
HDP Developer:
Enterprise Apache Spark 1

Python Lab Guide
Rev 1

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

These training materials, both print and digital content, are Copyright © 2012 – 2016 Hortonworks, Inc.

No part of these materials may be stored in a retrieval system, transmitted, altered or reproduced in any way, including,
but not limited to, editing, photocopy, photograph, magnetic, electronic or other record, without the prior written
permission of Hortonworks, Inc.

This instructional program, including all material provided herein, is supplied without any
guarantees from Hortonworks, Inc. Hortonworks, Inc. assumes no liability for damages or legal action arising from the
use or misuse of contents or details contained herein.

Java® is a registered trademark of Oracle and/or its affiliates.

All other trademarks are the property of their respective owners.

Apache Projects
Hortonworks makes frequent reference to Apache projects throughout our training materials. The following project
names are either registered trademarks or trademarks of the Apache Software Foundation in the United States or other
countries. For more information, see http://www.apache.org/. No endorsement by The Apache Software Foundation is
implied by the use of these marks.

http://www.apache.org/
http://www.apache.org/

Become a Hortonworks Certified Professional and establish your credentials:

• HDP Certified Developer: for Hadoop developers using frameworks like Pig, Hive, Sqoop and
Flume.

• HDP Certified Administrator: for Hadoop administrators who deploy and manage Hadoop
clusters.

• HDP Certified Developer: Java: for Hadoop developers who design, develop and architect
Hadoop-based solutions written in the Java programming language.

• HDP Certified Developer: Spark: for Hadoop developers who write and deploy applications for
the Spark framework.

How to Register: Visit www.examslocal.com and search for “Hortonworks” to register for an
exam. The cost of each exam is $250 USD, and you can take the exam anytime, anywhere
using your own computer. For more details, including a list of exam objectives and instructions
on how to attempt our practice exams, visit http://hortonworks.com/training/certification/

Earn Digital Badges: Hortonworks Certified Professionals receive a digital badge for each
certification earned. Display your badges proudly on your résumé, LinkedIn profile, email
signature, etc.

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

Self Paced Learning Library

On Demand Learning

Hortonworks University Self-Paced Learning Library is an on-demand dynamic repository
of content that is accessed using a Hortonworks University account. Learners can view
lessons anywhere, at any time, and complete lessons at their own pace. Lessons can be
stopped and started, as needed, and completion is tracked via the Hortonworks University
Learning Management System.

Hortonworks University courses are designed and developed by Hadoop experts and
provide an immersive and valuable real world experience. In our scenario-based training
courses, we offer unmatched depth and expertise. We prepare you to be an expert with
highly valued, practical skills and prepare you to successfully complete Hortonworks
Technical Certifications.

Target Audience: Hortonworks University Self-Paced Learning Library is designed for
those new to Hadoop, as well as architects, developers, analysts, data scientists, and IT
decision makers. It is essentially for anyone who desires to learn more about Apache
Hadoop and the Hortonworks Data Platform.

Duration: Access to the Hortonworks University Self-Paced Learning Library is provided
for a 12-month period per individual named user. The subscription includes access to over
400 hours of learning lessons.

The online library accelerates time to Hadoop competency. In addition, the content is
constantly being expanded with new material, on an ongoing basis.

Visit: http://hortonworks.com/training/class/hortonworks-university-self-paced-learning-
library/

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

Table of Contents

Lab 0: Pre-lab Setup ... 1
About This Lab .. 1
Lab Steps .. 1

Result ... 6
Lab 1: Using HDFS Commands ... 7

About This Lab .. 7
Lab Steps .. 7

Result ... 15
Lab 2: Introduction to Spark REPLs and Zeppelin .. 17

About This Lab .. 17
Lab Steps .. 17

Result ... 30
Lab 3: Create and Manipulate RDDs (Python) ... 31

About This Lab .. 31
Lab Steps .. 31

Result ... 39
Lab 4: Create and Manipulate Pair RDDs (Python) ... 41

About This Lab .. 41
Lab Steps .. 41

Result ... 48
Challenge Labs .. 48
Bonus Challenge Labs .. 61

Lab 05: Basic Spark Streaming (Python) ... 63
About This Lab .. 63
Lab Steps .. 63

Result ... 69
Lab 6: Basic Spark Streaming Transformations (Python) ... 71

About This Lab .. 71
Lab Steps .. 71

Result ... 79
Lab 7: Spark Streaming Window Transformations (Python) ... 81

About This Lab .. 81
Lab Steps .. 81

Result ... 89
Lab 8: Create and Save DataFrames and Tables (Python) ... 91

About This Lab .. 91
Lab Steps .. 91

Result ... 99
Lab 9: Working with DataFrames (Python) .. 101

About This Lab .. 101
Lab Steps .. 101

Result ... 108
Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala) 109

About This Lab .. 109
Lab Steps .. 109

Result ... 127
Lab 11: Job Monitoring (Python) .. 129

About This Lab .. 129
Lab Steps .. 129

Result ... 140
Lab12: Performance Tuning (Python) .. 141

About This Lab .. 141
Lab Steps .. 141

Result ... 148
Lab13: Build and Submit Applications to YARN (Python) .. 149

About This Lab .. 149
Lab Steps .. 149

Result ... 154
Lab 14: Machine Learning Walkthrough .. 155

About This Lab .. 155
Lab Steps .. 155

Result ... 159

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 1

Lab 0: Pre-lab Setup

About This Lab
Objective:
Set up the lab environment and confirm functionality

File Locations:
N/A

Successful Outcome:
User will set up the HDP cluster and verify login

Before You Begin:
Connect to the lab Environment

Lab Steps
Perform the following steps:

1 . Start the HDP cluster.

a. Connect to the lab environment.

Lab 0: Pre-lab Setup

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 2

b. Double-click on the Terminal icon on the desktop.

c. Use SSH to connect to the Docker container – named “sandbox” – that has been a
single-node HDP cluster installation configured.

ssh sandbox

Lab 0: Pre-lab Setup

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 3

2 . Verify and, if necessary, start HDP cluster services.

a. Open a Firefox web browser and log into the Ambari Web UI using http://sandbox:8080.

b. Supply a username and password of admin and admin, then click the Sign in button to
get to the Ambari Web UI dashboard.

Lab 0: Pre-lab Setup

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 4

c. All services should be running. If not, start any stopped services by clicking on the
Actions button at the bottom left and selecting Start All.

d. If a restart was necessary, give the services a couple of minutes to start. One or more
of them may initially report failure, but after waiting will go green. When everything has
settled, your dashboard list of services should look similar to this:

Lab 0: Pre-lab Setup

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 5

3 . Confirm HDFS (Hadoop Distributed File System) access from the command l ine.

a. Go back to the terminal window that is connected to the sandbox Docker container
(reopen and reconnect if necessary) and switch users so that you can run HDFS
administrative commands.

su hdfs

b. To verify HDFS connectivity, run the hdfs dfsadmin -report command. Verify that it
provides output similar to the screenshot provided.

hdfs dfsadmin -report

c. Exit the HDFS administrative user and go back to being the root user.

exit

d. Run the jps command and verify that a process called NameNode is running.
jps

Lab 0: Pre-lab Setup

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 6

Result
You have successfully connected to your lab environment, used SSH to connect to the HDP cluster
Docker container, started Ambari and all HDP services, and verified connection to HDFS and operation
of the NameNode process.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 7

Lab 1: Using HDFS Commands

About This Lab
Objective:
View, add, manipulate, and remove files and directories to and from HDFS using hdfs dfs
commands.

File Locations:
/root/spark/data/

Successful Outcome:
You will have added, manipulated, and deleted several files and folders in HDFS

Before You Begin:
You should be logged in to your lab environment

Lab Steps
Perform the following steps:

1 . View the hdfs dfs command.

a. Open a Terminal window and use ssh to connect to the sandbox virtual machine.

ssh sandbox

b. From the command line, enter the hdfs dfs command with no arguments to view its
usage.

hdfs dfs

Lab 1: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 8

Lab 1: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 9

2 . Create directories in HDFS.

a. Enter the hdfs dfs -ls command with no directory specified to view the contents of
the current user’s home directory in HDFS. Since you are logged in as the user root, the
typical home directory location will be /user/root.

hdfs dfs –ls

b. Run the command again, but this time specify the root folder for all of HDFS.

hdfs dfs –ls /

c. Create a directory named dirTest in the current user’s home directory in HDFS.

hdfs dfs -mkdir dirTest

Lab 1: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 10

d. Verify the folder was created successfully.

hdfs dfs -mkdir dirTest

e. Verify that this directory was created in the user’s home directory.

hdfs dfs -ls /user/root

NOTE:
There is no difference between performing the -ls command when you specify no
directories and when you specify the user’s home directory. All commands will be
executed in the user’s home directory unless otherwise specified.

f. Use -mkdir to create subdirectory dir1 in the dirTest directory. Then run the
command again with the -p option to create an additional subdirectory, dir2, which
also contains its own subdirectory, dir3.

hdfs dfs -mkdir dirTest/dir1

hdfs dfs -mkdir –p dirTest/dir2/dir3

g. Run the hdfs dfs -ls -R command to recursively view the contents of the user’s
home directory, and verify that all three directories from the previous step were
successfully created.

hdfs dfs -ls -R

Lab 1: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 11

3 . Delete directories in HDFS.

a. Delete the dir1 directory and verify it no longer exists.

hdfs dfs -rmdir dirTest/dir1

hdfs dfs –ls dirTest

b. This command works because the directory is empty. Run the command again, and
this time try to delete the dir2 directory and note the error message. Then verify that the
directory still exists.

hdfs dfs -rmdir dirTest/dir2

hdfs dfs –ls dirTest

c. To delete a directory and all of its contents, use hdfs dfs -rm –R <directory
path>.

WARNING:
Be very careful not to run this without specifying a directory, as the default
behavior would be to delete the user’s home directory and all contents (in our case, the
/user/root directory and everything it contains).

