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HDP Overview for Developers 

Lesson Objectives 
After completing this lesson, students should be able to: 

ü Describe the characteristics and types of Big Data

ü Define HDP and how it fits into overall data lifecycle management strategies

ü Describe and use HDFS

ü Explain the purpose and function of YARN

Defining Big Data 
What makes data big?  Where did the phrase Big Data come from and what does it mean? 

The term Big Data comes from the computational sciences.  Specifically, it is used to describe 
scenarios where the volume and variety of data types overwhelm the existing tools to store and 
process it. 

In 2001, the industry analyst Doug Laney described Big Data using the three V’s of volume, velocity, 
and variety. 

Volume 
Volume refers to the amount of data being generated.  Think in terms of gigabytes, terabytes, and 
petabytes.  Many systems and applications are just not able to store, let alone ingest or process, that 
much data. 

Many factors contribute to the increase in data volume.  This includes transaction-based data stored 
for years, unstructured data streaming in from social media, and the ever increasing amounts of sensor 
and machine data being produced and collected. 

There are problems related to the volume of data.  Storage cost is an obvious issue. Another problem 
is filtering and finding relevant and valuable information in large quantities of data that often contains 
not-valuable information. 

You also need a solution to analyze data quickly enough in order to maximize business value today 
and not just next quarter or next year. 
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Velocity 
Velocity refers to the rate at which new data is created.   Think in terms of megabytes per second and 
gigabytes per second. 

Data is streaming in at unprecedented speed and must be dealt with in a timely manner in order to 
extract maximum value from the data.  Sources of this data include logs, social media, RFID tags, 
sensors, and smart metering. 

There are problems related to the velocity of data.  These include not reacting quickly enough to 
benefit from the data.  For example, data could be used to create a dashboard that could warn of 
imminent failure or a security breach.  Failure to react in time could lead to service outages. 

Another problem related to the velocity of data is that data flows tend to be highly inconsistent with 
periodic peaks.  Causes include daily or seasonal changes or event-triggered peak loads. For example, 
a change in political leadership could cause an a peak in social media. 

Variety 
Variety refers to the number of types of data being generated.  Varieties of data include structured, 
semi-structured, and unstructured data arriving from a myriad of sources.  Data can be gathered from 
databases, XML or JSON files, text documents, email, video, audio, stock ticker data, and financial 
transactions. 

There are problems related to the variety of data.  This include how to gather, link, match, cleanse, and 
transform data across systems. You also have to consider how to connect and correlate data 
relationships and hierarchies in order to extract business value from the data. 

Common Types of Data in Hadoop 
Six types of data are commonly found in Hadoop.  These include sentiment data, clickstream data, 
sensor or machine data, geographic/geolocation data, server log data, and text. 

The type of Big Data that ends up in Hadoop typically fits into one of the following categories: 

• Sentiment: Understand how your customers feel about your brand and products right now

• Clickstream: Capture and analyze website visitor's data trails and optimize your website

• Sensor/Machine: Discover patterns in data streaming automatically from remote sensors
and machines

• Geographic: Analyze location-based data to manage operations where they occur

• Server Logs: Research log files to diagnose and process failures and prevent security
breaches

• Text: Understand patterns in text across millions of web pages, emails and documents
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Sentiment 
Understand how your customers feel about your brand and products right now 

Sentiment data is unstructured data containing opinions, emotions, and attitudes.  Sentiment data is 
gathered from social media like Facebook and Twitter. It is also gathered from blogs, online product 
reviews, and customer support interactions.   

Enterprises use sentiment analysis to understand how the public thinks and feels about something. 
They can also track how those thoughts and feelings change over time. 

It is used to make targeted, real-time decisions that improve performance and improve market share. 
Sentiment data may be analyzed to get feedback about products, services, competitors, and 
reputation.  

Clickstream 
Capture and analyze website visitor's data trails and optimize your website 

Clickstream data is the data trail left by a user while visiting a Web site. Clickstream data can be used 
to determine how long a customer stayed on a Web site, which pages they most frequently visited, 
which pages they most quickly abandoned, along with other statistical information. 

This data is commonly captured in semi-structured Web logs. 

Clickstream data is used, for example, for path optimization, basket analysis, next-product-to-buy 
analysis, and allocation of Web site resources.   

Hadoop makes it easier to analyze, visualize, and ultimately change how visitors behave on your Web 
site. 

Sensor/Machine 
Discover Patterns in data streaming automatically from remote sensors and machines 

A sensor is a converter that measures a physical quantity and transforms it into a digital signal.  Sensor 
data is used to monitor machines, infrastructure, or natural phenomenon.  

Sensors are everywhere these days. They are on the factory floor and they are in department stores in 
the form of RFID tags.  Hospitals use biometric sensors to monitor patients and other sensors to 
monitor the delivery of medicines via intravenous drip lines.  In all cases these machines stream low-
cost, always-on data. 

Hadoop makes it easier for you to rapidly collect, store, process, and refine this data.  By processing 
and refining your data you can identify meaningful patterns that provide insight to make proactive 
business decisions. 

Geographic 
Analyze location-based data to manage operations where they occur 

Geographic/geolocation data identifies the location of an object or individual at a moment in time.  This 
data may take the form of coordinates or an actual street address. 

This data might be voluminous to collect, store, and process; just like sensor data.  In fact, geolocation 
data is collected by sensors.  

Hadoop helps reduce data storage costs while providing value-driven intelligence from asset tracking. 
For example, you might optimize truck routes to save fuel costs. 
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Server Log 
Research log fi les to diagnose and process failures and prevent security breaches 

Server log data captures system and network operation information.  Information technology 
organizations analyze server logs for many reasons.  These include the need to answer questions 
about security, monitor for regulatory compliance, and troubleshoot failures. 

Hadoop takes server-log analysis to the next level by speeding and improving log aggregation and 
data center-wide analysis. In many environments Hadoop can replace existing enterprise-wide 
systems and network monitoring tools, and reduce the complexity and costs associated with deploying 
and maintaining such tools. 

Text 
Understand patterns in text across mil l ions of web pages, emails and documents 

Text is often used for text-based data generated that doesn’t neatly fit into one of the above 
categories, as well as combinations of categories in order to find patterns across different text-based 
sources.  

Introduction to HDP 
Hadoop is a collection of open source software frameworks for the distributed storing and processing 
of large sets of data. Hadoop development is a community effort governed under the licensing of the 
Apache Software Foundation. Anyone can help to improve Hadoop by adding features, fixing software 
bugs, or improving performance and scalability. 

Hadoop clusters are scalable, ranging from a single machine to literally thousands of machines. It is 
also fault tolerant. Hadoop services achieve fault tolerance through redundancy.   

Clusters are created using commodity, enterprise-grade hardware, which not only reduces the original 
purchase price, but potentially also reduces support costs too. 

Hadoop also uses distributed storage and processing to achieve massive scalability.  Large datasets 
are automatically split into smaller chunks, called blocks, and distributed across the cluster machines. 
Not only that, but each machine commonly processes its local block of data. This means that 
processing is distributed too, potentially across hundreds of CPUs and hundreds of gigabytes of 
memory. 

HDP is an enterprise-ready collection of frameworks (sometimes referred to as the HDP Stack) that 
work within Hadoop that have been tested and are supported by Hortonworks for business clients. 
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Hortonworks Data Platform 

The	Hortonworks	Data	Platform	

Hadoop is not a monolithic piece of software. It is a collection of software frameworks. Most of the 
frameworks are part of the Apache software ecosystem. The picture illustrates the Apache frameworks 
that are part of the Hortonworks Hadoop distribution.  

So why does Hadoop have so many frameworks and tools?  The reason is that each tool is designed 
for a specific purpose. The functionality of some tools overlap but typically one tool is going to be 
better than others when performing certain tasks.  

For example, both Apache Storm and Apache Flume ingest data and perform real-time analysis, but 
Storm has more functionality and is more powerful for real-time data analysis. 

HDP Overview 

HDP	Version	Releases	
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The Hortonworks Data Platform (HDP) is an open enterprise version of Hadoop distributed by 
Hortonworks. It includes a single installation utility that installs many of the Apache Hadoop software 
frameworks. Even the installer is pure Hadoop. The primary benefit of HDP is that Hortonworks has put 
it through a rigorous set of system, functional, and regression tests to ensure that versions of any 
framework included in the distribution works seamlessly with other frameworks in a secure and reliable 
manner. 

Because HDP is an open enterprise version of Hadoop, it is imperative that it uses the best 
combination of the most stable, reliable, secure, and current frameworks. 

Data Management and Operations Frameworks 
There are two data management frameworks: HDFS and YARN. 
 

 
• Hadoop Distributed File System (HDFS) 

A Java-based, distributed file system that provides scalable, reliable, high-throughput access 
to application data stored across commodity servers 

• Yet Another Resource Negotiator (YARN) 
A framework for cluster resource management and job scheduling 

HDFS is a Java-based distributed file system that provides scalable, reliable, high-throughput access 
to application data stored across commodity servers. HDFS is similar to many conventional file 
systems.  For example, it shares many similarities to the Linux file system. HDFS supports operations 
to read, write, and delete files. It supports operations to create, list, and delete directories.  

YARN is a framework for cluster resource management and job scheduling. YARN is the architectural 
center of Hadoop that enables multiple data processing engines such as interactive SQL, real-time 
streaming, data science, and batch processing to co-exist on a single cluster.  

The four operations frameworks are Apache Ambari, Apache ZooKeeper, Cloudbreak, and Apache 
Oozie. 
 

 
Ambari is a completely open operational framework for provisioning, managing, and 
monitoring Hadoop clusters. It includes an intuitive collection of operator tools and a set of RESTful 
APIs that mask the complexity of Hadoop, simplifying the operation of clusters. The most visible 
Ambari component is the Ambari Web UI, a Web-based interface used to provision, manage, and 
monitor Hadoop clusters. The Ambari Web UI is the "face" of Hadoop management. 
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ZooKeeper is a coordination service for distributed applications and services. Coordination services 
are hard to build correctly, and are especially prone to errors such as race conditions and deadlock.  In 
addition, a distributed system must be able to conduct coordinated operations while dealing with such 
things as scalability concerns, security concerns, consistency issues, network outages, bandwidth 
limitations, and synchronization issues.  ZooKeeper is designed to help with these issues. 

Cloudbreak is a cloud-agnostic tool for provisioning, managing, and monitoring on-demand clusters. 
It automates the launching of elastic Hadoop clusters with policy-based autoscaling on the major 
cloud infrastructure platforms including Microsoft Azure, Amazon Web Services, Google Cloud 
Platform, OpenStack, and Docker containers. 

Oozie is a server-based workflow engine used to execute Hadoop jobs. Oozie enables Hadoop users 
to build and schedule complex data transformations by combining MapReduce, Apache Hive, Apache 
Pig, and Apache Sqoop jobs into a single, logical unit of work. Oozie can also perform Java, Linux 
shell, distcp, SSH, email, and other operations.   

Data Access Frameworks 
 

 
Apache Pig is a high-level platform for extracting, transforming, or analyzing large datasets. Pig 
includes a scripted, procedural-based language that excels at building data pipelines to aggregate and 
add structure to data. Pig also provides data analysts with tools to analyze data. 

Apache Hive is a data warehouse infrastructure built on top of Hadoop. It was designed to enable 
users with database experience to analyze data using familiar SQL-based statements. Hive includes 
support for SQL:2011 analytics. Hive and its SQL-based language enable an enterprise to utilize 
existing SQL skillsets to quickly derive value from a Hadoop deployment. 

Apache HCatalog is a table information, schema, and metadata management system for Hive, Pig, 
MapReduce, and Tez. HCatalog is actually a module in Hive that enables non-Hive tools to access Hive 
metadata tables. It includes a REST API, named WebHCat, to make table information and metadata 
available to other vendors’ tools.  

Cascading is an application development framework for building data applications. Acting as an 
abstraction layer, Cascading converts applications built on Cascading into MapReduce jobs that run 
on top of Hadoop. 
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Apache HBase is a non-relational database. Sometimes a non-relational database is referred to as a 
NoSQL database. HBase was created for hosting very large tables with billions of rows and millions of 
columns. HBase provides random, real-time access to data. It adds some transactional capabilities to 
Hadoop, allowing users to conduct table inserts, updates, scans, and deletes. 

Apache Phoenix is a client-side SQL skin over HBase that provides direct, low-latency access to 
HBase. Entirely written in Java, Phoenix enables querying and managing HBase tables using SQL 
commands.  

Apache Accumulo is a low-latency, large table data storage and retrieval system with cell-level 
security. Accumulo is based on Google’s Bigtable but it runs on YARN. 

Apache Storm is a distributed computation system for processing continuous streams of real-time 
data. Storm augments the batch processing capabilities provided by MapReduce and Tez by adding 
reliable, real-time data processing capabilities to a Hadoop cluster.  

Apache Solr is a distributed search platform capable of indexing petabytes of data. Solr provides 
user-friendly, interactive search to help businesses find data patterns, relationships, and correlations 
across petabytes of data. Solr ensures that all employees in an organization, not just the technical 
ones, can take advantage of the insights that Big Data can provide.  

