
HDP Developer:
Apache Pig and Hive

Lab Guide

Rev 6.1

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

The contents of this course and all its lessons and related materials, including handouts to
audience members, are Copyright © 2012 - 2016 Hortonworks, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any
way, including, but not limited to, photocopy, photograph, magnetic, electronic or other record,
without the prior written permission of Hortonworks, Inc.

This instructional program, including all material provided herein, is supplied without any
guarantees from Hortonworks, Inc. Hortonworks, Inc. assumes no liability for damages or legal
action arising from the use or misuse of contents or details contained herein.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

All other trademarks are the property of their respective owners.

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

Become a Hortonworks Certified Professional and establish your credentials:

• HDP Certified Developer: for Hadoop developers using frameworks like Pig, Hive, Sqoop and
Flume.

• HDP Certified Administrator: for Hadoop administrators who deploy and manage Hadoop
clusters.

• HDP Certified Developer: Java: for Hadoop developers who design, develop and architect
Hadoop-based solutions written in the Java programming language.

• HDP Certified Developer: Spark: for Hadoop developers who write and deploy applications for
the Spark framework.

• HDF Certified Professional: for DataFlow Operators responsible for building and deploying
HDF workflows.

How to Register: Visit www.examslocal.com and search for “Hortonworks” to register for an
exam. The cost of each exam is $250 USD, and you can take the exam anytime, anywhere
using your own computer. For more details, including a list of exam objectives and instructions
on how to attempt our practice exams, visit http://hortonworks.com/training/certification/

Earn Digital Badges: Hortonworks Certified Professionals receive a digital badge for each
certification earned. Display your badges proudly on your résumé, LinkedIn profile, email
signature, etc.

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

Self Paced Learning Library

On Demand Learning

Hortonworks University Self-Paced Learning Library is an on-demand dynamic repository
of content that is accessed using a Hortonworks University account. Learners can view
lessons anywhere, at any time, and complete lessons at their own pace. Lessons can be
stopped and started, as needed, and completion is tracked via the Hortonworks University
Learning Management System.

Hortonworks University courses are designed and developed by Hadoop experts and
provide an immersive and valuable real world experience. In our scenario-based training
courses, we offer unmatched depth and expertise. We prepare you to be an expert with
highly valued, practical skills and prepare you to successfully complete Hortonworks
Technical Certifications.

Target Audience: Hortonworks University Self-Paced Learning Library is designed for
those new to Hadoop, as well as architects, developers, analysts, data scientists, and IT
decision makers. It is essentially for anyone who desires to learn more about Apache
Hadoop and the Hortonworks Data Platform.

Duration: Access to the Hortonworks University Self-Paced Learning Library is provided
for a 12-month period per individual named user. The subscription includes access to over
400 hours of learning lessons.

The online library accelerates time to Hadoop competency. In addition, the content is
constantly being expanded with new material, on an ongoing basis.

Visit: http://hortonworks.com/training/class/hortonworks-university-self-paced-learning-
library/

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Table of Contents

Lab: Starting an HDP 2.3 Cluster ... 1
About This Lab .. 1
Lab Steps ... 1

Result .. 10
Demonstration: Understanding Block Storage ... 11

About this Demonstration ... 11
Demonstration Steps ... 11

Lab: Using HDFS Commands .. 15
About this Lab ... 15
Lab Steps ... 15

Result .. 19
Lab: Importing RDBMS Data into HDFS ... 21

About this Lab ... 21
Lab Steps ... 21

Result .. 25
Lab: Exporting HDFS Data to an RDBMS ... 27

About this Lab ... 27
Lab Steps ... 27

Result .. 29
Lab: Importing Log Data into HDFS using Flume ... 31

About this Lab ... 31
Lab Steps ... 31

Result .. 33
Demonstration: Understanding MapReduce .. 35

About this Demonstration ... 35
Demonstration Steps ... 35

Lab: Running a MapReduce Job ... 37
About this Lab ... 37
Lab Steps ... 37

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Result .. 39
Demonstration: Understanding Pig ... 41

About this Demonstration ... 41
Demonstration Steps ... 41

Lab: Getting Started with Pig ... 47
About this Lab ... 47
Lab Steps ... 47

Result .. 50
Lab: Exploring Data with Pig .. 51

About this Lab ... 51
Lab Steps ... 51

Result .. 56
Lab: Splitting a Dataset .. 57

About this Lab ... 57
Lab Steps ... 57

Result .. 60
Lab: Joining Datasets with Pig .. 61

About this Lab ... 61
Lab Steps ... 61

Result .. 66
Lab: Preparing Data for Hive .. 67

About this Lab ... 67
Lab Steps ... 67

Result .. 68
Demonstration: Computing PageRank .. 69

About this Demonstration ... 69
Demonstration Steps ... 69

Lab: Analyzing Clickstream Data ... 73
About this Lab ... 73
Lab Steps ... 73

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Result .. 78
Lab: Analyzing Stock Market Data using Quantiles .. 79

About this Lab ... 79
Lab Steps ... 79

Result .. 82
Lab: Understanding Hive Tables ... 83

About this Lab ... 83
Lab steps ... 83

Result .. 88
Demonstration: Understanding Partitions and Skew ... 89

About this Demonstration ... 89
Demonstration Steps ... 89

Lab: Analyzing Big Data with Hive ... 93
About this Lab ... 93
Lab Steps ... 93

Result .. 100
Demonstration: Computing ngrams .. 101

About this Demonstration ... 101
Demonstration Steps ... 101

Lab: Joining Datasets in Hive .. 105
About this Lab ... 105
Lab Steps ... 105

Result .. 107
Lab: Computing ngrams of Emails in Avro Format ... 109

About this Lab ... 109
Lab Steps ... 109

Result .. 114
Lab: Using HCatalog with Pig .. 115

About this Lab ... 115
Lab Steps ... 115

Result .. 118

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab: Advanced Hive Programming .. 119
About this Lab ... 119
Lab Steps ... 119

Result .. 127
Lab: Running a YARN Application ... 129

About this Lab ... 129
Lab Steps ... 129

Result .. 131
Lab: Getting Started with Apache Spark ... 133

About this Lab ... 133
Lab Steps ... 133

Result: ... 137
Lab: Exploring Spark SQL .. 139

About this Lab ... 139
Lab Steps ... 139

Result .. 141
Lab: Defining an Oozie Workflow .. 143

About this Lab ... 143
Lab Steps ... 143

Result .. 148
Appendix: Toubleshooting ... 149

Quick troubleshooting steps ... 149

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 1

Lab: Starting an HDP 2.3 Cluster

About This Lab
Objective: To start an HDP cluster in your VM.

File locations: NA

Successful
outcome:

 The (local or cloud-hosted) VM will be running HDP 2.3.

Before you begin: VMWare should be installed on your machine and the
classroom VM should be imported, unless you are using a
cloud-hosted VM.

Related lesson: Understanding Hadoop

Lab Steps
1) Start the VM

a. If applicable, start VMWare Player (or Fusion) on your local machine,
select the course VM from the list of virtual machines, then click the Play
virtual machine link.

b. You should see the desktop of your local or cloud-hosted VM:

Lab: Starting an HDP 2.3 Cluster

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 2

c. Open a Terminal by double-clicking the shortcut on the desktop:

2) Verify that the cluster is running
a) Navigate into the Docker sandbox instance.

Note
Type "yes" if asked "are you sure you want to continue connecting".

root@ubuntu:~# ssh sandbox
[root@sandbox ~]#

Lab: Starting an HDP 2.3 Cluster

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 3

b) From the command line, enter the following command, which displays
the usage of the hdfs dfsadmin utility:

su -l hdfs -c "hdfs dfsadmin"

Note

The “dfs” in dfsadmin stands for distributed filesystem, and the dfsadmin utility
contains administrative commands for communicating with the Hadoop Distributed
File System.

c) Notice the dfsadmin utility has a -report option, which outputs the
current health of your cluster. Enter the following command to view this
report:

su -l hdfs -c "hdfs dfsadmin -report"

d) What is the configured capacity of your distributed filesystem?

Answer: Look for the value of “Configured Capacity” at the start of the output.
e) What is the present capacity? ___________

Answer: Look for the value of “Present Capacity” at the start of the output.
f) How much of your distributed filesystem is used right now? ___________

Answer: Look for the value of “DFS Used.”
g) What do you think an “Under-replicated block” is?

Answer: Data in HDFS is chunked into blocks and copied to various nodes in the
cluster. If a particular block does not have enough copies, it is referred to as “under
replicated.”

h) How many available DataNodes does your cluster have? ___________
Answer: 1

3) View the Processes on the Cluster Nodes
Enter the jps command, which lists all Java processes running on this
machine.

Lab: Starting an HDP 2.3 Cluster

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 4

While your specific processes and they order they are presented in may look
slightly different than the list below, you should still see the NameNode process
running:

jps
3706 ResourceManager
2988 QuorumPeerMain
3675 RunJar
4032 RunJar
3740 NodeManager
3188 Nfs3
3186 Portmap
3738 JobHistoryServer
2556 DataNode
2557 SecondaryNameNode
2560 NameNode
3712 ApplicationHistoryServer
3511 RunJar
24669 -- process information unavailable
5516 AmbariServer
31813 Jps
3029 Bootstrap

4) View the ResourceManager UI
a) Open Firefox in the VM by double-clicking on the Firefox icon.
b) Enter the following URL:

http://sandbox:8088/

c) Notice that the URL shows the ResourceManager Web UI:

The ResourceManager UI displays information about the applications that have been
executed on your Hadoop cluster.

Lab: Starting an HDP 2.3 Cluster

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 5

5) View the NameNode UI
a) Point your browser to the NameNode UI:

http://sandbox:50070/

Notice the NameNode UI contains a lot of information about the cluster. The Overview
page shows the version of Hadoop and other details.

b) Scroll down to the Summary section on the Overview page.

Lab: Starting an HDP 2.3 Cluster

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 6

You will see a table that looks similar to the hdfs dfsadmin -report
output:

Lab: Starting an HDP 2.3 Cluster

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 7

c) Click on the Datanodes tab of the NameNode UI:

You should see one DataNode in your cluster.
6) View the JobHistory UI

a) The JobHistory UI is at:
http://sandbox:19888/

As it sounds, the JobHistory UI shows the jobs that have executed on your cluster.
You have not submitted any jobs to your cluster yet, but this page comes in handy as
you work on the labs throughout this course.

7) Configure the gedit text editor to be launched on the "ubuntu" parent VM and
to allow opening of lab files on the Docker "sandbox" VM.

a) If using the hosted AWS virtual machine, click on "Places" in the
upper-left corner of the VM and then "Connect to Server…" as shown
below.

Lab: Starting an HDP 2.3 Cluster

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 8

b) If using the downloaded VMware-based virtual machine, click
on "Home Folder" icon on the left nav (highlighted within a green box in
the next screenshot) and then select "File" and "Connect to Server…" as
shown below.

c) In the new dialogue box that surfaces, change the "Type" pulldown to
"SSH" and update the values to look like the following (the password is
"hadoop") before clicking on the "Connect" button.

Lab: Starting an HDP 2.3 Cluster

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 9

d) Now you will see a UI-based view of the labs folder on the sandbox
node.

e) You can now open files directly by right-clicking on them and choosing
the option to open with the gedit visual text editor or by using gedit's
open/new controls.

Lab: Starting an HDP 2.3 Cluster

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 10

Result
You now have a single-node Hortonworks Data Platform 2.3 cluster running in a
virtual machine. You will use this cluster to perform the labs in this course.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 11

Demonstration: Understanding Block Storage

About this Demonstration
Objective: To understand how data is partitioned into blocks and

stored in HDFS.

During this
Demonstration:

Watch as your instructor performs the following steps.

Related lesson: The Hadoop Distributed File System (HDFS)

Demonstration Steps
1) Put the File into HDFS

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Change directories to /root/devph/labs/demos:

cd /root/devph/labs/demos/

c. Use less to view the contents of the stocks.csv file. Press q when you
are finished to exit less.

less stocks.csv

d. Try putting the file into HDFS with a block size of 30 bytes:
hdfs dfs -D dfs.blocksize=30 -put stocks.csv

Notice that a size of 30 bytes is not a valid blocksize. The blocksize needs to be at
least 1,048,576 according to the dfs.namenode.fs-limits.min-block-size property:
put: Specified block size is less than configured minimum value
(dfs.namenode.fs-limits.min-block-size): 30 < 1048576

e. Try the put again, but use a block size of 2,000,000:
hdfs dfs -D dfs.blocksize=2000000 -put stocks.csv

Notice that 2,000,000 is not a valid blocksize because it is not a multiple of 512 (the
checksum size).

f. Try the put again, but this time use 1,048,576 for the blocksize:
hdfs dfs -D dfs.blocksize=1048576 -put stocks.csv

Demonstration: Understanding Block Storage

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 12

g. This time the put command should have worked. Use ls to verify that the
file is in HDFS in the /user/root folder:

hdfs dfs -ls
Found 1 items
-rw-r--r-- 1 root root 3613198 stocks.csv

2) View the Number of Blocks
a. Run the following command to view the number of blocks that were

created for stocks.csv:
hdfs fsck /user/root/stocks.csv

b. Notice there are four blocks. Look for the following line in the output:
Total blocks (validated):4 (avg. block size 903299 B)

3) Find the Actual Blocks
a. Enter the same fsck command as before, but add the -files and -blocks

options:
hdfs fsck /user/root/stocks.csv -files -blocks

Notice the output contains the block IDs, which are coincidentally the names of the
files on the DataNodes.

b. Run the command again, but this time add the -locations flag:
hdfs fsck /user/root/stocks.csv -files -blocks -locations

Notice in the output that the IP address of the DataNode appear next to each block.
c. Change directories to the following:

cd /hadoop/hdfs/data/current/BP-xxx/current/finalized/

Replace BP-xxx with the actual folder name. To finish this, use the TAB key to
complete the filename once you have typed B. Then finish typing the rest of the
directory path.

d. Try and find the folder that contains the blocks you are looking for and
change directories into that folder. The easiest way is to look at the
timestamps and find the most recently changed folder. You can use the
stat * command to view the contents of the directory, then use ll to list
the contents of that directory.

stat *
cd <most recently created directory - for example, subdir0>
ll

Demonstration: Understanding Block Storage

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 13

Important

 If the results of the ll command are additional subdirectories rather than
block information (as shown in the next lab step), repeat the process
above to once again find the newest directory created , change to it, and
list its contents.

e. Notice that the actual blocks appear in this folder. Look for files that are
exactly 1,048,576 bytes. These are three of the blocks.

Notice that the fourth block is smaller: 467,470 bytes.
-rw-r--r-- 1 hdfs hdfs 1048576 blk_1073742090
-rw-r--r-- 1 hdfs hdfs 8199 blk_1073742090_1266.meta
-rw-r--r-- 1 hdfs hdfs 1048576 blk_1073742091
-rw-r--r-- 1 hdfs hdfs 8199 blk_1073742091_1267.meta
-rw-r--r-- 1 hdfs hdfs 467470 blk_1073742093
-rw-r--r-- 1 hdfs hdfs 3663 blk_1073742093_1269.meta

f. You can view the contents of a block (although this is not a typical task
in Hadoop). Here is the tail of the second block:

tail blk_1073741905
NYSE,XKK,2007-08-20,9.51,9.64,9.30,9.51,4700,7.17
NYSE,XKK,2007-08-17,9.30,9.99,9.26,9.57,3900,7.21
NYSE,XKK,2007-08-16,9.45,10.00,8.11,9.05,23400,6.82
NYSE,XKK,2007-08-15,9.51,9.51,9.18,9.35,4900,7.04
NYSE,XKK,2007-08-14,9.52,9.52,9.51,9.51,1100,7.17
NYSE,XKK,2007-08-13,9.60,9.60,9.56,9.56,3000,7.20
NYSE,XKK,2007-08-10,9.82,9.82,9.60,9.60,2500,7.23
NYSE,XKK,2007-08-09,9.83,9.87,9.82,9.82,4500,7.40
NYSE,XKK,2007-08-08,9.45,9.90,9.45,9.66,6000,7.28
NYSE,XKK,2007-08-07,9.25,9.50,9.25,9.40

Notice the last record in this file is not complete and spills over to the next block, a
common occurrence in HDFS.

g. Go back to the home directory.
cd ~

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 15

Lab: Using HDFS Commands

About this Lab
Objective: To become familiar with how files are added to and removed

from HDFS and how to view files in HDFS.

File locations: /root/devph/labs/Lab2.1

Successful
outcome:

 You will have added and deleted several files and folders in
HDFS.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: The Hadoop Distributed File System (HDFS)

Lab Steps
1) View the hdfs dfs Command

a. Open a Terminal in your VM and type "ssh sandbox".
b. Enter the following command to view the usage of hdfs dfs:

hdfs dfs

c. Notice that the usage contains options for performing filesystem tasks in
HDFS, like copying files from a local folder into HDFS, retrieving a file
from HDFS, copying and moving files around, and making and removing
directories. In this lab, you will perform these commands, and many
others, to help you become comfortable with working with HDFS.

2) Create a Directory in HDFS
a. Enter the following -ls command to view the contents of the user’s root

directory in HDFS, which is /user/root
hdfs dfs -ls

You do not have any files in /user/root yet, so no output is displayed.
Run the -ls command again, but this time specify the root HDFS folder:

hdfs dfs -ls /

Lab: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 16

The output should look similar to:
Found 10 items
drwxrwxrwx - yarn hadoop 0 2014-12-16 19:06 /app-logs
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:13 /apps
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:48 /demo
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:07 /hdp
drwxr-xr-x - mapred hdfs 0 2014-12-16 19:06 /mapred
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:06 /mr-
history
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:37 /ranger
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:08 /system
drwxrwxrwx - hdfs hdfs 0 2014-12-16 19:29 /tmp
drwxr-xr-x - hdfs hdfs 0 2015-01-12 05:34 /user

Important

Notice how adding the / in the -ls command caused the contents of the
root folder to display, but leaving off the / showed the contents of
/user/root, which is the default prefix if you leave off the leading / on
any of the hadoop commands (assuming the command is run by the
“root” user).

b. Enter the following command to create a directory named test in HDFS:
hdfs dfs -mkdir test

c. Verify that the folder was created successfully:
hdfs dfs -ls
Found 1 items
drwxr-xr-x - root root 0 test

d. Create a couple of subdirectories for test:
hdfs dfs -mkdir test/test1
hdfs dfs -mkdir -p test/test2/test3

Notice how the -p command can be used to create multiple directories.
The second command above will fail if you omit the -p.

e. Use the -ls command to view the contents of /user/root:
hdfs dfs -ls

Notice you only see the test directory. To recursively view the contents
of a folder, use -ls -R:

hdfs dfs -ls -R

Lab: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 17

The output should look like:
drwxr-xr-x - root root 0 test
drwxr-xr-x - root root 0 test/test1
drwxr-xr-x - root root 0 test/test2
drwxr-xr-x - root root 0 test/test2/test3

3) Delete a Directory
a. Delete the test2 folder (and recursively, its subcontents) using the -rm -R

command:
hdfs dfs -rm -R test/test2

b. Now run the -ls -R command:
hdfs dfs -ls -R

The directory structure of the output should look like:
.Trash
.Trash/Current
.Trash/Current/user
.Trash/Current/user/root
.Trash/Current/user/root/test
.Trash/Current/user/root/test/test2
.Trash/Current/user/root/test/test2/test3
test
test/test1

Note

Notice Hadoop created a .Trash folder for the root user and moved the
deleted content there. The .Trash folder empties automatically after a
configured amount of time.

4) Upload a File to HDFS
a. Now let’s put a file into the test folder. Change directories to

/root/devph/labs/Lab2.1:
cd /root/devph/labs/Lab2.1/

b. Notice this folder contains a file named data.txt:
tail data.txt

c. Run the following -put command to copy data.txt into the test folder in
HDFS:

hdfs dfs -put data.txt test/

Lab: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 18

d. Verify that the file is in HDFS by listing the contents of test:
hdfs dfs -ls test

The output should look like the following:
Found 2 items
-rw-r--r-- 1 root root 1529355 test/data.txt
drwxr-xr-x - root root 0 test/test1

5) Copy a File in HDFS
a. Now copy the data.txt file in test to another folder in HDFS using the -cp

command:
hdfs dfs -cp test/data.txt test/test1/data2.txt

b. Verify that the file is in both places by using the -ls -R command on
test. The output should look like the following:

hdfs dfs -ls -R test
-rw-r--r-- 1 root root 1529355 test/data.txt
drwxr-xr-x - root root 0 test/test1
-rw-r--r-- 1 root root 1529355 test/test1/data2.txt

c. Now delete the data2.txt file using the -rm command:
hdfs dfs -rm test/test1/data2.txt

d. Verify that the data2.txt file is in the .Trash folder.
6) View the Contents of a File in HDFS

a. You can use the -cat command to view text files in HDFS. Enter the
following command to view the contents of data.txt:

hdfs dfs -cat test/data.txt

b. You can also use the -tail command to view the end of a file:
hdfs dfs -tail test/data.txt

Notice the output this time is only the last 20 rows of data.txt.
7) Getting a File from HDFS

a. See if you can figure out how to use the get command to copy
test/data.txt from HDFS into your local /tmp folder.

