring HBase for High Availability

Page 48 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

HBase High Availability
• HBase architecture is designed for durability and availability of data

– Durability: Using HDFS as the data store provides multiple replicas of HBase table data
– Availability: Master server monitors and maintains running Regionservers

• Some vulnerabilities still exist:
– Failure of the Master server itself
– Unavailable table data when the failure of a Regionserver requires moving the region to a

new Regionserver

10/5/16	

25	

Page 49 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Backup Master servers
• A failure of a Master server is survivable for a short period of time

– Not a component in the client’s read or write path
– Data is still available unless a Regionserver crashes
– Region/Regionserver assignments not stored in Master server memory

-  Persisted in .META. table

-  Location of .META. table stored in Zookeeper

• A Backup Master server can monitor the health/status of the primary Master and take
over Master functions when failure is detected
– Presence of an ephemeral Zookeeper znode indicates a healthy Master
– Backup Masters “queue up” for takeover in a Zookeeper znode

• Starting a Backup Master is no different than starting the Primary Master
– Self-discovery through Zookeeper indicates role of any newly started Master

Page 50 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Backup Master in Ambari

• Select “Add HBase Master” in Service Actions pulldown menu
• Choose the node for Backup Master
• Start the Backup Master
• View the status of the HBase cluster in the HBase Services screen

10/5/16	

26	

Page 51 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

High Availability reads
• Database theory states that a database can have two of the following three attributes:

– Consistency – how robust is the database in maintaining data consistency between what is
written and what is stored?

– Availability – how robust is the database in providing access to data stores in the event of
failures of components?

– Partition – how survivable is the database when the data store is partitioned – either by
design or by failure?

• HBase is inherently P, because it’s data is distributed across table regions
• HBase writes are highly Consistent within a row, because a single Regionserver

manages an entire row
• HBase Availability is problematic when a Regionserver fails

Page 52 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Write consistency
•  In reality, HBase is neither fully Consistent nor fully Available
• Writes are consistent because a client communicates with a single Regionserver to

write a row of data
• On the other hand, rows are assigned to regions which are partitioned across

Regionservers
– A client’s write of row A may succeed, while row B may fail

10/5/16	

27	

Page 53 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Region replicas

• Availability of a row of table data is directly affected by the health of the Regionserver
• Availability during reads is greatly enhanced by distributed Regionservers, Region

Replicas, and HDFS replication

Page 54 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Region replication
• Region replication is an asynchronous
write of new row data to one or more
replicas

• At any point in time, the state of the
replication is unknown, but in the long
term consistency is maintained

• Administrators configure the number of
replicas on a per-table basis

• Replication happens out of the primary
region’s WAL

• Clients opt for:
– Strong consistency (lower availability)
– Timeline consistency (higher availabilty)

10/5/16	

28	

Page 55 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Strong consistency
• When CONSISTENCY = STRONG

• Client submits read to Replica ID=0
– Response only comes from primary

-  Not guaranteed an answer

– An answer is guaranteed to be
consistent
-  Contains a Stale flag set to false

•  If no response comes in 10ms
– Client submits reads to replica regions

-  An answer is likely

– Stale flag set to true

Page 56 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Timeline consistency
• When CONSISTENCY = TIMELINE

– Client submits read to all replica IDs
-  Highly likely to receive an answer
-  Not guaranteed the answer is consistent

• First replica to respond wins
– If from Primary replica

-  Consistency is assured

-  Stale flag set to false
– If from non-primary replica

-  Consistency is unknown

-  Stale flag set to true

10/5/16	

29	

Page 57 © Hortonworks Inc. 2011 – 2015. All Rights Reserved

Configuring region replication
• Region replication is always enabled

– REGION_REPLICATION defaults to 1

• Activated on a per-table basis
– REGION_REPLICATION set to 2 or higher

• Set programmatically in Java clients
• Set in schema in hbase shell

– hbase> create 't1', 'cf1', {REGION_REPLICATION => 3}