Apache Spark is an open source, general purpose processing engine that allows data scientists to 
build and run fast and sophisticated applications on Hadoop. Spark provides a set of simple and easy-
to-understand programming APIs that are used to build applications at a rapid pace in Scala. The 
Spark Engine supports a set of high-level tools that support SQL-like queries, streaming data 
applications, complex analytics such as machine learning, and graph algorithms.  

Governance and Integration Frameworks 
 

 
Apache Falcon is a data governance tool. It provides a workflow orchestration framework designed 
for data motion, coordination of data pipelines, lifecycle management, and data discovery. Falcon 
enables data stewards and Hadoop administrators to quickly onboard data and configure associated 
processing and management on Hadoop clusters. 

WebHDFS uses the standard HTTP verbs GET, PUT, POST, and DELETE to access, operate, and 
manage HDFS. Using WebHDFS, a user can create, list, and delete directories as well as create, read, 
append, and delete files. A user can also manage file and directory ownership and permissions. 
Administrators can manage HDFS.  

The HDFS NFS Gateway allows access to HDFS as though it were part of an NFS client’s local file 
system. The NFS client mounts the root directory of the HDFS cluster as a volume and then uses local 
command-line commands, scripts, or file explorer applications to manipulate HDFS files and 
directories. 
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Apache Flume is a distributed, reliable, and highly-available service that efficiently collects, 
aggregates, and moves streaming data. It is a distributed service because it can be deployed across 
many systems. The benefits of a distributed system include increased scalability and redundancy. It is 
reliable because its architecture and components are designed to prevent data loss. It is highly-
available because it uses redundancy to limit downtime. 

Apache Sqoop is a collection of related tools. The primary tools are the import and export tools. 
Writing your own scripts or MapReduce program to move data between Hadoop and a database or an 
enterprise data warehouse is an error prone and non-trivial task. Sqoop import and export tools are 
designed to reliably transfer data between Hadoop and relational databases or enterprise data 
warehouse systems.  

Apache Kafka is a fast, scalable, durable, and fault-tolerant publish-subscribe messaging system. 
Kafka is often used in place of traditional message brokers like Java Messaging Service (JMS) or 
Advance Message Queuing Protocol (AMQP) because of its higher throughput, reliability, and 
replication.  

Apache Atlas is a scalable and extensible set of core foundational governance services that enable 
an enterprise to meet compliance requirements within Hadoop and enables integration with the 
complete enterprise data ecosystem. 

Security Frameworks 
 

 
HDFS also contributes security features to Hadoop. HDFS includes file and directory permissions, 
access control lists, and transparent data encryption. Access to data and services often depends on 
having the correct HDFS permissions and encryption keys. 

YARN also contributes security features to Hadoop. YARN includes access control lists that control 
access to cluster memory and CPU resources, along with access to YARN administrative capabilities. 

Hive can be configured to control access to table columns and rows. 

Falcon is a data governance tool that also includes access controls that limit who may submit 
automated workflow jobs on a Hadoop cluster. 

Apache Knox is a perimeter gateway protecting a Hadoop cluster. It provides a single point of 
authentication into a Hadoop cluster. 

Apache Ranger is a centralized security framework offering fine-grained policy controls for HDFS, 
Hive, HBase, Knox, Storm, Kafka, and Solr. Using the Ranger Console, security administrators can 
easily manage policies for access to files, directories, databases, tables, and columns. These policies 
can be set for individual users or groups and then enforced within Hadoop. 
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HDP and the Data Lifecycle 
 

 
HDP	supports	the	data	lifecycle	

Why does HDP need so many frameworks? Let’s take a look at a simple data lifecycle example.   

We start with some raw data and an HDP cluster.  The first step in managing the data is to get it into 
the HDP cluster.  We must have some mechanism to ingest that data – perhaps Sqoop, Flume, Spark 
Streaming, or Storm - and then another mechanism to analyze and decide what to do with it next.  
Does this data require some kind of transformation in order to be used?  If so, ETL processes must be 
run, and those results generated into another file. Quite often, this is not a single step, but multiple 
steps configured into a data application pipeline.   

The next decision comes in regard to whether to keep or discard the data.  Not all data must be kept, 
either because it has no value (empty files, for example), or it is not necessary to keep once it has been 
processed and transformed. Thus some raw data can simply be deleted.   

Data that must be kept requires additional decisions.  For example, where will the data be stored, and 
for how long?  Your Hadoop cluster might have multiple tiers of HDFS storage available, perhaps 
separated via some kind of node label mechanism.  In the example, we have two HDFS storage tiers. 
Any data that is copied to tier 2 should be stored for 90 days.  We have another, higher tier of HDFS 
Storage, and any data stored here should be kept until it is manually deleted.   

You may decide that some data should be archived rather than made immediately available via HDFS, 
and you can have multiple tiers of archives as well.  In our example we have three tiers of archival 
storage, and data is kept for one, three, and seven years depending on where it is stored.   

A third location where and data might end up is on some kind of cloud storage, such as AWS or 
Microsoft Azure.   
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Both raw data and transformed data might be kept anywhere in this storage infrastructure as result of 
having been input and processed by this HDP cluster.  In addition, you may be working in a multi-
cluster environment, in which case an additional decision is required. What data needs to be replicated 
between the clusters?  If files need to be replicated to another HDP cluster, then once that cluster 
ingests in examines that data, this same kind of processes and decision mechanisms need to be 
employed.  Perhaps additional transformation is required.  Perhaps some files can be examined and 
deleted.  For files that are to be kept, their location and length of retention must be decided, just as on 
the first cluster.   

This is a relatively simple example of the kind of data lifecycle decisions that need to be made in an 
environment where the capabilities of HDP are being fully utilized.  This can get significantly more 
complex with the addition of additional storage tiers, retention requirements, and geographically 
dispersed HDP clusters which must replicate data between each other, and perhaps with a central 
global cluster designed to do all final processing. 

HDFS Overview 
 

 
HDFS	and	YARN	

The Hadoop Distributed File System (HDFS) and YARN (Yet Another Resource Negotiator) are part of 
the core of Hadoop and are installed when you install the Hortonworks Data Platform.  In this section 
we will focus on HDFS, the distributed file system for HDP.  
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HDFS – The HDP File System 
 

 
HDFS	and	YARN	

HDFS is the basis for Hadoop’s storage scalability and availability.  

HDFS achieves scalability by taking large files and splitting them, by default, into 128-megabyte 
chunks called blocks.  This block size is configurable.  The file blocks are spread across the slave 
nodes in the cluster. For example, if a file is split into 10 blocks and you have 10 slave servers, all 10 
blocks can be read in parallel. To achieve greater scalability for larger files, just add more slave nodes 
to the cluster. 

HDFS achieves availability by automatically replicating each block of a file.  By default, HDFS maintains 
three copies of the data, and ensures that those copies are not on the same slave nodes, or even the 
same server rack if the cluster is configured correctly.  As an example, if a file is split into 10 blocks 
then the cluster would actually maintain 30 blocks.  

A Hadoop cluster scales computation capacity, storage capacity, and I/O bandwidth by adding more 
slave nodes. HDFS scales by adding more machines with local disks, making NAS and SAN storage 
unnecessary for HDP environments. 

HDFS Command Line Interaction 
 

 
Developers can interact with HDFS directly via the command line using the hdfs dfs command and 
appropriate arguments. If a developer has previous Linux command line experience, the hdfs dfs 
commands will be familiar and intuitive to use. The most common use for command line usage is 
manual data ingestion and file manipulation.  
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Example commands include: 

• -cat: display file content (uncompressed) 

• -text: just like cat but works on compressed files 

• -mkdir: create a directory in HDFS 

• -put, -get: copies files from the local file system to the HDFS and vice versa.  

• -mv: moves files 

• -ls, -rm: list and remove files/directories (adding -R makes listing/removal recursive) 

• -chgrp, -chmod, -chown: changes file permissions 

• -stat: statistical info for any given file (block size, number of blocks, file type, etc.) 

Additional information can be obtained by hdfs dfs at the command line with no arguments or 
options, or by viewing online documentation. 

The sequence of command below creates a directory, copies a file from the local file system to the new 
directory in HDFS, and then lists the contents of the directory: 
hdfs dfs -mkdir mydata 
hdfs dfs -put numbers.txt mydata/ 
hdfs dfs -ls mydata 

HDFS implements a permissions model for files and directories that shares much from the POSIX 
model:  

• Each file and directory is associated with an owner and a group. The file or directory has 
separate permissions for the user that is the owner, for other users that are members of the 
group, and for all other users.  

• For files, the r permission is required to read the file and the w permission is required to write 
or append to the file.  

• For directories, the r permission is required to list the contents of the directory, the w 
permission is required to create or delete files or directories, and the x permission is required 
to access a child of the directory. 
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YARN Overview 
 

 
Hadoop	applications	without	YARN	

Why is YARN so important to Spark? Let's take a look at a sample enterprise Hadoop deployment. 
Without a central resource manager to ensure good behavior between applications, it is necessary to 
create specialized, separate clusters to support multiple applications. This, in turn, means that when 
you want to do something different with the data that application was using, it is necessary to copy 
that data between clusters. This introduces inefficiencies in terms of network, CPU, memory, storage, 
general datacenter management, and data integrity across Hadoop applications.  

YARN as a resource manager mitigates this issue by allowing different types of applications to access 
the same underlying resources pooled into a single data lake. Since Spark runs on YARN, it can join 
other Hadoop applications on the same cluster, enabling data and resource sharing at enterprise scale.  

YARN – The HDP Operating System 
 

 
HDFS	and	YARN	
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YARN (unofficially "Yet Another Resource Negotiator") is the computing framework for Hadoop. If you 
think about HDFS as the cluster file system for Hadoop, YARN would be the cluster operating system. 
It is the architectural center of Hadoop. 

A computer operating system, such as Windows or Linux, manages access to resources, such as CPU, 
memory, and disk, for installed applications. In similar fashion, YARN provides a managed framework 
that allows for multiple types of applications – batch, interactive, online, streaming, and so on – to 
execute on data across your entire cluster. Just like a computer operating system manages both 
resource allocation (which application gets access to CPU, memory, and disk now, and which one has 
to wait if contention exists?) and security (does the current user have permission to perform the 
requested action?), YARN manages resource allocation for the various types of data processing 
workloads, prioritizes and schedules jobs, and enables authentication and multitenancy. 

YARN Resource Containers 
To understand the YARN architecture, it helps to understand YARN resource containers. 
 

 
YARN	resource	containers	

Every slave node in a cluster is comprised of resources such as CPU and memory.  The abstract notion 
of a resource container is used to represent a discreet amount of these resources.  Cluster 
applications run inside one or more containers.  Containers are managed and scheduled by YARN.    

A container’s resources are logically isolated from other containers running on the same machine.  This 
isolation provides strong application multi-tenancy support.  

Applications are allocated different-sized containers based on application-defined resource requests, 
but always within the constraints configured by the Hadoop administrator. 
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Knowledge Check 
You can use the following questions and answers for self-assessment. 

Questions 
1 ) Name the three V’s of big data. 

 

2 ) Name four of the six types of data commonly found in Hadoop. 
 

3 ) Why is HDP comprised of so many different frameworks? 
 

4 ) What two frameworks make up the core of HDP? 
 

5 ) What is the base command-line interface command for manipulating files and directories in 
HDFS? 
 

6 ) YARN allocates resources to applications via _____________________. 
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Answers 
1 ) Name the three V’s of big data. 

 
Answer:  Volume, Velocity, and Variety  
 

2 ) Name four of the six types of data commonly found in Hadoop. 
 
Answer:  Sentiment, clickstream, sensor/machine, server, geographic, and text  
 

3 ) Why is HDP comprised of so many different frameworks? 
 
Answer:  To allow for end-to-end management of the data lifecycle  
 

4 ) What two frameworks make up the core of HDP? 
 
Answer: HDFS and YARN 
 

5 ) What is the base command-line interface command for manipulating files and directories in 
HDFS? 
 
Answer:  hdfs dfs 
 

6 ) YARN allocates resources to applications via _____________________. 
 
Answer:  Containers  
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Summary 
• Data is made "Big" Data by ever-increasing Volume, Velocity, and Variety 

• Hadoop is often used to handle sentiment, clickstream, sensor/machine, server, geographic, 
and text data 

• HDP is comprised of an enterprise-ready and supported collection of open source Hadoop 
frameworks designed to allow for end-to-end data lifecycle management 

• The core frameworks in HDP are HDFS and YARN 

• HDFS serves as the distributed file system for HDP 

• The hdfs dfs command can be used to create and manipulate files and directories 

• YARN serves as the operating system and architectural center of HDP, allocating resources to 
a wide variety of applications via containers 
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Zeppelin and Spark 

Lesson Objectives 
After completing this lesson, students should be able to: 

ü Use Apache Zeppelin to work with Spark 

ü Describe the purpose and benefits of Spark 

ü Define Spark REPLs and application architecture 

Zeppelin Overview 
 

 
Apache	Zeppelin	

Apache Zeppelin is a web-based notebook that enables interactive data analytics on top of Spark. It 
supports a growing list of programming languages, such as Python, Scala, Hive, SparkSQL, shell, and 
markdown. It allows for data visualization, report generation, and collaboration. 
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Major Zeppelin Functions 
 

 
Zeppelin	

Zeppelin has four major functions: data ingestion, discovery, analytics, and visualization. It 
comes with built-in examples that demonstrate these capabilities. These examples can be reused and 
modified for real-world scenarios. 