Answer:
hdfs dfs -get test/data.txt /tmp/
cd /tmp
ls data*

Lab: Using HDFS Commands

19

8) The getmerge Command
a. Put the file /root/devph/labs/demos/small_blocks.txt into the test folder

in HDFS. You should now have two files in test: data.txt and
small_blocks.txt.

Answer:
hdfs dfs -put /root/devph/labs/demos/small_blocks.txt test/

b. Run the following getmerge command:
hdfs dfs -getmerge test /tmp/merged.txt

c. What did the previous command do? Did you open the file merged.txt to
see what happened?

Answer: The two files that were in the test folder in HDFS were merged
into a single file and stored on the local file system.

9) Specify the Block Size and Replication Factor
a. Put /root/devph/labs/Lab2.1/data.txt into /user/root in HDFS, giving it

a blocksize of 1,048,576 bytes.

Hint

The blocksize is defined using the dfs.blocksize property on the
command line.

Answer:
hdfs dfs -D dfs.blocksize=1048576 -put data.txt data.txt

b. Run the following fsck command on data.txt:
hdfs fsck /user/root/data.txt

c. How many blocks are there for this file?

Answer: The file should be broken down into two blocks.

Result
You should now be comfortable with executing the various HDFS commands,
including creating directories, putting files into HDFS, copying files out of HDFS, and
deleting files and folders.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 21

Lab: Importing RDBMS Data into HDFS

About this Lab
Objective: Import data from a database into HDFS.

File locations: /root/devph/labs/Lab3.1/

Successful
outcome:

 You will have imported data from MySQL into folders in
HDFS.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Inputting Data into HDFS

Lab Steps
1) Create a Table in MySQL

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. From the command prompt, change directories to

/root/devph/labs/Lab3.1/:
cd ~/devph/labs/Lab3.1/

c. View the contents of salaries.txt:
tail salaries.txt

The comma-separated fields represent a gender, age, salary, and zip code.
d. Notice that there is a salaries.sql script that defines a new table in

MySQL named salaries. For this script to work, you need to copy
salaries.txt to the /tmp directory:

cp salaries.txt /tmp

e. Now run the salaries.sql script using the following command:
mysql test < salaries.sql

2) View the Table
a. To verify that the table is populated in MySQL, open the mysql prompt:

mysql

Lab: Importing RDBMS Data into HDFS

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 22

b. Switch to the test database, which is where the salaries table was
created:

mysql> use test;

c. Run the show tables command and verify that salaries is defined:
mysql> show tables;
+----------------+
| Tables_in_test |
+----------------+
| salaries |
+----------------+
1 row in set (0.00 sec)

d. Select 10 items from the table to verify that it is populated:
mysql> select * from salaries limit 10;
+--------+------+--------+---------+----+
| gender | age | salary | zipcode | id |
+--------+------+--------+---------+----+
F	66	41000	95103	1
M	40	76000	95102	2
F	58	95000	95103	3
F	68	60000	95105	4
M	85	14000	95102	5
M	14	0	95105	6
M	52	2000	94040	7
M	67	99000	94040	8
F	43	11000	94041	9
F	37	65000	94040	10
+--------+------+--------+---------+----+

e. Exit the mysql prompt:
mysql> exit

3) Import the Table into HDFS
a. Enter the following Sqoop command (all on a single line), which imports

the salaries table in the test database into HDFS:
sqoop import --connect jdbc:mysql://sandbox/test?user=root --
table salaries

b. A MapReduce job should start executing, and it may take a couple of
minutes for the job to complete.

Lab: Importing RDBMS Data into HDFS

23

4) Verify the Import
a. View the contents of your HDFS folder:

hdfs dfs -l

b. You should see a new folder named salaries. View its contents:
hdfs dfs -ls salaries
Found 4 items
-rw-r--r-- 1 root hdfs 272 salaries/part-m-00000
-rw-r--r-- 1 root hdfs 241 salaries/part-m-00001
-rw-r--r-- 1 root hdfs 238 salaries/part-m-00002
-rw-r--r-- 1 root hdfs 272 salaries/part-m-00003

c. Notice there are four new files in the salaries folder named part-m-0000x.
Why are there four of these files?

Answer: The MapReduce job that executed the Sqoop command used
four mappers, so there are four output files (one from each mapper).

d. Use the cat command to view the contents of the files. For example:
hdfs dfs -cat salaries/part-m-00000

Notice the contents of these files are the rows from the salaries table in
MySQL. You have now successfully imported data from a MySQL
database into HDFS. Notice that you imported the entire table with all of
its columns. Next, you will import only specific columns of a table.

5) Specify Columns to Import
a. Using the --columns argument, write a Sqoop command that imports the

salary and age columns (in that order) of the salaries table into a
directory in HDFS named salaries2. In addition, set the -m argument to 1
so that the result is a single file.

Solution: The command you enter in the command line will look like
this in the terminal window:

sqoop import --connect jdbc:mysql://sandbox/test?user=root --
table salaries
--columns salary,age -m 1 --target-dir salaries2

Important
To make it easier to read, following is the same command as above, however we have
broken it down into smaller chunks separated by a "\" at the end of the break point in
each line. When you see this formatting in the lab, you should type it out as it appears
above, and do not enter the \ characters unless specifically instructed to do so.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab: Importing RDBMS Data into HDFS

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 24

sqoop import --connect jdbc:mysql://sandbox/test?user=root \
--table salaries \
--columns salary,age \
-m 1 \
--target-dir salaries2

b. After the import, verify you only have one part-m file in salaries2:
hdfs dfs -ls salaries2
Found 1 items
-rw-r--r-- 1 root hdfs 482 salaries2/part-m-00000

c. Verify that the contents of part-m-00000 are only the two columns you
specified:

hdfs dfs -cat salaries2/part-m-00000
The last few lines should look like the following:
69000.0,97
91000.0,48
0.0,1
48000.0,45
3000.0,39
14000.0,84

6) Importing from a Query
Write a Sqoop import command that imports the rows from salaries in MySQL
whose salary column is greater than 90,000.00.

a. Use gender as the --split-by value, specify only two mappers, and
import the data into the salaries3 folder in HDFS.

Tip
The Sqoop command will look similar to the ones you have been using
throughout this lab, except you will use --query instead of --table.
Recall that when you use a --query command you must also define a --
split-by column, or define -m to be 1.

Also, do not forget to add $CONDITIONS to the WHERE clause of your query,
as demonstrated earlier in this unit.

Lab: Importing RDBMS Data into HDFS

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 25

Solution:
In the command below, the "\" at the beginning of line 3 just in front of
$CONDITIONS" is part of the actual command and is required for it to
function properly. All other \ symbols in the command should be ignored
in the command line.

sqoop import --connect jdbc:mysql://sandbox/test?user=root \
--query "select * from salaries s where s.salary > 90000.00 and \
\$CONDITIONS" \
--split-by gender \
-m 2 \
--target-dir salaries3

--This is how it should appear in the command line

sqoop import --connect jdbc:mysql://sandbox/test?user=root --
query "select * from salaries s where s.salary > 90000.00 and
\$CONDITIONS" --split-by gender -m 2 --target-dir salaries3

b. To verify the result, view the contents of the files in salaries3. You should
have only two output files.

hdfs dfs -ls salaries3

c. View the contents of part-m-00000 and part-m-00001.
hdfs dfs -cat salaries3/part-m-00000

hdfs dfs -cat salaries3/part-m-00001

Notice that one file contains females, and the other file contains males.
Why?

Answer: You used gender as the split-by column, so all records with
the same gender are sent to the same mapper.

d. Verify that the output files contain only records whose salary is greater
than 90,000.00.

Result
You have imported the data from MySQL to HDFS using the entire table, specific
columns, and also using the result of a query.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 27

Lab: Exporting HDFS Data to an RDBMS

About this Lab
Objective: Export data from HDFS into a MySQL table using Sqoop.

File locations: /root/devph/labs/Lab3.2

Successful outcome: The data in salarydata.txt in HDFS will appear in a table in
MySQL named salary2.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Inputting Data into HDFS

Lab Steps
1) Put the Data into HDFS

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Change directories to /root/devph/labs/Lab3.2:

cd ~/devph/labs/Lab3.2
View the contents of salarydata.txt:

tail salarydata.txt
M,49,29000,95103
M,44,34000,95102
M,99,25000,94041
F,93,96000,95105
F,75,9000,94040
F,14,0,95102
M,68,1000,94040
F,45,78000,94041
M,40,6000,95103
F,82,5000,95050

Notice the records in this file contain four values separated by
commas, and the values represent a gender, age, salary, and zip
code, respectively.

Lab: Exporting HDFS Data to an RDBMS

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 28

c. Create a new directory in HDFS named salarydata.
hdfs dfs -mkdir salarydata

d. Put salarydata.txt into the salarydata directory in HDFS.
hdfs dfs –put salarydata.txt salarydata

2) Create a Table in the Database
a. There is a script in the Exporting HDFS Data to an RDBMS lab folder that

creates a table in MySQL that matches the records in salarydata.txt.
View the SQL script:

more salaries2.sql

b. Run this script using the following command:
mysql test < salaries2.sql

c. Verify that the table was created successfully in MySQL:
mysql
mysql> use test;
mysql> describe salaries2;
+---------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+------------+------+-----+---------+-------+
gender	varchar(1)	YES		NULL	
age	int(11)	YES		NULL	
salary	double	YES		NULL	
zipcode	int(11)	YES		NULL	
+---------+------------+------+-----+---------+-------+

d. Exit the mysql prompt:
mysql> exit

3) Export the Data
a. Run a Sqoop command that exports the salarydata folder in HDFS into

the salaries2 table in MySQL. At the end of the MapReduce output, you
should see a log event stating that 10,000 records were exported.

sqoop export \
--connect jdbc:mysql://sandbox/test?user=root \
--table salaries2 \
--export-dir salarydata \
--input-fields-terminated-by ","

Lab: Exporting HDFS Data to an RDBMS

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 29

b. Verify it worked by viewing the table’s contents from the mysql prompt.
The output should look like the following:

mysql
mysql> use test;
mysql> select * from salaries2 limit 10;
+--------+------+--------+---------+
| gender | age | salary | zipcode |
+--------+------+--------+---------+
M	57	39000	95050
F	63	41000	95102
M	55	99000	94040
M	51	58000	95102
M	75	43000	95101
M	94	11000	95051
M	28	6000	94041
M	14	0	95102
M	3	0	95101
M	25	26000	94040
+--------+------+--------+---------+

c. Exit the mysql prompt.

Result
You have now used Sqoop to export data from HDFS into a database table in MySQL.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 31

Lab: Importing Log Data into HDFS using Flume

About this Lab
Objective: Import data from a log file into HDFS using Flume.

File locations: /root/devph/labs/Lab3.3

Successful
outcome:

The data in webtraffic.log on sandbox will be streamed into
HDFS directory
/user/root/flumedata/.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Flume

Lab Steps
1) Verify Flume is installed on your cluster.

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Type the following command from prompt:

flume-ng

c. The command should return the following usage instructions:

Lab: Importing Log Data into HDFS using Flume

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 32

2) View the contents of the webtraffic.log file
a. Change directories to /root/devph/labs/Labs3.3.

cd /root/devph/labs/Lab3.3

b. View the contents of the webtraffic.log:
less webtraffic.log

3) Press q to quit viewing the log.
a. A partial agent configuration has been written for you, view the file using

the less command.
less logagent.conf

b. From the VM desktop, start gedit.
c. Click Open and navigate to /root/devph/labs/Lab3.3
d. Modify this file replacing strings starting with "REPLACE-WITH-" with

their appropriate value. HINT: Search for "HDFS Sink" at
https://flume.apache.org/FlumeUserGuide.html.

agent.sources = weblog
agent.channels = memoryChannel
agent.sinks = mycluster

Sources

agent.sources.weblog.type = exec
agent.sources.weblog.command = tail -F REPLACE-WITH-PATH2-
webtraffic.log-FILE
agent.sources.weblog.batchSize = 1
agent.sources.weblog.channels = REPLACE-WITH-CHANNEL-NAME

Channels

agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 100
agent.channels.memoryChannel.transactionCapacity = 100

Sinks

agent.sinks.mycluster.type = REPLACE-WITH-CLUSTER-TYPE
agent.sinks.mycluster.hdfs.path=/user/root/flumedata
agent.sinks.mycluster.channel = REPLACE-WITH-CHANNEL-NAME

Lab: Importing Log Data into HDFS using Flume

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 33

e. Click Save to save the logagent configuration.
f. From the terminal window, start the logagent from

/root/devph/labs/Lab3.3.
flume-ng agent –n agent –f logagent.conf &

g. Hit Enter to get a command prompt back.
h. The sink for logagent is the HDFS folder /user/root/flumedata. Verify that

this folder does now exists.
hdfs dfs –ls flumedata/

i. View the contents of the streamed data in HDFS in
FlumeData.<########>.

hdfs dfs –cat flumedata/FlumeData.<#######>

The flumedata/FlumeData.<sequence> file should display the webtraffic
as shown below:

Notice the format difference.

Result
Successful import of data from Flume into HDFS.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 35

Demonstration: Understanding MapReduce

About this Demonstration
Objective: To understand how MapReduce works.

During this
Demonstration:

Watch as your instructor performs the following steps.

Related lesson: The MapReduce Framework

Demonstration Steps
1) Put the File into HDFS

hdfs dfs -put constitution.txt

2) Run the WordCount Job
a. The following command runs a wordcount job on the constitution.txt and

writes the output to wordcount_output:
yarn jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-
mapreduce-examples.jar wordcount constitution.txt wordcount_output

b. Notice that a MapReduce job gets submitted to the cluster. Wait for the
job to complete.

3) View the Results
a. View the contents of the wordcount_output folder:

hdfs dfs -ls wordcount_output
Found 2 items
-rw-r--r-- 1 root root 0 wordcount_output/_SUCCESS
-rw-r--r-- 1 root root 17049 wordcount_output/part-r-00000

b. Why is there one part-r file in this directory?

Answer: The job only used one reducer.
c. What does the “r” in the filename stand for? _________________________

Answer: The “r” stands for “reducer.”
d. View the contents of part-r-00000:

hdfs dfs -cat wordcount_output/part-r-00000

Demonstration: Understanding MapReduce

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 36

e. Why are the words sorted alphabetically?

Answer: The key in this MapReduce job is the word, and keys are
sorted during the shuffle/sort phase.

f. What was the key output by the WordCount reducer? ___________

Answer: The reducer’s output key was each word.
g. What was the value output by the WordCount reducer? _____________

Answer: The value output by the reducer was the sum of the 1s, which
is the number of occurrences of the word in the document.

h. Based on the output of the reducer, what do you think the mapper
output would be as key/value pairs? _____________

Answer: The mapper outputs each word as a key and the number 1 as
each value.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 37

Lab: Running a MapReduce Job

About this Lab
Objective: Run a Java MapReduce job.

File locations: /root/devph/labs/Lab4.1

Successful
outcome:

You will see the results of the Inverted Index job in the
inverted/output folder in HDFS.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: The MapReduce Framework

Lab Steps
1) Put the Data into HDFS

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. The MapReduce job you are going to execute is an Inverted Index

application, one of the very first use cases for MapReduce. Open a
command prompt and change directories to /root/labs/Lab4.1:

cd ~/devph/labs/Lab4.1

c. Use more to view the contents of the file hortonworks.txt.
more hortonworks.txt

Each line looks like:
http://hortonworks.com/,hadoop,webinars,articles,download,enterpri
se,team,reliability

Each line of text consists of a Web page URL, followed by a comma-separated list of
keywords found on that page.

d. Make a new folder in HDFS named inverted/input:
hdfs dfs -mkdir -p inverted/input

Lab: Running a MapReduce Job

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 38

e. Put hortonworks.txt into HDFS into the inverted/input/ folder. This file
will be the input to the MapReduce job.

hdfs dfs –put hortonworks.txt inverted/input/

2) Run the Inverted Index Job
a. From the /root/devph/labs/Lab4.1 folder, enter the following command

(all on a single line):
yarn jar invertedindex.jar inverted.IndexInverterJob
inverted/input inverted/output

b. Wait for the MapReduce job to execute. The final output should look like:
File Input Format Counters
Bytes Read=1126
File Output Format Counters
Bytes Written=2997

3) View the Results
a. List the contents of the inverted/output folder.

hdfs dfs -ls inverted/output

How many reducers did this job use?
How can you determine this from the contents of inverted/output?

Answer: The job used one reducer, which you can determine by the existence of
only one part-r-n file in the output directory.

b. Use the cat command to view the contents of inverted/output/part-r-
00000. The file should look like:

hdfs dfs -cat inverted/output/part-r-00000
abouthttp://hortonworks.com/about-us/,
apache

http://hortonworks.com/products/hortonworksdataplatform/,
http://hortonworks.com/about-us/,
articles

 http://hortonworks.com/community/,http://hortonworks.com/,
...

Lab: Running a MapReduce Job

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 39

4) Specify the Number of Reducers
a. Try running the job again, but this time specify the number of reducers to

be three:
yarn jar invertedindex.jar inverted.IndexInverterJob
-D mapreduce.job.reduces=3 inverted/input inverted/output

b. View the contents of inverted/output. Notice there are three part-r files:
hdfs dfs -ls inverted/output
Found 3 items
1 root hdfs 1221 inverted/output/part-r-00000
1 root hdfs 977 inverted/output/part-r-00001
1 root hdfs 799 inverted/output/part-r-00002

c. View the contents of the three files. How did the MapReduce framework
determine which <key,value> pair to send to which reducer?

Answer: <key,value> pairs are sent to the reducer based on the hashing
of the key and using the remainder of dividing by the number of
reducers.

Result
You have now executed a Java MapReduce job from the command line that takes an
input text file and outputs the inverted indexes of the lines of text. This common task
is what Web search engines like Google and Yahoo! use to determine the pages
associated with search terms.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 41

Demonstration: Understanding Pig

About this Demonstration
Objective: To understand Pig scripts and relations.

During this
Demonstration:

Watch as your instructor performs the following steps.

Related lesson: Introduction to Pig

Demonstration Steps
1) Start the Grunt Shell

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Review the contents of the file pigdemo.txt located in

/root/devph/labs/demos.
more /root/devph/labs/demos/pigdemo.txt

c. Start the Grunt shell:
pig

d. Notice that the output includes where the logging for your Pig session
will go as well as a statement about connecting to your Hadoop
filesystem:

[main] INFO org.apache.pig.Main - Logging error messages to:
/root/devph/labs/demos/pig_1377892197767.log
[main] INFO org.apache.pig.backend.hadoop.executionengine.
HExecutionEngine - Connecting to hadoop file system at:
hdfs://sandbox.hortonworks.com:8020

2) Make a New Directory
a. Notice you can run HDFS commands easily from the Grunt shell. For

example, run the ls command:
grunt> ls

b. Make a new directory named demos:
grunt> mkdir demos

Demonstration: Understanding Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 42

c. Use copyFromLocal to copy the pigdemo.txt file into the demos folder:
grunt> copyFromLocal /root/devph/labs/demos/pigdemo.txt demos/

d. Verify the file was uploaded successfully:
grunt> ls demos
hdfs://sandbox.hortonworks.com:8020/user/root/demos/pigdemo.txt<r
1>89

e. Change the present working directory to demos:
grunt> cd demos
grunt> pwd
hdfs://sandbox.hortonworks.com:8020/user/root/demos

f. View the contents using the cat command:
grunt> cat pigdemo.txt
SD Rich
NV Barry
CO George
CA Ulf
IL Danielle
OH Tom
CA manish
CA Brian
CO Mark

3) Define a Relation
a. Define the employees relation, using a schema:

grunt> employees = LOAD 'pigdemo.txt' AS (state, name);

b. Demonstrate the describe command, which describes what a relation
looks like:
grunt> describe employees;

employees: {state: bytearray,name: bytearray}

Note
Fields have a data type, and we will discuss data types later in this unit.
Notice that the default data type of a field (if you do not specify one) is
bytearray.