Lab 1: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 12

Use this command to delete the dir2 directory and its contents, and verify that the directory
has been deleted.

hdfs dfs –rm -R dirTest/dir2

hdfs dfs –ls dirTest

4 . Upload, copy, and delete HDFS fi les.

a. The sandbox container image should be preloaded with some test files. Change
directories to /root/spark/data/ and view the contents of this directory.

cd /root/spark/data/

ls

b. Put the data.txt file into the dirTest directory in HDFS.

hdfs dfs -put data.txt dirTest/

c. Verify the file was uploaded successfully.

hdfs dfs -ls dirTest

Lab 1: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 13

d. Create a copy of the data.txt file named datacopy.txt and verify the operation was
successful.

hdfs dfs -cp dirTest/data.txt dirTest/datacopy.txt

hdfs dfs –ls dirTest

QUESTION:
What do you think would have happened if the dirTest directory had not been explicitly
specified as the location for the datacopy.txt file?

e. Now delete the datacopy.txt file and verify it has been removed.

hdfs dfs -rm dirTest/datacopy.txt

hdfs dfs –ls dirTest

5 . View, download, and download merged fi les in HDFS.

a. View the contents of the data.txt file in HDFS.

hdfs dfs -cat dirTest/data.txt

OR
hdfs dfs -tail dirTest/data.txt

Lab 1: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 14

b. Download the data.txt file from HDFS to the /tmp directory on the local file system
and verify the operation was successful.

hdfs dfs -get dirTest/data.txt /tmp

ls /tmp/data*

c. View the contents of the small_blocks.txt file on the local file system. It should be
in the current directory.

cat small_blocks.txt

d. Upload the small_blocks.txt into the dirTest folder in HDFS and verify that you
now have two files in dirTest.

hdfs dfs -put small_blocks.txt dirTest/

hdfs dfs -ls dirTest

e. Merge and download all of the contents of the dirTest directory in HDFS to a file
named merged.txt in the /tmp directory on the local file system. Verify that the
merged.txt file was successfully created.

hdfs dfs -getmerge dirTest /tmp/merged.txt

ls /tmp/merged*

Lab 1: Using HDFS Commands

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 15

View the contents of the merged.txt file to confirm that it contains the contents of both files
that were in the dirTest directory.

cat /tmp/merged.txt

f. Change directories back to the root user’s home directory.

cd ~

pwd

Result
You have successfully created, manipulated, and deleted files and directories in HDFS.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 17

Lab 2: Introduction to Spark REPLs and Zeppelin

About This Lab
Objective:
Access and browse Spark REPLs and Zeppelin

File Locations:
N/A

Successful Outcome:
Use Spark REPLs and browse Zeppelin

Before You Begin:
Complete the Pre-Lab and confirm cluster operation

Lab Steps
Perform the following steps:

1 . Access the Spark REPLs.

a. Open a Terminal window and use ssh to connect to the sandbox virtual machine.

ssh sandbox

b. Run the Spark REPL for Scala.

spark-shell

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 18

c. View the values for the SparkContext, appname, and version.

scala> sc

scala> sc.appname

scala> sc.version

d. Exit the Spark Scala REPL.

scala> exit()

e. Run the Spark REPL for Python.

pyspark

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 19

f. View the values for the SparkContext, appName, and version.

>>> sc

>>> sc.appName

>>> sc.version

g. Exit the Spark Python REPL.

>>> exit()

2 . Access and browse Zeppelin.

a. Open the Firefox browser and enter the following URL to view the Zeppelin UI:
http://sandbox:9995/

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 20

b. Click Interpreter in the top menu and note that Zepplin’s default interpreter is set to
Spark and has a number of default settings configured.

c. Click on Notebook in the top menu and select Create new note from the resulting drop
down options.

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 21

d. Name this note Introduction to Zeppelin and click Create Note.

e. At the top right click on the gear icon to change interpreter binding. Your administrator
has enabled an interpreter called “spark yarn-client” which is configured for the HDP
cluster you are using. Drag it to the top of the list of interpreters, and click the Save
button.

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 22

The first interpreter on the list is treated as the default interpreter. Scroll down to find the Save
button.

f. Find the values for Spark version and the Spark home directory. When you type the
commands, run them either by pressing the Shift + Enter keys, or by clicking on the
Play icon to the right of the word Ready.

NOTE:

The first time this is run, it may take a few minutes to complete. Future commands will
run much faster, including this one if repeated.

sc.version
sc.getConf.get("spark.home")

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 23

While processing, Zeppelin will display a status of RUNNING. It will also display a Pause icon
should it become necessary.

The output may vary slightly from the screenshot below, but should look something like this
when processing is completed:

g. Zeppelin can be instructed to use multiple languages in an interactive fashion within
the same notebook. Simply specify the desired language prior to the command.

Run the following commands to demonstrate this flexibility using Shell, Python, Scala,
Markdown, and Spark SQL. Execute each command by clicking on the Play icon or
pressing Shift + Enter when you are finished typing.

Shell:
%sh echo "Introduction to Zeppelin"

Python:
%pyspark
print "Introduction to Zeppelin"

Scala (default, so no need to specify prior to running command):
val s = "Introduction to Zeppelin"

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 24

Markdown:
%md Introduction to Zeppelin

Spark SQL:
%sql
show tables

3 . Use a preconfigured notebook to browse Zeppelin’s capabil it ies.

a. Zeppelin has four major functions: data ingestion, data discovery, data analytics, and
data visualization. One of the easiest ways to explore these functions is with a
preconfigured notebook, many of which are available by default.

Click on Notebook at the top of the browser window and find and select the notebook
labeled IoT Data Analysis (Keynote Demo) in the resulting drop-down menu.

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 25

b. At the top right click on the gear icon to change interpreter binding.

Drag the spark-yarn-client to the top and click save.

The first interpreter on the list becomes default.

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 26

c. For the purposes of this lab, all necessary code has already been entered for you in the
saved notebook. All you have to do is scroll to the appropriate section and click the
Play icon or press Shift + Enter.

d. The first major block of code ingests data from an online source into HDFS and then
displays those files using the shell scripting interpreter. Find and run that code.

NOTE:
that the label to the left of the Play icon says FINISHED, but this will not prohibit you
from running the code again on this machine.

This notebook uses a deprecated command, hadoop fs, rather than the more updated hdfs
dfs command we used in the previous lab. This should not affect the functionality of the demo.

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 27

When the code has finished, the output at the bottom should look like this:

e. The next section of the notebook once again uses the shell scripting interpreter to view
some of the raw data in one of the downloaded files. Scroll down and run this code,
then view its output.

f. The next section of the notebook performs actions necessary to import and use this
data with Spark SQL. You may note that the status to the left of the Play icon is shown
as ERROR. This is due to the fact that the file being manipulated did not exist at the
time the notebook was opened on this system. Run this code and view the output.

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 28

The output should look like this:

g. The next block of code utilizes Spark SQL to view this data. Run this code and examine
the output.

h. Note that at the top of the results there are six buttons that allow you to display the
results using six different visualizations. Click on each one to view the differences
between them.

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 29

Lab 2: Introduction to Spark REPLs and Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 30

TIP:

In this lab you ran each section of code, known as a paragraph, individually. The entire
notebook could have been played at once, however, by clicking the Play icon labeled
Run all paragraphs directly to the right of the notebook title at the top of the browser.

Result
You have accessed the Spark REPLs for both Scala and Python, created a Zeppelin notebook and
demonstrated Zeppelin’s ability to interpret multiple languages, and used a pre-built Zeppelin
notebook to briefly explore Zeppelin’s ability to ingest, view, analyze, and visualize data.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 31

Lab 3: Create and Manipulate RDDs (Python)

About This Lab
Objective:
Create and Manipulate RDDs using Python and Zeppelin

File Locations:
/home/zeppelin/spark/data/

Successful Outcome:
Perform basic RDD transformations and actions using Zeppelin.

Before You Begin:
Complete the Pre-Lab

Lab Steps
Perform the following steps:

1 . View the raw data for this lab.

a. In a new terminal window, ssh to sandbox and change directories to
/home/zeppelin/spark/data. View the files in this directory.

ssh sandbox

cd /home/zeppelin/spark/data/

ls

b. Use less to view the “selfishgiant.txt” data file. Press q to quit when you are finished
reviewing.

less selfishgiant.txt

Lab 3: Create and Manipulate RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 32

2 . Perform basic RDD manipulations using the Zeppelin notebook.

a. Open the Firefox browser and enter the following URL to view the Zeppelin UI:
http://sandbox:9995/

Lab 3: Create and Manipulate RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 33

b. Click on Notebook and select Create new note on the drop down. Name this note
Create and Manipulate RDDs.

c. At the top right click on the gear icon to change interpreter binding.

Lab 3: Create and Manipulate RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 34

Drag the spark-yarn-client to the top and click save.

The first interpreter on the list becomes default.

d. Place the selfishgiant.txt file into the Zeppelin user’s home directory on HDFS,
/user/zeppelin. (There are no line breaks in the code below after %sh. Please refer
to the screenshot.)

%sh
hdfs dfs –put /home/zeppelin/spark/data/selfishgiant.txt
/user/zeppelin/selfishgiant.txt

REMINDER:

After entering a command, press Shift + Enter keys or press the Play button on the
right side of the paragraph to execute the commands. The text to the left of the Play
button should change from READY to FINISHED when it is complete.

Lab 3: Create and Manipulate RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 35

e. Verify the file was uploaded successfully.

%sh
hdfs dfs –ls /user/zeppelin

f. Create an RDD named baseRdd using this file. Verify the RDD exists by using the
take() function to print the first line of the file.

%pyspark
baseRdd=sc.textFile(“/user/zeppelin/selfishgiant.txt”)
print baseRdd.take(1)

g. Each line of the file is currently a string. Transform the lines into arrays of individual
elements (words) stored in a new RDD named splitRdd, then take a look at the first
five elements.

%pyspark
splitRdd = baseRdd.flatMap(lambda line: line.split(" "))
print splitRdd.take(5)

Lab 3: Create and Manipulate RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 36

h. Create a new RDD named filterRdd that only contains words in splitRdd that are
longer than 10 characters. Use collect() to view the entire output.

%pyspark
filterRdd = splitRdd.filter(lambda word: len(word) > 10)
print filterRdd.collect()

i. Display a count of the total number of words in splitRdd.

%pyspark
print splitRdd.count()

j. Create an RDD named distinctRdd that eliminates any duplicate words in splitRdd.
Then display a count of the number of distinct words in the RDD.