Data Visualization 
Zeppelin comes with several built-in ways to interactively view and visualize data including table view, 
column charts, pie charts, area charts, line charts, and scatter plot charts – illustrated below: 
 

 
Zeppelin	table	view	
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Zeppelin	column	chart	

 

 
Zeppelin	pie	chart	

 

 
Zeppelin	line	chart	
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Zeppelin	scatter	plot	chart	

Zeppelin Technical Preview 
At the time of this writing, Zeppelin is in its final technical preview, and will likely be generally available 
and production-ready soon after this course is released.  

As a general rule, Hortonworks University courses avoid the inclusion of technologies that are in 
technical preview, however in this case an exception was made based on the following reasons: 

• *Nearly* all of the labs in this class could be run either from the command line or Zeppelin with 
identical steps, so the use of Zeppelin does not interfere with learning in any way. 

• Despite its technical preview status, Zeppelin is the best solution available today in HDP for 
key functionalities such as data visualization and collaboration supporting multiple languages 
(for example, both Python and Scala.) 

• When Zeppelin comes out of technical preview - which may have already happened by the time 
this is read - by using it now you will already have significant hands-on experience.  

Spark Overview 

Spark Introduction 
Spark is a platform that allows large-scale, cluster-based, in-memory data processing. It enables fast, 
large-scale data engineering and analytics for iterative and performance-sensitive applications. It 
offers development APIs for Scala, Java, Python, and R. In addition, Spark has been extended to 
support SQL-like operations, streaming, and machine learning as well.  

Spark is supported by Hortonworks on HDP and is YARN compliant, meaning it can leverage datasets 
that exist across many other applications in HDP.  
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Spark RDDs – Scalability and Performance 
 

 
Spark	RDDs	

To leverage Hadoop’s horizontal scalability, Spark processes data in a Resil ient Distributed 
Dataset, called an RDD.  An RDD is a fault-tolerant collection of data elements. An RDD is created by 
starting with a file on disk, or a collection of data in memory in a driver program. Each RDD is 
distributed across multiple nodes in a cluster. This enables parallel processing across the nodes. 

Allowing RDDs to reside and be processed in memory dramatically increases performance especially 
when a dataset needs to be manipulated through multiple stages of processing. The data in an RDD 
can be transformed and analyzed very rapidly.   

Spark High-Level Tools 
 

 
Spark	tools	

Coming from the Spark project, Spark Core supports a set of four high-level tools that support SQL-
like queries, streaming data applications, a machine learning library (Mlib), and graph algorithms 
(GraphX). In addition, Spark also integrates with a number of other HDP tools, such as Hive for SQL-
like operations and Zeppelin for graphing / data visualization.  
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Spark and HDP 
The following Spark versions align with various HDP versions: 

HDP 2.4.0 – Spark 1.6.0 

HDP 2.3.5 – Spark 1.5.2 

HDP 2.3.2 – Spark 1.4.1 

HDP 2.2.8 – Spark 1.3.1 

HDP 2.2.4 – Spark 1.2.1 

For the labs in this class, we use Spark 1.6.0 on HDP 2.4.0.  

Spark REPLs and Application Architecture 

Spark REPL Shells 
REPL stands for “Read, Evaluate, Print, Loop.” A REPL takes a single user input, evaluates it, and 
returns the result. There are two REPLs available in Spark – one for Python and one for Scala. These 
are also sometimes referred to as “Spark shell” applications.   

In addition to helping one learn Spark, the shells are great for debugging and exploring data. They can 
also be used for building applications. 

In order to start the Python shell, the user needs to enter "pyspark" on the command line. In order to 
start the Scala shell, the user needs to enter "spark-shell" on the command line. 

Enterprise Spark Application Components in HDP 
 

 
Spark	Application	Components	

 

There are five core components of an enterprise Spark application in HDP. They are the Driver, 
SparkContext, YARN ResourceManager, HDFS Storage, and Executors.  
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When using a REPL, the driver and SparkContext will run on a client machine. When deploying an 
application as a cluster application, the driver and SparkContext can also run in a YARN container. In 
both cases, Spark executors run in YARN containers on the cluster. 

Spark Driver 
The Spark driver contains the main() Spark program that manages the overall execution of a Spark 
application. It is a JVM that creates the SparkContext which then communicates directly with Spark. 
It is also responsible for writing/displaying and storing the logs that the SparkContext gathers from 
executors. 

Spark shell REPLs are examples of Spark driver programs.  

IMPORTANT: The Spark driver is a single point of failure for a YARN client application.  If the driver 
fails, the application will fail. This is mitigated when deploying applications using YARN cluster. 

SparkContext 
 

 
SparkContext	

For an application to become a Spark application, an instance of the SparkContext class must be 
instantiated. The SparkContext contains all code and objects required to process data in the cluster, 
and works with the YARN ResourceManager to get requested resources for the application. It is also 
responsible for scheduling tasks for Spark executors.  The SparkContext checks in with the 
executors to report work being done and provide log updates. 

A SparkContext is automatically created and named sc when a REPL is launched. The following 
code is executed at start up for pyspark: 
from pyspark import SparkContext, SparkConf conf = SparkConf() 
conf = SparkConf() 
sc = SparkContext(conf=conf) 
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Spark Executors 
 

 
Spark	Executors	

The Spark executor is the component that performs the map and reduce tasks of a Spark 
application, and is sometimes referred to as a Spark “worker.” Once created, executors exist for the 
life of the application. 

	

NOTE:  

In the context of Spark, the SparkContext is the "master" and executors 
are the "workers." However, in the context of HDP in general, you also 
have "master" nodes and "worker" nodes. Both uses of the term worker 
are correct - in terms of HDP, the worker (node) can run one or more Spark 
workers (executors). When in doubt, make sure to verify whether the 
worker being described is an HDP node or a Spark executor running on an 
HDP node. 

 

Spark executors function as interchangeable work spaces for Spark application processing. If an 
executor is lost while an application is running, all tasks assigned to it will be reassigned to another 
executor.  In addition, any data lost will be recomputed on another executor. 

Executor behavior can be controlled programmatically. Configuring the number of executors and their 
available resources can greatly increase performance of an application when done correctly. 
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Knowledge Check 
You can use the following questions and answers for self-assessment. 

Questions 
1 ) Name the tool in HDP that allows for interactive data analytics, data visualization, and 

collaboration with Spark. 
 

2 ) What programming languages does Spark currently support? 
 

3 ) What is the primary benefit of running Spark on YARN? 
 

4 ) Name the five components of an enterprise Spark application running in HDP. 
 

5 ) Which component of a Spark application is responsible for application workload processing? 
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Answers 
1 ) Name the tool in HDP that allows for interactive data analytics, data visualization, and 

collaboration with Spark. 
 
Answer: Zeppelin 
 

2 ) What programming languages does Spark currently support? 
 
Answer: Scala, Java, Python, and R 
 

3 ) What is the primary benefit of running Spark on YARN? 
 
Answer: Access to datasets shared across the cluster with other HDP applications 
 

4 ) Name the five components of an enterprise Spark application running in HDP. 
 
Answer: Driver, SparkContext, YARN, HDFS, and executors. 
 

5 ) Which component of a Spark application is responsible for application workload processing? 
 
Answer: Executor 
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Summary 
• Zeppelin is a web-based notebook that supports multiple programming languages and allows 

for data engineering, analytics, visualization, and collaboration using Spark 

• Spark is a large-scale, cluster-based, in-memory data processing platform that supports 
parallelized operations on enterprise-scale datasets 

• Spark provides REPLs for rapid, interactive application development and testing 

• The five components of an enterprise Spark application running on HDP are: 

- Driver 
- SparkContext 
- YARN 
- HDFS 
- Executors 
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Working with RDDs 

Lesson Objectives 
After completing this lesson, students should be able to: 

ü Explain the purpose and function of RDDs 

ü Explain Spark programming basics 

ü Define and use basic Spark transformations 

ü Define and use basic Spark actions 

ü Invoke functions for multiple RDDs, create named functions, and use numeric operations 

Introduction to RDDs 

Resilient Distributed Datasets (RDDs) 
The Resilient Distributed Dataset (RDD) is an immutable, distributed, and resilient collection of 
elements that can be operated on in parallel.   

An RDD is composed of one or more partitions that can be distributed across nodes in the cluster. 
These partitions are immutable, meaning when changes occur, new RDDs are created rather than 
having those changes written to existing RDDs. They are also resilient, meaning if an RDD partition 
fails, it can be recreated on another node.  

For HDFS files, the RDD partitions will be aligned with the file’s blocks to maximize parallelism and 
other HDP infrastructure benefits. 

Creating RDDs Programmatically from Simple Lists 
Users can programmatically create RDDs from lists of number or text values using the 
sc.parallelize() API.  This is useful for learning Spark and distributing local collections of data to 
the cluster. For example: 
rddNumList = sc.parallelize([5, 7, 11, 14]) 

This creates an RDD that contains four numeric values. To confirm the RDD was created and contains 
the correct information, we can look at the contents using collect(): 
rddNumList.collect() 

This returns the following output: 
[5,7,11,14] 

The same process works on lists of text. For example: 
rddTextList = sc.parallelize(["car", "house", "garage"]) 
rddTextList.collect() 
["car", "house", "garage"] 

Creating RDDs Programmatically using Variables as Input 
RDDs can also take variable values as input. To demonstrate, we start by creating a variable named 
maryFile and assigning it a text string value: 
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maryFile = ("Mary had a little lamb") 

Then we use parallelize() to turn the variable contents into an RDD, and collect() to view the 
results: 
rddMary = sc.parallelize([maryFile]) 
rddMary.collect() 
['Mary had a little lamb'] 

 

	

NOTE:  

The brackets [ ] around the variable name prevents the variable input 
from being read one character at a time. If we had used parentheses ( ) 
instead, the collect function would have returned: 
['M', 'a', 'r', 'y', ' ', 'h', 'a', 'd', . . . , 'l', 
'a', 'm', 'b'] 

 

In this example, we are creating the list as a variable first: 
textList = (["car", "house", "garage"]) 
rddTextList = sc.parallelize(textList) 
rddTextList.collect() 
["car", "house", "garage"] 

Creating Simple RDDs from Text Files 
Another common way to create an RDD is to load it from one or more text files using sc.textFile(). 
These files can be located on local storage, HDFS, or other cloud or network storage locations.  For 
example, to create an RDD from a text file on your local drive: 
rddLocal = sc.textFile("file:/localPathToFile/filename.txt") 

Or to create an RDD from a file on HDFS: 
rddHDFS = sc.textFile("hdfs://namenodename:8020/HDFSpath/filename.txt") 

Multiple files can be combined as part of a single RDD using either a comma-separated list of 
individual files, the wildcard character, or a combination of the two. For example, to create an RDD 
based on two specific files: 
rddComma = sc.textFile("fileLocation/file1.txt,fileLocation/file2.txt") 

Or to create an RDD that contains all .txt files that meet wildcard requirements in a given location: 
rddWild = sc.textFile("fileLocation/*.txt") 

Wildcards and comma-separated lists can be combined in any configuration. 
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From Data Files to HDFS to RDD 
 

 
Data	being	transferred	to	HDFS	and	converted	to	RDDs	

In this simple example, we have a small cluster which has been loaded with three data files, and will 
walk through their input into HDFS, followed by having two of them used to create a single RDD, and 
begin to demonstrate the power of parallel datasets.  

The first file in the example is small enough to fit entirely in a single 128 MB HDFS block – so data file 1 
is made up of only one HDFS block (labeled DF1.1) which is written to Node 1. This would be replicated 
by default to two other nodes, which are not shown in the image.  

Data files 2 and 3 take up two HDFS blocks each. In our example, these four data blocks are written to 
four different HDFS nodes. Data file 2 is represented in HDFS by DF2.1 and DF 2.2 (written to node 2 
and node 4, respectively). Data file 3 is represented in HDFS by DF3.1 and DF3.2 (written to node 3 and 
node 5, respectively). Again, not shown in the image, each of these blocks would be replicated multiple 
times across nodes in the cluster. 

Next we write a Spark application that initially defines an RDD that is made up of a combination of the 
data in data files 1 and 2. In HDFS, these two files are represented by three HDFS blocks on nodes 1, 
2, and 4. When the RDD partitions are created in memory, the nodes that will be used will be the same 
nodes that contain the data blocks. This improves performance and reduces network traffic that would 
result from pulling data from one node’s disk to another node’s memory.  

The three data blocks that represent these two files that were combined by the Spark application are 
then copied into memory on their respective nodes and become the partitions of the RDD. DF2.1 is 
written to an RDD partition we have labeled RDD 1.1. DF2.2 is written to an RDD partition we have 
labeled RDD 1.2. DF1.1 is written to an RDD partition we have labeled RDD 1.3.  

In our example, one RDD was created from two files (which are split across three HDFS data nodes), 
which exist in memory as three partitions that a Spark application can then continue to use. 
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Multiple RDDs in a Cluster 
 

 
A	hypothetical	cluster	that	has	two	RDD's.		Each	RDD	is	composed	of	multiple	partitions,	which	are	distributed	across	the	cluster.	