Demonstration: Understanding Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 43

c. Let’s view the records in the employees relation:
grunt> DUMP employees;

Notice this requires a MapReduce job to execute, and the result is a
collection of tuples:

(SD,Rich)
(NV,Barry)
(CO,George)
(CA,Ulf)
(IL,Danielle)
(OH,Tom)
(CA,manish)
(CA,Brian)
(CO,Mark)

4) Filter the Relation by a Field
a. Let’s filter the employees whose state field equals CA:

grunt> ca_only = FILTER employees BY (state=='CA');
grunt> DUMP ca_only;

b. The output is still tuples, but only the records that match the filter
appear:

(CA,Ulf)
(CA,manish)
(CA,Brian)

5) Create a Group
a. Define a relation that groups the employees by the state field:

grunt> emp_group = GROUP employees BY state;

b. Bags represent groups in Pig. A bag is an unordered collection of tuples:
grunt> describe emp_group;
emp_group: {group: bytearray,employees: {(state: bytearray,name:
bytearray)}}

c. All records with the same state will be grouped together, as shown by
the output of the emp_group relation:

grunt> DUMP emp_group;

Demonstration: Understanding Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 44

The output is:
(CA,{(CA,Ulf),(CA,manish),(CA,Brian)})
(CO,{(CO,George),(CO,Mark)})
(IL,{(IL,Danielle)})
(NV,{(NV,Barry)})
(OH,{(OH,Tom)})
(SD,{(SD,Rich)})

Note
Tuples are displayed in parentheses. Curly braces represent bags.

6) The STORE Command
a. The DUMP command dumps the contents of a relation to the console. The

STORE command sends the output to a folder in HDFS. For example:
grunt> STORE emp_group INTO 'emp_group';

Notice at the end of the MapReduce job that no records are output to
the console.

b. Verify that a new folder is created:
grunt> ls
hdfs://sandbox.hortonworks.com:8020/user/root/demos/emp_group<dir>
hdfs://sandbox.hortonworks.com:8020/user/root/demos/pigdemo.txt<r
1>89

c. View the contents of the output file:
grunt> cat emp_group/part-r-00000
CA {(CA,Ulf),(CA,manish),(CA,Brian)}
CO {(CO,George),(CO,Mark)}
IL {(IL,Danielle)}
NV {(NV,Barry)}
OH {(OH,Tom)}
SD {(SD,Rich)}

Notice that the fields of the records (which in this case is the state field
followed by a bag) are separated by a tab character, which is the default
delimiter in Pig. Use the PigStorage object to specify a different delimiter:

grunt> STORE emp_group INTO 'emp_group_csv' USING PigStorage(',');

To view the results:

grunt > ls

grunt > cat emp_group_csv/part-r-00000

Demonstration: Understanding Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 45

7) Show All Aliases
a. The aliases command shows a list of currently defined aliases:

grunt> aliases;
aliases: [ca_only, emp_group, employees]

There will be a couple of additional numeric aliases created by the
system for internal use. Please ignore them.

8) Monitor the Pig Jobs
a. Point your browser to the JobHistory UI at http://sandbox:19888/.
b. View the list of jobs, which should contain the MapReduce jobs that

were executed from your Pig Latin code in the Grunt shell.
c. Notice you can view the log files of the ApplicationMaster and also each

map and reduce task.

Note
Three commands trigger a logical plan to be converted to a physical plan
and execute as a MapReduce job: STORE, DUMP, and ILLUSTRATE.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 47

Lab: Getting Started with Pig

About this Lab

Objective: Use Pig to navigate through HDFS and explore a dataset.

File locations: /root/devph/labs/Lab5.1

Successful
outcome:

You will have a couple of Pig programs that load the White
House visitors’ data, with and without a schema, and store
the output of a relation into a folder in HDFS.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Introduction to Pig

Lab Steps
1) View the Raw Data

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Change directories to the /root/devph/labs/Lab5.1 folder:

cd ~/devph/labs/Lab5.1

c. Unzip the archive in the /root/devph/labs/Lab5.1 folder, which contains
a file named whitehouse_visits.txt that is quite large:

unzip whitehouse_visits.zip

d. View the contents of this file:
tail whitehouse_visits.txt

This publicly available data contains records of visitors to the White
House in Washington, D.C.

2) Load the Data into HDFS
a. Start the Grunt shell:

pig

Lab: Getting Started with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 48

b. From the Grunt shell, make a new directory in HDFS named whitehouse:
grunt> mkdir whitehouse

c. Use the copyFromLocal command in the Grunt shell to copy the
whitehouse_visits.txt file to the whitehouse folder in HDFS, renaming
the file visits.txt. (Be sure to enter this command on a single line):

grunt> copyFromLocal /root/devph/labs/Lab5.1/whitehouse_visits.txt
whitehouse/visits.txt

d. Use the ls command to verify that the file was uploaded successfully:
grunt> ls whitehouse
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/visits.tx
t<r 1>183292235

3) Define a Relation
a. You will use the TextLoader to load the visits.txt file.

Note

TextLoader simply creates a tuple for each line of text, and it uses a
single chararray field that contains the entire line. It allows you to load
lines of text and not worry about the format or schema yet.
Define the following LOAD relation:

grunt> A = LOAD '/user/root/whitehouse/' USING TextLoader();

b. Use DESCRIBE to notice that A does not have a schema:
grunt> DESCRIBE A;
Schema for A unknown.

c. We want to get a sense of what this data looks like. Use the LIMIT
operator to define a new relation named A_limit that is limited to 10
records of A.

grunt> A_limit = LIMIT A 10;

Lab: Getting Started with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 49

d. Use the DUMP operator to view the A_limit relation.

Each row in the output will look similar to the following and should be 10
arbitrary rows from visits.txt:

grunt> DUMP A_limit;

(WHITLEY,KRISTY,J,U45880,,VA,,,,,10/7/2010 5:51,10/9/2010
10:30,10/9/2010 23:59,,294,B3,WIN,10/7/2010
5:51,B3,OFFICE,VISITORS,WH,RES,OFFICE,VISITORS,GROUP TOUR
,1/28/2011,,
,,
,,
,,,)

4) Define a Schema
a. Load the White House data again, but this time use the PigStorage

loader and also define a partial schema:
grunt> B = LOAD '/user/root/whitehouse/visits.txt' USING
PigStorage(',') AS (
 lname:chararray,
 fname:chararray,
 mname:chararray,
 id:chararray,
 status:chararray,
 state:chararray,
 arrival:chararray
);

b. Use the DESCRIBE command to view the schema:
grunt> describe B;
B: {lname: chararray,fname: chararray,mname: chararray,id:
chararray,status: chararray,state: chararray,arrival: chararray}

5) The STORE Command
a. Enter the following STORE command, which stores the B relation into a

folder named whouse_tab and separates the fields of each record with
tabs:

grunt> store B into 'whouse_tab' using PigStorage('\t');

b. Verify that the whouse_tab folder was created:
grunt> ls whouse_tab

Lab: Getting Started with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 50

You should see two map output files.
c. View one of the output files to verify they contain the B relation in a tab-

delimited format:
grunt> fs -tail whouse_tab/part-m-00000

d. Each record should contain seven fields. What happened to the rest of
the fields from the raw data that was loaded from
whitehouse/visits.txt?

Answer: They were simply ignored when each record was read in from
HDFS.

6) Use a Different Storer
a. In the previous step, you stored a relation using PigStorage with a tab

delimiter. Enter the following command, which stores the same relation
but in a JSON format:

grunt> store B into 'whouse_json' using JsonStorage();

b. Verify that the whouse_json folder was created:
grunt> ls whouse_json

c. View one of the output files:
grunt> fs -tail whouse_json/part-m-00000

Notice that the schema you defined for the B relation was used to create
the format of each JSON entry:

Result
You have now seen how to execute some basic Pig commands, load data into a
relation, and store a relation into a folder in HDFS using different formats.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 51

Lab: Exploring Data with Pig

About this Lab
Objective: Use Pig to navigate through HDFS and explore a dataset.

File locations: whitehouse/visits.txt in HDFS

Successful
outcome:

You will have written several Pig scripts that analyze and
query the White House visitors’ data, including a list of
people who visited the President.

Before you begin: At a minimum, complete steps 1 and 2 of the Getting Started
with Pig
lab.

Related lesson: Introduction to Pig

Lab Steps
1) Load the White House Visitor Data

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. You will use the TextLoader to load the visits.txt file. From the Pig Grunt

shell, define the following LOAD relation:
pig

grunt> A = LOAD '/user/root/whitehouse/' USING TextLoader();

2) Count the Number of Lines
a. Define a new relation named B that is a group of all the records in A:

grunt> B = GROUP A ALL;

b. Use DESCRIBE to view the schema of B.
grunt> DESCRIBE B;

What is the datatype of the group field? _____________________
Where did this datatype come from? ________________________

Answer: The group field is a chararray because it is just the string “all”
and is a result of performing a GROUP ALL.

Lab: Exploring Data with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 52

Why does the A field of B contain no schema? ______________________

Answer: The A field of B contains no schema because the A relation has
no schema.

How many groups are in the relation B? ______________

Answer: The B relation can only contain one group because it a
grouping of every single record. Note that the A field is a bag, and A will
contain any number of tuples.

c. The A field of the B tuple is a bag of all of the records in visits.txt. Use the
COUNT function on this bag to determine how many lines of text are in
visits.txt:

grunt> A_count = FOREACH B GENERATE 'rowcount', COUNT(A);

Note
The ‘rowcount’ string in the FOREACH statement is simply to demonstrate
that you can have constant values in a GENERATE clause. It is certainly not
necessary; it just makes the output nicer to read.

d. Use DUMP on A_count to view the result. The output should look like:
grunt> DUMP A_count;

(rowcount,447598)

We can now conclude that there are 447,598 rows of text in visits.txt.
3) Analyze the Data’s Contents

a. We now know how many records are in the data, but we still do not have
a clear picture of what the records look like. Let’s start by looking at the
fields of each record. Load the data using PigStorage(‘,’) instead of
TextLoader():

grunt> visits = LOAD '/user/root/whitehouse/' USING
PigStorage(',');

This will split up the fields by comma.
b. Use a FOREACH...GENERATE command to define a relation that is a

projection of the first 10 fields of the visits relation.
grunt> firstten = FOREACH visits GENERATE $0..$9;

Lab: Exploring Data with Pig

53

c. Use LIMIT to display only 50 records then DUMP the result.
The output should be 50 tuples that represent the first 10 fields of visits:

grunt> firstten_limit = LIMIT firstten 50;
grunt> DUMP firstten_limit;

(PARK,ANNE,C,U51510,0,VA,10/24/2010 14:53,B0402,,)
(PARK,RYAN,C,U51510,0,VA,10/24/2010 14:53,B0402,,)
(PARK,MAGGIE,E,U51510,0,VA,10/24/2010 14:53,B0402,,)
(PARK,SIDNEY,R,U51510,0,VA,10/24/2010 14:53,B0402,,)
(RYAN,MARGUERITE,,U82926,0,VA,2/13/2011 17:14,B0402,,)
(WILE,DAVID,J,U44328,,VA,,,,)
(YANG,EILENE,D,U82921,,VA,,,,)
(ADAMS,SCHUYLER,N,U51772,,VA,,,,)
(ADAMS,CHRISTINE,M,U51772,,VA,,,,)
(BERRY,STACEY,,U49494,79029,VA,10/15/2010 12:24,D0101,10/15/2010
14:06,D1S)

Note
Because LIMIT uses an arbitrary sample of the data, your output will be
different names but the format should look similar.
Notice from the output that the first three fields are the person’s name.
The next seven fields are a unique ID, badge number, access type, time
of arrival, post of arrival, time of departure, and post of departure.

4) Locate the POTUS (President of the United States of America)
a. There are 26 fields in each record, and one of them represents the visitee

(the person being visited in the White House). Your goal now is to locate
this column and determine who has visited the President of the United
States. Define a relation that is a projection of the last seven fields ($19
to $25) of visits. Use LIMIT to only output 500 records. The output should
look like:

grunt> lastfields = FOREACH visits GENERATE $19..$25;
grunt> lastfields_limit = LIMIT lastfields 500;
grunt> DUMP lastfields_limit;

(OFFICE,VISITORS,WH,RESIDENCE,OFFICE,VISITORS,HOLIDAY OPEN HOUSE/)
(OFFICE,VISITORS,WH,RESIDENCE,OFFICE,VISITORS,HOLIDAY OPEN
HOUSES/)
(OFFICE,VISITORS,WH,RESIDENCE,OFFICE,VISITORS,HOLIDAY OPEN HOUSE/)
(CARNEY,FRANCIS,WH,WW,ALAM,SYED,WW TOUR)
(CARNEY,FRANCIS,WH,WW,ALAM,SYED,WW TOUR)
(CARNEY,FRANCIS,WH,WW,ALAM,SYED,WW TOUR)
(CHANDLER,DANIEL,NEOB,6104,AGCAOILI,KARL,)

b. It is not necessarily obvious from the output, but field $19 in the visits
relation represents the visitee. Even though you selected 500 records in

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab: Exploring Data with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 54

the previous step, you may or may not see POTUS in the output above.
(The White House has thousands of visitors each day, but only a few
meet the President.)

c. Use FILTER to define a relation that only contains records of visits where
field $19 matches POTUS. Limit the output to 500 records.

The output should include only visitors who met with the President. For
example:

grunt> potus = FILTER visits BY $19 MATCHES 'POTUS';
grunt> potus_limit = LIMIT potus 500;
grunt> DUMP potus_limit;

(ARGOW,KEITH,A,U83268,,VA,,,,,2/14/2011 18:42,2/16/2011
16:00,2/16/2011 23:59,,154,LC,WIN,2/14/2011
18:42,LC,POTUS,,WH,EAST ROOM,THOMPSON,MARGRETTE,,AMERICA'S GREAT
OUTDOORS ROLLOUT EVENT
,5/27/2011,,
,,
,,
,,)
(AYERS,JOHNATHAN,T,U84307,,VA,,,,,2/18/2011 19:11,2/25/2011
17:00,2/25/2011 23:59,,619,SL,WIN,2/18/2011
19:11,SL,POTUS,,WH,STATE FLOO,GALLAGHER,CLARE,,RECEPTION
,5/27/2011,,
,,
,,
,,)

5) Count the POTUS Visitors
a. Let’s discover how many people have visited the President. To do this,

we need to count the number of records in visits where field $19
matches POTUS. See if you can write a Pig script to accomplish this. Use
the potus relation from the previous step as a starting point. You will
need to use GROUP ALL and then a FOREACH projection that uses the COUNT
function.

If successful, you should get 21,819 as the number of visitors to the
White House who visited the President.

Lab: Exploring Data with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 55

b. Solution:
grunt> potus = FILTER visits BY $19 MATCHES 'POTUS';
grunt> potus_group = GROUP potus ALL;
grunt> potus_count = FOREACH potus_group GENERATE COUNT(potus);
grunt> DUMP potus_count;

6) Finding People Who Visited the President
a. So far you have used DUMP to view the results of your Pig scripts. In this

step, you will save the output to a file using the STORE command.
b. Now FILTER the relation by visitors who met with the President:

grunt> potus = FILTER visits BY $19 MATCHES 'POTUS';

c. Define a projection of the potus relationship that contains the name and
time of arrival of the visitor:

grunt> potus_details = FOREACH potus GENERATE
(chararray) $0 AS lname:chararray,
(chararray) $1 AS fname:chararray,
(chararray) $6 AS arrival_time:chararray,
(chararray) $19 AS visitee:chararray;

d. Order the potus_details projection by last name:
grunt> potus_details_ordered = ORDER potus_details BY lname ASC;

e. Store the records of potus_details_ordered into a folder named potus
and using a comma delimiter:

grunt> STORE potus_details_ordered INTO 'potus' USING
PigStorage(',');

f. View the contents of the potus folder:
grunt> ls potus
hdfs://sandbox.hortonworks.com:8020/user/root/potus/_SUCCESS<r 1>0
hdfs://sandbox.hortonworks.com:8020/user/root/potus/part-r-00000<r
1>501378

g. Notice that there is a single output file, so the Pig job was executed with
one reducer. View the contents of the output file using cat:

grunt> cat potus/part-r-00000

Lab: Exploring Data with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 56

The output should be in a comma-delimited format and should contain
the last name, first name, time of arrival (if available), and the string
POTUS:

CLINTON,WILLIAM,,POTUS
CLINTON,HILLARY,,POTUS
CLINTON,HILLARY,,POTUS
CLINTON,HILLARY,,POTUS
CLONAN,JEANETTE,,POTUS
CLOOBECK,STEPHEN,,POTUS
CLOOBECK,CHANTAL,,POTUS
CLOOBECK,STEPHEN,,POTUS
CLOONEY,GEORGE,10/12/2010 14:47,POTUS

7) View the Pig Log Files
a. Each time you executed a DUMP or STORE command, a MapReduce job is

executed on your cluster.
You can view the log files of these jobs in the JobHistory UI. Point your
browser to http://sandbox:19888/:

b. Click on the job’s ID to view the details of the job and its log files.

Result
You have written several Pig scripts to analyze and query the data in the White House
visitors’ log. You should now be comfortable with writing Pig scripts with the Grunt
shell and using common Pig commands like LOAD, GROUP, FOREACH, FILTER, LIMIT,
DUMP, and STORE.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 57

Lab: Splitt ing a Dataset

About this Lab
Objective: Research the White House visitor data and look for

members of Congress.

File locations: n/a

Successful
outcome:

Two folders in HDFS, congress and not_congress,
containing a split of the White House visitor data.

Before you begin: You should have the White House visitor data in HDFS in
/user/root/whitehouse/visits.txt.

Related lesson: Advanced Pig Programming

Lab Steps
1) Explore the Comments Field

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. In this step, you will explore the comments field of the White House

visitor data. From the Pig Grunt shell, start by loading visits.txt:
pig

grunt> cd whitehouse
grunt> visits = LOAD 'visits.txt' USING PigStorage(',');

c. Field $25 is the comments. Filter out all records where field $25 is null:
grunt> not_null_25 = FILTER visits BY ($25 IS NOT NULL);

d. Now define a new relation that is a projection of only column $25:
grunt> comments = FOREACH not_null_25 GENERATE $25 AS comment;

e. View the schema of comments and make sure you understand how this
relation ended up as a tuple with one field:

grunt> describe comments;
comments: {comment: bytearray}

Lab: Splitting a Dataset

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 58

2) Test the Relation
a. A common Pig task is to test a relation to make sure it is consistent with

what you are intending it to be. But using DUMP on a big data relation
might take too long or not be practical, so define a SAMPLE of comments:

grunt> comments_sample = SAMPLE comments 0.001;

b. Now DUMP the comments_sample relation. The output should be non-null
comments about visitors to the White House, similar to:

grunt> DUMP comments_sample;

(ATTENDEES VISITING FOR A MEETING)
(FORUM ON IT MANAGEMENT REFORM/)
(FORUM ON IT MANAGEMENT REFORM/)
(HEALTH REFORM MEETING)
(DRIVER TO REMAIN WITH VEHICLE)

3) Count the Number of Comments
a. The comments relation represents all non-null comments from visits.txt.

Write Pig statements that output the number of records in the comments
relation. The correct result is 222,839 records.

Solution:
comments_all = GROUP comments ALL;
comments_count = FOREACH comments_all GENERATE
COUNT(comments);
DUMP comments_count;

4) Split the Dataset

Note

Our end goal is find visitors to the White House who are also members of
Congress. We could run our MapReduce job on the entire visits.txt dataset, but
it is common in Hadoop to split data into smaller input files for specific tasks,
which can greatly improve the performance of your MapReduce applications.
In this step, you will split visits.txt into two separate datasets.

a. In this step, you will split visits.txt into two datasets: those that contain
“CONGRESS” in the comments field, and those that do not.

Lab: Splitting a Dataset

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 59

b. Use the SPLIT command to split the visits relation into two new relations
named congress and not_congress:

grunt> SPLIT visits INTO congress IF($25 MATCHES
'.* CONGRESS .*'), not_congress IF (NOT($25 MATCHES
'.* CONGRESS .*'));

c. Store the congress relation into a folder named ‘congress’.
grunt> STORE congress INTO 'congress';

d. Similarly, STORE the not_congress relation in a folder named
‘not_congress’.

grunt> STORE not_congress INTO 'not_congress';

e. View the output folders using ls. The file sizes should be equivalent to
the following:

grunt> ls congress
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/congress/
_SUCCESS<r 1>0
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/congress/
part-m-00000<r 1>45618
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/congress/
part-m-00001<r 1>0
grunt> ls not_congress
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/not_congr
ess/_SUCCESS<r 1>0
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/not_congr
ess/part-m-00000<r 1>90741587
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/not_congr
ess/part-m-00001<r 1>272381

f. View one of the output files in congress and make sure the string
“CONGRESS” appears in the comment field:

grunt> cat congress/part-m-00000

5) Count the Results
a. Write Pig statements that output the number of records in the congress

relation. This will tell us how many visitors to the White House have
“CONGRESS” in the comments of their visit log. The correct result is 102.

Note
You now have two datasets: one in ‘congress,’ with 102 records, and the
remaining records in the ‘not_congress’ folder. These records are still in
their original, raw format.