%pyspark
distinctRdd = splitRdd.distinct()
print distinctRdd.count()

k. Save the contents of distinctRDD to text in HDFS. Put the contents in a folder named
“distinct” for future reference.

%pyspark
distinctRdd.saveAsTextFile(“/user/zeppelin/distinct”)

Lab 3: Create and Manipulate RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 37

l. Verify the contents of the RDD were written to HDFS.

%sh
hdfs dfs –ls /user/zeppelin/distinct

m. View the contents of one of the part-* files and verify that an array of unique words
has been generated and saved.

%sh
hdfs dfs –cat /user/zeppelin/distinct/part-00001

Lab 3: Create and Manipulate RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 38

n. Create an RDD named numbersRdd that contains an array of the following numbers:
15, 20, 95, and 80. View the contents of the RDD to verify it was successfully created.

%pyspark
numbersRdd = sc.parallelize([15, 20, 95, 80])
print numbersRdd.collect()

o. Display a count of the elements in numbersRdd, as well as the mean, standard
deviation, maximimum, and minimum values.

%pyspark
print numbersRdd.stats()

p. Create a variable named maryFile that contains the string “Mary had a little lamb” and
then convert that variable into an RDD named maryRdd. View the RDD contents when
finished.

%pyspark
maryFile = (“Mary had a little lamb”)
maryRdd = sc.parallelize([maryFile])
print maryRdd.collect()

Lab 3: Create and Manipulate RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 39

q. Create a new RDD named comboRdd that creates a union between maryRdd and
numbersRdd. Then view the combined RDD.

%pyspark
comboRdd = maryRdd.union(numbersRdd)
print comboRdd.collect()

Result
You have created several RDDs and performed various transactions and actions using the Zeppelin
notebook.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 41

Lab 4: Create and Manipulate Pair RDDs (Python)

About This Lab
Objective:
Create pair RDD’s and use various functions to transform these RDD’s using Python in Zeppelin.

File Locations:
/home/zeppelin/spark/data/

Successful Outcome:
REQUIRED: Create pair RDDs and perform various operations.
OPTIONAL: Complete challenge labs performing more complex operations.

Lab Steps
Perform the following steps:

1 . Create a Pair RDD note in Zeppelin.

a. Open the Firefox browser and enter the following URL to view the Zeppelin UI.
http://sandbox:9995/

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 42

b. Click on Notebook and select Create new note on the drop down. Name this note Pair
RDDs.

c. At the top right click on the gear icon to change interpreter binding.

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 43

Drag the spark-yarn-client to the top and click save.

The first interpreter on the list becomes default.

2 . Create a Pair RDD from a text f i le using map().

a. Recreate the RDD splitRDD using the selfishgiant.txt file by importing it to an RDD as a
text file and then flatting it into individual word elements. Then view the first 5 words to
confirm the RDD exists and is correctly formatted.

In the code below, there are no line breaks between splitRdd and (“ “)). Please refer to
the screenshot.

%pyspark

splitRdd = sc.textFile(“/user/zeppelin/selfishgiant.txt”).flatMap(lambda line:
line.split(“ “))

print splitRdd.take(5)

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 44

NOTE:

In the previous lab, this RDD creation was performed over two steps, creating an
intermediary RDD named baseRdd. The creation of the intermediary is not necessary
unless it needs to be used in a future step.

b. Use map() to create an RDD named mappedRdd that converts each element into a key-
value pair with a value of 1. View the first five elements to confirm successful operation.

%pyspark

mappedRdd = splitRdd.map(lambda word: (word, 1))

print mappedRdd.take(5)

3 . Create Pair RDDs using zip functions and perform simple transformations.

a. Create a variable named months that contains the values Jan, Feb, Mar, Apr, May,
Jun, and Jul as a list of string values. Convert this to an RDD named monthsRdd. Then
create another RDD named monthsIndexed0Rdd using zipWithIndex() to create a
Pair RDD that automatically assigns a value to each element based on its position in
the list.

REMINDER:

The first element will be assigned a value of “0” using this function.

%pyspark

months =("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul")

monthsRdd = sc.parallelize(months)

monthsIndexed0Rdd = monthsRdd.zipWithIndex()

print monthsIndexed0Rdd.collect()

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 45

b. Use map() to convert the value for each month to the actual month number and store
this in a new RDD named monthsIndexed1Rdd. For reference, Jan should have a
value of 1, Feb should have a value of 2, and so on. View the new RDD to confirm
success.

%pyspark

monthsIndexed1Rdd = monthsIndexed0Rdd.map(lambda (x,y): (x,y+1))

print monthsIndexed1Rdd.collect()

c. Create a new RDD named monthsIndexed2Rdd that performs the same operation on
monthsIndexed0Rdd as in the previous step but uses mapValues() instead of map()
to perform the operation. View the new RDD and confirm it looks identical to the output
of monthsIndexed1Rdd.

%pyspark

monthsIndexed2Rdd = monthsIndexed0Rdd.mapValues(lambda y: y+1)

print monthsIndexed2Rdd.collect()

NOTE:

No difference exists between the two previous lab steps from Spark’s perspective. The
mapValues function simply performs a map() and returns the key without modification,
while performing the function you define on the value.

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 46

d. Create a variable named quarters that contains the following seven values: 1, 1, 1,
2, 2, 2, and 3. Convert the variable into an RDD named quartersRdd. Then create
an RDD named monthsZipQuarters and use zip() to create a Pair RDD that assigns
each value from quartersRdd to a month in monthsRdd. Finally, view the output and
make sure that each month was assigned to the correct quarter in the final RDD.

%pyspark

quarters = (1, 1, 1, 2, 2, 2, 3)

quartersRdd = sc.parallelize(quarters)

monthsZipQuarters = monthsRdd.zip(quartersRdd)

print monthsZipQuarters.collect()

e. Perform the following operations on monthsZipQuarters without creating new RDDs:
view the keys only, view the values only, and view the contents of the RDD sorted
alphabetically by key.

%pyspark

print monthsZipQuarters.keys().collect()

print monthsZipQuarters.values().collect()

print monthsZipQuarters.sortByKey().collect()

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 47

4 . Count the number of t imes words appear in a Pair RDD and manipulate the
output.

a. Use the mappedRDD created in a previous step and create a new RDD named
reducedByKeyRdd that reduces the file so that each word appears only once but has a
value equal to the number of times it appeared in the original RDD. View the first five
elements of the new RDD to confirm successful operation.

%pyspark

reducedByKeyRdd = mappedRdd.reduceByKey(lambda x,y: x+y)

print reducedByKeyRdd.take(5)

b. Use map() to create a new RDD named flippedRdd that switches your keys and
values so that the current keys become the values, and the values become the keys.
View the first five elements of the new RDD to confirm successful operation.

%pyspark

flippedRdd = reducedByKeyRdd.map(lambda (x,y): (y,x))

print flippedRdd.take(5)

c. Create a new RDD named orderedRdd that manipulates flippedRDD and arranges
the words in descending order by number of times they appear. View the first five
elements of the new RDD to confirm successful operation.

%pyspark

orderedRdd = flippedRdd.sortByKey(ascending=False)

print orderedRdd.take(5)

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 48

Result
You have successfully created and manipulated Pair RDD’s using various functions.

Challenge Labs
The labs below work with Pair RDDs to perform real-world operations. In some cases, the solutions to
the lab utilize programming techniques not explicitly described in the course lecture. These
techniques, however, should be clear and easy to understand by carefully following the instructions. If
you have questions and are in an instructor-supported class, please ask for assistance as needed.

You may want to start by creating a new notebook named Pair RDD Challenge Labs, but this is up to
you.

Perform the following steps:

1 . Determine the air l ines with the greatest number of f l ights.

a. Go back to a terminal window that has used SSH to connect to the sandbox Docker
environment and change to the /home/zeppelin/spark/data directory if necessary. View
the contents of this directory and confirm the existence of three files: airports.csv,
plane-data.csv, and flights.csv.

ls

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 49

b. Use head to view the first few lines of the flights.csv file.

head flights.csv

Each column in the file can be interpreted using the guide below. The first comma-separated
value in each line (index number 0) represents the month, the second value represents the day
of the month, and so on. Of note for our purposes: the sixth value (index number 5) represents
the carrier for each flight.

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 50

c. Use Zeppelin to import this file into the /user/zeppelin folder in HDFS.

%sh

hdfs dfs -put /home/zeppelin/spark/data/flights.csv /user/zeppelin/flights.csv

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 51

QUESTION:

Why do this in Zeppelin instead of from the command line?

ANSWER:

When the tasks are performed in a Zeppelin notebook, the entire series of actions can be
exported and then imported and replayed on another system. This will be discussed in
more detail in a later lab exercise.

d. Create an RDD named carrierRdd by performing the following transformations:

1. Import the text file from HDFS using sc.textFile().

2. Split the lines into an array of individual elements using map()
(Hint: The elements are comma-separated rather than space-separated as in previous
examples.)

3. Use map() to create a key-value pair from only the elements in the sixth column
(index number 5) - which can be specified by appending [5] to the anonymous
function value – and assign each instance a value of 1.

4. View the first five elements to confirm successful operation.

%pyspark

carrierRdd = sc.textFile(“/user/zeppelin/flights.csv”).map(lambda val:
val.split(“,”)).map(lambda column: (column[5],1))

print carrierRdd.take(5)

NOTE:

As in a previous example, these operations to create carrierRdd could have been
performed in stages, using intermediate RDDs at each transformation step. We do not
need the data in these intermediate forms, however, so chaining together multiple
transformations to get to the final output works fine.

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 52

e. Perform a reduce and sort the results, then display the top three carrier codes by
number of flights based on this data.

%pyspark

carriersSorted = carrierRdd.reduceByKey(lambda x,y: x+y).map(lambda (a,b):
(b,a)).sortByKey(ascending=False)

print carriersSorted.take(3)

2 . Determine the most common routes between two cit ies.

a. The next exercise uses the flights.csv file from the previous lab, as well as the
airports.csv file. Go back to the terminal window and take a look at the first few lines of
the airports.csv file.

head airports.csv

Each column in the file can be interpreted using the guide below. The first comma-separated
value in each line (index number 0) represents the airport code, the second value represents
the airport name, and so on. Of note for our purposes: the airport code (index number 0) and
the airport city (index number 2).