RDD Characteristics 
RDDs can contain any type of serial izable  element, meaning those that can be converted to and from 
a byte stream. Examples include: int, float, bool, and sequences/iteratives like arrays, lists, 
tuples, and strings. Element types in an RDD can be mixed as well. For example, an array or list 
can contain both string and int values. Furthermore, RDD types are converted implicitly when 
possible, meaning there is no need to explicitly specify type during RDD creation.  
 

	

NOTE:  

Non-serializable elements (for example: objects created with certain third-
party JAR files or other external resource) cannot be made into RDDs. 
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RDD Operations 
Once an RDD is created, there are two operations that can be performed on it: Actions and 
Transformations. 
 

 
Transformations	apply	a	function	to	RDD	elements	and	create	new	RDD	partitions	based	on	the	output	

A Transformation takes an existing RDD, applies a function to the elements of the RDD, and creates a 
new RDD comprised of the transformed elements.   
 

 
Actions	return	the	result	of	a	function	as	output	to	a	screen,	file,	etc.	

An action returns a result of a function applied to the elements of an RDD in the form of screen output, 
a file write, etc. 

Spark Programming Basics 
Before we further explore transformations and actions, let’s go through a brief overview of functional 
programming and the use of anonymous functions.  

Introduction to Functional Programming 
Spark makes heavy use of functional programming, but what does that mean? An easy way to think 
about functional programming is to define it as programming that does not rely on data outside of the 
function being executed, nor does it modify data that exists outside of the current function. 
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First let's take a look at an example of non-functional programming. In the following function, we define 
a variable value outside of our function, then pull that value into our function and modify it. Note the 
dependence on, and the writing to, a variable that exists external to the function itself: 
varValue = 0 
def unfunctionalCode(): 
  global varValue  
  varValue = varValue + 1  

Now let's take a look at the same basic example, but this time written using functional programming 
principles. In this example, the variable value is instantiated as part of calling the function itself, and 
only the value within the function is modified. 
def functionalCode(varValue): 
  return varValue + 1  

All Spark transformations are based on functional programming.  

Functional Programming Implications in Spark 
The need to operate on different partitions of the same RDD in parallel makes functional programming 
a requirement for Spark. Therefore, Spark programming has the following characteristics: 

• Immutable data:  
RDD1A can be transformed into RDD1B, but an individual element within RDD1A cannot be 
independently modified. 

• No state or side effects:  
No interaction with or modification of any values or properties outside of the function. 

• Behavioral consistency:  
If you pass the same value into a function multiple times, you will always get the same result - 
changing order of evaluation does not change results. 

• Functions as arguments:  
Function results (including anonymous functions) can be passed as input/arguments to other 
functions. 

• Lazy evaluation:  
Function arguments are not evaluated / executed until required. 

Anonymous (a.k.a. Lambda) Functions 
Anonymous functions, also known as Lambda functions, are used heavily in Spark programming. 
They start with a declaration of the anonymous function by using the keyword lambda. Then, the 
programmer provides the variable name that will be used in the function body, followed by a colon. To 
the right of the colon will be the function body, which can be a function definition or a call to yet 
another function.  

Here is an example using "z" as the anonymous function variable selected and applying z+1 to all 
elements of an RDD as an argument to the Spark map function: 
rddNumList = sc.parallelize([5, 7, 11, 14]) 
 
rddAnon = rddNumList.map(lambda z: z + 1) 
 
rddAnon.collect() 
[6, 8, 12, 15] 
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Basic Spark Transformations 

map() 

The map transformation applies a function supplied as its argument to each element of an RDD.   

In the example below, we have a list of numbers that make up an RDD. We then apply the map function 
and instruct Spark to run the anonymous function (using z as the variable name for each element) z+1, 
an immediately print the output to the screen: 
rddNumList = sc.parallelize([5, 7, 11, 14]) 
rddNumList.map(lambda z: z + 1).collect() 
[6, 8, 12, 15] 

 

	

NOTE:  

the second line of code in this example did not define a new RDD. If 
further transformations were necessary, the second line of code would 
need to be rewritten as follows: 
rddAnon = rddNumList.map(lambda z: z + 1) 
rddAnon.collect() 
[6, 8, 12, 15] 

 

Maps can apply to strings as well.  Here is an example that starts by reading a file from HDFS called 
"mary.txt": 
rddMary=sc.textFile("mary.txt") 
 

 
Contents	of	the	mary.txt	file	and	initial	RDD	

RDDs created using the textFile method treat newline characters as characters that separate 
elements. Thus, since the file had four lines, the file as shown in the image would have four elements in 
the RDD.  
rddLineSplit=rddMary.map(lambda line: line.split(" ")) 

A map() transformation is then called. The goal of the map transformation in this scenario is to take 
each element, which is a string containing multiple words, and break it up into an array that is 
stored in a new RDD for further processing. The split function takes a string and breaks it into 
arrays based on the delimiter passed into split().  
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The result is an RDD that still only has four elements, but now those elements are arrays rather than 
monolithic strings.  
 

 
Contents	of	rddMary	converted	into	arrays	using	map()	

flatMap() 

The flatMap function is similar to map, with the exception that it performs an extra step to break 
down (or flatten) the component parts of elements such as arrays or other sequences into individual 
elements after running a map function.  

map() is a one-to-one transformation: one element comes in, one element comes out.  Using map(), 
four line elements were converted into four array elements, but we still started and ended with the 
same number of elements. The flatMap() function, on the other hand, is a one-to-many 
transformation: one element may go in, but many can come out.   

Let's compare using the previous map() illustration.  
rddLineSplit = rddMary.map(lambda line: line.split(" ")) 

If we run the same code, replacing map() with flatMap(), the output is returned as a single list of 
individual elements rather than four lists of elements that were originally separated by the line break.  
rddFlat = rddMary.flatmap(lambda line: line.split(" ")) 

This time, each word is treated as its own element, resulting in 22 elements instead of 4.  Again, it is 
easiest to think about flatMap() as a map operation followed by a flatten operation, in a single step. 
 

 
Contents	of	rddMary	converted	into	individual	elements	using	flatMap()	
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filter() 

The filter function is used to remove elements from an RDD that don't meet a certain criteria, or put 
another way, filter()keeps elements in an RDD based on a predicate. If the predicate returns true 
(the filter criteria are met), the record is passed on to the transformed RDD. 

In the example below, we have an RDD composed of four elements and want to filter out any element 
whose value is greater than ten (or, in other words, keep any value ten or less).  Notice that the initial 
RDD is being created using the sc.parallelize API: 
rddNumList = sc.parallelize([5, 7, 11, 14]) 
rddNumList.filter(lambda number:  number <= 10).collect() 
[5, 7] 

This could have been performed using any standard mathematical operation.  

Filter is not limited to working with numbers.  It can work with strings as well. Let's use an 
example RDD consisting of the list of months below: 
months = ["January", "March", "May", "July", "September"] 
rddMonths = sc.parallelize(months) 

We then use filter, with an anonymous function that uses the len function to count the number of 
characters in each element, and then filter out any that contain five or fewer characters.  
rddMonths.filter(lambda name: len(name) > 5).collect() 
['January', 'September'] 

Again, any available function that performs evaluations on text strings or arrays could be used to filter 
for a given result.  

distinct() 

The distinct function removes duplicate elements from an RDD. Consider the following RDD: 
rddBigList = sc.parallelize([5, 7, 11, 14, 2, 4, 5, 14, 21]) 
rddBigList.collect() 
[5, 7, 11, 14, 2, 4, 5, 14, 21] 

Notice that the numbers 5 and 14 are listed twice. If we just wanted to see each element only listed one 
time in our output, we could use distinct() as follows: 
rddDistinct = rddBigList.distinct() 
rddDistinct.collect() 
[4, 5, 21, 2, 14, 11, 7] 

Notice that 5 and 14 now only appear once in the results.  
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Basic Spark Actions 

collect(), first(), and take() 

The collect function returns the entire RDD on which it is run against. In addition, the first function 
returns just the first element in an RDD. The take function allows for the specification of a number of 
elements, and returns that number of elements when executed. Below are some examples of these 
functions in action: 
rddNumList = sc.parallelize([5, 7, 11, 14]) 
rddNumList.collect() 
[5, 7, 11, 14] 
rddNumList.first() 
5 
rddNumList.take(2) 
[5, 7] 

count() 
count() returns the number of elements in the RDD.  Here is an example: 
rddNumList = sc.parallelize([5, 7, 11, 14]) 
rddNumList.count() 
4 

In the case of a file that contains lines of text, count() would return the number of lines in the RDD, as 
in the following example: 
rddMary=sc.textFile("mary.txt") 
 
rddMary.count() 
4 
 

 
The	count	function	applied	to	rddMary	returns	4,	a	count	for	each	line	

reduce() 

reduce() aggregates the elements of an RDD using a function that takes two arguments and returns 
one, iterating through them until only a single value remains. For example: 
rddNumList = sc.parallelize([5, 7, 11, 14]) 
 
rddNumList.reduce(lambda a,b: a+b) 
 
... 
 
37 
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Because of the parallelized nature of RDDs, the reduce function does not necessarily process RDD 
elements in a particular order. Therefore, the function used with reduce() should be both 
commutative and associative. 
 
Commutative means "to move around" - which implies that the order things are done in should not 
matter. For example, 5+7 = 7+5, or 5*7 = 7*5. A function that is not commutative can return different 
results each time it is run. For example, 5 / 7 does not equal 7 / 5, so a function that employed division 
would not be commutative. 
 
Associative refers to the way numbers are grouped using parenthesis. For example, 5 + (7 + 5) equals 
(5 + 7) + 5, or 5 * (7 * 5) = (5 * 7) * 5. A function that is not associative can return different results each 
time it is run. For example 5 * (7 + 5) does not equal (5 * 7) + 5, so this would not be associative. 
  

saveAsTextFile() 

The saveAsTextFile function writes the contents of RDD partitions to a specified location (such as 
hdfs:// for HDFS, or file:/ for local file system, and so forth) and directory as a set of text files. For 
example: 
rddNumList.saveAsTextFile("hdfs://desiredLocation/foldername") 

The contents of the RDD in the example would be written to a specific a directory in HDFS.  

Success can be verified using typical tools from a command line or GUI. In the case of our example, 
we could use the hdfs dfs -ls command to verify it had been written successfully: 
$ hdfs dfs -ls desiredLocation/foldername 
 

 
Using	saveAsTextFile(),	each	RDD	partition	is	written	to	a	different	text	file	by	default	

The output would look like the screenshot shown, with each RDD partition being written to a different 
text file by default. The files could be copied to the local file system and then be read using a standard 
text editor / viewer such as nano, more, vi, etc. 

Transformations vs Actions: Lazy Evaluation 
Transformations are lazy, meaning they do not actually perform any computations until an action is 
performed. Lazy evaluation prevents the processing of unneeded data.  When a transformation alone is 
applied to an RDD, initially nothing happens.  The RDD just keeps track of all the transformations 
applied and will execute them when it’s necessary. 

Let’s look at an example:  
rddMary = sc.textFile("mary.txt") 
rddFlat = rddMary.flatmap(lambda line: line.split(" ")) 
rddFilter = rddFlat.filter(lambda words: len(words) > 4) 
rddFilter.count() 
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In the above code, two transformations were applied (flatMap and filter), but it was not until the 
count action is called that the RDD runs through the various transformations.  

Lazy Evaluation Visualized 
Here is picture of what is happening behind the scenes when building transformations, prior to 
executing actions. 
 

 
Transformations	prior	to	an	action	being	executed	

As the visual indicates, when performing transformations on an RDD, it just saves the recipe of what it 
is supposed to do when needed. 
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When	the	action	is	called,	the	data	is	pushed	through	the	transformations	so	that	the	result	can	be	calculated	

Only at the end, when an action is called, will the data be pushed through the recipe to create the 
desired outcome. 

RDD Special Topics 
We'll finish this lesson by looking at some additional RDD programming topics not already discussed, 
including some functions that work with multiple RDDs, the creation and use of named functions, and 
some basic numeric operations available for appropriate RDDs.  

Multiple RDDs: union() and intersection() 
To combine two RDDs, use the union function. This transformation is applied to an RDD and takes a 
second RDD as an argument, resulting in a third RDD that represents a combination of the two. For 
example, take the following two RDDs: 
rddNumList = sc.parallelize([5, 7, 11, 14]) 
rddNumList2 = sc.parallelize([2, 4, 5, 14, 21]) 

Let's say we want to create a single RDD that is made up of the contents of the first RDD followed by 
the contents of the second RDD. The union function would accomplish this with the following code: 
rddCombined = rddNumList.union(rddNumList2) 
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We can then use collect() to view our new RDD: 
rddCombined.collect() 
[5, 7, 11, 14, 2, 4, 5, 14, 21] 

The intersection function is a transformation in which only the values that exist in both RDDs are 
output. You can create such an RDD and verify it worked using the following code: 
rddInter = rddNumList.intersection(rddNumList2) 
rddInter.collect() 
[5, 14] 

 

	

NOTE:  

If there was no need to use the union or intersected RDDs for future 
purposes, the results above could have been obtained in each case with 
the following single lines of code: 
rddNumList.union(rddNumList2).collect() 

…and… 
rddNumList.intersection(rddNumList2).collect() 

 

Named Functions 
Custom functions can be defined and named, then used as arguments to other functions. A custom 
function should be defined when the same code will be used multiple times throughout the program, or 
if a function argument will take more than a single line of code, making it too complex for an 
anonymous function.  