Lab: Splitting a Dataset

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 60

Solution:
grunt> congress_grp = GROUP congress ALL;
grunt> congress_count = FOREACH congress_grp GENERATE
COUNT(congress);
grunt> DUMP congress_count;

Result
You have just split ‘visits.txt’ into two datasets, and you have also discovered that
102 visitors to the White House had the word “CONGRESS” in their comments field. We
will further explore these visitors in the next lab as we perform a join with a dataset
containing the names of members of Congress.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 61

Lab: Joining Datasets with Pig

About this Lab
Objective: Join two datasets in Pig.

File locations: /root/devph/labs/Lab6.2

Successful
outcome:

A file of members of Congress who have visited the White
House.

Before you begin: If you are in the Grunt shell, exit it using the quit command.
In this lab, you will write a Pig script in a text file.

Related lesson: Advanced Pig Programming

Lab Steps
1) Upload the Congress Data

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Put the file /root/devph/labs/Lab6.2/congress.txt into the whitehouse

directory in HDFS.
hdfs dfs -put /root/devph/labs/Lab6.2/congress.txt whitehouse/

c. Use the hdfs dfs -ls command to verify that the congress.txt file is in
whitehouse, and use hdfs dfs -cat to view its contents. The file contains
the names of and other information about the members of the U.S.
Congress.

hdfs dfs -ls whitehouse

hdfs dfs -cat whitehouse/congress.txt

2) Create a Pig Script File
a. In this lab, you will not use the Grunt shell to enter commands. Instead,

you will enter your script in a text file. Start by opening the gedit text
editor using the shortcut provided on the left-hand toolbar of your VM.

Lab: Joining Datasets with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 62

b. Click the Save button and save the new, empty file as join.pig in the
devph/labs/Lab6.2 folder:

c. At the top of the file, add a comment:
--join.pig: joins congress.txt and visits.txt

3) Load the White House Visitors
a. Define the following visitors relations, which will contain the first and last

names of all White House visitors:
visitors = LOAD 'whitehouse/visits.txt' USING PigStorage(',') AS
(lname:chararray, fname:chararray);

That is the only data we are going to use from visits.txt.

Lab: Joining Datasets with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 63

4) Define a Projection of the Congress Data
a. Add the following load command that loads the ‘congress.txt’ file into a

relation named congress. The data is tab-delimited, so no special Pig
loader is needed:

congress = LOAD 'whitehouse/congress.txt' AS (
 full_title:chararray,
 district:chararray,
 title:chararray,
 fname:chararray,
 lname:chararray,
 party:chararray
);

b. The names in visits.txt are all uppercase, but the names in congress.txt
are not. Define a projection of the congress relation that consists of the
following fields:

congress_data = FOREACH congress GENERATE
 district,
 UPPER(lname) AS lname,
 UPPER(fname) AS fname,
 party;

5) Join the Two Datasets
a. Define a new relation named join_contact_congress that is a JOIN of

visitors and congress_data. Perform the join on both the first and last
names.

b. Use the STORE command to store the result of join_contact_congress
into a directory named ‘joinresult’.

Solution:
join_contact_congress = JOIN visitors BY (lname,fname),

congress_data BY (lname,fname);
STORE join_contact_congress INTO 'joinresult';

6) Run the Pig Script
a. Save your changes to join.pig.
b. Open a Terminal window and change directories to the Joining Datasets

lab folder:
cd ~/devph/labs/Lab6.2

Lab: Joining Datasets with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 64

c. Run the script using the following command:
pig join.pig

d. Wait for the MapReduce job to execute. When it is finished, write down
the number of seconds it took for the job to complete (by subtracting the
StartedAt time from the FinishedAt time) and write down the result.

e. The type of join used is also output in the job statistics. Notice the
statistics output has “HASH_JOIN” underneath the “Features” column,
which means a hash join was used to join the two datasets.

7) View the Results
a. The output will be in the joinresult folder in HDFS. Verify that the folder

was created:
hdfs dfs -ls -R joinresult
-rw-r--r-- 1 root root 0 joinresult/_SUCCESS
-rw-r--r-- 1 root root 40892 joinresult/part-r-00000

b. View the resulting file:
hdfs dfs -cat joinresult/part-r-00000

The output should look like the following:
DUFFY SEAN WI07 DUFFY SEAN Republican
JONES WALTER NC03 JONESWALTER Republican
SMITH ADAM WA09 SMITH ADAM Democrat
CAMPBELL JOHN CA45 CAMPBELL JOHN Republican
CAMPBELL JOHN CA45 CAMPBELL JOHN Republican
SMITH ADAM WA09 SMITH ADAM Democrat

8) Try Using Replicated on the Join
a. Delete the joinresult directory in HDFS:

hdfs dfs -rm -R joinresult

b. Modify your JOIN statement in join.pig so that is uses replication. It
should look like this:

join_contact_congress = JOIN visitors BY (lname,fname),
 congress_data BY (lname,fname) USING 'replicated';

c. Save your changes to join.pig and run the script again.
pig join.pig

d. Notice this time that the statistics output shows Pig used a
“REPLICATED_JOIN” instead of a “HASH_JOIN”.

Lab: Joining Datasets with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 65

e. Compare the execution time of the REPLICATED_JOIN vs. the HASH_JOIN.
Did you have any improvement or decrease in performance?

Note

Using replicated does not necessarily increase the join time. There are way
too many factors involved, and this example is using small datasets. The
point is that you should try both techniques (if one dataset is small enough
to fit in memory) and determine which join algorithm is faster for your
particular dataset and use case.

9) Count the Results
a. In join.pig, comment out the STORE command:

--STORE join_contact_congress INTO 'joinresult';

You have already saved the output of the JOIN, so there is no need to
perform the STORE command again.

b. Notice in the output of your join.pig script that we know which party the
visitor belongs to: Democrat, Republican, or Independent. Using the
join_contact_congress relation as a starting point, see if you can figure
out how to output the number of Democrat, Republican, and
Independent members of Congress that visited the White House. Name
the relation counters and use the DUMP command to output the results:

join_group = GROUP join_contact_congress

BY congress_data::party;
counters = FOREACH join_group GENERATE group,

COUNT(join_contact_congress);
DUMP counters;

Tip
When you group the join_contact_congress relation, group it by the
party field of congress_data. You will need to use the :: operator in the
BY clause. It will look like: congress_data::party
The correct results are shown here:

(Democrat,637)
(Republican,351)
(Independent,2)

Lab: Joining Datasets with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 66

10) Use the EXPLAIN Command
a. At the end of join.pig, add the following statement:

EXPLAIN counters;

If you do not have a counters relation, then use join_contact_congress
instead.
b. Run the script again. The Logical, Physical, and MapReduce plans

should display at the end of the output.
c. How many MapReduce jobs did it take to run this job? _____________

Answer: Two MapReduce jobs: the first job only requires a map phase,
and the second job has a map , a combine and a reduce phase.

Result
You should have a folder in HDFS named joinresult that contains a list of members
of Congress who have visited the White House (within the timeframe of the historical
data in visits.txt).

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 67

Lab: Preparing Data for Hive

About this Lab
Objective: Transform and export a dataset for use with Hive.

File locations: /root/devph/labs/Lab6.3

Successful
outcome:

The resulting Pig script stores a projection of visits.txt in a
folder in the Hive warehouse named wh_visits.

Before you begin: You should have visits.txt in a folder named whitehouse in
HDFS.

Related lesson: Advanced Pig Programming

Lab Steps
1) Review the Pig Script

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Change directories to the Preparing Data for Hive lab folder:

cd ~/devph/labs/Lab6.3/

c. View the contents of wh_visits.pig:
more wh_visits.pig

d. Notice that all White House visitors who met with the President are the
potus relation.

e. Notice that the project_potus relation is a projection of the last name,
first name, time of arrival, location, and comments from the visit.

2) Store the Projection in the Hive Warehouse
a. Open wh_visits.pig with the gedit text editor.
b. Add the following command at the bottom of the file, which stores the

project_potus relation into a very specific folder in the Hive warehouse:
STORE project_potus INTO '/apps/hive/warehouse/wh_visits/';

Lab: Preparing Data for Hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 68

3) Run the Pig Script
a. Save your changes to wh_visits.pig.
b. Run the script from the command line:

pig wh_visits.pig

4) View the Results
a. The wh_visits.pig script creates a directory in the Hive warehouse

named wh_visits. Use ls to view its contents:
hdfs dfs -ls /apps/hive/warehouse/wh_visits/
-rw-r--r-- 1 root hdfs 0
/apps/hive/warehouse/wh_visits/_SUCCESS
-rw-r--r-- 1 root hdfs 971339 /apps/hive/warehouse/wh_visits/part-
m-00000
-rw-r--r-- 1 root hdfs 142850 /apps/hive/warehouse/wh_visits/part-
m-00001

b. View the contents of one of the result files. It should look like the
following:

hdfs dfs -cat /apps/hive/warehouse/wh_visits/part-m-00000
...
FRIEDMAN THOMAS 10/12/2010 12:08 WH PRIVATE LUNCH
BASS EDWIN 10/18/2010 15:01 WH
BLAKE CHARLES 10/18/2010 15:00 WH
OGLETREE CHARLES 10/18/2010 15:01 WH
RIVERS EUGENE 10/18/2010 15:01 WH

Result
You now have a folder in the Hive warehouse named wh_visits that contains a
projection of the data in visits.txt. We will use this file in an upcoming Hive lab.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 69

Demonstration: Computing PageRank

About this Demonstration
Objective: To understand how to use the PageRank UDF in

DataFu.

During this
demonstration:

 Watch as your instructor performs the following steps.

Related lesson: Advanced Pig Programming

Demonstration Steps
1) View the Data

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Review the edges.txt file in the /root/devph/labs/demos folder:

cd ~/devph/labs/demos/
more edges.txt
0 2 3 1.0
0 3 2 1.0
0 4 1 1.0
0 4 2 1.0
0 5 4 1.0
0 5 2 11.0
0 5 6 11.0
0 6 5 11.0
0 6 2 11.0
0 100 2 11.0
0 100 5 11.0
0 101 2 11.0
0 101 5 11.0
0 102 2 11.0
0 102 5 11.0
0 103 5 11.0
0 104 5 11.0

c. The first column is the topic, but since we only have a single graph, the
topic is 0 for all of the edges.

d. The second and third columns are the source and destination of each
edge. For example, there is an edge from 2 to 3 based on the first row.

e. The fourth column is the weight of the edge. Our graph is all evenly
weighted.

Demonstration: Computing PageRank

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 70

f. Based on the data above, which pages should be ranked toward the
top?

Answer: It looks like 2 and 5 should end up toward the top.
2) Put the Data in HDFS

a) Put edges.txt into HDFS:
hdfs dfs -put edges.txt

3) Define the PageRank UDF
a. Install DataFu:

yum –y install datafu

b. View the contents of /root/devph/labs/demos/pagerank.pig using gedit.
The first two lines register the DataFu library and define the PageRank
function (YOU DO NOT NEED TO TYPE ANYTHING - THE LINES BELOW
MERELY DISCUSS WHAT IS ALREADY IN THE SCRIPT):

register /usr/hdp/current/pig-client/lib/datafu.jar;
define PageRank datafu.pig.linkanalysis.PageRank();

c. The edges are loaded and grouped by topic and source:
topic_edges = LOAD '/user/root/edges.txt' as
(topic:INT,source:INT,dest:INT,weight:DOUBLE);
topic_edges_grouped = GROUP topic_edges by (topic, source);

d. The data is then prepared for the PageRank function, which is expecting
a topic, a source, and its edges:

topic_edges_data = FOREACH topic_edges_grouped GENERATE
group.topic as topic,
group.source as source,
topic_edges.(dest,weight) as edges;

e. We only have one topic, but the edges still need to be grouped by topic:
topic_edges_data_by_topic = GROUP topic_edges_data
BY topic;

f. We can now invoke the PageRank function:
topic_ranks = FOREACH topic_edges_data_by_topic GENERATE
group as topic,
FLATTEN(PageRank(topic_edges_data.(source,edges)));

Demonstration: Computing PageRank

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 71

g. The results are stored in HDFS:
store topic_ranks into 'topicranks';

4) Run the Script
pig pagerank.pig

The job will take a couple of minutes to run.
5) View the Results

a.) View the contents of the topicranks folder in HDFS:
hdfs dfs -ls topicranks
Found 2 items
-rw-r--r-- 3 root root 0 topicranks/_SUCCESS
-rw-r--r-- 3 root root 181 topicranks/part-r-00000

b.) View the contents of the output file
hdfs dfs -cat topicranks/part-r-00000
0 104 0.013636362
0 1 0.02764593
0 103 0.013636362
0 5 0.06821412
0 100 0.013636362
0 102 0.013636362
0 6 0.032963693
0 3 0.2891899
0 2 0.32418048
0 4 0.032963693
0 101 0.013636362

6) Analyze the Results
a. Which page should be ranked the highest? _____________

Answer: Page 2

b. Which page should be ranked the lowest? _____________
Answer: Pages 100 to 104 all ranked equally at the bottom.

c. Compare the actual results with your guess from Step 1.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 73

Lab: Analyzing Clickstream Data

About this Lab
Objective: Become familiar with using the DataFu library to sessionize

clickstream data.

File locations: /root/devph/labs/Lab6.4

Successful
outcome:

You will have computed the length of each session along
with the average and median values of all session lengths.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Advanced Pig Programming

Lab Steps
1) View the Clickstream Data

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. If not already done as part of the prior demonstration, install

DataFu:
yum –y install datafu

c. Open a Terminal and change directories to ~/devph/labs/Lab6.4.
cd ~/devph/labs/Lab6.4

d. View the contents of clicks.csv:
more clicks.csv

The first column is the user’s ID, the second column is the time of the click stored as
a long, and the third column is the URL visited. Enter “q” to quit the more command.

e. Put the file in HDFS:
hdfs dfs -put clicks.csv

Lab: Analyzing Clickstream Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 74

2) Define the Sessionized UDF
a. Using the gedit text editor, open the file

/root/devph/labs/Lab6.4/sessions.pig.
b. Notice two JAR files are registered: datafu.jar and piggybank.jar. The

datafu JAR contains the Sessionize function that you are going to use,
and the piggybank.jar contains a time-utility function named UnixToISO,
which is already defined for you in this Pig script.

c. Add the following DEFINE statement to define the Sessionize UDF:
DEFINE Sessionize datafu.pig.sessions.Sessionize('8m');

d. What does the '8m' mean in the constructor?

Answer: The '8m' stands for eight minutes, which is the length of the
session. You can pick any length of time you want to define your
sessions.

3) Sessionize the Clickstream
a. Notice the clicks.csv file is loaded for you in sessions.pig:

clicks = LOAD 'clicks.csv' USING PigStorage(',')
 AS (id:int, time:long, url:chararray);

b. Notice also that the clicks relation is projected onto clicks_iso with the
long converted to an ISO time format then grouped by id in the
clicks_group relation:

clicks_iso = FOREACH clicks GENERATE UnixToISO(time)
 AS isotime, time, id;
clicks_group = GROUP clicks_iso BY id;

c. Sessionize the clickstream by adding the following nested FOREACH loop:
clicks_sessionized = FOREACH clicks_group {

sorted = ORDER clicks_iso BY isotime;
GENERATE FLATTEN(Sessionize(sorted))

 AS (isotime, time, id, sessionid);
};

d. Dump the sessionized data:
DUMP clicks_sessionized;

e. Save your changes to sessions.pig.

Lab: Analyzing Clickstream Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 75

4) Run the Script
a. Let’s verify that the Sessionized function is working by running the

script:
pig sessions.pig

b. Verify that the tail of the output looks similar to the following:
(2013-01-10T07:15:20.520Z,1357802120520,2,51d89b38-b14a-4158-8703-
724525d9f787)
(2013-01-10T07:15:39.797Z,1357802139797,2,51d89b38-b14a-4158-8703-
724525d9f787)
(2013-01-10T07:26:30.602Z,1357802790602,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:26:53.357Z,1357802813357,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:26:58.800Z,1357802818800,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:27:05.253Z,1357802825253,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:27:57.844Z,1357802877844,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:28:20.610Z,1357802900610,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:29:01.128Z,1357802941128,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:29:02.190Z,1357802942190,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:29:23.190Z,1357802963190,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:30:04.181Z,1357803004181,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:30:32.455Z,1357803032455,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)

5) Compute the Session Length
a. Comment out the dump statement:

--DUMP clicks_sessionized

Lab: Analyzing Clickstream Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 76

b. Add code to define a projection named sessions that is a projection of
only the time and sessionid fields of the clicks_sessionized relation.
Solution:

sessions = FOREACH clicks_sessionized GENERATE time, sessionid;

c. Add code to define a relation named sessions_group that is the sessions
relation grouped by sessionid.
Solution:

sessions_group = GROUP sessions BY sessionid;

d. Add code to define a session_times relation using the following
projection that computes the length of each session:

session_times = FOREACH sessions_group
GENERATE group as sessionid,
(MAX(sessions.time) - MIN(sessions.time)) / 1000.0 / 60
as session_length;

e. Dump the session_times relation:
DUMP session_times;

Lab: Analyzing Clickstream Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 77

f. Save your changes to sessions.pig and run the script. The output should
look like the following:

(01e5259c-c5a6-45b0-8d04-1be86182d12e,0.16571666666666665)
(164be386-1df2-40dd-9331-563e1b8a7275,4.030883333333334)
(16ab9225-28d3-45f6-9d07-f065223046bb,38.809916666666666)
(18362695-d032-424a-a983-33ab45638700,0.0)
(2699ef77-bd37-4611-a239-ddbd80066043,10.398116666666665)
(3077f9d1-a5d5-4bf9-8212-87ae848b4ed8,3.44485)
(3e732d19-e3ed-4cc4-810f-f05c8534fb28,1.1402833333333333)
(455183ea-c3bb-43fe-9f07-63e0c0199008,14.648516666666666)
(5a65d8dc-1a4e-4355-b86a-f1efc519b084,63.620149999999995)
(5ef45fc4-01df-40d8-805f-a61c60fc421e,0.03173333333333333)
(61e14bcf-1fb4-4f7e-a3b4-2b67b8840756,1.0819833333333333)
(63b53f03-31e9-4a01-8029-6334020080e4,4.48765)
(66f58bc2-7aeb-487d-a28e-21090578cfe2,22.9298)
(812a7fc4-9ea2-4c3b-a3da-17bbd740a49a,0.006183333333333333)
(84f8c113-d3c9-4590-83a8-5a9edf44c5c5,86.69525)
(85cd8b8c-644b-4fb9-a6c6-3b5082d32f0c,2.509133333333333)
(8e4cfed7-8500-47bb-a5e9-3744de6b1595,0.0)
(a35be8db-de7b-4b55-a230-66389a4e4b5f,0.9713166666666667)
(bcfef9fa-fd71-4962-8a0b-ddcf77ea47a3,0.37246666666666667)
(c092d0c4-3c7d-4cfc-b7f9-078baaa7469f,1.6453333333333333)
(d1d1b88e-b827-4005-b088-233d56c4ea8f,0.6608333333333333)
(e0f48349-1d2a-4cd7-8258-e36b4b6118fc,31.88788333333333)
(e1ccdf96-fc37-4b7e-9a7c-95acb8f52fa7,0.0)
(fd92f410-19fc-4927-917f-0f86b5d7edb2,17.197683333333334)
(fdfcea38-ddf9-477a-bb3e-401e8874e0ac,2.2512333333333334)
(ff70c6b5-abb2-4606-b12f-3054501947a4,0.05118333333333334)

g. How long was the longest session? _____________

Answer: The longest session was 86.69525 minutes.
6) Compute the Average Session Length

a. Comment out the dump statement:
--DUMP session_times;

b. Define a relation named sessiontimes_all that is a grouping of all
session_times.

sessiontimes_all = GROUP session_times ALL;

Lab: Analyzing Clickstream Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 78

c. Define sessiontimes_avg using the following nested FOREACH statement:
sessiontimes_avg = FOREACH sessiontimes_all
GENERATE AVG(session_times.session_length);

d. Dump the sessiontimes_avg relation:
DUMP sessiontimes_avg;

e. Save your changes to sessions.pig and run the script again.
f. Verify the output, which should be a single value representing the

average session time:
(11.88608076923077)

7) Compute the Median Session Length
a. Using the sessiontimes_avg relation as an example, compute the median

session time. You will need to define the Median function from the
DataFu library, which is named datafu.pig.stats.Median().