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 53

From the flights.csv file used earlier, columns 13 and 14 (index values 12 and 13) will be used in this
exercise.

b. Use Zeppelin to import the airports.csv file into the /user/zeppelin folder in HDFS.
%sh

hdfs dfs -put /home/zeppelin/spark/data/airports.csv
/user/zeppelin/airports.csv

c. Create an RDD named cityRdd by performing the following transformations:

1. Import the text file from HDFS using sc.textFile().

2. Split the lines into an array of individual elements using map()
(Hint: Once again, the elements are comma-separated rather than space-separated.)

3. Use map() to pull out only the airport code and city elements in the first and third
columns (index numbers 0 and 2).

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 54

4. View the first five elements to confirm successful operation.

%pyspark

cityRdd = sc.textFile(“/user/zeppelin/airports.csv”).map(lambda val:
val.split(“,”)).map(lambda column: (column[0], column[2]))

print cityRdd.take(5)

d. Create an RDD named flightOrigDestRdd by performing the following
transformations:

1. Import the text file from HDFS using sc.textFile().

2. Split the lines into an array of individual elements using map().

3. Use map() to pull out only the origin and destination elements in the 13th and 14th
columns (index numbers 12 and 13).

4. View the first five elements to confirm successful operation.

NOTE:

Some of this code can be copied and pasted from a previous paragraph in the Zeppelin
notebook.

%pyspark

flightOrigDestRdd = sc.textFile(“/user/zeppelin/flights.csv”).map(lambda val:
val.split(“,”)).map(lambda column: (column[12],column[13]))

print flightOrigDestRdd.take(5)

e. Use join() to join flightOrigDestRdd and cityRdd into a third RDD named
origJoinRdd.

This operation will result in an RDD that contains the origin code as the key, with a
value of (destination code, origin city). This is half of the operation needed to get origin
and destination cities.

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 55

View the first five elements to confirm successful operation.

%pyspark

origJoinRdd = flightOrigDestRdd.join(cityRdd)

print origJoinRdd.take(5)

f. Next use join() again to create an RDD named destOrigJoinRdd using
origJoinRdd as a source and joining it cityRdd once again. Before performing the
join operation, use values() to filter out the origin code (which is no longer needed)
and pull out only the destination code and city name from the previous transformation.

This operation will result in an RDD that contains the destination code as the key, with
a value of (origin city, destination city).

View the first five elements to confirm successful operation.

%pyspark

destOrigJoinRdd = origJoinRdd.values().join(cityRdd)

print destOrigJoinRdd.take(5)

g. Create another RDD named citiesCleanedRdd that contains only the values of the
destOrigJoinRdd (in other words, just the origin and destination city names). View
the first five elements to confirm successful operation.

%pyspark

citiesCleanedRdd = destOrigJoinRdd.values()

print citiesCleanedRdd.take(5)

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 56

h. Use map() to convert the key-value pairs in citiesCleanedRdd into keys for a new
RDD named citiesKV, and give each key a value of 1. View the first five elements to
confirm successful operation.

%pyspark

citiesKV = citiesCleanedRdd.map(lambda cities: (cities, 1))

print citiesKV.take(5)

i. Create an RDD named citiesReducedSortedRdd that reduces by key, swaps the
keys and values, and then sorts by key in descending order. View the first three
elements to confirm successful operation.

%pyspark

citiesReducedSortedRdd = citiesKV.reduceByKey(lambda x,y: x+y).map(lambda
(x,y): (y,x)).sortByKey(ascending=False)

print citiesReducedSortedRdd.take(3)

NOTE:

The top three origin city / destination combinations are New York to Boston, Boston to
New York, and Chicago to New York.

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 57

3 . Find the longest departure delays for any air l ine that experienced a delay of 15
minutes or more.

a. This exercise once again uses the flights.csv file. This time we use the unique carrier
code in column 6 (index value 5) and the departure delay value in minutes, which is in
column 12 (index value 11).

b. Create an RDD named delayRdd by performing the following transformations:

1. Import the flights.csv file from HDFS using sc.textFile().

2. Split the lines into an array of individual elements using map().

3. Use filter() to remove any lines for which the value of column 12 (index value 11)
is less than 15. Because the sc.textFile() operation reads in all values as strings,
you will need to cast the values in column 12 as integers prior to performing the
filter() evaluation.

4. Use map() to pull out only the carrier code and departure delay elements in the 6th
and 12th columns (index numbers 5 and 11).

5. View the first five elements to confirm successful operation.

For sake or readability, here is another screenshot of the above code with lines wrapped so
that the code can be viewed in a larger font.

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 58

c. Create an RDD named delayMaxRdd that reduces the elements in delayRdd and
returns only the longest delay per airline. For this exercise, it is not necessary to sort
the values from largest to smallest.

Display five values to confirm successful operation.

NOTE:

The reduce operation will need to compare all values for the same key and only keep the
largest value in the final output.

The values in delayRdd are strings, so to compare the values they will first need to be
cast as integers, similar to the filter() operation performed in the first step of this
exercise.

%pyspark

delayMaxRdd = delayRdd.reduceByKey(lambda x,y: max(int(x), int(y)))

print delayMaxRdd.take(5)

4 . Remove records than contain incomplete data from a f i le.

a. The next exercise uses the plane-data.csv. Go back to the terminal window and take a
look at the first few lines of the plane-data.csv file.

head plane-data.csv

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 59

Note that in the screenshot above, this file contains the column header names, followed by the
column values. In this case, the first few records only have values for the first column, and the
rest of the values are blank.

To see what complete records should look like, take a look at the last few lines of the file.

tail plane-data.csv

Each column in the file can be interpreted using the guide below. Note that there are nine possible
column values for each record (index 0 through 8).

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 60

b. Use Zeppelin to import the plane-data.csv file into the /user/zeppelin folder in
HDFS.

%sh

hdfs dfs -put /home/zeppelin/spark/data/plane-data.csv /user/zeppelin/plane-
data.csv

c. Create an RDD named planeDataRdd from the plane-data.csv file. Before performing
any transformations, use count() to display the number of lines in the RDD.

%pyspark

planeDataRdd = sc.textFile(“/user/zeppelin/plane-data.csv”)

print planeDataRdd.count()

d. Create an RDD named cleanedPlaneDataRdd by performing the following
transformations:

1. Start with planeDataRdd from the previous step.

2. Split the lines into an array of individual elements using map(). (Hint: The elements
are comma-separated.)

3. Use filter() to remove any lines that do not have a length of exactly 9 elements.

4. Use count() to display the number of lines in the new RDD and confirm that the
data set contains fewer lines than before.

%pyspark

cleanedPlaneDataRdd = planeDataRdd.map(lambda val:
val.split(“,”)).filter(lambda elements: len(elements) == 9)

print cleanedPlaneDataRdd.count()

Lab 4: Create and Manipulate Pair RDDs (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 61

Bonus Challenge Labs
 The lab exercises below are for advanced students only. Instructor support and solutions will *not* be
provided for these exercises. Some of the coding skills required to complete exercise 6 have not been
covered in this class.

Perform the following steps:

1 . Extend CHALLENGE LABS exercise 4 by f inding the top three most common
airplane models for f l ights over 1500 miles.

Both flights.csv and plane-data.csv will be used to solve this exercise.

2 . Extend CHALLENGE LABS exercises 1 and 3 by returning the names of the
air l ines rather than their carrier codes.

To perform this extension, another file in the /home/zeppelin/spark/data directory must
be used: carriers.csv.

The data in this file contains two columns, as indicated below:

BE AWARE:

This data contains additional challenges. The first row of the data contains column
headers, just like plane-data.csv did. However, in addition, in some cases the
description of the airline includes a comma that is not meant to separate values. For
example, the airline with code 09Q is has a description of Swift Air, LLC. The comma is
part of the business name.

Good luck!

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 63

Lab 5: Basic Spark Streaming (Python)

About This Lab
Objective:
Set up basic Spark Streaming operations using the REPL

File Locations:
/root/spark/data/

Successful Outcome:
Stream data from HDFS directories and TCP sockets using Spark Streaming

Lab Steps
Perform the following steps:

1 . Use an HDFS directory as a streaming source.

a. Open a terminal window and SSH into sandbox.
ssh sandbox

b. Create an HDFS directory for streaming output.

hdfs dfs -mkdir /user/root/test/stream

c. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

pyspark --master local[2]

d. Set the log level to ERROR to avoid screen clutter while running the streaming
application.

>>> sc.setLogLevel("ERROR")

e. Import the streaming library.

>>> from pyspark.streaming import StreamingContext

Lab 05: Basic Spark Streaming (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 64

f. Create a streaming context with a five-second batch duration.

>>> sscFive = StreamingContext(sc, 5)

g. Create a DStream using textFileStream() to monitor the local HDFS directory
/user/root/test/.

>>> hdfsInputDS = sscFive.textFileStream("/user/root/test/")

h. Use saveAsTextFiles() to save the outputs to /user/root/test/stream.

>>> hdfsInputDS.saveAsTextFiles("/user/root/test/stream/")

i. Print out the output to the terminal window.

>>> hdfsInputDS.pprint()

j. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

>>> sscFive.start()

Lab 05: Basic Spark Streaming (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 65

k. Open a new terminal window, SSH to sandbox, and place the input file selfishgiant.txt
from /root/spark/data into the folder. Observe what happens a few seconds later in
the streaming terminal window.

ssh sandbox

hdfs dfs -put /root/spark/data/selfishgiant.txt /user/root/test/

NOTE:

You are free to upload additional files to see more streaming take place if you want.

l. Once you observe data being streamed on-screen in the first terminal window, use the

second terminal window to list the contents of the /user/root/test/stream/
directory on HDFS.

#hdfs dfs –ls /user/root/test/stream/

Lab 05: Basic Spark Streaming (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 66

m. In the first terminal window, stop the stream and exit the REPL. If the stream refreshes
while you are typing, that will not affect the input. Simply continue to type the
command and press enter.

sc.stop()
exit()

2 . Use a TCP socket as a streaming source.

a. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

pyspark --master local[2]

b. Set the log level to ERROR to avoid screen clutter while running the streaming

application.