The following example evaluates a number to determine if is 90 or greater. If true, it returns the text 
string "A" and if false it returns "Not an A".  
def gradeAorNot(percentage): 
    if percentage >  89:  
        return "A"  
    else:  
        return "Not an A"  

In the REPL, the number of tabs matter. For example, in line 2, you have to tab once before typing the 
line, and in line 3 you must tab twice. In line 4, you have to tab once, and in line 5, twice.  

The custom named function gradeAorNot can then be passed as an argument to another function - 
for example, map().  
rddGrades = sc.parallelize([87, 94, 41, 90]) 
rddGrades.map(gradeAorNot).collect() 
['Not an A', 'A', 'Not an A', 'A'] 

The named function could also be used as the function body in an anonymous function. The following 
example results in equivalent output to the code above: 
rddGrades.map(lambda grade: gradeAorNot(grade)).collect() 
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Numeric Operations 
Numeric operations can be performed on RDDs, including mean, count, stDev, sum, max, and min, as 
well as a stats function that collects several of these values with a single function. For example: 
rddNumList = sc.parallelize([5, 7, 11, 14]) 
rddNumList.stats() 
(count: 4, mean: 9.25, stdev: 3.49…, max: 14, min: 5) 

The individual functions can be called as well: 
rddNumList.min() 
5 

 

	

IMPORTANT:  

To double check the output of the Spark stdev()in Excel, use Excel's 
stdevp function rather than the stdev function. Excel's stdev function 
assumes that the entire population is unknown, and thus makes 
adjustments to outputs based on assumed bias. The stdevp function 
assumes the entire dataset (the p stands for "population") is fully 
represented and does not make a bias correction. Thus, Excel's stdevp 
function is more similar to Spark's stdev function. 

 

	

REFERENCE:  

There are many other Spark APIs available at: 

http://spark.apache.org/docs/<version>/api/  

<version> can be an actual version number, such as "1.4.0" or 
"1.6.1", or alternatively you can use "latest" to view documentation on 
the newest release of Spark. For example: 

http://spark.apache.org/docs/latest/api/ 
 

 
From there, click on the appropriate programming language to view the 
documentation. 
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Knowledge Check 
You can use the following questions and answers as a self-assessment. 

Questions 
1 ) What does RDD stand for? 

 

2 ) What two functions were covered in this lesson that create RDDs? 
 

3 ) True or False: Transformations apply a function to an RDD, modifying its values  
 

4 ) Which transformation will take all of the words in a text object and break each of them down 
into a separate element in an RDD? 
 

5 ) True or False: The count action returns the number of lines in a text document, not the 
number of words it contains.   
 

6 ) What is it called when transformations are not actually executed until an action is performed? 
 

7 ) True or False: The distinct function allows you to compare two RDDs and return only 
those values that exist in both of them  
 

8 ) True or False: Lazy evaluation makes it possible to run code that "performs" hundreds of 
transformations without actually executing any of them  
 

  



Working with RDDs 

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 50 

Answers 
1 ) What does RDD stand for? 

 
Answer:  Resilient Distributed Dataset  
 

2 ) What two functions were covered in this lesson that create RDDs? 
 
Answer:  sc.parallelize() and sc.textfile() 
 

3 ) True or False: Transformations apply a function to an RDD, modifying its values  
 
Answer:  False. Transformations result in new RDDs being created. In Spark, data is 
immutable.  
 

4 ) Which transformation will take all of the words in a text object and break each of them down 
into a separate element in an RDD? 
 
Answer:  flatmap() 
 

5 ) True or False: The count action returns the number of lines in a text document, not the 
number of words it contains.   
 
Answer:  True 
 

6 ) What is it called when transformations are not actually executed until an action is performed? 
 
Answer:  Lazy evaluation  
 

7 ) True or False: The distinct function allows you to compare two RDDs and return only 
those values that exist in both of them  
 
Answer:  False. The intersection function performs this task. The distinct function 
would remove duplicate elements, so that each element is only listed once regardless of how 
many times it appeared in the original RDD.  
 

8 ) True or False: Lazy evaluation makes it possible to run code that "performs" hundreds of 
transformations without actually executing any of them  
 
Answer:  True 
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Summary 
• Resilient Distributed Datasets (RDDs) are immutable collection of elements that can be 

operated on in parallel 

• Once an RDD is created, there are two things that can be done to it: transformations and 
actions 

• Spark makes heavy use of functional programming practices, including the use of anonymous 
functions 

• Common transformations include map(), flatmap(), filter(), distinct(), union(), and 
intersection() 

• Common actions include collect(), first(), take(), count(), saveAsTextFile(), and 
certain mathematic and statistical functions 
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Pair RDDs 

Lesson Objectives 
After completing this lesson, students should be able to: 

ü Use Core RDD functions and create your own function 

ü Perform common operations on Pair RDDs 

Pair RDD Introduction 
Key-value Pair RDDs (a.k.a. "Pair RDDs") are made up of elements comprised of key-value pairs. By 
creating Pair RDDs in Spark, developers gain access to additional API functionality.  This provides the 
developer with the capability to directly interact with RDD data in much the same way they might 
interact with data using Hive on Spark, Spark on Hive, or Spark SQL.  

Creating Pair RDDs 
Let’s look at some ways to create a pair RDD.  

map() 

The first two lines of the example below should look very familiar.  We are first creating an RDD from a 
file called "mary.txt" and then calling a flatMap.  Once each word is now its own element, key-value 
pairs can be created.   
rdd = sc.textFile("filelocation/mary.txt") 
rddFlat = rdd.flatMap(lambda line: line.split(' ')) 

A map transformation can be used to create the key-value pair.  In this process, a function is passed to 
map() to create a tuple.  In the example below, we create an anonymous function which returns a tuple 
of (word,1).   
kvRdd = rddFlat.map(lambda word: (word,1)) 
kvRdd.collect() 
 

 
Mapping	words	to	tuples	
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The illustration visually demonstrates what happens when the map function is applied on the initial 
elements, each consisting of a single word. 

keyBy() 

The keyBy API creates key-value pairs by applying a function on each data element. The function 
result becomes the key, and the original data element becomes the value in the pair. 

For example: 
rddTwoNumList = sc.parallelize([(1,2,3),(7,8)]) 
keyByRdd = rddTwoNumList.keyBy(len) 
keyByRdd.collect() 
[(3,(1,2,3)),(2,(7,8))] 

Additional example: 
rddThreeWords = sc.parallelize(["cat","A","spoon"]) 
keyByRdd2 = rddThreeWords.keyBy(len) 
keyByRdd2.collect() 
[(3,'cat'),(1,'A'),(5,'spoon')] 

zipWithIndex() 

The zipWithIndex function creates key-value pairs by assigning the index, or numerical position, of 
the element as the value, and the element itself as the key.  

For example: 
rddThreeWords = sc.parallelize(["cat","A","spoon"]) 
zipWIRdd = rddThreeWords.zipWithIndex() 
zipWIRdd.collect() 
[('cat', 0), ('A', 1), ('spoon', 2)] 

zip() 

The zip function creates key-value pairs by taking elements from one RDD as the key and elements of 
another RDD as the value. It has the following syntax: 
keyRDD.zip(valueRDD) 

The API assumes the two RDDs have the same number of elements. If not, it will return an error.  
rddThreeWords = sc.parallelize(["cat", "A", "spoon"]) 
rddThreeNums = sc.parallelize([11, 241, 37]) 
zipRdd = rddThreeWords.zip(rddThreeNums) 
zipRdd.collect() 
[('cat', 11), ('A', 241), ('spoon', 37)] 
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Pair RDD Operations 

mapValues() 

The mapValues function performs a defined operation on the values in a Pair RDD while leaving the 
keys unchanged. For example: 
zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)]) 
rddMapVals = zipWIRdd.mapValues(lambda val: val + 1) 
 
rddMapVals.collect() 
[('cat', 1), ('A', 2), ('spoon', 3)] 

keys(), values(), and sortByKey() 

Some common functions to call when working with Pair RDDs include keys(), values(), and 
sortByKey(). We will explore them using the rddMapVals Pair RDD we created in the previous 
example: 
zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)]) 
rddMapVals = zipWIRdd.mapValues(lambda val: val + 1) 
 
rddMapVals.collect() 
[('cat', 1), ('A', 2), ('spoon', 3)] 

• keys() - returns a list of just the keys in the RDD without any values.  
rddMapVals.keys().collect() 
['cat', 'A', 'spoon'] 

• values() - returns a list of just the values in the RDD without any keys.  
rddMapVals.values().collect() 
[1, 2, 3] 

• sortByKey(ascending=False) - sorts the RDD alphanumerically by key. By default, will sort 
from smallest to largest value (ascending=True). If ascending is explicitly set to False, it 
orders from largest to smallest.  

rddMapVals.sortByKey().collect() 
[('A', 2), ('cat', 1), ('spoon', 3)] 

 

	

IMPORTANT:  

Without creating a PairRDD prior to using these functions, they will not 
work as expected. 
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Reordering Key-Value Pairs using map() 
To reorder the placement of elements in key-value pairs, you can use pattern matching available via 
the map function. The example below demonstrates how to take a simple Pair RDD and switch the 
order such that the key is now the value, and the value becomes the key: 
zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)]) 
rddReorder = zipWIRdd.map(lambda (key, value): (value, key)) 
rddReorder.collect() 
[(0, 'cat'), (1, 'A'), (2, 'spoon')] 

This can be useful when you want to use a function that is designed to work on a key (for example, the 
sortByKey function), but have it applied to a value instead.  

For more complex key-value pairs (for example, keys that contain lists of values instead of just a single 
value) more complex patterns can be invoked in the anonymous function. For example: 
rddKeyTwoVal = sc.parallelize([("cat", (0,1)), ("spoon", (2,3))]) 
 
rddK2VReorder = rddKeyTwoVal.map(lambda (key, (val1, val2)) : ((key, val1) , 
val2)) 
rddK2VReorder.collect() 
[(('cat', 0), 1),  (('spoon', 2), 3)] 

Virtually no limit exists for how key-value pairs can be rearranged in an RDD. 

lookup(), countByKey(), and collectAsMap() 
There are many other functions available for Pair RDD transformations and actions.  We will go back to 
the keyByRdd example created earlier to discuss lookup(), countByKey(), and collectAsMap(). 
As a reminder, here is how the RDD was created: 
rddTwoNumList = sc.parallelize([(1,2,3),(7,8)]) 
keyByRdd = rddTwoNumList.keyBy(len) 
 
keyByRdd.collect() 
[(3, (1, 2, 3)), (2, (7, 8))] 

• lookup(key) - returns a list containing all values for a given key. 
keyByRdd.lookup(2) 
[(7, 8)] 

• countByKey() - returns a count of the number of times each key appears in the RDD (in our 
example, there were no duplicate keys, so each is returned as 1). 

keyByRdd.countByKey() 
defaultdict(<type 'int'>,{2: 1, 3: 1}) 

• collectAsMap() - collects the result as a map. If multiple values exist for the same key only 
one will be returned. 

keyByRdd.collectAsMap() 
{2: (7, 8), 3: (1, 2, 3)} 

Note that these actions did not require us to also specify collect() in order to view the results.  
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reduceByKey() 

The reduceByKey function performs a reduce operation on all elements of a key/value pair RDD that 
share a key.  For our example here, we'll return to kvRdd that was created using the following code: 
rddMary = sc.textFile("filelocation/mary.txt") 
rddFlat = rddMary.flatMap(lambda line: line.split(' ')) 
kvRdd = rddFlat.map(lambda word: (word,1)) 
 

As an example of reduceByKey(), take a look at the following code: 
kvReduced = kvRdd.reduceByKey(lambda a,b: a+b) 
 

The reduceByKey function goes through the elements and if it sees a key that it hasn't already 
encountered, it adds it to the list and records the value as-is. If a duplicate key is found, reduceByKey 
performs a function on the key values and keeps the number of keys to one. In our example, then, the 
anonymous function "lambda a,b: a+b“ only kicks in if a duplicate key is found. If so, the 
anonymous function tells reduceByKey to take the values of the two keys (a and b) and add them 
together to compute a new value for the now-reduced key. The actual function being performed is up 
to the developer, but incrementally adding values would be a fairly common task. 
 

 
Observe	that	the	keys	‘Mary’,	‘was’,	and	‘lamb’	have	been	reduced		

 

 
The	duplicate	keys	are	reduced	(‘was’	not	shown)	
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Visually, then, what is happening is that the elements of the RDD are being recorded and passed to the 
new kvReduced RDD, with the exception of two keys - 'Mary' and 'lamb' - which were both found 
twice. All other values remain unchanged, but now 'Mary' and 'lamb' are reduced to single key, each 
with a value of 2. 

groupByKey() 

Grouping values by key allow us to aggregate values based on a key. In order to see this grouping, the 
results must be turned into a list before being collected.  