Solution: A quick solution for computing the median is to simply add it
to the existing nested FOREACH statement in the sessiontimes_avg
definition:

--ADD to the top of the file

DEFINE Median datafu.pig.stats.Median();

--MODIFY sessiontimes_avg definition

sessiontimes_avg = FOREACH sessiontimes_all {
 ordered = ORDER session_times BY session_length;
 GENERATE

AVG(ordered.session_length) AS avg_session,
Median(ordered.session_length) AS median_session;

};

b. Verify that you got the following value for the median session length:
(1.9482833333333334)

Result
You have taken clickstream data and sessionized it using Pig to determine statistical
information about the sessions, like the length of each session and the average and
median lengths of all sessions.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 79

Lab: Analyzing Stock Market Data using Quantiles

About this Lab
Objective: Use DataFu to compute quantiles.

File locations: /root/devph/labs/Lab6.5

Successful
outcome:

You will have computed quartiles for the daily high prices of
stocks traded on the New York Stock Exchange.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM and DataFu should have been installed via "yum –y
install datafu".

Related lesson: Advanced Pig Programming

Lab Steps
1) Review the Stock Market Data

a. O If not already done, open a Terminal in your VM and type "ssh
sandbox".

b. Change directories to the ~/devph/labs/Lab6.5 folder.
cd ~/devph/labs/Lab6.5

c. View the contents of the stocks.csv file, which contains the historical
prices for New York Stock Exchange stocks that begin with the letter “Y”:

tail stocks.csv
NYSE,YSI,2004-11-23,17.35,17.48,16.90,17.26,207400,13.26
NYSE,YSI,2004-11-22,17.20,17.43,16.90,17.35,204100,13.33
NYSE,YSI,2004-11-19,17.20,17.45,16.85,17.45,304100,13.41
NYSE,YSI,2004-11-18,17.40,17.45,17.10,17.11,180900,13.14
NYSE,YSI,2004-11-17,17.16,17.77,17.15,17.35,320400,13.33
NYSE,YSI,2004-11-16,17.20,17.33,17.05,17.15,245000,13.18
NYSE,YSI,2004-11-15,16.95,17.20,16.90,17.20,174400,13.21
NYSE,YSI,2004-11-12,17.05,17.14,16.99,17.00,359900,13.06
NYSE,YSI,2004-11-11,16.92,17.04,16.81,17.00,263800,13.06
NYSE,YSI,2004-11-10,16.90,17.05,16.80,17.00,243300,13.06

Lab: Analyzing Stock Market Data using Quantiles

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 80

The first column is always “NYSE.” The second column is the stock’s
symbol. The third column is the date that the prices occurred. The next
columns are the open, high, low, close, and trading volume.

d. Put stocks.csv into your /user/root folder in HDFS (if you already have a
stocks.csv file in your HDFS home directory from exercising the block
storage demonstration, please delete the existing fi le first as the
contents are different):

hdfs dfs -put stocks.csv

2) Define the Quantile Function
a. Using gedit, create a new text file in the /root/devph/labs/Lab6.5 lab

folder named quantile.pig.
b. On the first line of the file, register the datafu JAR file which you installed

in the prior lab.
register /usr/hdp/current/pig-client/lib/datafu.jar;

c. Define the datafu.pig.stats.Quantile function as a quantile, and pass in
the values for computing the quartiles of a set of numbers:

define Quantile datafu.pig.stats.Quantile(
'0.0','0.25','0.50','0.75','1.0');

3) Load the Stocks
a. Enter the following LOAD command, which loads the first five values of

each row:
stocks = LOAD 'stocks.csv' USING PigStorage(',') AS
 (nyse:chararray,
 symbol:chararray,
 closingdate:chararray,
 openprice:double,
 highprice:double,
 lowprice:double);

4) Filter Null Values
a. The quantile function fails if any of the values passed to it are null. Define

a relation named stocks_filter that filters the stocks relation where the
highprice is not null.

Solution:
stocks_filter = FILTER stocks BY highprice is not null;

Lab: Analyzing Stock Market Data using Quantiles

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 81

5) Group the Values
a. We want to compute the quantiles for each individual stock (as opposed

to all the stock prices that start with a “Y”), so define a relation named
stocks_group that groups the stock_filter relation by symbol.

Solution:
stocks_group = GROUP stocks_filter BY symbol;

6) Compute the Quantiles
a. Define the following relation that invokes the Quantile method on the

highprice values:
quantiles = FOREACH stocks_group {
 sorted = ORDER stocks_filter BY highprice;

 GENERATE group AS symbol,
Quantile(sorted.highprice) AS quant;

};

b. How many times will the quantile function be invoked in the nested
FOREACH statement above?

Answer: The FOREACH statement iterates over the stocks_group, which is
a grouping by symbol. So the quantile function will be invoked once for
each unique stock symbol in the stocks.csv file.

c. Add a DUMP statement that outputs the quantiles relation:
DUMP quantiles;

7) Run the Script
a. Save your changes to quantile.pig.
b. Run the script:

pig quantile.pig

c. There is stock information in the input data, so the output will be the
quantiles of the high price of these five stocks:

(YGE,(3.22,10.97,14.79,19.6,41.5))
(YPF,(9.0,23.62,31.94,41.47,69.98))
(YSI,(1.56,8.04,16.435000000000002,19.93,23.61))
(YUM,(21.9,32.08,37.85,48.91,73.87))
(YZC,(4.41,14.4,20.795,47.13,116.73))

Lab: Analyzing Stock Market Data using Quantiles

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 82

8) Compute the Median
a. Now that you have a working Pig script for computing the quantiles of

the high prices of stocks, see if you can modify the script (you only have
to make a few changes) to compute the median value of the high prices.

Solution:

(1) Change the define statement to the following:
define Median datafu.pig.stats.Median();

(2) Change the quantiles definition to a medians definition as follows:
medians = FOREACH stocks_group {
 sorted = ORDER stocks_filter BY highprice;
 GENERATE group AS symbol,

Median(sorted.highprice) AS median;
};

(3) Change the DUMP command to display medians:
DUMP medians;

(4) Save the modified file as median.pig

(5) Run the modified script and view the results
pig median.pig

(6) The output will be the median values for the same five stocks:
(YGE,(14.79))
(YPF,(31.94))
(YSI,(16.435000000000002))
(YUM,(37.85))
(YZC,(20.795))

Result
You have used the DataFu library to compute the quantiles of a collection of numbers
using Pig.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 83

Lab: Understanding Hive Tables

About this Lab
Objective: Understand how Hive table data is stored in HDFS.

File locations: /root/devph/labs/7.1

Successful outcome: A new Hive table filled with the data from the wh_visits
folder.

Before you begin: Complete the Preparing Data for Hive lab, or put the data
from the solution of that lab into HDFS.

Related lesson: Hive Programming

Lab steps
1) Review the Data

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Use the hdfs dfs -ls command to view the contents of the

/apps/hive/warehouse/wh_visits/ folder in HDFS that was created in an
earlier lab. You should see six part-m files:

hdfs dfs -ls /apps/hive/warehouse/wh_visits/

c. Recall that the Pig projection to create these files had the following
schema (no typing necessary - this is reprinted below for reference only):

project_potus = FOREACH potus GENERATE
 $0 AS lname:chararray,
 $1 AS fname:chararray,
 $6 AS time_of_arrival:chararray,
 $11 AS appt_scheduled_time:chararray,
 $21 AS location:chararray,
 $25 AS comment:chararray ;

In this lab, you will define a Hive table that matches these records and contains
the exported data from your Pig script.

2) Define a Hive Script
a. In the Understanding /root/devph/labs/Lab7.1 folder, there is a text file

named wh_visits.hive. View its contents.

Lab: Understanding Hive Tables

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 84

Notice that it defines a Hive table named wh_visits with the following
schema that matches the data in your project_potus folder:

cd ~/devph/labs/Lab7.1
more wh_visits.hive
create table wh_visits (
 lname string,
 fname string,
 time_of_arrival string,
 appt_scheduled_time string,
 meeting_location string,
 info_comment string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t' ;

Note
You cannot use comment or location as column names because those are
reserved Hive keywords, so we changed them slightly.
b. Run the script with the following command:

hive -f wh_visits.hive

If successful, you should see “OK” in the output along with the time it took to
run the query.

3) Verify the Table Creation
a. Start the Hive Shell:

hive

b. From the hive> prompt, enter the “show tables” command:
hive> show tables;

You should see wh_visits in the list of tables.
c. Use the describe command to view the details of wh_visits:

hive> describe wh_visits;
OK
lname string
fname string
time_of_arrival string
appt_scheduled_time string
meeting_location string
info_comment string

Lab: Understanding Hive Tables

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 85

d. Try running a query (even though the table is empty):
hive> select * from wh_visits limit 20;

You should see 20 rows returned. How is this brand new Hive table already
populated with records? ________________________
Answer: In a previous lab, you already populated the
/apps/hive/warehouse/wh_visits folder with the output of a Pig job.

Why did the previous query not require a Tez or MapReduce job to execute?

Answer: The query selected all columns and did not contain a WHERE clause,
the query just needs to read in the data from the file and display it.

4) Count the Number of Rows in a Table
a. Enter the following Hive query, which outputs the number of rows in

wh_visits:
hive> select count(*) from wh_visits;

How many rows are currently in wh_visits? _____________

Answer: 21,819
5) Selecting the Input File Name

a. Hive has two virtual columns that get created automatically for every
table: INPUT__FILE__NAME and BLOCK__OFFSET__INSIDE__FILE.

Note that between each word in the column name there are two
underscore characters, not just one. You must make sure you type both
of them when using these columns in a hive command.

You can use these column names in your queries just like any other
column of the table. To demonstrate, run the following query:

hive> select INPUT__FILE__NAME, lname, fname FROM wh_visits WHERE
lname LIKE 'Y%';

b. The result of this query is visitors to the White House whose last name
starts with “Y.” Notice that the output also contains the particular file that
the record was found in:

hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse/wh_visits/
part-m-00000YOUNGMICHELLE
hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse/wh_visits/
part-m-00001YOUNGLEDISI

Lab: Understanding Hive Tables

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 86

6) Drop a Table
a. Let’s see what happens when a managed table is dropped. Start by

defining a simple table called names using the Hive Shell:
hive> create table names (id int, name string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

b. Use the Hive dfs command to put Lab7.1/names.txt into the table’s
warehouse folder:

hive> dfs -put /root/devph/labs/Lab7.1/names.txt
/apps/hive/warehouse/names/;

c. View the contents of the table’s warehouse folder:
hive> dfs -ls /apps/hive/warehouse/names;
Found 1 items
root hdfs 78 /apps/hive/warehouse/names/names.txt

d. From the Hive Shell, run the following query:
hive> select * from names;
OK
0 Rich
1 Barry
2 George
3 Ulf
4 Danielle
5 Tom
6 manish
7 Brian
8 Mark

e. Now drop the names table:
hive> drop table names;

f. View the contents of the table’s warehouse folder again. Notice the
names folder is gone:

hive> dfs -ls /apps/hive/warehouse/names;
ls: '/apps/hive/warehouse/names': No such file or directory

Important

Be careful when you drop a managed table in Hive. Make sure you either
have the data backed up somewhere else or that you no longer want the
data.

Lab: Understanding Hive Tables

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 87

7) Define an External Table
a. In this step you will see how external tables work in Hive. Start by putting

names.txt into HDFS:
hive> dfs -put /root/devph/labs/Lab7.1/names.txt names.txt;

b. Create a folder in HDFS for the external table to store its data in:
hive> dfs -mkdir hivedemo;

c. Define the names table as external this time:
hive> create external table names (id int, name string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/user/root/hivedemo';

d. Load data into the table:
hive> load data inpath '/user/root/names.txt' into table names;

e. Verify that the load worked:
hive> select * from names;

f. Notice the names.txt file has been moved to /user/root/hivedemo:
hive> dfs -ls hivedemo;
Found 1 items
-rw-r--r-- 1 root hdfs 78 hivedemo/names.txt

g. Similarly, verify that names.txt is no longer in your /user/root folder in
HDFS.

hive> dfs -ls /user/root/names.txt;

Why is it gone? _____________________

Answer: The LOAD command moved the file from /user/root to
/user/root/names. The LOAD command does not copy files; it moves them.
h. Use the ls command to verify that the /apps/hive/warehouse folder does

not contain a subfolder for the names table.
hive> dfs -ls /apps/hive/warehouse;

i. Now drop the names table:
hive> drop table names;

j. View the contents of /user/root/hivedemo. Notice that names.txt is still
there.

hive> dfs -ls /user/root/hivedemo;

Lab: Understanding Hive Tables

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 88

Result
You have verified that the data for external tables is not deleted when the
corresponding table is dropped. Aside from this behavior, managed tables and
external tables in Hive are essentially the same. You now have a table in Hive named
wh_visits that was loaded from the result of a Pig job. You also have an external table
called names that stores its data in /user/root/hivedemo. At this point, you should
have a pretty good understanding of how Hive tables are created and populated.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 89

Demonstration: Understanding Partit ions and Skew

About this Demonstration
Objective: To understand how Hive partitioning and skewed tables

work.

During this
Demonstration:

Watch as your instructor performs the following steps.

Related lesson: Hive Programming

Demonstration Steps
1) View the Data

a) If not already done, open a Terminal in your VM and type "ssh sandbox".
b) Review the hivedata_<<state>>.txt files in /root/devph/labs/demos. This will be

the data added to the table.
2) Define the Table in Hive
hive

hive> show partitions names;

3) Load Data into the Table
a) When you load data into a partitioned table, you specify which partition the

data goes into. For example:
hive> load data local inpath
'/root/devph/labs/demos/hivedata_ca.txt'
into table names partition (state = 'CA');

b) Load the CO and SD files also:
hive> load data local inpath
'/root/devph/labs/demos/hivedata_co.txt'
into table names partition (state = 'CO');
load data local inpath '/root/devph/labs/demos/hivedata_sd.txt'
into table names partition (state = 'SD');

Demonstration: Understanding Partitions and Skew

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 90

c) Verify that all of the data made it into the names table:
hive> select * from names;
OK
1 Ulf CA
2 Manish CA
3 Brian CA
4 George CO
5 Mark CO
6 Rich SD

4) View the Directory Structure
a) List the partitions and view the contents of /apps/hive/warehouse/names:

hive> show partitions names;
OK
state=CA
state=CO
state=SD

hive> dfs -ls -R /apps/hive/warehouse/names/;
0 /apps/hive/warehouse/names/state=CA
24 /apps/hive/warehouse/names/state=CA/hivedata_ca.txt
0 /apps/hive/warehouse/names/state=CO
16 /apps/hive/warehouse/names/state=CO/hivedata_co.txt
0 /apps/hive/warehouse/names/state=SD
6 /apps/hive/warehouse/names/state=SD/hivedata_sd.txt

Notice that each partition has its own subfolder for storing its contents.
5) Perform a Query

a) When you specify a where clause that includes a partition, Hive is smart
enough to only scan the files in that partition. For example:

hive> select * from names where state = 'CA';

OK

1 Ulf CA

2 Manish CA

3 Brian CA

b) Notice that a MapReduce job was not executed. Why? ______________________

Answer: The result of the query is exactly the contents of the underlying files,
so there is no need to run a MapReduce job. The files can simply be read and
displayed.

c) You can select the partition field, even though it is not actually in the data file.
Hive uses the directory name to retrieve the value:

Demonstration: Understanding Partitions and Skew

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 91

hive> select name, state from names where state = 'CA';

d) You can still run queries across the entire dataset. For example, the following
query spans multiple partitions. When you are done, use quit to exit the Hive
shell.:

hive> select name, state from names where state = 'CA' or state =
'SD';

hive> quit;

6) Create a Skewed Table
a) Verify the existence of the salaries.txt folder in ~/devph/labs/demos/ and then

put it into the /user/root/salarydata/ folder in HDFS.
ls salaries.txt

hdfs dfs -put salaries.txt /user/root/salarydata/salaries.txt

b) View the contents of demos/skewdemo.hive, which defines a skewed table
named skew_demo using the salaries.txt data:

more skewdemo.hive

c) Which values are skewing this table? ___________________________
Answer: The skewed values are the 95102 and 94040 zip codes.

7) Run the skewdemo.hive script:
hive -f skewdemo.hive

a) View the contents of the underlying Hive warehouse folder:
hdfs dfs -ls -R /apps/hive/warehouse/skew_demo

b) Select a few records to make sure the table has data behind it:
hive -f show_skewdemo.hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 93

Lab: Analyzing Big Data with Hive

About this Lab
Objective: Analyze the White House visitor data.

File locations: /root/devph/labs/Lab7.2

Successful
outcome:

You will have discovered several useful pieces of
information about the White House visitor data.

Before you begin: Complete the Understanding Hive Tables Lab.

Related lesson: Hive Programming

Lab Steps
1) Find the First Visit

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Using gedit, create a new text file named whitehouse.hive and save it in

your ~/devph/labs/Lab7.2 folder.
c. In this step, you will instruct the hive script to find the first visitor to the

White House (based on our dataset). This will involve some clever
handling of timestamps. This will be a long query, so enter it on multiple
lines (note the lack of a ";" at the end of this first step). Start by selecting
all columns where the time_of_arrival is not empty:

select * from wh_visits where time_of_arrival != ""

d. To find the first visit, we need to sort the result. This requires converting
the time_of_arrival string into a timestamp. We will use the
unix_timestamp function to accomplish this. Add the following order by
clause (again, no ";" at the end of the line):

order by unix_timestamp(time_of_arrival,
 'MM/dd/yyyy hh:mm')

e. Since we are only looking for one result, we certainly don’t need to
return every row. Let’s limit the result to 10 rows, so we can view the first
10 visitors (this finishes the query, so will end with the ";" character):

limit 10;

f. Save your changes to whitehouse.hive.

Lab: Analyzing Big Data with Hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 94

g. Execute the script whitehouse.hive and wait for the results to be
displayed:

cd ~/devph/labs/Lab7.2

hive -f whitehouse.hive

h. The results should be 10 visitors, and the first visit should be in 2009,
since that is when the dataset begins. The first visitors are Charles Kahn
and Carol Keehan on 3/5/2009.

2) Find the Last Visit
a. This one is easy: just take the previous query and reverse the order by

adding desc to the order by clause:
order by unix_timestamp(time_of_arrival,
 'MM/dd/yyyy hh:mm') desc

b. Run the query again, and you should see that the most recent visit was
Jackie Walker on 3/18/2011.

hive -f whitehouse.hive

3) Find the Most Common Comment
a. In this step, you will explore the info_comment field and try to determine

the most common comment. You will use some of Hive’s aggregate
functions to accomplish this. Start by using gedit to create a new text file
named comments.hive and save it in ~/devph/labs/Lab7.2 folder.

b. You will now create a query that displays the 10 most frequently
occurring comments. Start with the following select clause:

from wh_visits
select count(*) as comment_count, info_comment

This runs the aggregate count function on each group (which you will define later in
the query) and names the result comment_count. For example, if “OPEN HOUSE” occurs
five times then comment_count will be five for that group.
Notice we are also selecting the info_comment column so we can see what the
comment is.

c. Group the results of the query by the info_comment column:
group by info_comment

Lab: Analyzing Big Data with Hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 95

d. Order the results by comment_count, because we are only interested in
comments that appear most frequently:

order by comment_count DESC

e. We only want the top results, so limit the result set to 10:
limit 10;

f. Save your changes to comments.hive and execute the script. Wait for the
MapReduce job to execute.

hive -f comments.hive

g. The output will be 10 comments and should look like:
9036
1253 HOLIDAY BALL ATTENDEES/
894 WHO EOP RECEP 2
700 WHO EOP 1 RECEPTION/
601 RESIDENCE STAFF HOLIDAY RECEPTION/
586 PRESS RECEPTION ONE (1)/
580 GENERAL RECEPTION 1
540 HANUKKAH RECEPTION./
540 GEN RECEP 5/
516 GENERAL RECEPTION 3

h. It appears that a blank comment is the most frequent comment, followed
by the HOLIDAY BALL, then a variation of other receptions.

i. Modify the query so that it ignores empty comments. If it works, the
comment “GEN RECEP 6/” will show up in your output.

Solution:
--In comments.hive, insert the following line between your select
and group statements:

where info_comment != ""

Save the changes, then back at the command line, re-run the query:

hive -f comments.hive

Lab: Analyzing Big Data with Hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 96

4) Least Frequent Comment
a. Run the previous query again, but this time, find the 10 least occurring

comments.
--Remove DESC from your order statement so that it looks like
this:

order by comment_count

Save the changes, then back at the command line, re-run the query:

hive -f comments.hive

The output should look something like:
1 CONGRESSIONAL BALL/
1 CONG BALL/
1 merged to u59031
1 CONGRESSIONAL BALL
1 CONG BALL
1 COMMUNITY COLLEGE SUMMIT
1 48 HOUR WAVE EXCEPTION GRANTED
1 DROP BY VISIT
1 WHO EOP/
1 "POTUS LUNCH WITH WASHINGTON

This seems accurate since 1 is the least number of times a comment can
appear.