>>> sc.setLogLevel("ERROR")

c. Import the streaming library.

>>> from pyspark.streaming import StreamingContext

Lab 05: Basic Spark Streaming (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 67

d. Create a streaming context with a five-second batch duration.

>>> sscFive = StreamingContext(sc, 5)

e. Create a DStream using socketTestStream() to the system named “sandbox” on
port 9999.

>>> inputDS = sscFive.socketTextStream("sandbox",9999)

f. Use saveAsTextFiles() to save the outputs to /user/root/test/stream.

>>> inputDS.saveAsTextFiles("/user/root/test/stream/")

g. Print out the output to the terminal window.

>>> inputDS.pprint()

h. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

>>> sscFive.start()

NOTE:

An error will appear when the application starts because the application is waiting for an
input connection.

Lab 05: Basic Spark Streaming (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 68

i. In the second terminal window use the netcat utility to create a connection to port
9999.

nc -lkv 9999

j. Start typing words separated by space, hit Enter occasionally to submit them. Observe
what happens in the streaming terminal window a few seconds after hitting Enter.

Lab 05: Basic Spark Streaming (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 69

k. Once you observe data being streamed on-screen in the first terminal window, use Ctrl
+ C (or Cmd + C if using a Mac) to exit netcat in the second terminal window.

l. Use the second terminal window to list the contents of the
/user/root/test/stream/ directory on HDFS. Note the time stamps on the files.

#hdfs dfs –ls /user/root/test/stream/

m. In the first terminal window, stop the stream and exit the REPL.

sc.stop()
exit()

Result
You have created data streams from HDFS and TCP socket sources, observed the stream in real-time,
and observed text files created from those streams for long-term storage and future use.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 71

Lab 6: Basic Spark Streaming Transformations
(Python)

About This Lab
Objective:
Learn to use basic Spark Streaming transformations on data streams

File Locations:
/root/spark/data/

Successful Outcome:
Perform several basic transformations on streaming data

Lab Steps
Perform the following steps:

1 . Perform a Spark Streaming transformations using flatmap().

a. Open a terminal, connect to the sandbox cluster using SSH, and start a new instance of
the REPL that is configured to use two CPU cores.

ssh sandbox

pyspark --master local[2]

b. Create a data stream the performs the following operations:

1. Sets the log level to “ERROR”

2. Imports the StreamingContext class

3. Creates an instance of that class named sscFive with a five-second time window

4. Creates a socket text DStream named inputDS that listens to “sandbox” on port
9999

5. Saves the DStream to text files in the /user/root/test/stream/ directory.

6. Creates a DStream named flatMapDS that uses flatMap() to break lines into
individual elements separated by spaces

7. Prints the contents of flatMapDS to the screen

Lab 6: Basic Spark Streaming Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 72

8. Starts the application

>>> sc.setLogLevel("ERROR")

>>> from pyspark.streaming import StreamingContext

>>> sscFive = StreamingContext(sc, 5)

>>> inputDS = sscFive.socketTextStream("sandbox",9999)

>>> inputDS.saveAsTextFiles("/user/root/test/stream/")

>>> flatMapDS = inputDS.flatMap(lambda line: line.split(" "))

>>> flatMapDS.pprint()

>>> sscFive.start()

Lab 6: Basic Spark Streaming Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 73

NOTE:

You will see an error when it starts because it is waiting for an input connection.

c. Open a new terminal window, connect to the sandbox cluster, and connect to port

9999 using the netcat utility. Make sure both terminal windows are visible on-screen.

ssh sandbox

nc -lkv 9999

d. In the netcat terminal, start typing words separated by spaces. Hit the Enter key
occasionally to submit them to the stream. Observe how the words appear in the
streaming window.

e. In the streaming window, stop the stream and exit the REPL.
sc.stop()
exit()

f. In the netcat window, exit the socket by entering Ctrl + C (or CMD + C if using a Mac)
on your keyboard.

Lab 6: Basic Spark Streaming Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 74

2 . Perform a Spark Streaming word count transformations using reduceByKey().

a. In the streaming window, start a new instance of the REPL that is configured to use two
CPU cores.

pyspark --master local[2]

b. Create a data stream the performs the following operations:

1. Sets the log level to “ERROR”

2. Imports the StreamingContext class

3. Creates an instance of that class named sscFive with a five-second time window

4. Creates a socket text DStream named inputDS that listens to “sandbox” on port
9999

5. Saves the DStream to text files in the /user/root/test/stream/ directory.

6. Creates a DStream named wc that uses flatMap(), map(), and reduceByKey() to
count the number of times a word appears in a stream

7. Prints the contents of wc to the screen

8. Starts the application
>>> sc.setLogLevel("ERROR")

>>> from pyspark.streaming import StreamingContext

>>> sscFive = StreamingContext(sc, 5)

>>> inputDS = sscFive.socketTextStream("sandbox",9999)

>>> inputDS.saveAsTextFiles("/user/root/test/stream/")

Lab 6: Basic Spark Streaming Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 75

>>> wc = inputDS.flatMap(lambda line: line.split(" ")).map(lambda word:
(word,1)).reduceByKey(lambda a,b: a+b)

>>> wc.pprint()

>>> sscFive.start()

NOTE:

You will see an error when it starts because it is waiting for an input connection.

c. In the netcat window from the previous lab section, reconnect to port 9999 using the

netcat utility. Make sure both terminal windows are visible on-screen.

nc -lkv 9999

Lab 6: Basic Spark Streaming Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 76

d. In the netcat terminal, start typing words separated by spaces, making sure to repeat
some of the words as you type. Hit the Enter key occasionally to submit them to the
stream. Observe how the words appear in the streaming window.

e. In the streaming window, stop the stream and exit the REPL.

sc.stop()
exit()

f. In the netcat window, exit the socket by entering Ctrl + C (or CMD + C if using a Mac)
on your keyboard.

3 . Perform a Spark Streaming transformations using union().

a. In the streaming window, create two copies of the /root/spark/data/data.txt file named
stream1.txt and stream2.txt and confirm the operation was successful.

cp /root/spark/data/data.txt /root/spark/data/stream1.txt

cp /root/spark/data/data.txt /root/spark/data/stream2.txt

ls /root/spark/data/stream*

You can view the contents of the file if you want. As a reminder, these files contain a single line
of text: “This is a test file”

Lab 6: Basic Spark Streaming Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 77

b. In the streaming window, start a new instance of the REPL that is once again
configured to use two CPU cores.

pyspark --master local[2]

c. Create a data stream the performs the following operations:

1. Sets the log level to “ERROR”

2. Imports the StreamingContext class

3. Creates an instance of that class named sscFive with a five-second time window

4. Creates two text file DStreams named inputDS1 and inputDS2 that both listen to
the /user/root/test/ directory on HDFS.

5. Creates a DStream named combined that uses union() to combine the two
streams into a single DStream

6. Prints the contents of combined to the screen

7. Starts the application

>>> sc.setLogLevel("ERROR")

>>> from pyspark.streaming import StreamingContext

>>> sscFive = StreamingContext(sc, 5)

>>> inputDS1 = sscFive.textFileStream(“/user/root/test/”)

>>> inputDS2 = sscFive.textFileStream(“/user/root/test/”)

Lab 6: Basic Spark Streaming Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 78

>>> combined = inputDS1.union(inputDS2)

>>> combined.pprint()

>>> sscFive.start()

d. Go to the netcat terminal window (which we’ll refer to now as the input1 window) from
the previous lab section and type the command to upload the small_blocks.txt file from
the local /root/spark/data/ directory to the /user/root/test/ directory on
HDFS, but DO NOT PRESS THE ENTER KEY.

hdfs dfs –put /root/spark/data/stream1.txt /user/root/test/

e. Open a third terminal window (we’ll refer to this as the input2 window), connect to the
sandbox cluster, and type the same command as in the step above, but once again DO
NOT PRESS THE ENTER KEY. Make sure both terminal windows are visible on-
screen.

ssh sandbox

ssh sandbox

f. Wait for a screen refresh in the streaming window, then immediately go to the input1
and input2 windows and press the Enter key.

Lab 6: Basic Spark Streaming Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 79

Assuming you perform both actions within a 5-second collection window, the
streaming window should display the contents of files as a combined data stream, as
displayed in the screenshot below. The content of the text files (which in our case
should be the same line of text) should each print multiple times because both streams
were monitoring the same HDFS directory.

If your timing is off the first time, simply try again with a couple of additional copies that have
unique file names like streaming3.txt and streaming4.txt.

g. In the streaming window, stop the stream and exit the REPL.
sc.stop()
exit()

Result
You have successfully used several basic transformations on DStreams.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 81

Lab 7: Spark Streaming Window Transformations
(Python)

About This Lab
Objective:
Use Spark Streaming Window Transformations

File Locations:
NA

Successful Outcome:
Perform several Spark Streaming Window Transformations

Lab Steps
Perform the following steps:

1 . Create a streaming window using a TCP socket.

a. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

pyspark --master local[2]

b. Set the log level to ERROR to avoid screen clutter while running the streaming
application.

>>> sc.setLogLevel("ERROR")

c. Import the streaming library.

>>> from pyspark.streaming import StreamingContext

d. Create a streaming context with a five-second batch duration.

>>> sscFive = StreamingContext(sc, 5)

Lab 7: Spark Streaming Window Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 82

e. Set the checkpoint directory.

>>> sscFive.checkpoint(“/user/root/test/checkpoint/”)

f. Create a DStream using socketTestStream() to the system named “sandbox” on
port 9999 and set it up as a window function with a 15-second collection period
(window length) and a 5-second collection interval.

>>> inputDS = sscFive.socketTextStream("sandbox",9999).window(15, 5)

g. Print out the output to the terminal window.

>>> inputDS.pprint()

h. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

>>> sscFive.start()

NOTE:

An error will appear when the application starts because the application is waiting for an
input connection.