For example, let's again use our kvRdd example created with the following code: 
rddMary = sc.textFile("filelocation/mary.txt") 
rddFlat = rddMary.flatMap(lambda line: line.split(' ')) 
kvRdd = rddFlat.map(lambda word: (word,1)) 

Next, we will use groupByKey to group all values that have the same key into an iterable object (that 
is, on its own, unable to be viewed) and then use a map function to define these grouped elements into 
a readable list:  
kvGroupByKey = kvRdd.groupByKey().map(lambda x : (x[0], list(x[1]))) 
 
kvGroupByKey.collect() 
[(u'a', [1]), (u'lamb', [1, 1]),(u'little', [1]),…(u'Mary',[1, 1])] 

If we had simply generated output using groupByKey alone, as below: 
kvGroupByKey = kvRdd.groupByKey() 

… the output would have looked something like this: 
[(u'a', <pyspark.resultiterable.ResultIterable object at 0xde8450>), (u'lamb', 
<pyspark.resultiterable.ResultInterable object at 0xde8490>),…(u'Mary', 
<pyspark.resultiterable.ResultIterable object at 0xde8960>)] 

This tells you that the results are an object that allows iteration, but does not display the individual 
elements by default. Using map to list the elements, performed the necessary iteration to see the 
desired formatted results. 
 

 
 

	

NOTE:  

The groupByKey and reduceByKey functions have significant overlap 
and similar capabilities, depending on how the called function is defined 
by the developer. When either is able to get the desired output, it is better 
to use reduceByKey() as it is more efficient over large datasets. 
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flatMapValues() 

Like the mapValues function, the flatMapValues function performs a function on Pair RDD values, 
leaving the keys unchanged. However, in the event it encounters a key that has multiple values, it 
flattens those into individual key-value pairs, meaning no key will have more than one value, but you 
will end up with duplicate keys in the RDD. Let's start with the RDD we created in the groupByKey() 
example: 
kvGroupByKey = kvRdd.groupByKey().map(lambda x : (x[0], list(x[1]))) 
kvGroupByKey.collect() 
[(u'a', [1]), (u'lamb', [1, 1]),(u'little', [1]),…(u'Mary',[1, 1])] 

Notice that both the 'lamb' and 'Mary' keys contain a multiple key values in a list. Next, let's create 
an RDD that flattens those key-value pairs using the flatMapValues function: 
rddFlatMapVals = kvGroupByKey.flatMapValues(lambda val: val) 
rddFlatMapVals.collect() 
[(u'a', 1), (u'lamb', 1), (u'lamb', 1), (u'little', 1), … (u'Mary',1), 
(u'Mary',1)] 

Now all key-value pairs have only a single value, and both 'lamb' and 'Mary' exist as duplicated 
keys in the RDD. 

 

	

NOTE:  

In the example above, the anonymous function simply returns the original 
unedited value. However, like the mapValues function, flatMapValues() 
can be configured to modify the keys as it flattens out the key-value pairs. 
For example, if we had defined the anonymous function as: (lambda 
val: val + 1), then each of the values would have been returned as 2 
instead of 1. 

 

subtractByKey() 

The subtractByKey function will return key-value pairs containing keys not found in another RDD.  
This can be useful when you need to identify differences between keys in two RDDs.  Here is an 
example: 
zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)]) 
rddSong = sc.parallelize([("cat", 7), ("cradle", 9), ("spoon", 4)]) 
rddSong.subtractByKey(zipWIRdd).collect() 
[('cradle', 9)] 

The key-value pair that had a key of 'cradle' was the only one returned because both RDDs 
contained key-value pairs that had key values of 'cat' and 'spoon'. 
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Notice that ('A', 1) was not returned as part of the result. This is because subtractByKey() is 
only evaluating matches in the first RDD (the one that precedes the function) as compared to the 
second one. It does not return all keys in either RDD that are unique to that RDD. If you wanted to get a 
list of all unique keys for both RDDs using subtractByKey(), you would need to run the operation 
twice - once as shown, and then again, swapping out the two RDD values in the last line of code. For 
example, this code would return the unique key values for zipWIRdd: 
zipWIRdd.subtractByKey(rddSong).collect() 
[('A', 1)] 

If needed, you could store these outputs in two other RDDs, then use another function to combine 
them into a single list as desired.  

Pair RDD Joins 
Spark provides support for inner, full outer, left outer, and right outer joins when working with Pair 
RDDs.  Here is an example of using leftOuterJoin(): 
zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)]) 
rddSong = sc.parallelize([("cat", 7), ("cradle", 9), ("spoon", 4)]) 
 
rddSong.leftOuterJoin(zipWIRdd).collect() 
[('spoon', (4, 2)), ('cradle', (9, none)), ('cat', (7, 0))] 

 

	

REFERENCE:  

There are many other Spark APIs available at: 

http://spark.apache.org/docs/<version>/api/  

<version> can be an actual version number, such as "1.4.0" or 
"1.6.1", or alternatively you can use "latest" to view documentation on 
the newest release of Spark. For example: 

http://spark.apache.org/docs/latest/api/ 
 

 
From there, click on the appropriate programming language to view the 
documentation. 

 
Apache	Spark	documentation	
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Knowledge Check 
You can use the following questions and answers as a self-assessment. 

Questions 
1 ) An RDD that contains elements made up of key-value pairs is sometimes referred to as a 

_________________. 
 

2 ) Name two functions that can be used to create a Pair RDD. 
 

3 ) True or False: A key can have a value that is actually a list of many values.  
 

4 ) Since sortByKey() only sorts by key, and there is no equivalent function to sort by values, 
how could you go about getting your Pair RDD sorted alphanumerically by value?  
 

5 ) You determine either reduceByKey() or groupByKey() could be used in your program to get 
the same results. Which one should you choose?  
 

6 ) How can you use subtractByKey() to determine *all* of the unique keys across two RDDs?   
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Answers 
1 ) An RDD that contains elements made up of key-value pairs is sometimes referred to as a 

_________________. 
 
Answer: Pair RDD 
 

2 ) Name two functions that can be used to create a Pair RDD. 
 
Answer: map(), keyBy(), zipWithIndex(), zip() 
 

3 ) True or False: A key can have a value that is actually a list of many values.  
 
Answer: True 
 

4 ) Since sortByKey() only sorts by key, and there is no equivalent function to sort by values, 
how could you go about getting your Pair RDD sorted alphanumerically by value?  
 
Answer: First use map() to reorder the key-value pair so that the key is now the value. Then 
use sortByKey() to sort. Finally, use map() again to swap the keys and values back to their 
original positions.  
 

5 ) You determine either reduceByKey() or groupByKey() could be used in your program to get 
the same results. Which one should you choose?  
 
Answer: reduceByKey(), because it is more efficient - especially on large datasets.  
 

6 ) How can you use subtractByKey() to determine *all* of the unique keys across two RDDs?   
 
Answer: Run it twice, switching the order of the RDDs each time. 
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Summary 
• Pair RDDs contain elements made up of key-value pairs 

• Common functions used to create Pair RDDs include map(), keyBy(), zipWithIndex(), and 
zip() 

• Common functions used with Pair RDDs include mapValues(), keys(), values(), 
sortByKey(),  lookup(), countByKey(), collectAsMap(), reduceByKey(), 
groupByKey(), flatMapValues(), subtractByKey(), and various join types. 
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Spark Streaming 

Lesson Objectives 
After completing this lesson, students should be able to: 

ü Describe Spark Streaming 

ü Create and view basic data streams  

ü Perform basic transformations on streaming data 

ü Utilize window transformations on streaming data 

Spark Streaming Overview 

What is Spark Streaming? 
As the name implies, Spark Streaming is a tool that enables a developer to utilize the Spark platform to 
ingest and process streaming data. Spark Streaming is composed of a receiver, which collects 
streaming data in small amounts called micro-batches, and then makes them available for processing 
via a collection of specialized RDDs called a DStream. These DStreams can then be manipulated and 
further processed via the Spark Streaming API, which is an extension of Spark Core, to produce 
various output types.  
 

 
Spark	streaming	

DStreams 
A DStream is a collection of one or more specialized RDDs divided into discrete chunks based on a 
time interval. When a streaming source communicates with Spark Streaming, the receiver caches 
information for a specified time period, after which the data is converted into a DStream and made 
available for further processing.  Each discrete time period (in the example pictured, every five 
seconds) is a separate DStream. 
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DStreams	

DStream vs. RDD 
DStreams have some differences compared to traditional RDDs. The first, and perhaps most 
consequential difference, is that DStreams contain data and physically exist in memory from the 
moment of creation. Traditional RDDs, on the other hand, are sets of instructions that don't actually 
contain in-memory data until an action is performed. The second difference is that, by default, 
DStreams only exist in memory until the next batch of data is ready to be processed. A third, 
difference is terminology: while you perform transformations on both RDDs and DStreams, RDDs 
create results via "actions" whereas DStreams result in similar "outputs."  

DStream Replication 
DStreams are fault tolerant, meaning they are written to a minimum of two executors at the moment of 
creation. The loss of a single executor will not result in the loss of the DStream. 
 

 
Receiver	duplicates	data	to	two	executors	by	default	
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Receiver Availabil ity 
By default, receivers are highly available. If the executor running the receiver goes down, the receiver 
will be immediately restarted in another executor. 
 

 
A	failed	receiver	will	be	restarted	on	another	executor	

Spark Streaming performs micro-batching rather than true bit-by-bit streaming. Collecting and 
processing data in batches can be more efficient in terms of resource utilization, but comes at a cost 
of latency and the risk that small amounts of data could be lost. Spark Streaming can be configured to 
process batch sizes as small as one second, which takes approximately another second to process, 
for a two-second delay from the moment the data is received until a response can be generated.  This 
introduces a small risk of data loss, which can be mitigated by the use of reliable receivers (available in 
the Scala and Java APIs only at the time of this writing) and intelligent data sources.  

Receiver Reliabil ity 
By default, receivers are "unreliable." This means there is: 

• No acknowledgment between receiver and source 

• No record of whether data has been successfully written  

• No ability to ask for retransmission for missed data 

• Possibility for data loss if receiver is lost 
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To implement a reliable receiver, a custom receiver must be created. A reliable receiver implements a 
handshake mechanism that acknowledges that data has been received and processed. Assuming the 
data source is also intelligent, it will wait to discard the data on the other side until this 
acknowledgement has been received, which also means it can retransmit it in the event of data loss. 
Custom receivers are available in the Scala and Java Spark Streaming APIs only, and are not available 
in Python. For more information on creating and implementing custom / reliable receivers, please refer 
to Spark Streaming documentation.  

Streaming Data Source Examples 
Spark Streaming can receive data from multiple sources, both basic and advanced types. Basic 
sources include monitoring HDFS directories and ingesting any new files that are created as streamed 
data, text streaming via a TCP socket connection, and even setting up queues of traditional RDDs that 
can be used to test a streaming application. Advanced sources include Apache Kafka, Amazon 
Kinesis, Apache Flume, and MQTT. 

 

	

REFERENCE:  

Additional data sources are available via the Scala and Java APIs. Please 
refer to the Spark Streaming documentation for additional information. 

Visit http://spark.apache.org/documentation.html 

Basic Streaming 

StreamingContext 

Spark Streaming extends the Spark Core architecture model by layering in a StreamingContext on 
top of the SparkContext. The StreamingContext acts as the entry point for streaming applications. It 
is responsible for setting up the receiver and enables real-time transformations on DStreams. It also 
produces various types of output.  
 

 
The	StreamingContext	
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Modifying REPL CPU Cores 
When running streaming applications, it is usually beneficial to utilize multiple CPU cores. By default, 
Spark REPLs run programs on the local machine - which, in this course, is named "sandbox" - and are 
assigned to a single CPU core. As a general recommendation, a Spark Streaming application should 
have a number of cores equal to the number of DStreams being ingested plus a core for the receiver 
itself. Thus, if you have 20 DStreams, you should have 21 CPU cores available for best performance. 
This behavior can be changed by modifying the MASTER environment variable, which in the REPL can 
be done at launch. For example, to utilize two cores in pyspark: 
# pyspark --master local[2] 

Launch StreamingContext 
To launch the StreamingContext, you first need to import the StreamingContext API. In pyspark, 
the code to perform this operation would be: 
from pyspark.streaming import StreamingContext 

Next, you create an instance of the StreamingContext. When doing so, you supply the name of the 
SparkContext in use, as well as the time interval (in seconds) for the receiver to collect data for 
micro-batch processing. When using a REPL, the SparkContext will be named sc by default. For 
example, when creating an instance of StreamingContext named ssc, in the pyspark REPL, with a 
micro-batch interval of one second, you would use the following code: 
ssc = StreamingContext(sc, 1) 

 

	

IMPORTANT:  

This operation will return an error if the StreamingContext API has not 
been imported. 