5) Analyze the Data Inconsistencies
a. Analyzing the results of the most- and least-frequent comments, it

appears that several variations of GENERAL RECEPTION occur. In this step,
you will try to determine the number of visits to the POTUS involving a
general reception by trying to clean up some of these inconsistencies in
the data.

Note
Inconsistencies like these are very common in big data, especially when
human input is involved. In this dataset, we likely have different people
entering similar comments but using their own abbreviations.

b. Modify the query in comments.hive. Instead of searching for empty
comments. Search for comments that contain variations of the string
“GEN RECEP.”

where info_comment rlike '.*GEN.*\\s+RECEP.*'

Lab: Analyzing Big Data with Hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 97

c. Change the limit clause from 10 to 30:
limit 30;

d. Run the query again.
hive -f comments.hive

e. Notice there are several GENERAL RECEPTION entries that only differ by a
number at the end or use the GEN RECEP abbreviation:

580 GENERAL RECEPTION 1
540 GEN RECEP 5/
516 GENERAL RECEPTION 3
498 GEN RECEP 6/
438 GEN RECEP 4
31 GENERAL RECEPTION 2
23 GENERAL RECEPTION 3
20 GENERAL RECEPTION 6
20 GENERAL RECEPTION 5
13 GENERAL RECEPTION 1

f. Let’s try one more query to try and narrow GENERAL RECEPTION visit.
Modify the WHERE clause in comments.hive to include “%GEN%”:

where info_comment like "%RECEP%"
and info_comment like "%GEN%"

g. Leave the limit at 30, save your changes, and run the query again.
hive -f comments.hive

h. The output this time reveals all the variations of GEN and RECEP. Next, let’s
add up the total number of them by running the following query:

from wh_visits
select count(*)
where info_comment like "%RECEP%"
and info_comment like "%GEN%";

--Then save your changes and run the query again from the command
line:

hive -f comments.hive

i . Notice there are 2,697 visits to the POTUS with GEN RECEP in the
comment field, which is about 12% of the 21,819 total visits to the
POTUS in our dataset.

Lab: Analyzing Big Data with Hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 98

Note
More importantly, these results show that the conclusion from our first
query, where we found that the most likely reason to visit the President
was the HOLIDAY BALL with 1,253 attendees, is incorrect. This type of
analysis is common in big data, and it shows how data analysts need to
be creative and thorough when researching their data.

6) Verify the Result
a. We have 12% of visitors to the POTUS going for a general reception, but

there were a lot of statements in the comments that contained WHO and
EOP. Modify the query from the last step and display the top 30
comments that contain “WHO” and “EOP.”

--You should be able to undo changes to comments.hive and restore
it to the state before the last lab. Then make the following two
additional edits:

--Change the where clause to match WHO and EOP

where info_comment like "%WHO%"
and info_comment like "%EOP%";

--Add the DESC command back to the end of the order statement

order by comment_count DESC

--Finally, double-check select count(*) as comment_count,
info_count
--Make sure the "as..." portion is there

--Then save your changes and run the query again from the command
line:

hive -f comments.hive

Lab: Analyzing Big Data with Hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 99

The result should look like:
894 WHO EOP RECEP 2
700 WHO EOP 1 RECEPTION/
43 WHO EOP RECEP/
20 WHO EOP HOLIDAY RECEP/
13 WHO/EOP #2/
8 WHO EOP RECEPTION
7 WHO EOP RECEP
1 WHO EOP/
1 WHO EOP RECLEAR

b. Modify the script again, this time to run a query that counts the number
of records with WHO and EOP in the comments, and run the query:

from wh_visits
select count(*)
where info_comment like "%WHO%"
and info_comment like "%EOP%";

--Run the query from the command line:

hive -f comments.hive

You should get 1,687 visits, or 7.7% of the visitors to the POTUS. So
GENERAL RECEPTION still appears to be the most frequent comment.

7) Find the Most Visits
a. See if you can write a Hive script that finds the top 20 individuals who

visited the POTUS most. Use the Hive command from Step 3 earlier in
this lab as a guide.

Tip
Use a grouping by both fname and lname.

The following script will accomplish the intention of the previous step:
from wh_visits
 select count(*) as most_visit, fname, lname
 group by fname, lname
 order by most_visit DESC
 limit 20;

Lab: Analyzing Big Data with Hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 100

To verify that your script worked, here are the top 20 individuals who
visited the POTUS along with the number of visits (your output may vary
slightly due to randomization of names):

16 ALAN PRATHER
15 CHRISTOPHER FRANKE
15 ANNAMARIA MOTTOLA
14 ROBERT BOGUSLAW
14 CHARLES POWERS
12 SARAH HART
12 JACKIE WALKER
12 JASON FETTIG
12 SHENGTSUNG WANG
12 FERN SATO
12 DIANA FISH
11 JANET BAILEY
11 PETER WILSON
11 GLENN DEWEY
11 MARCIO BOTELHO
11 DONNA WILLINGHAM
10 DAVID AXELROD
10 CLAUDIA CHUDACOFF
10 VALERIE JARRETT
10 MICHAEL COLBURN

Result
You have written several Hive queries to analyze the White House visitor data. The
goal is for you to become comfortable with working with Hive, so hopefully you now
feel like you can tackle a Hive problem and be able to answer questions about your
big data stored in Hive.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 101

Demonstration: Computing ngrams

About this Demonstration
Objective: To understand how to compute ngrams using Hive.
During this
demonstration:

 Watch as your instructor performs the following steps.

Related
lesson:

 Hive Programming

Demonstration Steps
1) Create a Hive Table for the Data

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. This demonstration computes ngrams on the U.S. Constitution, which is

in a text file in the /root/devph/labs/demos folder:
cd ~/devph/labs/demos/
more constitution.txt

--press q to exit more

c. Start the Hive shell and define the following table:
hive

hive> create table constitution (
line string
)
ROW FORMAT DELIMITED;

Each line of text in the text file is going to be a record in our Hive table.
2) Load the Hive Table

a. Load constitution.txt into the constitution table:
hive> load data local inpath
'/root/devph/labs/demos/constitution.txt' into table constitution;

b. Verify that the data is loaded:
hive> select * from constitution;

You should see the contents of constitution.txt again.

Demonstration: Computing ngrams

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 102

3) Compute a Bigram
hive> select explode(ngrams(sentences(line),2,15)) as x
from constitution;

The result should look similar to:
{"ngram":["of","the"],"estfrequency":194.0}
{"ngram":["shall","be"],"estfrequency":100.0}
{"ngram":["the","United"],"estfrequency":76.0}
{"ngram":["United","States"],"estfrequency":76.0}
{"ngram":["to","the"],"estfrequency":57.0}
{"ngram":["shall","have"],"estfrequency":44.0}
{"ngram":["the","President"],"estfrequency":30.0}
{"ngram":["shall","not"],"estfrequency":29.0}
{"ngram":["in","the"],"estfrequency":28.0}
{"ngram":["by","the"],"estfrequency":25.0}
{"ngram":["the","Congress"],"estfrequency":22.0}
{"ngram":["and","the"],"estfrequency":21.0}
{"ngram":["for","the"],"estfrequency":21.0}
{"ngram":["Vice","President"],"estfrequency":21.0}
{"ngram":["the","Senate"],"estfrequency":21.0}
{"ngram":["States","and"],"estfrequency":20.0}
{"ngram":["States","shall"],"estfrequency":19.0}
{"ngram":["any","State"],"estfrequency":18.0}
{"ngram":["Congress","shall"],"estfrequency":18.0}
{"ngram":["on","the"],"estfrequency":17.0}

Demonstration: Computing ngrams

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 103

4) Compute a Trigram
{"ngram":["the","United","States"],"estfrequency":68.0}
{"ngram":["of","the","United"],"estfrequency":51.0}
{"ngram":["shall","not","be"],"estfrequency":16.0}
{"ngram":["of","the","Senate"],"estfrequency":14.0}
{"ngram":["States","shall","be"],"estfrequency":13.0}
{"ngram":["House","of","Representatives"],"estfrequency":13.0}
{"ngram":["United","States","shall"],"estfrequency":13.0}
{"ngram":["shall","have","been"],"estfrequency":12.0}
{"ngram":["the","several","States"],"estfrequency":12.0}
{"ngram":["President","of","the"],"estfrequency":11.0}
{"ngram":["United","States","and"],"estfrequency":11.0}
{"ngram":["The","Congress","shall"],"estfrequency":10.0}
{"ngram":["the","House","of"],"estfrequency":10.0}
{"ngram":["United","States","or"],"estfrequency":10.0}
{"ngram":["Congress","shall","have"],"estfrequency":10.0}
{"ngram":["the","Vice","President"],"estfrequency":9.0}
{"ngram":["of","the","President"],"estfrequency":8.0}
{"ngram":["Consent","of","the"],"estfrequency":8.0}
{"ngram":["shall","be","the"],"estfrequency":7.0}
{"ngram":["by","the","Congress"],"estfrequency":7.0}

5) Compute a Contextual ngram
a. Let’s find the 20 most frequent words that follow “the”:

hive> select explode(context_ngrams(sentences(line),
array("the",null),20)) as result
from constitution;

Demonstration: Computing ngrams

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 104

b. The result should look similar to:
{"ngram":["United"],"estfrequency":76.0}
{"ngram":["President"],"estfrequency":30.0}
{"ngram":["Congress"],"estfrequency":22.0}
{"ngram":["Senate"],"estfrequency":21.0}
{"ngram":["several"],"estfrequency":15.0}
{"ngram":["Vice"],"estfrequency":12.0}
{"ngram":["State"],"estfrequency":11.0}
{"ngram":["same"],"estfrequency":10.0}
{"ngram":["Constitution"],"estfrequency":10.0}
{"ngram":["States"],"estfrequency":10.0}
{"ngram":["House"],"estfrequency":10.0}
{"ngram":["whole"],"estfrequency":10.0}
{"ngram":["office"],"estfrequency":9.0}
{"ngram":["right"],"estfrequency":8.0}
{"ngram":["Legislature"],"estfrequency":8.0}
{"ngram":["Consent"],"estfrequency":6.0}
{"ngram":["powers"],"estfrequency":6.0}
{"ngram":["supreme"],"estfrequency":6.0}
{"ngram":["people"],"estfrequency":6.0}
{"ngram":["first"],"estfrequency":6.0}

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 105

Lab: Joining Datasets in Hive

About this Lab
Objective: Perform a join of two datasets in Hive.

File locations: /root/devph/labs/Lab7.4

Successful outcome: A table named stock_aggregates that contains a join of
NYSE stock prices with the stock’s dividend prices.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Hive Programming

Lab Steps
1) Load the Data into Hive

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. View the contents of the file setup.hive in /root/devph/labs/Lab7.4:

cd ~/devph/labs/Lab7.4/
more setup.hive

c. Notice that this script creates three tables in Hive. The nyse_data table is
filled with the daily stock prices of stocks that start with the letter K and
the dividends table that contains the quarterly dividends of those stocks.
The stock_aggregates table is going to be used for a join of these two
datasets and contain the stock price and dividend amount on the date
the dividend was paid.

d. Run the setup.hive script from the Joining Datasets in Hive lab folder:
hive -f setup.hive

e. To verify that the script worked, enter the Hive Shell and run the
following following queries:

hive

hive> select * from nyse_data limit 20;

hive> select * from dividends limit 20;

You should see daily stock prices and dividends from stocks that start
with the letter K.

Lab: Joining Datasets in Hive

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 106

f. The stock_aggregates table should be empty, but view its schema to
verify that it was created successfully, then type quit to exit the Hive
Shell:

hive> describe stock_aggregates;
OK
symbol string
year string
high float
low float
average_close float
total_dividends float

hive> quit;

2) Join the Datasets
a. The join statement is going to be fairly long, so let’s create it in a text file.

Use gedit to create a new text in the /root/devph/labs/Lab7.4/ folder
named join.hive.

b. We will break the join statement down into sections. First, the result of
the join is going to be put into the stock_aggregates table, which requires
an insert:

insert overwrite table stock_aggregates

The overwrite causes any existing data in stock_aggregates to be deleted.
c. The data being inserted is going to be the result of a select query that

contains various insightful indicators about each stock. The result is
going to contain the stock symbol, date traded, maximum high for the
stock, minimum low, average close, and the sum of dividends, as shown
here:

select a.symbol, year(a.trade_date), max(a.high), min(a.low),
avg(a.close), sum(b.dividend)

d. The from clause is the nyse_data table:
from nyse_data a

e. The join is going to be a left outer join of the dividends table:
left outer join dividends b

f. The join is by stock symbol and trade date:
on (a.symbol = b.symbol and a.trade_date = b.trade_date)

Lab: Joining Datasets in Hive

107

g. Let’s group the result by symbol and trade date:
group by a.symbol, year(a.trade_date);

h. Save your changes to join.hive.
3) Run the Query

a. Run the query and wait for Tez to execute:
hive -f join.hive

b. How many total mappers and reducers does it take to perform this
query?
Answer: Two mappers and one reducer.

4) Verify the Results
a. Enter the Hive Shell and run a select query to view the contents of

stock_aggregates:
hive

hive> select * from stock_aggregates;

The output should look like:
KYO 2004 90.9 66.25 75.79952 0.544
KYO 2005 78.45 62.58 72.042656 0.91999996
KYO 2006 98.01 71.73 85.80327 0.851
KYO 2007 110.01 81.09 3.737686 NULL
KYO 2008 100.78 45.41 79.6098 NULL
KYO 2009 93.2 52.98 77.04389 NULL
KYO 2010 93.83 85.94 90.71 NULL
stock_symbolNULLNULLNULLNULLNULL

5) List the contents of the stock_aggregates directory in HDFS. The 000000_0 file
was created as a result of the join query:

hive> dfs -ls -R /apps/hive/warehouse/stock_aggregates/;
-rw-r--r-- 3 root hdfs 41109
/apps/hive/warehouse/stock_aggregates/000000_0

a. View the contents of the stock_aggregates table using the cat command:
hive> dfs -cat /apps/hive/warehouse/stock_aggregates/000000_0;

Result
The stock_aggregates table is a joining of the daily stock prices and the quarterly
dividend amounts on the date the dividend was announced, and the data in the table
is an aggregate of various statistics like max high, min low, etc.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 109

Lab: Computing ngrams of Emails in Avro Format

About this Lab
Objective: Use Hive to compute ngrams.

File locations: /root/devph/labs/Lab7.5

Successful
outcome:

 A bigram of words found in a collection of Avro-formatted
emails.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Hive Programming

Lab Steps
1) View an Avro Schema

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Change directories to the /root/devph/labs/Lab7.5 folder. Notice this

folder contains an Avro file named sample.avro.
cd ~/devph/labs/Lab7.5

ls sample.avro

c. Enter the following command to view the schema of the contents of
sample.avro:

avro cat --print-schema sample.avro

d. How many fields do records in sample.avro have?

Answer: Four fields
e. Create a schema file for sample.avro:

avro cat --print-schema sample.avro > sample.avsc

f. Put the schema file in HDFS:
hdfs dfs -put sample.avsc

Lab: Computing ngrams of Emails in Avro Format

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 110

2) Create a Hive Table from an Avro Schema
a. View the contents of the CREATE TABLE query defined in the

create_sample_table.hive file in your Computing ngrams of Emails in
Avro Format lab folder:

more create_sample_table.hive

b. Make sure the avro.schema.url property points to the schema file you
created in the previous step:

WITH SERDEPROPERTIES (
 'avro.schema.url'='hdfs:///user/root/sample.avsc')

c. Run the CREATE TABLE query:
hive -f create_sample_table.hive

3) Verify the Table
a. Start the Hive shell.

hive

b. Run the show tables command and verify that you have a table named
sample_table.

hive> show tables;

c. Run the describe command on sample_table. Notice the schema for
sample_table matches the Avro schema from sample.avsc.

hive> describe sample_table;

d. Let’s associate some data with sample_table. Copy sample.avro into the
Hive warehouse folder by running the following command (all on a single
line):

hive> dfs -put /root/devph/labs/Lab7.5/sample.avro
/apps/hive/warehouse/sample_table;

e. View the contents of sample_table, then quit the Hive Shell:
hive> select * from sample_table;
OK
Foo 19 10, Bar Eggs Spam 800

hive> quit;

Note that there is only one record in sample.avro. You have now seen how to
create a Hive table using an Avro schema file. This was a simple example; next
you will complete these steps using a large data file that contains emails in an
Avro format.

Lab: Computing ngrams of Emails in Avro Format

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 111

4) Create an Email-User Table
a. There is an Avro file in your /root/devph/labs/Lab7.5 folder named

mbox7.avro, which represents emails in an Avro format from a Hive
mailing list for the month of July. Use the --print-schema option of avro
to view the schema of this file.

avro cat --print-schema mbox7.avro

b. How many fields do records in mbox7.avro have?

Answer: Four fields
c. Run the --print-schema command again, but this time output the

schema to a file named mbox.avsc:
avro cat --print-schema mbox7.avro > mbox.avsc

d. Put the Avro schema file into /user/root in HDFS:
hdfs dfs -put mbox.avsc

e. Use more to view the contents of the create_email_table.hive ;:script in
your /root/devph/labs/Lab7.5 folder. Verify the avro.schema.url property
is correct.

more create_email_table.hive

f. Run the script to create the hive_user_email table:
hive -f create_email_table.hive

g. Copy mbox7.avro into the warehouse directory:
hdfs dfs -put mbox7.avro /apps/hive/warehouse/hive_user_email

h. Start the Hive shell and verify the table has data in it:
hive

hive> select * from hive_user_email limit 20;

5) Compute a Bigram
a. Use the Hive ngrams function to create a bigram of the words in

mbox7.avro:
hive> select
 ngrams(sentences(content),2 ,10)
 from hive_user_email;

Lab: Computing ngrams of Emails in Avro Format

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 112

The output will be kind of a jumbled mess:
[{"ngram":["2013","at"],"estfrequency":802.0},{"ngram":["of","the"
],"estfrequency":391.0},{"ngram":["I","am"],"estfrequency":368.0},
{"ngram":["I","have"],"estfrequency":340.0},{"ngram":["J","E9r"],"
estfrequency":306.0},{"ngram":["for","the"],"estfrequency":291.0},
{"ngram":["you","are"],"estfrequency":289.0},{"ngram":["user","hiv
e.apache.org"],"estfrequency":289.0},{"ngram":["to","the"],"estfre
quency":276.0},{"ngram":["E9r","F4me"],"estfrequency":270.0}]

b. To clean this up, use the Hive explode function to display the output in a
more readable format:

hive> select
 explode(ngrams(sentences(content),2 ,10))
 from hive_user_email;

You should see a nice, readable list of 10 bigrams:
{"ngram":["2013","at"],"estfrequency":802.0}
{"ngram":["of","the"],"estfrequency":391.0}
{"ngram":["I","am"],"estfrequency":368.0}
{"ngram":["I","have"],"estfrequency":340.0}
{"ngram":["J","E9r"],"estfrequency":306.0}
{"ngram":["for","the"],"estfrequency":291.0}
{"ngram":["you","are"],"estfrequency":289.0}
{"ngram":["user","hive.apache.org"],"estfrequency":289.0}
{"ngram":["to","the"],"estfrequency":276.0}
{"ngram":["E9r","F4me"],"estfrequency":270.0}

c. Typically when working with word comparison we ignore case. Run the
query again, but this time add the Hive lower function and compute 20
bigrams:

hive> select
 explode(ngrams(sentences(lower(content)),2 ,20))
 from hive_user_email;

Lab: Computing ngrams of Emails in Avro Format

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 113

The output should look like the following:
{"ngram":["2013","at"],"estfrequency":802.0}
{"ngram":["i","have"],"estfrequency":409.0}
{"ngram":["of","the"],"estfrequency":391.0}
{"ngram":["i","am"],"estfrequency":372.0}
{"ngram":["if","you"],"estfrequency":347.0}
{"ngram":["in","hive"],"estfrequency":337.0}
{"ngram":["for","the"],"estfrequency":309.0}
{"ngram":["j","e9r"],"estfrequency":306.0}
{"ngram":["you","are"],"estfrequency":289.0}
{"ngram":["user","hive.apache.org"],"estfrequency":289.0}
{"ngram":["to","the"],"estfrequency":276.0}
{"ngram":["outer","join"],"estfrequency":271.0}
{"ngram":["2013","06"],"estfrequency":270.0}
{"ngram":["e9r","f4me"],"estfrequency":270.0}
{"ngram":["left","outer"],"estfrequency":270.0}
{"ngram":["in","the"],"estfrequency":252.0}
{"ngram":["gmail.com","wrote"],"estfrequency":248.0}
{"ngram":["17","16"],"estfrequency":248.0}
{"ngram":["06","17"],"estfrequency":246.0}
{"ngram":["wrote","hi"],"estfrequency":234.0}

6) Compute a Context ngram
a. From the Hive shell, run the following query, which uses the

context_ngrams function to find the top 20 terms that follow the word
“error”:

hive> select
explode(context_ngrams(sentences(lower(content)),
array("error", null) ,20))
from hive_user_email;

Lab: Computing ngrams of Emails in Avro Format

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 114

The output should look like the following:
{"ngram":["in"],"estfrequency":102.0}
{"ngram":["return"],"estfrequency":97.0}
{"ngram":["org.apache.hadoop.hive.ql.exec.udfargumenttypeexception
"],"estfrequency":49.0}
{"ngram":["failed"],"estfrequency":49.0}
{"ngram":["is"],"estfrequency":41.0}
{"ngram":["message"],"estfrequency":40.0}
{"ngram":["when"],"estfrequency":39.0}
{"ngram":["please"],"estfrequency":36.0}
{"ngram":["while"],"estfrequency":28.0}
{"ngram":["org.apache.thrift.transport.ttransportexception"],"estf
requency":28.0}
{"ngram":["datanucleus.plugin"],"estfrequency":26.0}
{"ngram":["during"],"estfrequency":18.0}
{"ngram":["query"],"estfrequency":16.0}
{"ngram":["hive"],"estfrequency":16.0}
{"ngram":["could"],"estfrequency":16.0}
{"ngram":["java.lang.runtimeexception"],"estfrequency":13.0}
{"ngram":["13"],"estfrequency":12.0}
{"ngram":["error"],"estfrequency":12.0}
{"ngram":["exec.execdriver"],"estfrequency":10.0}
{"ngram":["exec.task"],"estfrequency":10.0}

b. What is the most likely word to follow “error” in these emails?