Lab 7: Spark Streaming Window Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 83

i. In the second terminal window use the netcat utility to create a connection to port
9999.

nc -lkv 9999

j. Start typing words separated by spaces, hit Enter occasionally to submit them.
Observe what happens in the streaming terminal window a few seconds after hitting
Enter .

k. Once you observe data being streamed on-screen in the first terminal window, use Ctrl
+ C (or Cmd + C if using a Mac) to exit netcat in the second terminal window.

l. In the first terminal window, stop the stream and exit the REPL. If the stream refreshes
while you are typing, that will not affect the input. Simply continue to type the
command and press Enter.

sc.stop()
exit()

Lab 7: Spark Streaming Window Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 84

2 . Create a streaming window that counts words in a DStream using a TCP socket.

a. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

pyspark --master local[2]

b. Set the log level to ERROR to avoid screen clutter while running the streaming
application.

>>> sc.setLogLevel("ERROR")

c. Import the streaming library.

>>> from pyspark.streaming import StreamingContext

d. Create a streaming context with a five-second batch duration.

>>> sscFive = StreamingContext(sc, 5)

e. Set the checkpoint directory.

>>> sscFive.checkpoint(“/user/root/test/checkpoint/”)

f. Create a DStream using socketTestStream() to the system named “sandbox” on
port 9999. Convert the lines of text it will accept into individual elements using
flatMap(). Then use countByWindow() with a 15-second collection period (window
length) and a 5-second collection interval to count the number of words typed over the
last 15 seconds as a running total.

>>> inputDS = sscFive.socketTextStream("sandbox",9999).flatMap(lambda line:
line.split(“ “)).countByWindow(15, 5)

Lab 7: Spark Streaming Window Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 85

QUESTION:

What do you think would happen if the flatMap function were removed from the line of
code above?

g. Print out the output to the terminal window.

>>> inputDS.pprint()

h. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

>>> sscFive.start()

NOTE:

An error will appear when the application starts because the application is waiting for an
input connection.

Lab 7: Spark Streaming Window Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 86

i. In the second terminal window use the netcat utility to create a connection to port
9999.

nc -lkv 9999

j. Start typing words separated by space, hit Enter occasionally to submit them.
Observe what happens in the streaming terminal window a few seconds after hitting
Enter .

k. Once you observe data being streamed on-screen in the first terminal window, use Ctrl
+ C (or Cmd + C if using a Mac) to exit netcat in the second terminal window.

l. In the first terminal window, stop the stream and exit the REPL. If the stream refreshes
while you are typing, that will not affect the input. Simply continue to type the
command and press Enter.

sc.stop()
exit()

Lab 7: Spark Streaming Window Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 87

3 . Create a streaming window that counts instances of words in a DStream using a TCP socket.

a. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

pyspark --master local[2]

b. Set the log level to ERROR to avoid screen clutter while running the streaming
application.

>>> sc.setLogLevel("ERROR")

c. Import the streaming library.

>>> from pyspark.streaming import StreamingContext

d. Create a streaming context with a five-second batch duration.

>>> sscFive = StreamingContext(sc, 5)

e. Set the checkpoint directory.

>>> sscFive.checkpoint(“/user/root/test/checkpoint/”)

f. Create a DStream using socketTestStream() to the system named “sandbox” on
port 9999. Convert the lines of text it will accept into individual elements using
flatMap(). Then use map() to create key-value pairs out of the individual elements.
Finally, use reduceByKeyAndWindow() with a 15-second collection period (window
length) and a 5-second collection interval to count the number of times a word has
been typed over the last 15 seconds as a running total.

>>> inputDS = sscFive.socketTextStream("sandbox",9999).flatMap(lambda line:
line.split(“ “)).map(lambda word: (word, 1)). reduceByKeyAndWindow(lambda a,b:
a+b, lambda a,b: a-b, 15, 5)

Lab 7: Spark Streaming Window Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 88

g. Print out the output to the terminal window.

>>> inputDS.pprint()

h. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

>>> sscFive.start()

NOTE:

An error will appear when the application starts because the application is waiting for an
input connection.

Lab 7: Spark Streaming Window Transformations (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 89

i. In the second terminal window use the netcat utility to create a connection to port
9999.

nc -lkv 9999

j. Start typing words separated by space, hit Enter occasionally to submit them. Make
sure to repeat words every so often between lines. Observe what happens in the
streaming terminal window a few seconds after hitting Enter .

k. Once you observe data being streamed on-screen in the first terminal window, use Ctrl
+ C (or Cmd + C if using a Mac) to exit netcat in the second terminal window.

l. In the first terminal window, stop the stream and exit the REPL. If the stream refreshes
while you are typing, that will not affect the input. Simply continue to type the
command and press Enter.

sc.stop()
exit()

Result
You have successfully performed various Spark Streaming Window Transformations.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 91

Lab 8: Create and Save DataFrames and Tables
(Python)

About This Lab
Objective:
Create and save DataFrames and tables

Files Locations:
NA

Successful Outcome:
Use various methods to create and save DataFrames and tables

Lab Steps
Perform the following steps:

1 . Create and save DataFrames and tables.

a. Open the Firefox browser and enter the following URL to view the Zeppelin UI.
http://sandbox:9995/

Lab 8: Create and Save DataFrames and Tables (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 92

b. Click Create new note. Name this note Create and Save DataFrames.

NOTE:

Make sure to set the interpreter to spark-yarn-client as in previous labs.

c. At the top right click on the gear icon to change interpreter binding.

Lab 8: Create and Save DataFrames and Tables (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 93

Drag the spark-yarn-client to the top and click save.

The first interpreter on the list becomes default.

d. Create an RDD named rddNoSchema that consists of a comma-separated list of
organized comma-separated lists, as specified below:

The first entry in each sub-list should be a two-letter code (GG and HH). The second
entry in each sub-list should be numeric values of 20,000 and 190,000 respectively.

View the resulting RDD to confirm success.

%pyspark

rddNoSchema = sc.parallelize([(‘GG’, 20000), (‘HH’, 190000)])

print rddNoSchema.collect()

Lab 8: Create and Save DataFrames and Tables (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 94

e. Use createDataFrame() to convert this RDD into a DataFrame named dataframe1
and apply a schema where the first entry in each sub-list is assigned to the code
category and the second entry in each sub-list is assigned to the value category. View
the DataFrame to confirm success.

%pyspark

dataframe1 = sqlContext.createDataFrame(rddNoSchema, [‘code’, ‘value’])

dataframe1.show()

f. Create an RDD named rddWithSchema that utilizes Row objects organized so that
each element has a schema value.

The first entry in each Row should be a two-letter code (AA and BB) that are assigned a
schema value of code. The second entry in each Row should be numeric values of
150,000 and 80,000 respectively that are assigned a schema value of value.

View the RDD to confirm success.

%pyspark

from pyspark.sql import Row

rddWithSchema = sc.parallelize([Row(code = ‘AA’, value = 150000), Row(code =
‘BB’, value = 80000)])

print rddWithSchema.collect()

Lab 8: Create and Save DataFrames and Tables (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 95

g. Use toDF() to convert this RDD to a new DataFrame named dataframe2. View the
DataFrame to confirm success.

%pyspark

dataframe2 = rddWithSchema.toDF()

dataframe2.show()

h. Register dataframe2 as a temporary table named table1temp. Then issue a SQL
command using the DataFrames API to show the tables visible to the context.

%pyspark

dataframe2.registerTempTable(“table1temp”)

sqlContext.sql(“SHOW TABLES”).show()

Lab 8: Create and Save DataFrames and Tables (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 96

i. In the next paragraph, issue a Spark SQL command to SHOW TABLES. Does
table1temp show up? If so, why? If not, why not?

NOTE:

Your output may also contain tables created when you ran demos in previous labs.

%sql

SHOW TABLES

j. Issue a HiveQL CREATE TABLE command from within the DataFrames API and create a
permanent version of table1temp named table1hive. Use SHOW TABLES both from
the DataFrames API, and then in a new paragraph from Spark SQL, to confirm this table
is visible across contexts.

%pyspark

sqlContext.sql("CREATE TABLE table1hive AS SELECT * FROM table1temp")

sqlContext.sql("SHOW TABLES").show()

%sql

SHOW TABLES

Lab 8: Create and Save DataFrames and Tables (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 97

k. Use Spark SQL to view the contents of table1hive.

%sql

SELECT * FROM table1hive

l. Convert this Hive table into a DataFrame named dataframe3. View the new
DataFrame to confirm success.

%pyspark

dataframe3 = sqlContext.table(“table1hive”)

dataframe3.show()

Lab 8: Create and Save DataFrames and Tables (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 98

m. Save dataframe3 to HDFS in JSON format to a folder named dfJSON1. In a new
paragraph, list all contents of your HDFS home directory to confirm the DataFrame was
successfully written.

%pyspark

dataframe3.write.format(“json”).save(“dfJSON1”)

%sh

hdfs dfs -ls dfJSON*

NOTE:

The JSON file is stored in several part-* files in the folder name you specified. If you
wanted to copy this file to your local file system for distribution outside the cluster, you
could use hdfs dfs -getmerge to combine it as a single file on your local file system.

n. View the combined contents of the files in the dfJSON1 folder on HDFS.
%sh

hdfs dfs -cat dfJSON1/*

Lab 8: Create and Save DataFrames and Tables (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 99

NOTE:

The JSON format is not what you might typically see when looking at JSON files. For
DataFrame creation, each row of information must be self-contained, and thus the
formatting you see here is a requirement for converting JSON files to DataFrames. This
same content coded in more typical JSON fashion would error out upon attempting to
read it as a DataFrame.

o. Create a new DataFrame named dataframe4 from the contents of this folder on HDFS.
View the new DataFrame to confirm success.

%pyspark

dataframe4 = sqlContext.read.format(“json”).load(“dfJSON1/*”)

dataframe4.show()

Result
You have used several methods to create and save DataFrames and tables.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 101

Lab 9: Working with DataFrames (Python)

About This Lab
Objective:
Learn to use the DataFrames API.

File Locations:
NA

Successful Outcome:
Manipulate DataFrames using the DataFrames API

Lab Steps
Perform the following steps:

1 . Manipulate DataFrames using the DataFrames API

NOTE:

This lab intentionally makes use of one or more functions not discussed in the student
book. The new functions are very similar in nature to functions already discussed in Core
RDD programming and should make sense to the student. In addition, some functions
are used in ways not discussed in the student book as well. This is to encourage
exploration and experimentation, in addition to learning new ways to do things.

a. Open the Firefox browser and enter the following URL to view the Zeppelin UI.
http://sandbox:9995/

Lab 9: Working with DataFrames (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 102

b. Click on Notebook and select Create new note on the drop down. Name this note Work
with DataFrames.

c. At the top right click on the gear icon to change interpreter binding.