 

Both the name of the SparkStreaming instance and the time interval can be modified to fit your 
purposes. Here is an example of creating a StreamingContext instance with a 10-second micro-
batch interval: 
sscTen = StreamingContext(sc, 10) 

 

	

IMPORTANT:  

While multiple instances of StreamingContext can be defined, only a 
single instance of SparkContext can run per JVM. Once running, another 
instance will fail to launch. In fact, once the current instance has been 
stopped, it cannot be launched again in the same JVM. Thus, while the 
REPL is a useful tool for learning and perhaps testing Spark Streaming 
applications, in production it would be problematic because every time a 
developer wanted to test a slightly different application, it would require 
stopping and restarting the REPL itself. 
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Streaming from HDFS Directories and TCP Sockets 
To create a stream by monitoring an HDFS directory and ingesting any new files that appear, choose a 
variable name for the DStream, then call the textFileStream() function from the 
StreamingContext API and supply the full path to the appropriate HDFS directory. For example: 
hdfsInputDS = ssc.textFileStream("someHDFSdirectory") 

 

	

NOTE:  

If the HDFS directory exists on the cluster the application is attached to, 
only the path needs to be provided. If it exists on a separate cluster, 
prepend the path with "hdfs:/nodename:8020/…" 

 

To create a stream by monitoring a TCP socket source, choose a variable name for the DStream, then 
call the socketTextStream() function and supply the source hostname or IP address (whichever is 
appropriate in your situation) and the port number to monitor. For example: 
tcpInputDS = ssc.socketTextStream("someHostname", portNumber) 

Notice that in both examples, the name of the StreamingContext instance had to be specified before 
calling the function. Otherwise, the application would have tried to call this from the default 
SparkContext, and since these functions to not exist outside of Spark Streaming, an error would have 
been returned.  

Output to Console and to HDFS 
To print streaming output to the console / terminal window, in Python use the "pretty print" function, 
pprint(). In Scala/Java the same function is simply named print(). For example: 

• Python: DSvariableName.pprint() 

• Scala/Java: DSvariableName.print() 

When printing output to the console, we suggest setting the log level for the SparkContext to 
"ERROR" in order to reduce screen output. Otherwise, lots of information besides what is being 
streamed will appear and clutter up the screen. To do this, use the SparkContext setLogLevel 
function as follows: 
sc.setLogLevel("ERROR") 

To save the output as a time-stamped text file on HDFS, use the saveAsTextFiles function. Make 
sure the application has write permissions to the HDFS directory selected. The syntax for this 
operation is: 
DSVariable.saveAsTextFiles("HDFSlocation/prefix", "optionalSuffix") 

The output will be generated on a per-DStream basis, with whatever you select as the prefix 
prepending the rest of the file name, which will be "-<timestamp>." In addition, you can choose to 
add a suffix to each file as well, which will appear at the end of the file. Prefixes and suffixes are useful, 
particularly if multiple data streams are being written to the same directory. 

It is also noteworthy that these outputs are not exclusive. You can choose to output to the console 
*and* to HDFS without issue.  
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Starting and Stopping the Streaming Application 
With streaming applications, all operations must be defined before the stream is started. Thus, any  
interactivity benefit of the REPL is lost. Once all transformations and outputs have been defined, 
launch a streaming application simply by calling the SparkContext instance and using the start 
function. The application can be stopped in the same fashion using the stop function.  

For example: 

• When ready:  ssc.start() 

• When finished:  ssc.stop() 

In a REPL, the streaming application will also stop if the terminal it is running in is closed.  

Simple Streaming Program Example Using a REPL 
Here's an example of a simple streaming program created using the pyspark REPL: 
# pyspark --master local[2] 
>>> sc.setLogLevel("ERROR") 
>>> from pyspark.streaming import StreamingContext 
>>> sscFive = StreamingContext(sc, 5) 
>>> hdfsInputDS = sscFive.textFileStream("/user/root/test/") 
>>> hdfsInputDS.saveAsTextFiles("/user/root/test/stream/name") 
>>> hdfsInputDS.pprint() 
>>> sscFive.start() 

In the above application: 

1. The pyspark REPL is called with the MASTER variable configured to use two CPU cores on 
the local machine 

2. The SparkContext log level is set to "ERROR" 

3. Then the StreamingContext API is imported 

4. Then, an instance of StreamingContext named sscFive is created, with a micro-batch time 
interval of five seconds 

5. A DStream is defined using the textFileStream function to monitor the local HDFS directory 
/user/root/test/ 

6. Those inputs are then output as text files with a prefix of "name" (no suffix is defined) to the 
local HDFS directory /user/root/test/stream/ 

7. Finally, the inputs are also output to the console using pprint() 

8. Then the application is launched 
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Basic Streaming Transformations 

DStream Transformations 
Transformations allow modification of DStream data to create new DStreams with different output. 
DStream transformations are similar in nature and scope to traditional RDD transformations. In fact, 
many of the same functions in Spark Core also exist in Spark Streaming. The following functions 
should look familiar: 

• map() 

• flatMap() 

• filter() 

• repartition() 

• union() 

• count() 

• reduceByKey() 

• join() 

Transformation using flatMap() 
As an example, here is a Spark Streaming application that utilizes the flatMap function and prints 
output to the console. 
# pyspark --master local[2] 
>>> sc.setLogLevel("ERROR") 
>>> from pyspark.streaming import StreamingContext 
>>> ssc = StreamingContext(sc, 5) 
>>> hdfsInputDS = ssc.textFileStream("someHDFSdirectory") 
>>> flatMapDS = hdfsInputDS.flatMap(lambda line: line.split(" ") 
>>> flatMapDS.pprint() 
>>> ssc.start() 

Notice that the first five lines of code are similar to the application example from the previous section. 
In this example, then, the original DStream transformed into a new DStream named flatMapDS, and 
the new DStream is output to the console. 
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Combining DStreams using union() 
The union function also works in the same way as it does with traditional RDDs. In this example, we 
create two DStreams and combine them with union(). Notice that we used the same HDFS location in 
the example, so the output would simply be the same input written twice.  
# pyspark --master local[2] 
>>> sc.setLogLevel("ERROR") 
>>> from pyspark.streaming import StreamingContext 
>>> ssc = StreamingContext(sc, 5) 
>>> input1 = ssc.textFileStream("/user/root/test/") 
>>> input2 = ssc.textFileStream("/user/root/test/") 
>>> combined = input1.union(input2) 
>>> combined.pprint() 
>>> ssc.start() 

Create Key-Value Pairs 
Like traditional RDDs, DStreams can be transformed into key-value pairs using flatMap() followed by 
map(). Here's an example: 
# pyspark --master local[2] 
>>> sc.setLogLevel("ERROR") 
>>> from pyspark.streaming import StreamingContext 
>>> ssc = StreamingContext(sc, 5) 
>>> hdfsInputDS = ssc.textFileStream("someHDFSdirectory") 
>>> kvPairDS = hdfsInputDS.flatMap(lambda line: line.split(" ").map(lambda 
word: (word, 1)) 
>>> kvPairDS.pprint() 
>>> ssc.start() 

reduceByKey() 
Also, like traditional RDDs, key-value pair DStreams can be reduced using the reduceByKey function. 
Here's an example:  
# pyspark --master local[2] 
>>> sc.setLogLevel("ERROR") 
>>> from pyspark.streaming import StreamingContext 
>>> ssc = StreamingContext(sc, 5) 
>>> hdfsInputDS = ssc.textFileStream("someHDFSdirectory") 
>>> kvPairDS = hdfsInputDS.flatMap(lambda line: line.split(" ").map(lambda 
word: (word, 1)) 
>>> kvReduced = kvPairDS.reduceByKey(lambda a,b: a+b) 
>>> kvReduced.pprint() 
>>> ssc.start() 

This coding pattern is often used to write word count applications. 
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Window Transformations 

Stateful vs. Stateless Operations 
By default, DStreams are discarded from memory when the next batch of data arrives. This behavior is 
fine assuming all operations / transformations performed are on single DStreams, which are not 
dependent on previous data. This mode of operation is referred to as working with "stateless" 
operations / transformations.  

However, it is sometimes beneficial or necessary to perform transformations and gather output across 
overlapping time slices, or even across an entire collected dataset. For example, you might want to 
compute a running average every 15 seconds using the last 45 seconds worth of data. This is referred 
to as working with "stateful" operations / transformations.  

Checkpointing 
Checkpointing is used in stateful streaming operations to maintain state in the event of system failure. 
To enable checkpointing, you can simply specify an HDFS directory to write checkpoint data to using 
the checkpoint function. For example: 
ssc.checkpoint("someHDFSdirectory") 

Trying to write a stateful application without specifying a checkpoint directory will result in an error 
once the application is launched.  

Streaming Window Functions 
Window functions are stateful operations that run on a set of DStreams, combining the results of a 
group.  In the diagram, each window is composed of the last 3 DStreams. The window length, which is 
the size measured in seconds, and the time interval to collect the results are set during the window 
creation. Both of these values must be a multiple of the StreamingContext micro-batch interval 
value.  For example, if the micro-batch interval is set to five seconds, the window size and interval 
must be some multiple of five. If this were the case for the example pictured, each window would have 
a size of 15 seconds, and could be processed at either 5 or 10-second intervals. 
 

 
Each	window	comprises	the	last	three	DStreams	in	this	scenario	
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NOTE:  

Technically, you could also process a 15-second window in 15-second 
intervals, however this is functionally equivalent to setting the 
StreamingContext interval to 15 seconds and not using the window 
function at all. 

 

	

IMPORTANT:  

For basic inputs, window() does not work as expected using 
textFileStream(). An application will process the first file stream 
correctly, but then lock up when a second file is added to the HDFS 
directory. Because of this, all course labs and examples will use the 
socketTextStream function. 

 

Basic Window Transformations 
Two basic window transformations can be performed using the window and countByWindow 
functions.  

The window function takes the window length and collection interval as arguments, and returns a new 
DStream based on the values provided. Functionally, this is similar to the union() transformation, as 
the data across multiple DStreams is combined into a single unit. The difference is that with streaming, 
the union function only operates on DStreams created simultaneously, whereas the window function 
combines the same DStream created across multiple micro-batches. The basic syntax is 
window(windowLength, interval). An example of creating a window of 30 seconds collected 
every 10 seconds would look like the following: 
windowDS = streamingDS.window(30,10) 

The countByWindow function is equivalent to the window function followed by the Spark Streaming 
count function, and returns a count of the number of elements in the stream. However, if the number of 
elements is large, this will be a more efficient way of generating a count. The arguments are the same 
as window(), and has the following syntax: countByWindow(windowLength, interval).  

Example: 
windowCountDS = streamingDS.countByWindow(30,10) 
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Sample Window Application 
Here's a sample application that uses window() to generate a count of all elements in a data stream, 
first separating them out using flatMap(). (Without flatMap(), the number of DStreams would be 
counted instead.) It generates this output every five seconds, using the last 15 seconds worth of 
DStream data. Notice that the DStream interval is set to one second for the StreamingContext: 
# pyspark --master local[2] 
>>> sc.setLogLevel("ERROR") 
>>> from pyspark.streaming import StreamingContext 
>>> ssc = StreamingContext(sc, 1) 
>>> ssc.checkpoint("/user/root/test/checkpoint/") 
>>> tcpInputDS = ssc.socketTextStream("sandbox",9999) 
>>> windowDS = tcpInputDS.window(15, 5).flatMap(lambda line: line.split(" 
")).count() 
>>> windowDS.pprint() 
>>> ssc.start() 

reduceByKeyAndWindow() 

You can also work with key-value pair windows, and there are specialized functions designed to do 
that. One such example is reduceByKeyAndWindow(), which behaves similarly to the reduceByKey 
function discussed previously, but over a specified window and collection interval. For example, take a 
look at the following application: 
# pyspark --master local[2] 
>>> sc.setLogLevel("ERROR") 
>>> from pyspark.streaming import StreamingContext 
>>> ssc = StreamingContext(sc, 1) 
>>> ssc.checkpoint("/user/root/test/checkpoint/") 
>>> tcpInDS = ssc.socketTextStream("sandbox",9999) 
>>> redPrWinDS = tcpInDS.flatMap(lambda line: line.split(" ")).map(lambda word: 
(word, 1)). reduceByKeyAndWindow(lambda a,b: a+b, lambda a,b: a-b, 10, 2) 
>>> redPrWinDS.pprint() 
>>> ssc.start() 

To generate the reduced key-value pair, the DStream is transformed using flatMap(), then converted 
to a key-value pair using map(). Then, the reduceByKeyAndWindow function is called.  

Notice that the reduceByKeyAndWindow function actually takes two functions as arguments prior to 
the window size and interval arguments. The first argument is the function that should be applied to the 
DStream. The second argument is the *inverse* of the first function, and is applied to the data that has 
fallen out of the window. The value of each window is calculated incrementally as the window slides 
across DStreams without having to recompute the data across all of the DStreams in the window each 
time. 
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Knowledge Check 

Questions 
1 ) Name the two new components added to Spark Core to create Spark Streaming. 

 

2 ) If an application will ingest three streams of data, how many CPU cores should it be allocated? 
 

3 ) Name the three basic streaming input types supported by both Python and Scala APIs. 
 

4 ) What two arguments does an instance of StreamingContext require?  
 

5 ) What is the additional prerequisite for any stateful operation? 
 

6 ) What two parameters are required to create a window? 
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Answers 
1 ) Name the two new components added to Spark Core to create Spark Streaming. 

 
Answer: Receivers and DStreams. StreamingContext is also an acceptable answer here.   
 

2 ) If an application will ingest three streams of data, how many CPU cores should it be allocated? 
 
Answer: Four - one for each stream, and one for the receiver. 
 

3 ) Name the three basic streaming input types supported by both Python and Scala APIs. 
 