Answer: “in”
c. Run a Hive query that finds the top 20 results for words in mbox7.avro

that follow the phrase “error in.”

Solution:
select
 explode(context_ngrams(sentences(lower(content)),

array("error", "in", null) ,20))
 from hive_user_email;

Result
You have written several Hive queries that computed bigrams based on the data in
the mbox7.avro file. You should also be familiar with working with Avro files, a popular
file format in Hadoop.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 115

Lab: Using HCatalog with Pig

About this Lab
Objective: Use HCatalog to provide the schema for a Pig relation.

File locations: n/a

Successful outcome: You will have written a Pig script that uses HCatLoader to
retrieve a schema from an HCatalog table and HCatStorer to
write data to a table managed by HCatalog.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM. Complete the Understanding Hive Tables Lab.

Related lesson: Using HCatalog

Lab Steps
1) Start the Grunt Shell

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Start the Grunt shell for use with HCatalog:

pig -useHCatalog

2) Load an HCatalog Table
a. Define a relation for the wh_visits table in Hive using the HCatLoader():

grunt> visits = LOAD 'wh_visits' USING
org.apache.hive.hcatalog.pig.HCatLoader();

b. View the schema of the visits relation to verify that it matches the
schema of the wh_visits table:

grunt> describe visits;

visits: {lname: chararray,fname: chararray,time_of_arrival:
chararray,appt_scheduled_time: chararray,meeting_location:
chararray,info_comment: chararray}

3) Run a Pig Query
a. Let’s execute a query to verify that everything is working. Define the

following relation:
grunt> joe = FILTER visits BY (fname == 'JOE');

Lab: Using HCatalog with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 116

b. Dump the relation:
grunt> DUMP joe;

The output should be visitors from wh_visits with the first name “JOE.”
4) Create an HCatalog Schema

a. Quit the Grunt shell and start the Hive shell.
grunt> quit;

hive

b. An HCatalog schema is essentially just a table in the Hive metastore. To
define a schema for use with HCatalog, create a table in Hive:

hive> create table joes (fname string, lname string, comments
string);

c. Verify that the table was created successfully using ‘show tables.’
hive> show tables;

d. Use the describe command to view the schema of joes:
hive> describe joes;
OK
fname string
lname string
comments string

5) Using HCatStorer
a. Exit the Hive shell and start the Grunt shell again. Be sure to use the

useHCatalog option:
hive> quit;

pig -useHCatalog

b. Define the visits and joe relations again (using the up arrow to browse
through the history of Pig commands).

c. In this step, you will use HCatStorer in Pig to input records into the joes
table. To do this, you need a relation whose fields match the schema of
joes. You can accomplish this using a projection. Define the following
relation:

grunt> project_joe = FOREACH joe GENERATE fname, lname,
info_comment;

Lab: Using HCatalog with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 117

d. Store the projection into the HCatalog table using the STORE command:
grunt> STORE project_joe INTO 'joes' USING
org.apache.hive.hcatalog.pig.HCatStorer();

This command failed. Why? _________________

Answer: The initial STORE command failed because the field names in the
relation you were trying to store did not match the column names of the
underlying table’s schema.
e. Notice that the projection has fields named fname, lname, and

info_comment, but the joes table in HCatalog has a schema with fname,
lname, and comments. The fname and lname fields match, but info_comment
needs to be renamed to comments. Modify your projection by using the
AS keyword:

grunt> project_joe = FOREACH joe GENERATE fname, lname,
info_comment AS comments;

f. Now run the STORE command again:
grunt> STORE project_joe INTO 'joes' USING
org.apache.hive.hcatalog.pig.HCatStorer();

This time the command should work and a MapReduce job will execute.
6) Verify that the STORE Worked

a. Quit the Grunt shell and start the Hive shell again.
grunt> quit;

hive

b. View the contents of the joes table:
hive> select * from joes;

You should see visitors all named “JOE,” along with their last name and
the comments.

7) View the Files
a. You can also check the file system to see if a STORE command worked:

hive> dfs -ls /apps/hive/warehouse/joes/;
Found 1 items
-rw-r--r-- 1 root hdfs 896 /apps/hive/warehouse/joes/part-m-00000

Lab: Using HCatalog with Pig

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 118

Notice that the file for the joes table is named part-m-00000. Where did
that name come from?

Answer: The part-m-00000 file is a result of the Pig MapReduce job that
executed when you ran the STORE command with HCatStorer.

b. Use the cat command to view the contents of part-m-00000:
hive> dfs -cat /apps/hive/warehouse/joes/part-m-00000;

As you can see, this is the same list of names from the Hive select *
query, which should be no surprise at this point in the course.

Result
You have seen how to run a Pig script that uses HCatalog to provide the schema
using HCatLoader and HCatStorer.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 119

Lab: Advanced Hive Programming

About this Lab
Objective: To understand how some of the more advanced features of

Hive work, including multi-table inserts, views, and
windowing.

File locations: /root/devph/labs/Lab9.1

Successful
outcome:

You will have executed numerous Hive queries on customer
order data.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Advanced Hive Programming

Lab Steps
1) Create and Populate a Hive Table

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. From the command line, change directories to /root/devph/labs/Lab9.1

folder:
cd ~/devph/labs/Lab9.1

c. View the contents of the orders.hive file in that folder:
more orders.hive

Notice it defines a Hive table named orders that has seven columns.
d. Execute the contents of orders.hive:

hive -f orders.hive

e. From the Hive shell, verify that the script worked by running the following
commands:

hive

hive> describe orders;
hive> select count(*) from orders;

Your orders table should contain 99,999 records.

Lab: Advanced Hive Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 120

2) Analyze the Customer Data
a. Let’s run a few queries to see what this data looks like. Start by verifying

that the username column actually looks like names:
hive> SELECT username FROM orders LIMIT 10;

You should see 10 first names.
b. The orders table contains orders placed by customers. Run the following

query, that shows the 10 lowest-price orders:
hive> SELECT username, ordertotal FROM orders ORDER BY ordertotal
LIMIT 10;

The smallest orders are each $10, as you can see from the output:
Chelsea 10
Samantha 10
Danielle 10
Kimberly 10
Tiffany 10
Megan 10
Maria 10
Megan 10
Melissa 10
Christina 10

c. Run the same query, but this time use descending order:
hive> SELECT username, ordertotal FROM orders ORDER BY ordertotal
DESC LIMIT 10;

The output this time is the 10 highest-priced orders:
Brandon 612
Mark 612
Sean 612
Jordan 612
Anthony 612
Paul 611
Jonathan 611
Eric 611
Nathan 611
Jordan 610

d. Let’s find out if men or women spent more money:
hive> SELECT sum(ordertotal), gender FROM orders GROUP BY gender;

Lab: Advanced Hive Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 121

Based on the output, which gender has spent more money on purchases?

Answer: Men spent $9,919,847, and women spent $9,787,324.
e. The orderdate column is a string with the format yyyy-mm-dd. Use the

year function to extract the various parts of the date. For example, run
the following query, which computes the sum of all orders for each year:

hive> SELECT sum(ordertotal), year(order_date) FROM orders GROUP
BY year(order_date);

The output should look like this. Verify, then quit the Hive shell:
4082780 2009
4404806 2010
4399886 2011
4248950 2012
2570749 2013

hive> quit;

3) Multi-File Insert
a. In this step, you will run two completely different queries, but in a single

job. The output of the queries will be in two separate directories in
HDFS. Start by using gedit to create a new text file in the
/root/devph/labs/Lab9.1 folder named multifile.hive.

b. Within the text file, enter the following query. Notice there is no
semicolon between the two INSERT statements:

FROM ORDERS o
INSERT OVERWRITE DIRECTORY '2010_orders'
SELECT o.* WHERE year(order_date) = 2010
INSERT OVERWRITE DIRECTORY 'software'
SELECT o.* WHERE itemlist LIKE '%Software%';

c. Save your changes to multifile.hive.
d. Run the query from the command line:

hive -f multifile.hive

e. The above query executes in a single job. Even more interesting, it only
requires a map phase.
Why did this job not require a reduce phase?
Answer: Because the query only does a SELECT *, no reduce phase was
needed.

Lab: Advanced Hive Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 122

f. Verify that the two queries executed successfully by viewing the folders
in HDFS:

hdfs dfs -ls

You should see two new folders: 2010_orders and software.
g. View the output files in these two folders. Verify that the 2010_orders

directory contains orders from only the year 2010, and verify that the
software directory contains only orders that included ‘Software.’

hdfs dfs -ls 2010_orders

hdfs dfs -cat 2010_orders/000000_0

hdfs dfs -ls software

hdfs dfs -cat software/000000_0

4) Define a View
a. Start the Hive shell. Define a view named 2013_orders that contains the

orderid, order_date, username, and itemlist columns of the orders table
where the order_date was in the year 2013.
Solution: The 2013_orders view:

hive

hive> CREATE VIEW 2013_orders AS
SELECT orderid, order_date, username, itemlist
FROM orders
WHERE year(order_date) = '2013';

b. Run the show tables command:
hive> show tables;

You should see 2013_orders in the list of tables.
c. To verify your view is defined correctly, run the following query:

hive> SELECT COUNT(*) FROM 2013_orders;

The 2013_orders view should contain 13,104 records.

Lab: Advanced Hive Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 123

5) Find the Maximum Order of Each Customer
a. Suppose you want to find the maximum order of each customer. This

can be done easily enough with the following Hive query. Run this query
now:

hive> SELECT max(ordertotal), userid
FROM orders GROUP BY userid;

b. How many different customers are in the orders table? _____________

Answer: There are 100 unique customers in the orders table.
c. Suppose you want to add the itemlist column to the previous query. Try

adding it to the SELECT clause by the following method and see what
happens:

hive> SELECT max(ordertotal), userid, itemlist
FROM orders GROUP BY userid;

Notice this query is not valid because itemlist is not in the GROUP BY key.
d. We can join the result set of the max-total query with the orders table to

add the itemlist to our result. Start by defining a view named
max_ordertotal for the maximum order of each customer:

hive> CREATE VIEW max_ordertotal AS
SELECT max(ordertotal) AS maxtotal, userid
FROM orders GROUP BY userid;

e. Now join the orders table with your max_ordertotal view:
hive> SELECT ordertotal, orders.userid, itemlist
FROM orders
JOIN max_ordertotal ON
max_ordertotal.userid = orders.userid
AND
max_ordertotal.maxtotal = orders.ordertotal
ORDER BY orders.userid;

f. What did the Tez job look like for this query? ___________

Answer: The query resulted in a map-reduce-reduce Tez job.

Lab: Advanced Hive Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 124

The end of your output should look like:
600 98
Grill,Freezer,Bedding,Headphones,DVD,Table,Grill,Software,Dishwash
er,DVD,Microwave,Adapter
600 99Washer,Cookware,Vacuum,Freezer,2-Way Radio,Bicycle,Washer &
Dryer,Coffee Maker,Refrigerator,DVD,Boots,DVD
600 100Bicycle,Washer,DVD,Wrench Set,Sweater,2-Way
Radio,Pants,Freezer,Blankets,Grill,Adapter,pillows

6) Fixing the GROUP BY Key Error
a. Let’s compute the sum of all of the orders of all of the customers. Start

by entering the following query:
hive> SELECT sum(ordertotal), userid FROM orders GROUP BY userid;

Notice that the output is the sum of all orders, but displaying just the
userid is not very exciting.

b. Try to add the username column to the SELECT clause in the following
manner and see what happens:

hive> SELECT sum(ordertotal), userid, username
FROM orders
GROUP BY userid;

This generates an “Expression not in GROUP BY key” error, because the
username column is not being aggregated but the ordertotal is.

c. An easy fix is to aggregate the username values using the collect_set
function, but output only one of them:

hive> SELECT sum(ordertotal), userid, collect_set(username)[0]
FROM orders
GROUP BY userid;

You should get the same output as before, but this time the username is
included.

7) Using the OVER Clause
a. Now let’s compute the sum of all orders for each customer, but this time

use the OVER clause to not group the output and to also display the
itemlist column:

hive> SELECT userid, itemlist, sum(ordertotal)
OVER (PARTITION BY userid)
FROM orders;

Notice the output contains every order, along with the items they
purchased and the sum of all of the orders ever placed from that
particular customer.

Lab: Advanced Hive Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 125

8) Using the Window Functions
a. It is not difficult to compute the sum of all orders for each day using the

GROUP BY clause:
hive> select order_date, sum(ordertotal)
FROM orders
GROUP BY order_date;

Run the query above and the tail of the output should look like:
2013-07-28 18362
2013-07-29 3233
2013-07-30 4468
2013-07-31 4714

b. Suppose you want to compute the sum for each day that includes each
order. This can be done using a window that sums all previous orders
along with the current row:

hive> SELECT order_date, sum(ordertotal)
OVER
(PARTITION BY order_date ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW)
FROM orders;

To verify that it worked, your tail of your output should look like:
2013-07-31 3163
2013-07-31 3415
2013-07-31 3607
2013-07-31 4146
2013-07-31 4470
2013-07-31 4610
2013-07-31 4714

9) Using the Hive Analytics Functions
a. Run the following query, which displays the rank of the ordertotal by

day:
hive> SELECT order_date, ordertotal, rank()
OVER
(PARTITION BY order_date ORDER BY ordertotal)
FROM orders;

Lab: Advanced Hive Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 126

b. To verify it worked, the output of July 31, 2013, should look like:
2013-07-31 48 1
2013-07-31 104 2
2013-07-31 119 3
2013-07-31 130 4
2013-07-31 133 5
2013-07-31 135 6
2013-07-31 140 7
2013-07-31 147 8
2013-07-31 156 9
2013-07-31 192 10
2013-07-31 192 10
2013-07-31 196 12
2013-07-31 240 13
2013-07-31 252 14
2013-07-31 296 15
2013-07-31 324 16
2013-07-31 343 17
2013-07-31 500 18
2013-07-31 528 19
2013-07-31 539 20

c. As a challenge, see if you can run a query similar to the previous one
except compute the rank over months instead of each day.
Solution: The rank query by month:

SELECT substr(order_date,0,7), ordertotal, rank()
OVER
(PARTITION BY substr(order_date,0,7) ORDER BY ordertotal)
FROM orders;

10) Histograms
a. Run the following Hive query, which uses the histogram_numeric function

to compute 20 (x,y) pairs of the frequency distribution of the total order
amount from customers who purchased a microwave (using the orders
table):

hive> SELECT explode(histogram_numeric(ordertotal,20)) AS x
FROM orders
WHERE itemlist LIKE "%Microwave%";

Lab: Advanced Hive Programming

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 127

The output should look like the following:
{"x":14.333333333333332,"y":3.0}
{"x":33.87755102040816,"y":441.0}
{"x":62.52577319587637,"y":679.0}
{"x":89.37823834196874,"y":965.0}
{"x":115.1242236024843,"y":1127.0}
{"x":142.6468885672939,"y":1382.0}
{"x":174.07664233576656,"y":1370.0}
{"x":208.06909090909105,"y":1375.0}
{"x":242.55486381322928,"y":1285.0}
{"x":275.8625954198475,"y":1048.0}
{"x":304.71100917431284,"y":872.0}
{"x":333.1514423076924,"y":832.0}
{"x":363.7630208333335,"y":768.0}
{"x":397.51587301587364,"y":756.0}
{"x":430.9072847682117,"y":604.0}
{"x":461.68715083798895,"y":537.0}
{"x":494.1598360655734,"y":488.0}
{"x":528.5816326530613,"y":294.0}
{"x":555.5166666666672,"y":180.0}
{"x":588.7979797979801,"y":198.0}

b. Write a similar Hive query to compute 10 frequency-distribution pairs for
the ordertotal from orders table where ordertotal is greater than $200.

SELECT explode(histogram_numeric(ordertotal,10)) AS x
FROM orders
WHERE ordertotal > 200;

{"x":218.8195174551819,"y":7419.0}
{"x":254.10237580993478,"y":6945.0}
{"x":293.4231618807192,"y":6338.0}
{"x":334.57302573203015,"y":5635.0}
{"x":379.79714934930786,"y":4841.0}
{"x":428.1165628891644,"y":4015.0}
{"x":473.1484734420741,"y":2391.0}
{"x":511.2576946288467,"y":1657.0}
{"x":549.0106899902812,"y":1029.0}
{"x":589.0761194029857,"y":670.0}

Result
You should now be comfortable running Hive queries and using some of the more
advanced features of Hive, like views and the window functions.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 129

Lab: Running a YARN Application

About this Lab
Objective: To run a YARN application.

File locations: n/a

Successful
outcome:

You will have executed the DistributedShell YARN
application.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Hadoop 2 and YARN

Lab Steps
1) Run a DistributedShell Application

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. In a terminal window change directories to the /usr/hdp/current/hadoop-

yarn-client folder:
cd /usr/hdp/current/hadoop-yarn-client/

c. Run the following command, which runs a sample YARN application that
ships with HDP 2.x:

yarn jar hadoop-yarn-applications-distributedshell.jar
org.apache.hadoop.yarn.applications.distributedshell.Client -jar
hadoop-yarn-applications-distributedshell.jar -shell_command cal

The DistributedShell command allows you to run a script or shell command on your
cluster. The example above runs the Unix “cal” command, which displays a text
calendar.

d. Wait for the YARN job to finish.
2) Verify the Result

a. Enter the following command (all on a single line):
yarn application -list -appStates FINISHED | grep Dist

Lab: Running a YARN Application

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 130

You should see the application ID of the DistributedShell command that you just
ran:
application_1378331467073_0004 DistributedShell YARN yarn
default FINISHED SUCCEEDED 100%

b. Copy and paste the application ID of your DistributedShell command
and check its status using the following command (but replacing the ID
shown here with your actual application ID):

yarn application -status application_1378331467073_0004

Notice that the details of the job are displayed. This was a simple
application, so there is not a lot of information to analyze:

Application Report :
 Application-Id : application_1378331467073_0004
 Application-Name : DistributedShell
 Application-Type : YARN
 User : root
 Queue : default
 Start-Time : 1408060384688
 Finish-Time : 1408060391340
 Progress : 100%
 State : FINISHED
 Final-State : SUCCEEDED
 Tracking-URL : N/A
 RPC Port : -1
 AM Host : sandbox.hortonworks.com/172.16.173.149
 Diagnostics :

Note

The YARN application command also has a -kill option (followed by the
application’s ID) that kills a running YARN job. This is a great tool when
you have submitted a job and then need to stop it before it runs to
completion.

3) View the Log File
a Enter the following command to view the output for this YARN

application that you just executed:
yarn logs -applicationId application_1378331467073_0004

Lab: Running a YARN Application

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 131

Important
The -applicationId must have the correct case for every letter, or else
you will see an error message stating that it is missing. The only capital
letter in the option is the I. The d, and all other letters, are lower case.
Somewhere in the log file, you should see a text calendar of the current
month. For example:

LogType: stdout
LogLength: 150
Log Contents:
 August 2014
Su Mo Tu We Th Fr Sa
2
4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

4) Optional: Run the Job in Six Containers
a. The DistributedShell application allows you to specify how many

containers the ApplicationMaster uses. Add the following arguments to
the end of the YARN command from Step 1.2:

-num_containers 6 -container_memory 20

b. Now find the applicationID and view the aggregated log file:
yarn application -list -appStates FINISHED | grep Dist

yarn logs -applicationId <applicationId>

You should see six calendars this time, one from each container.
c. Notice that this also demonstrates how the log output from multiple

containers is aggregated into a single, convenient log file.