Lab 9: Working with DataFrames (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 103

Drag the spark-yarn-client to the top and click save.

The first interpreter on the list becomes default.

d. Create two DataFrames named dataframeA and dataframeB from the Hive table
named table1hive created in the previous lab. Then use unionAll() to combine the
rows of these two tables into a new DataFrame named dataframeC. Then show the
contents of dataframeC to confirm success.

%pyspark

dataframeA = sqlContext.table(“table1hive”)

dataframeB = sqlContext.table(“table1hive”)

dataframeC = dataframeA.unionAll(dataframeB)

dataframeC.show()

Lab 9: Working with DataFrames (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 104

e. Create a DataFrame named dataframeD that adds a column named quarterly that
contains the contents of the value column multiplied by three. View the new
DataFrame to confirm success.

%pyspark

dataframeD = dataframeC.withColumn(‘quarterly’, dataframeC.value * 3)

dataframeD.show()

f. Create a DataFrame named dataframeE that renames the value column to monthly.
View the new DataFrame to confirm success.

%pyspark

dataframeE = dataframeD.withColumnRenamed(“value”, “monthly”)

dataframeE.show()

Lab 9: Working with DataFrames (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 105

g. Create a DataFrame named dataframeF that contains only those rows from
dataframeE where the quarterly value is greater than 300,000. View the new
DataFrame to confirm success.

%pyspark

dataframeF = dataframeE.filter(dataframeE[‘quarterly’] > 300000)

dataframeF.show()

h. Create a new DataFrame named dataframeG that adds the rows of dataframeE to
dataframeF so that there are six rows total. View the new DataFrame to confirm
success.

%pyspark

dataframeG = dataframeE.unionAll(dataframeF)

dataframeG.show()

Lab 9: Working with DataFrames (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 106

i. Use describe() on dataframeG without supplying a column name and show the
results.

QUESTION:

What happens?

%pyspark

dataframeG.describe().show()

ANSWER:

All columns with numeric values have statistics displayed.

j. Show only unique rows from DataFrameG.

%pyspark

dataframeG.distinct().show()

Lab 9: Working with DataFrames (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 107

k. Use drop() to create a new DataFrame named dataframeH that contains only the
code and quarterly columns. View the new DataFrame to confirm success.

QUESTION:

What other function described in the student book, could you have used to accomplish
the same task? What would the code have been?

%pyspark

dataframeH = dataframeG.drop(‘monthly’)

dataframeH.show()

Lab 9: Working with DataFrames (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 108

ANSWER:

The same thing could have been accomplished using the following code:

dataframeH = dataframeG.select(‘code’, ‘quarterly’)

l. Create a new DataFrame named dataframeI that contains each unique element in the
code column and a count of the number of times each code appears dataframeH.
View the new DataFrame to confirm success.

%pyspark

dataframeI = dataframeH.groupBy(“code”).count()

dataframeI.show()

Result
You have successfully used the DataFrames API to manipulate DataFrames.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 109

Lab 10: Data Visualization, Reporting & Collaboration
using Zeppelin (Scala)

About This Lab
Objective:
Learn to use Zeppelin to perform data visualizations, collaborate, and integrate visualizations into
reports.

Files Locations:
NA

Successful Outcome:
Use Zeppelin to perform data visualization, collaboration, and reporting tasks.

Lab Steps
Perform the following steps:

1 . Create data visualizations from a file of banking data.

a. Open the Firefox browser and enter the following URL to view the Zeppelin UI.
http://sandbox:9995/

NOTE:

Zepplin’s current main backend processing engine is Apache Spark.

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 110

b. Create a new note named Data Visualization.

c. Set the interpreter for this note to spark-yarn-client.

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 111

d. Upload the bankdata3.orc file from the /home/zeppelin/spark/data directory on
your local file system to your HDFS home directory. Confirm the file was uploaded
successfully.

%sh

hdfs dfs -put /home/zeppelin/spark/data/bankdata3.orc bankdata3.orc

hdfs dfs -ls bankdata*

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 112

NOTE:

This data is a cleaned subset of a publicly available machine learning dataset. The
original dataset can be found at the following link:

http://archive.ics.uci.edu/ml/machine-learning-databases/00222/

e. Use the bankdata3.orc file to create a DataFrame named bankdata, a temporary table
named banktemp, and a Hive table named bankdataperm.

%pyspark

bankdata = sqlContext.read.format(“orc”).load(“bankdata3.orc”)

bankdata.registerTempTable(“banktemp”)

sqlContext.sql(“create table bankdataperm as select * from banktemp”)

f. Use SQL to show the tables available and confirm that bankdataperm is available.

%sql

show tables

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 113

g. Use SQL to select and display all rows and columns from bankdataperm.
%sql

select * from bankdataperm

h. Quickly browse through the five data visualizations available by default in Zeppelin. For
most of this lab, we will work with the bar chart view.

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 114

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 115

i. Go back to the bar chart view. Then, edit your SQL query so that it only shows data for
individuals over the age of 30. Run the query and note the change in the chart.

%sql

select * from bankdataperm where age > 30

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 116

j. Click on the settings link and notice that Zeppelin has selected the age column as the
key column and is showing the sum of the balances for all individuals in each age
bracket. Display the average balance instead of the sum of balances.

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 117

k. Click and drag the available marital field into the Groups category to modify the
visualization so that data is shown not only by age, but also grouped by marital status.
When you are finished, click the settings link again to close the pivot chart options.

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 118

l. It appears that we have what appears to be a single outlier that is skewing the data
fairly significantly. We can easily see that the vast majority of average balances are well
below $5,000. Add a dynamic form to the SQL query that allows you to filter out data
where the maximum balance for any individual exceeds a certain threshold, but set the
default to 1,000,000 so that it doesn’t immediately modify the chart. Rerun the query
with this new code, then use this dynamic form to adjust the maximum balance to
$10,000 and $5,000 and note the effects on the visualization.

%sql

select * from bankdataperm where age > 30 and balance <= ${Maximum
Balance=1000000}

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 119

QUESTIONS:

Why do you think changing the maximum balance from $10,000 to $5,000 had so little
effect on the chart?

What group (married, single, or divorced) had the most change based on changing the
maximum balance?

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 120

m. Create a URL that allows you to share this chart with others without giving them access
to the code or the Zeppelin note. Use the linked page to change the maximum balance
to $2,500, then return to your note and observe the effects the change had at the
source.

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 121

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 122

n. In the paragraph below this one, run the SQL command to read all data from
bankdataperm. Then adjust the width of the two paragraphs so that they both appear
on the same line.

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 123

o. We are now ready to prepare this note for sharing. Create a clone copy of this note
named Data Visualization Clone. Also export a copy of the note.

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 124

p. On the Data Visualization note we are going to share, hide the code for all paragraphs.
Then hide the output for every paragraph except for the two that are on the same line.

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 125

q. Next, convert this from the default view to report view. Now the URL to this note is
ready to share with your stakeholders.

r. Import the copy of this note you made earlier and name the new note Data Visualization
Imported. Confirm that the copy contains all original code and formatting.

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 126

Lab 10: Data Visualization, Reporting & Collaboration using Zeppelin (Scala)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 127

Result
You have successfully created and manipulated Zeppelin visualizations, made them available for
collaboration, and used Zeppelin to create a shareable report.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 129

Lab 11: Job Monitoring (Python)

About This Lab
Objective:
Monitor Spark jobs using the Spark Application UI

Files Locations:
NA

Successful Outcome:
Monitor Spark jobs

Lab Steps
Perform the following steps:

1 . Monitor a core RDD programming job.

a. Open the Firefox browser and access your Zeppelin notebook.
http://sandbox:9995/

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 130

b. From the home page, select the Application Monitoring Python Note. This note has
prebuilt code that we will run to generate Spark job activity.

c. At the top right click on the gear icon to change interpreter binding. Your administrator
has enabled an interpreter called “spark yarn-client” which is configured for the HDP
cluster you are using. Drag it to the top of the list of interpreters, and click the Save
button.

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 131

NOTE:

The first interpreter on the list is treated as the default interpreter. Scroll down to find the
Save button.

d. Now run the code by hitting Play button or by pressing Shift + Enter .

NOTE:

The below code is for reference purposes and has already been placed in the note.

%pyspark
months = ("Jan", "Feb", "March", "April", "May", "June", "July")
rddMonths = sc.parallelize(months)
zipWIrdd = rddMonths.zipWithIndex()
print zipWIrdd.collect()
quarters = (1,1,1,2,2,2,3)
rddQuarters = sc.parallelize(quarters)
ZiPrdd = rddMonths.zip(rddQuarters)
print ZiPrdd.collect()
MapValrdd = ZiPrdd.mapValues(lambda mark: (mark, 1));
print MapValrdd.collect()
print MapValrdd.keys().collect()
print MapValrdd.values().collect()
print MapValrdd.sortByKey().collect()

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 132

e. Open a new tab on the Firefox browser and enter the following URL to view the Spark
Application UI:

NOTE:

http://sandbox:4040/ will work only once the job is submitted.

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 133

NOTE:

the URL http://sandbox:4040/ has been redirected to
http://sandbox:8088/proxy/application_ID. Port 8088 belongs to the job history server for
various applications that run on YARN. Here our application is “Zeppelin application UI”
as noted in the top-right corner of the window.

f. SPARK APPLICATION UI SCAVENGER HUNT!
Look at the various aspects of the jobs that were run as part of the code being executed in the step
above. Try to locate the following screens (the details of your environment may differ from the details
shown):

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 134

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 135

When you get to the Show Additional Metrics link, try reading about and selecting additional
metrics and view the information they provide. How might this be useful in troubleshooting
application performance problems?

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 136

2 . Monitor a Spark Streaming job.

a. Open a terminal window and SSH into sandbox.

ssh sandbox

b. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

pyspark --master local[2]

c. Set the log level to ERROR to avoid screen clutter while running the streaming
application.

>>> sc.setLogLevel("ERROR")

d. Import the streaming library.