Result
In this lab you ran a simple YARN application called the DistributedShell (that ships
with HDP 2.x). You also saw how to view the output of the aggregated log file using
the YARN logs command.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 133

Lab: Getting Started with Apache Spark

About this Lab
Objective: Read and manipulate HDFS files with Spark.

File locations: /root/devph/labs/Spark

Successful outcome: You will have processed several HDFS file via Spark Core.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Programming with Apache Spark

Lab Steps
1) Execute a WordCount with Spark.

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Copy the constitution.txt file to HDFS.

[root@sandbox ~]# cd ~/devph/labs/Spark
[root@sandbox Spark]# hdfs dfs -mkdir spark
[root@sandbox Spark]# hdfs dfs -put
~/devph/labs/demos/constitution.txt spark/
[root@sandbox Spark]# hdfs dfs -ls spark
Found 1 items
-rw-r--r-- 1 root hdfs 45489 2015-11-09 09:39
spark/constitution.txt

Lab: Getting Started with Apache Spark

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 134

c. Launch the Python Spark Shell. NOTE: "INFO" comments will be
removed from the output in this lab guide going forward.

[root@sandbox ~]# pyspark
Python 2.6.6 (r266:84292, Jul 23 2015, 15:22:56)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-11)] on linux2

... lines removed ...

Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.4.1
/_/

Using Python version 2.6.6 (r266:84292, Jul 23 2015 15:22:56)
SparkContext available as sc, HiveContext available as sqlContext.
>>>

d. Read in the file as a RDD.
>>> baseFile =
sc.textFile("hdfs://sandbox:8020/user/root/spark/constitution.txt"
)
>>> baseFile.take(1)
[u'We the People of the United States, in Order to form a more
perfect ']

e. Break the full lines down into a collection of words.
>>> justWords = baseFile.flatMap(lambda line: line.split(' '))
>>> justWords.take(5)
[u'We', u'the', u'People', u'of', u'the']

f. Map the words with a count of "1" for each.
>>> mappedWords = justWords.map(lambda word: (word, 1))
>>> mappedWords.take(5)
[(u'We', 1), (u'the', 1), (u'People', 1), (u'of', 1), (u'the', 1)]

g. Count up the words; sorting them in reverse.
>>> wordCounts = mappedWords.reduceByKey(lambda a,b:
a+b).sortByKey(ascending=False)
>>> wordCounts.take(10)
[(u'years;', 1), (u'years', 9), (u'year,', 1), (u'year', 1),
(u'written', 6), (u'writs', 1), (u'writing,', 1), (u'would', 2),
(u'work', 1), (u'witnesses', 2)]

Lab: Getting Started with Apache Spark

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 135

h. Chain all the method invocations into a single operation, as is more the
normal usage pattern. NOTE: Type as a single line without the new line
or "\" characters.

>>> asOneLine =
sc.textFile("hdfs://sandbox:8020/user/root/spark/constitution.txt"
) \
 .flatMap(lambda line: line.split(' ')) \
 .map(lambda word: (word, 1)) \
 .reduceByKey(lambda a,b: a+b) \
 .sortByKey(ascending=False)
>>> asOneLine.take(10)
[(u'years;', 1), (u'years', 9), (u'year,', 1), (u'year', 1),
(u'written', 6), (u'writs', 1), (u'writing,', 1), (u'would', 2),
(u'work', 1), (u'witnesses', 2)]

i. Exit out of the pyspark REPL.
>>> quit()

2) On a simple customer file, find the top 5 states with the most male customers.
a. Upload customer.csv and explore its format of name, gender, state and

duration.
[root@sandbox Spark]# hdfs dfs -put customer.csv spark
[root@sandbox Spark]# hdfs dfs -tail spark/customer.csv
celia,F,Maryland,3.97
Evalyn,F,Pennsylvania,2.1
Jeneva,F,Nebraska,9.26
Kelsey,F,Minnesota,8.68
Daine,F,Nebraska,6.34

 ... lines removed ...

Annamae,F,Nebraska,9.11
Racheal,F,Wisconsin,9.65
Ellan,F,Michigan,5.82

b. Launch pyspark and read the file.
[root@sandbox labs]# pyspark
>>> custFile =
sc.textFile("hdfs://sandbox:8020/user/root/spark/customer.csv")
>>> custFile.take(3)
[u'Irvin,M,Maryland,5.06', u'Owen,M,Illinois,2.01',
u'August,M,Illinois,1.42']

Lab: Getting Started with Apache Spark

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 136

c. Filter out just the male customers.
>>> justMales = custFile.map(lambda line:
line.split(',')).filter(lambda line: line[1] == 'M')
>>> justMales.take(2)
[[u'Irvin', u'M', u'Maryland', u'5.06'], [u'Owen', u'M',
u'Illinois', u'2.01']]

d. Create Key-Value-Pairs (KVP) with state being the key and the number
"1" being the value.

>>> mapByStateCode = justMales.map(lambda line: (line[2], 1))
>>> mapByStateCode.take(4)
[(u'Maryland', 1), (u'Illinois', 1), (u'Illinois', 1), (u'New
Jersey', 1)]

e. Count up the number of customers by state.
>>> nbrCustsByState = mapByStateCode.reduceByKey(lambda a,b: a+b)
>>> nbrCustsByState.take(4)
[(u'Wisconsin', 2), (u'New Jersey', 4), (u'Michigan', 8),
(u'Pennsylvania', 2)]

f. Flip the KVP so that the count is first and order that from highest to
lowest.

>>> highToLowCountAndState = nbrCustsByState.map(lambda (a,b):
(b,a)).sortByKey(ascending=False)
>>> highToLowCountAndState.take(6)
[(8, u'Michigan'), (8, u'Maryland'), (7, u'Illinois'), (5,
u'Nebraska'), (4, u'New Jersey'), (4, u'Indiana')]

g. Flip the KVP pair back to state and count plus add an index to represent
the ordering sequence.

>>> stateCountIndexedHighToLow = highToLowCountAndState.map(lambda
(a,b): (b,a)).zipWithIndex()
>>> stateCountIndexedHighToLow.take(6)
[((u'Michigan', 8), 0), ((u'Maryland', 8), 1), ((u'Illinois', 7),
2), ((u'Nebraska', 5), 3), ((u'New Jersey', 4), 4), ((u'Indiana',
4), 5)]

h. Eliminate all records except for the top 5.
>>> topFive = stateCountIndexedHighToLow.filter(lambda ((a,b),c):
c<5)
>>> topFive.collect()
[((u'Michigan', 8), 0), ((u'Maryland', 8), 1), ((u'Illinois', 7),
2), ((u'Nebraska', 5), 3), ((u'New Jersey', 4), 4)]

Lab: Getting Started with Apache Spark

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 137

i. Eliminate the index and the counts to just return the top 5 state names.
>>> top5Names = topFive.map(lambda ((a,b),c): a)
>>> top5Names.collect()
[u'Michigan', u'Maryland', u'Illinois', u'Nebraska', u'New
Jersey']

j. As before, chain all the method invocations into a single operation as is
more the normal usage pattern.

>>>
sc.textFile("hdfs://sandbox:8020/user/root/spark/customer.csv") \
 .map(lambda line: line.split(',')) \
 .filter(lambda line: line[1] == 'M') \
 .map(lambda line: (line[2], 1)) \
 .reduceByKey(lambda a,b: a+b) \
 .map(lambda (a,b): (b,a)) \
 .sortByKey(ascending=False) \
 .map(lambda (a,b): (b,a)) \
 .zipWithIndex() \
 .filter(lambda ((a,b),c): c<5) \
 .map(lambda ((a,b),c): a) \
 .collect()
[u'Michigan', u'Maryland', u'Illinois', u'Nebraska', u'New
Jersey']

Result:
Successful use of Spark Core and RDD to read files and perform data analysis.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 139

Lab: Exploring Spark SQL

About this Lab
Objective: Create DataFrame structure from Hive tables & HDFS files

and utilize both the DataFrame API and SQL to refine
returned data.

File locations: /root/devph/labs/Spark

Successful outcome: You will have successfully queries data from multiple
DataFrame objects as well as joined them together.

Before you begin: Your HDP 2.3 cluster should be up and running within your
VM.

Related lesson: Spark SQL and DataFrames

Lab Steps
1) Run a query on an existing Hive table.

a. Load file into HDFS and create a Hive table mapping to it.
[root@sandbox Spark]# hdfs dfs -mkdir spark/cust_fav
[root@sandbox Spark]# hdfs dfs -put cust_fav.csv spark/cust_fav/
[root@sandbox Spark]# hive -f cust_fav.hive
[root@sandbox Spark]# hive -e 'select * from cust_fav limit 5;'
OK
Irvin Riesling
Owen Pinot Noir
August Sauvignon Blanc
Christian Merlot
Arlen Pinot Noir
Time taken: 3.023 seconds, Fetched: 5 row(s)

Lab: Exploring Spark SQL

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 140

b. Create a DataFrame from querying the Hive table created in the prior
step after starting up pyspark again.

>>> from pyspark.sql import HiveContext
>>> hc = HiveContext(sc)
>>> custFavDF = hc.sql("SELECT * FROM cust_fav")
>>> custFavDF.show(5)
+---------+---------------+
|cust_name| wine_type|
+---------+---------------+
| Irvin| Riesling|
| Owen| Pinot Noir|
| August|Sauvignon Blanc|
|Christian| Merlot|
| Arlen| Pinot Noir|
+---------+---------------+

2) Use customer data from the prior lab to find average length of customers by
gender and state.

a. Import the necessary Row definition and then create a RDD from the
customer.csv file previously loaded into HDFS.

>>> from pyspark.sql import Row
>>> customerRaw =
sc.textFile("hdfs://sandbox:8020/user/root/spark/customer.csv")
>>> customerRaw.take(2)
[u'Irvin,M,Maryland,5.06', u'Owen,M,Illinois,2.01']

b. Break each long string representing a row from the input file into
discrete customer records.

>>> customerRecords = customerRaw.map(lambda line:
line.split(','))
>>> customerRecords.take(2)
[[u'Irvin', u'M', u'Maryland', u'5.06'], [u'Owen', u'M',
u'Illinois', u'2.01']]

c. Convert that the RDD to a DataFrame.
>>> customerDF = customerRecords.map(lambda c: Row(name=c[0],
gender=c[1], state=c[2], length=float(c[3]))).toDF()
>>> customerDF.show(2)
+------+------+-----+--------+
|gender|length| name| state|
+------+------+-----+--------+
| M| 5.06|Irvin|Maryland|
| M| 2.01| Owen|Illinois|
+------+------+-----+--------+

Lab: Exploring Spark SQL

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 141

d. Search for the final results with the DataFrame API.
>>>
customerDF.select("gender","state","length").groupBy("gender","state").a
vg("length").show()
+------+------------+------------------+
|gender| state| AVG(length)|
+------+------------+------------------+
F	Illinois	7.49
F	New Jersey	4.04
F	Minnesota	6.204
F	Michigan	4.207142857142857
M	Indiana	4.369999999999999
M	Maryland	5.326250000000001
M	Nebraska	6.516
M	Illinois	4.858571428571428
M	New Jersey	4.6499999999999995
M	Minnesota	5.4375
F	Wisconsin	6.29125
M	Michigan	5.0337499999999995
F	Pennsylvania	5.575
F	Ohio	5.93
F	Iowa	7.430000000000001
M	Wisconsin	0.33
M	Pennsylvania	3.665
M	Ohio	4.25
M	Iowa	5.753333333333333
F	Maryland	5.003749999999999
+------+------------+------------------+

3) Join the prior two DataFrames.
a. Utilize the DataFrame API to perform the join.

>>> customerDF.join(custFavDF, customerDF.name ==
custFavDF.cust_name).show(5)
+------+------+---------+----------+---------+---------------+
|gender|length| name| state|cust_name| wine_type|
+------+------+---------+----------+---------+---------------+
| M| 5.06| Irvin| Maryland| Irvin| Riesling|
| M| 2.01| Owen| Illinois| Owen| Pinot Noir|
| M| 1.42| August| Illinois| August|Sauvignon Blanc|
| M| 8.17|Christian|New Jersey|Christian| Merlot|
| M| 2.24| Arlen| Indiana| Arlen| Pinot Noir|
+------+------+---------+----------+---------+---------------+

Result
Successful creation of a DataFrame from a Hive tables and a HDFS file; as well as
joining these two DataFrames.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 143

Lab: Defining an Oozie Workflow

About this Lab
Objective: Define and run an Oozie workflow.

File locations: /root/devph/labs/Oozie

Successful
outcome:

You will run an Oozie job that executes a Pig script and a Hive
script.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Defining Workflow with Oozie

Lab Steps
1) Store the Job Data in HDFS

a. If not already done, open a Terminal in your VM and type "ssh sandbox".
b. Make sure you have whitehouse/visits.txt in HDFS:

hdfs dfs -ls whitehouse

If not, the file (zipped within whitehouse_visits.zip) can be found in the
/root/devph/labs/Lab5.1 folder. The Oozie job assumes there is a file named
visits.txt in a folder named whitehouse in HDFS.

2) Deploy the Oozie Workflow
a. Using the gedit text editor, open the file

/root/devph/labs/Oozie/workflow.xml.
b. How many actions are in this workflow? _____________

Answer: Two
Which action will execute first? _________________

Answer: The Pig action named export_congress
If the first action is successful, which action will execute next? ____________

Answer: The Hive action named define_congress_table

Lab: Defining an Oozie Workflow

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 144

To deploy this workflow, we need a directory in HDFS:
cd ~/devph/labs/Oozie/
hdfs dfs -mkdir congress

c. Copy congress_visits.hive and whitehouse.pig from the Oozie folder
into the new congress folder in HDFS.

hdfs dfs -put congress_visits.hive congress/congress_visits.hive
hdfs dfs -put whitehouse.pig congress/whitehouse.pig

d. Also, put workflow.xml into the congress folder.
hdfs dfs -put workflow.xml congress/workflow.xml

e. Verify that you have three files now in your congress folder in HDFS:
hdfs dfs -ls congress
Found 3 items
-rw-r--r-- 1 root root 429 congress/congress_visits.hive
-rw-r--r-- 1 root root 580 congress/whitehouse.pig
-rw-r--r-- 1 root root 1692 congress/workflow.xml

3) Deploy the Hive Configuration File
a. If you look at the Hive action in workflow.xml, you will notice that it

references a file named hive-site.xml within the <job-xml> tag. This file
represents the settings Oozie needs to connect to your Hive instance,
and the file needs to be deployed in HDFS (using a relative path to the
workflow directory). Make a copy of the original file into the working
directory:

cp /etc/hive/conf/hive-site.xml

To address an Oozie expression language issue and to ensure the workflow will
run in the lab VM, use the gedit text editor to open
/root/devph/labs/Oozie/hive-site.xml and delete the marked out stanza below:

<property>

<name>hive.server2.logging.operation.log.location</name>

<value>${system:java.io.tmpdir}/${system:user.name}/operation_logs
</value>

</property>

Also change the default execution engine from tez to mr:
<property>
<name>hive.execution.engine</name>
<value>mr</value>
</property>

Lab: Defining an Oozie Workflow

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 145

b. Verify that the differences form the original file and the modified one are
correct by returning results similar to those listed below:

diff /etc/hive/conf/hive-site.xml hive-site.xml
250c250
< <value>tez</value>

<value>mr</value>
544,548d543
< <name>hive.server2.logging.operation.log.location</name>
<
<value>${system:java.io.tmpdir}/${system:user.name}/operation_logs
</value>
< </property>
<
< <property>
783c778
< </configuration>
\ No newline at end of file

</configuration>

c. Copy the modified hive-site.xml into the workflow directory:
hdfs dfs -put hive-site.xml congress/hive-site.xml

4) Define the OOZIE_URL Environment Variable
a. Although not required, you can simplify oozie commands by defining the

OOZIE_URL environment variable. From the command line, enter the
following command:

export OOZIE_URL=http://sandbox:11000/oozie

5) Run the Workflow
a. Run the workflow with the following command from the

/root/devph/labs/Oozie directory:
oozie job -config job.properties -run

Lab: Defining an Oozie Workflow

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 146

The job.properties file reference above contains the following entries (no
need to type this):

oozie.wf.application.path=hdfs://sandbox:8020/user/root/congress

#Hadoop RM
resourceManager=resourcemanager:8050

#Hadoop fs.default.name
nameNode=hdfs://sandbox:8020/

#Hadoop mapred.queue.name
queueName=default

oozie.use.system.libpath=true

If successful, the job ID should be displayed at the command prompt.
6) Monitor the Workflow

a. Point your Web browser to the Oozie Web Console at the following URL:
http://sandbox:11000/oozie

You should see your Oozie job in the list of workflow jobs:

Lab: Defining an Oozie Workflow

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 147

b. Click on the Job ID to the Job Info page:

Notice that you can view the status of each Action within the workflow.

Lab: Defining an Oozie Workflow

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 148

7) Verify the Results
a. The Oozie job should take a few minutes to complete. Refresh the status

page every so often until the status changes from RUNNING to
COMPLETE, or the job no longer appears under Active Jobs tab and
shows up under the Done Jobs tab.

Once the Oozie job is completed successfully, back in the terminal
window start the Hive Shell.

hive

b. Run a select statement on congress_visits and verify that the table is
populated:

c.
hive> select * from congress_visits;
...
WATERS MAXINE 12/8/2010 17:00 POTUS OEOB
 MEMBERS OF CONGRESS AND CONGRESSIONAL STAFF
WATT MEL 12/8/2010 17:00 POTUS OEOB
 MEMBERS OF CONGRESS AND CONGRESSIONAL STAFF
WEGNER DAVID L 12/8/2010 16:46 12/8/2010 17:00 POTUS OEOB
 MEMBERS OF CONGRESS AND CONGRESSIONAL STAFF
WILLOUGHBY JEANNE P 12/8/2010 17:0712/8/2010 17:00 POTUS OEOB
 MEMBERS OF CONGRESS AND CONGRESSIONAL STAFF
WILSON ROLLIE E 12/8/2010 16:49 12/8/2010 17:00 POTUS OEOB
 MEMBERS OF CONGRESS AND CONGRESSIONAL STAFF
YOUNG DON 12/8/2010 17:00 POTUS OEOB MEMBERS OF CONGRESS AND
 CONGRESSIONAL STAFF
MCCONNELL MITCH 12/14/2010 9:00 POTUS WH MEMBER OF CONGRESS
 MEETING WITH POTUS.
Time taken: 1.082 seconds, Fetched: 102 row(s)

Result
You have just executed an Oozie workflow that consists of a Pig script followed by a
Hive script.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 149

Appendix: Toubleshooting

Quick troubleshooting steps

If the VM was not shut down properly on multiple occasions, or some of daemons are
not working properly, please try the following:

1 . Execute the following command:
service startup_script restart

2 . If service startup_script restart does not work, excute the following:
a. Run the jps command and identify PID for all running processes.
b. Kill these processes using the kill -9 <PID> command
c. Remove all *.pid files from the corresponding /var/run/<SERVICE>

directories
d. Run service startup_script restart

3 . If services still do not come back up, try stop all, start all from Ambari.

4 . If Ambari no longer works, try service ambari stop and service ambari start.

In most cases, rebooting the VM will fix the problem.

Classes Available Worldwide Through Our Partners

[111 J net mind 0CTO
T • c h t1 o I o t 'I

....... .1

Tut�rPro valtech_

Leanz, uesc

rcr

illOl�[XJOb]
"'�Mnce, dHand ns1ghl

eCube

seed
e

beyond the obvious

/training/etc

CORNERSTONE

•••••

., ...
�P):�t

ID TipDM":
...... , ,,

J,
AD\l�O-.tAl""IG

ASY.!;l�

GURUTEA�
bnpoke'tranm9solurions

- Ei1 S1MAF0RE

Study Options Worldwide

In combination with our partner providers,
classes are often available in numerous locations
across the world.

Private On�slte Training

Hortonworks training in-house covers all of our
basic coursework, and provides a more intimate
setting for 6 or more students.
Contact us for more details

Hortonworks University courses are designed by the leaders and committers of Apache Hadoop.
We provide immersive, real-world experience in scenario-based training. Courses offer
unmatched depth and expertise available in both the classroom or online from anywhere in the
world. We prepare you to be an expert with highly valued skills and for Certification.

	HWU-FrontMatter-Template-03-2016
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	HDP Developer_ Apache Pig and Hive-Lab Guide-Rev 6
	HWU-BackMatter-Template-02-2016
	Blank Page
	Blank Page

	Blank Page
	Blank Page