>>> from pyspark.streaming import StreamingContext

e. Create a streaming context with a five-second batch duration.

>>> sscFive = StreamingContext(sc, 5)

f. Create a DStream using socketTestStream() to the system named “sandbox” on
port 9999.

>>> inputDS = sscFive.socketTextStream("sandbox",9999)

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 137

g. Print out the output to the terminal window.

>>> inputDS.pprint()

h. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

>>> sscFive.start()

NOTE:

An error will appear when the application starts because the application is waiting for
an input connection.

i. In a second terminal window SSH to sandbox and use the netcat utility to create a
connection to port 9999.

ssh sandbox

nc -lkv 9999

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 138

j. Start typing words separated by space, hit Enter occasionally to submit them.
Observe what happens in the streaming terminal window a few seconds after hitting
Enter .

k. Once you observe data being streamed on-screen in the first terminal window, use Ctrl
+ C (or Cmd + C if using a Mac) to exit netcat in the second terminal window.

l. Since this is a new SparkContext instance, a new Spark Applications UI should now be
available. Open a new FireFox tab and browse to the Streaming Application UI URL
from before, but replace port 4040 with 4041:

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 139

m. SCAVENGER HUNT PART II
Look at the various aspects of the streaming jobs that were run as part of the code being
executed in the steps above. Try to locate the following screens (the details of your
environment may differ from the details shown):

Lab 11: Job Monitoring (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 140

n. When you have located all of the required sections, go back to the first terminal
window, stop the stream and exit the REPL. If the stream refreshes while you are
typing, that will not affect the input. Simply continue to type the command and press
Enter.

sc.stop()
exit()

Result
You have successfully monitored Spark core programming and Spark Streaming jobs using the Spark
Application UI.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 141

Lab12: Performance Tuning (Python)

About This Lab
Objective:
Practice performance tuning techniques

File Locations:
/home/zeppelin/spark/data/

Successful Outcome:
Code performance tuning techniques from the lesson

Lab Steps
Perform the following steps:

1 . Practice using performance tuning techniques.

a. Open the Firefox browser and enter the following URL to view the Zeppelin UI.
http://sandbox:9995/

Lab12: Performance Tuning (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 142

b. Click on Create new note. Name this note Performance Tuning.

c. At the top right click on the gear icon to change interpreter binding.

Lab12: Performance Tuning (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 143

Drag the spark-yarn-client to the top and click save.

The first interpreter on the list becomes default.

d. Create an RDD named rdd1 that contains a list of numbers one through nine, then
back down to one again (17 elements total) and set it to eight partitions. Use print to
confirm the RDD was created successfully.

%pyspark

rdd1 = sc.parallelize((1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1), 8)

print rdd1.collect()

Lab12: Performance Tuning (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 144

e. View the default parallelism settings for your environment, and then verify that rdd1
was partitioned with eight partitions instead of the default number.

%pyspark

print sc.defaultParallelism

%pyspark

print rdd1.getNumPartitions()

f. Create an RDD named rdd2 that is a copy of rdd1 but uses only four partitions. Verify

that rdd2 has only four partitions.
%pyspark

rdd2 = rdd1.coalesce(4)

%pyspark

print rdd2.getNumPartitions()

Lab12: Performance Tuning (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 145

g. Create an RDD named rdd3 that is a copy of rdd2 but expands the number of
partitions from four to six. Verify that rdd3 has six partitions.

%pyspark

rdd3 = rdd2.repartition(6)

print rdd3.getNumPartitions()

h. Create an RDD named rdd4 that contains a larger set of data by combining rdd3,

rdd2, and rdd1. The view this list of 51 numbers.

%pyspark

rdd4 = rdd3.union(rdd2.union(rdd1))

print rdd4.collect()

i. Create an RDD named rdd5 that turns this list into a Pair RDD using the existing
numbers as keys and assign each key a value of one. View rdd5 to confirm successful
operation.

%pyspark

rdd5 = rdd4.map(lambda x: (x, 1))

print rdd5.collect()

Lab12: Performance Tuning (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 146

j. Create an RDD named rdd6 that uses partitionBy() to create eight hashed
partitions from rdd5. View rdd6 to confirm successful operation.

%pyspark

rdd6 = rdd5.partitionBy(8)

print rdd6.collect()

k. Cache rdd6 in memory so that it will be quickly available should we want to use the
hash partitioning in a future operation.

%pyspark

rdd6.cache()

l. Create a new RDD named rdd7 that reduces rdd6 by key. View the results, and pay

attention to the time it took to generate it.

%pyspark

rdd7 = rdd6.reduceByKey(lambda x,y: x+y)

print rdd7.collect()

Lab12: Performance Tuning (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 147

m. Create a directory named checkperf in your HDFS home directory, then configure it
as your checkpoint directory for Spark applications.

%sh

hdfs dfs -mkdir checkperf

%pyspark

sc.setCheckpointDir(“checkperf”)

n. Checkpoint rdd6 so that future operations can use it as the starting point for lineage-
tracking purposes.

%pyspark

rdd6.checkpoint()

o. Open a terminal window and connect to sandbox using SSH. Switch to the zeppelin

user. Then view the contents of the checkperf directory and confirm that a checkpoint
file exists. Then exit the zeppelin user back to root.

ssh sandbox

su zeppelin

hdfs dfs -ls checkperf

exit

Lab12: Performance Tuning (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 148

p. Use broadcast variables to perform an operation. Code the following:

1. Create a variable named oddNums that contains a list of odd numbers 1-9.

2. Print the contents of rdd1 used at the beginning of the lab.

3. Create a broadcast variable named filterOdd that contains the values in oddNums.

4. Print the results of a filter operation where only numbers that appear in the filterOdd
broadcast variable show up in the output.

%pyspark

oddNums = ([1, 3, 5, 7, 9])

print rdd1.collect()

filterOdd = sc.broadcast(oddNums)

print rdd1.filter(lambda x: x in filterOdd.value).collect()

Result
You have used several of the performance tuning tools and practices discussed in the lesson.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 149

Lab13: Build and Submit Applications to YARN
(Python)

About This Lab
Objective:
Apply programming knowledge into stand-alone applications submitted to a YARN cluster

File Locations:
NA

Successful Outcome:
Build and submit a cluster-mode application to YARN

Lab Steps
Perform the following steps:

1 . Build and Submit a Spark RDD application

a. Open a terminal and use SSH to connect to sandbox:

ssh sandbox

b. OPTIONAL:
If you have a favorite Linux text editor already, you may use it for the rest of the lab. If
you are not already familiar with a Linux text editor, we recommend that you download
and install nano – a small, simple to use editor that will be used for the commands and
screenshots in this lab.

yum -y install nano

c. Navigate to /root/spark/data/applications/python/templates/ and view the
SparkRDD.py file.

cd /root/spark/applications/python/templates/

nano SparkRDD.py

Lab13: Build and Submit Applications to YARN (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 150

(Again, vi or another editor can also be used based on your preference.)

d. The objective is to build an application based on this template and the comments
posted on this template. You may try to do this on your own, or use the solution steps
below:

Lab13: Build and Submit Applications to YARN (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 151

Lab13: Build and Submit Applications to YARN (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 152

The solution file is also available at: /root/spark/applications/python/solutions/
SolutionFileName: SparkRDD.py

e. Exit the text editor and save your changes (in nano, press Ctrl + X to exit and press
Y to save your changes.

f. Run the application from the terminal.

PYSPARK_PYTHON=/usr/bin/python spark-submit --master yarn-cluster --num-
executors 2 --executor-memory 1g
/root/spark/applications/python/templates/SparkRDD.py

NOTE:

This application will now use YARN as the resource manager with number of executors
as 2 and 1g of memory.

Lab13: Build and Submit Applications to YARN (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 153

Copy the application ID at the end when the application stops.
The output of the program can be seen using the following command:

yarn logs –applicationId <id>

Scroll up to see the output

Monitor the submitted Job. Open a new tab on the Firefox browser and browse to:
http://sandbox:4040/

Lab13: Build and Submit Applications to YARN (Python)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 154

IMPORTANT:

The UI below will only be available while the job is running. If you are unable to see the
UI, run the application again and quickly switch to the provided link.

Result
You have successfully built and submitted a Spark applications to a YARN cluster.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 155

Lab 14: Machine Learning Walkthrough

About This Lab
Objective:
Observe and run code examples that demonstrate machine learning processes.

File Locations:
NA

Successful Outcome:
Import a preconfigured note that contains machine learning code samples, read through the note, and
run those examples.

Lab Steps
Perform the following steps:

1 . Import the note, read through it, and run code examples.

a. Open the Firefox browser and enter the following URL to view the Zeppelin UI.
http://sandbox:9995/

NOTE:

Zepplin’s current main backend processing engine is Apache Spark.

Lab 14: Machine Learning Walkthrough

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 156

b. Import a copy of the note at the following URL:

https://raw.githubusercontent.com/hortonworks-gallery/zeppelin-
notebooks/master/2BNDT63TY/note.json

Name this note Machine Learning Lab. It should appear in the list of available notes on the
Zeppelin home page.

Lab 14: Machine Learning Walkthrough

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 157

NOTE:

If for some reason the URL is not working, your instructor should know the location of a
JSON copy of this note that can be imported instead of importing it from an Internet link.

c. Open the new note and set the interpreter to spark-yarn-client.

Lab 14: Machine Learning Walkthrough

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 158

Lab 14: Machine Learning Walkthrough

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 159

d. Read through the note. A fair number of paragraphs are there for context and
instructions. When you come to the first paragraph that displays code, run the code in
that paragraph and view the results.

e. Continue down the note, reading the descriptions and explanations and running the
code as instructed, until you reach the end of the note.

Result
You have walked through a preconfigured Zeppelin note that contained multiple examples of machine
learning code.

Hortonworks University courses are designed by the leaders and committers of Apache Hadoop.
We provide immersive, real-world experience in scenario-based training. Courses offer
unmatched depth and expertise available in both the classroom or online from anywhere in the
world. We prepare you to be an expert with highly valued skills and for Certification.

	HWU-FrontMatter-Template-03-2016
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	HDPDeveloper-EnterpiseSpark1-PythonLabGuide-Rev1
	HWU-BackMatter-Template-02-2016
	Blank Page
	Blank Page