Answer: HDFS text via directory monitoring, text via TCP socket monitoring, and queues of 
RDDs. 
 

4 ) What two arguments does an instance of StreamingContext require?  
 
Answer: The name of the SparkContext and the micro-batch interval.   
 

5 ) What is the additional prerequisite for any stateful operation? 
 
Answer: Checkpointing. 
 

6 ) What two parameters are required to create a window? 
 
Answer: Window duration and collection/sliding interval. 
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Summary 
• Spark Streaming is an extension of Spark Core that adds the concept of a streaming data

receiver and a specialized type of RDD called a DStream.

• DStreams are fault tolerant, whereas receivers are highly available.

• Spark Streaming utilizes a micro-batch architecture.

• Spark Streaming layers in a StreamingContext on top of the Spark Core SparkContext.

• Many DStream transformations are similar to traditional RDD transformations

• Window functions allow operations across multiple time slices of the same DStream, and are
thus stateful and require checkpointing to be enabled.
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Spark SQL 

Lesson Objectives 
After completing this lesson, students should be able to: 

ü List various components of Spark SQL and explain their purpose

ü Describe the relationship between DataFrames, tables, and contexts

ü Use various methods to create and save DataFrames and tables

ü Manipulate DataFrames and tables

Spark SQL Components 
Spark SQL is a Spark module that enables optimized processing of structured data. It provides many 
advantages to the Spark developer, including automated performance improvements that generally 
mean better performance than applications built using Spark Core RDD APIs. Spark SQL also 
integrates seamlessly with Hive, which allows an enterprise to leverage investments already made in 
that platform (including data stored as well as knowledge and processes that have built over time) 
while simultaneously benefitting from Spark's improved performance via in-memory processing.  

DataFrames 
A DataFrame is data that has been organized into one or more columns, similar in structure to an SQL 
table, but is actually constructed from underlying RDDs. DataFrames can be created directly from 
RDDs, as well as from Hive tables and many other outside data sources.  

There are three primary methods available to interact with DataFrames and tables in Spark SQL: 

• The DataFrames API, which is available for Java, Scala, Python, and R developers

• The native Spark SQL API, which is composed of a subset of the SQL92 API commands

• The HiveQL API. Most of the HiveQL API is supported in Spark SQL.

Hive 
Most enterprises that have deployed Hadoop are familiar with Hive which is the original data 
warehouse platform developed for Hadoop. It represents unstructured data stored in HDFS as 
structured tables using a metadata overlay managed by Hive's HCatalog, and can interact with those 
tables via HiveQL, it's SQL-like query language. 

Hive is distributed with every major Hadoop distribution. Massive amounts of data are currently 
managed by Hive across the globe. Thus, Spark SQL's ability to integrate with Hive and utilize HiveQL 
capabilities and syntax provides massive value for the Spark developer. 
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Hive Data Visually 
 

 
Visual	Display	of	Hive	Data	

Hive data starts as raw data that has been written to HDFS. Hive has a metadata component that 
logically organizes these unstructured data files into rows and columns like a table. The metadata layer 
acts as a translator, enabling SQL-like interactions to take place even though the underlying data on 
HDFS remains unstructured.  

DataFrame Visually 
 

 
Visual	Display	of	DataFrame	Data	

In much the same way, a DataFrame starts out as something else - perhaps an ORC or JSON file, 
perhaps a list of values in an RDD, or perhaps a Hive table. Spark SQL has the ability to take these (and 
other) data sources and convert them into a DataFrame. As mentioned earlier, DataFrames are actually 
RDDs, but are represented logically as rows and columns. In this sense, Spark SQL behaves in a 
similar fashion to Hive, only instead of representing files on a disk as tables like Hive does, Spark SQL 
represents RDDs in memory as tables.  
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Spark SQL Contexts 
Spark requires a Spark context, Spark Streaming requires a Spark Streaming context, and Spark SQL 
requires an SQL context. The SQL context, however, provides two contexts to choose from:  

• The SQLcontext 
or 

• The HiveContext.  

In both cases, the default name usually given to the context is sqlContext, but this is at the discretion 
of the developer.  

Spark SQL Contexts – Python 

The basic code difference is which context gets imported at the beginning of the program. The options 
are: 
from pyspark.sql import SQLContext 
sqlContext = SQLContext(sc) 

or 
from pyspark.sql import HiveContext 
sqlContext = HiveContext(sc) 

Zeppelin and Spark REPLs both default to using a HiveContext with a name of sqlContext. For 
most of the code examples in this lesson, we will follow the same pattern. For Zeppelin, this becomes 
active when running code prepended by %sql. 

Spark SQL Contexts – Scala 

To create instances of either SQLContext or HiveContext using Scala you would use: 
import org.apache.spark.sql._ 
val sqlContext = SQLContext(sc) 

or 
import org.apache.spark.sql.hive._ 
val sqlContext = HiveContext(sc) 

SQLContext vs. HiveContext 
When deciding which Spark SQL context to use, keep the following in mind: 

SQLContext is a standalone API that provides a limited, generic SQL92 parser.  

HiveContext contains all the capabilities of SQLContext because it is a superset of SQLContext - 
meaning it contains all of the SQLContext capabilities, and extends them. Those extensions include 
numerous additional operations available via the HiveQL parser, the ability to read and write data to 
and from Hive tables, and access to Hive's User Defined Function (UDF) capabilities. Furthermore, 
these capabilities are available whether or not you currently utilize Hive in your HDP cluster.  

If your structured data needs are simple, the SQLContext has fewer dependencies and uses nominally 
fewer resources than HiveContext does, which can be an advantage if the limited SQL92 API meets 
your needs.  

Otherwise, HiveContext allows for far greater flexibility and extended capabilities. In general, or when 
in doubt, it is always safer to use HiveContext. 
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Catalyst Spark SQL Optimizer 
 

 
Catalyst,	The	Spark	SQL	Optimizer	

Spark SQL uses an optimizer called Catalyst. Catalyst accelerates query performance via an 
extensive built-in, extensible, catalog of optimizations that goes through a logical process and builds a 
series of optimized plans for executing a query. This is followed by an intelligent, cost-based modeling 
and plan selection engine, which then generates the code required to perform the operation. 

This provides numerous advantages over core RDD programming. It is simpler to write an SQL 
statement to perform an operation on structured data than it is to write a series of filter(), 
group(), and other calls. Not only is it simpler, executing queries using Catalyst provides performance 
that matches or outperforms equivalent core RDD nearly 100% of the time.  

Spark SQL make managing and processing structured data easier, and it provides performance 
improvements as well. 

DataFrames, Tables and Contexts 
Registering a DataFrame as a temporary table makes that table available for either DataFrames API or 
SQL interactions while operating in that specific context. Storing tables in Hive (and using 
HiveContext) makes them available across all contexts in a cluster. 
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DataFrames and Tables 
To understand the relationship between DataFrames and tables, we will start with the IoT demo. 

IoT Demo Create 
 

 
IoT	Demo	Create	

In this code, a CSV file is converted to an RDD named eventsFile using sc.textFile. Next, a 
schema named Event is created which labels each column and sets its type.  

Then a new RDD named eventsRDD is generated which takes the content of the eventFile RDD and 
transforms the elements according to the Event schema, casting each column and reformatting data as 
necessary.  

The code then counts the rows of eventsRDD - presumably as some kind of verification that the 
operation was successfully performed.  

The final two steps are performed on a single line of code. First eventsRDD is converted to an 
unnamed DataFrame, which is then immediately registered as a temporary table named 
enrichedEvents.  

 

 

IMPORTANT:  

Some of the techniques shown here to format a text file for use in a DataFrame is 
beyond the scope of this class, but various references exist online on how to accomplish 
this. 
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IoT Demo Use 

Once a DataFrame has been registered as a table, it is now available for direct manipulation by a Spark 
SQL context, using SQL commands. 
 

 
This temporary table can also be permanently converted to a permanent table in Hive. Making the table 
part of Hive's managed data has the added benefit of making the table available across multiple Spark 
SQL contexts. 
 

 

Python Row Objects 

Another way to create a DataFrame is by creating a Row object. In the Python code shown, a Row 
object is created using sc.parallelize().  
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This Row object has an implied schema of two columns - named code and value - and there are two 
records for code AA with a value of 150000 and code BB with a value of 80000. Because we do not 
need to work with the RDD directly, we immediately convert this collection of Row objects to a 
DataFrame using toDF(). We then visually verify that the Row objects were converted to a DataFrame 
using show(), and that the schema was applied correctly using printSchema().  

The DataFrame is registered as a temporary table named test4, which is then converted to a 
permanent Hive table named permab. We then run SHOW TABLES to view the tables available for SQL 
to manipulate. 

SHOW TABLES returned two Hive tables - permab and permenriched - and the temporary table 
test4. However, if we return to our other SQL context and run SHOW TABLES, we see the two Hive 
tables, but we do not see test4.  
 

 
In addition, this SQL context can still see the enrichedevents temporary table, which was not visible 
to our other SQL context.  
 

 

KEY TAKE-AWAY:  

if you want to make a table available to all SQL contexts across the cluster and not just 
the current SQL context, you must convert it to a permanent Hive table. 

 

 



Spark SQL 

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 88 

Scala Row Objects 
 

 
The code in this screenshot performs an operation similar to the IoT example, but on a smaller scale, 
and using Row objects in Scala rather than Python. Some of the key differences between this and the 
previous example include the definition of the DataSample schema class prior to creation of the df2 
RDD, with a different syntax during creation of the RDD.  

As in the previous example, this RDD is immediately converted to a DataFrame, then registered as a 
temporary table which is converted to a Hive table. 

 

 

NOTE:  

The only temporary table visible when SHOW TABLES is executed is the temporary table 
created by this instance of the SQL context. All of the Hive tables are returned, as per 
previous examples. 
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DataFrames and Tables Summary 
 

 
A key concept when writing multiple applications and utilizing multiple Spark SQL contexts across a 
cluster, is that registering a temporary table makes it available for either DataFrame API or SQL 
interactions while operating in that specific context.  

However, those DataFrames and tables are only available within the Spark SQL context in which 
they were created.  

To make a table visible across Spark SQL contexts, you should store that table permanently in Hive, 
which makes it available to any HiveContext instance across the cluster.  

Create and Save DataFrames and Tables 
There are various methods for creating and saving DataFrames and Tables, including: 

• Converting RDDs to DataFrames 

• Creating DataFrames Programmatically in Python and Scala 

• Registering DataFrames as Temporary Tables 

• Making DataFrames Available Across Contexts 

• Creating DataFrames from Existing Hive Tables 

• Storing DataFrames Permanently HDFS 

• Using Data Stored in HDFS to Create DataFrames 

Converting an RDD to a DataFrame 
An RDD with elements that adhere to a properly defined schema can be converted to a DataFrame 
using one of the following methods: 
toDF():   dataframeX = rddName.toDF() 
 
createDataFrame(): 
dataframeX = sqlContext.createDataFrame("rddName") 

If an RDD is properly formatted but lacks a schema, in Python createDataFrame() can be used to 
infer the schema on DataFrame creation. (Scala lacks an easy, "on the fly" way to accomplish this.) 
rddName = sc.parallelize([(‘AA’, 150000), (‘BB’, 80000)]) 
dataframeX = sqlContext.createDataFrame(rddName, [‘code’, ‘value’]) 
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Creating DataFrames Programmatically in Python 
Before an RDD can be converted to a DataFrame, a properly structured RDD must be created. In 
Python this can be accomplished by creating an RDD of Row elements in which the schema is defined 
on an element-by-element basis. This RDD can then be converted to a DataFrame. For example: 
 

 

Creating DataFrames Programmatically in Scala 
To create an RDD that can be converted to a DataFrame using Scala, start by importing 
sqlContext.implicits._ (assuming your Spark SQL context is named sqlContext), which assists 
in implicit type casting. (This is handled automatically in most cases when programming with Python.)  

Then, create the schema you will be using with case class [schemaName](columnName: datatype, 
columnName: datatype, ….).  

Then, create the DataFrame by creating an RDD that contains a sequential list of instances of this class 
and provide appropriate values, followed by toDF(). For example: 
 

 



Spark SQL 

 

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 91 

Using sqlContext.sql()  and show() 

Once a table is created, the DataFrames API can still be used to view and manipulate it using 
sqlContext.sql("SQL command goes here"). This assumes your Spark SQL context is named 
sqlContext.  If you wish to see the output from the SQL command, append show() to the line of 
code. For example: 
 

 
Using	the	show	function	to	display	the	results	of	an	sql()	query	

Registering DataFrames as Temporary Tables 
By default, DataFrames are not available for direct SQL manipulation. Instead, a developer would need 
to use the DataFrames API to perform operations. To register a DataFrame to a table that can be 
directly manipulated by SQL, use registerTempTable(). For example: 
dataframe1.registerTempTable("table1") 

This takes the DataFrame named dataframe1 and registers it as a temporary table named table1. As 
the screenshot demonstrates, this table is now available for SQL manipulations: 
 

 
Manipulating	a	Temporary	Tables	with	SQL	

Making Tables Available Across Contexts with CREATE TABLE 
Temporary tables are only available to the Spark SQL context that created them. One way to make a 
table visible across all Spark SQL contexts in the cluster is to create a Hive table and copy the 
contents of the temporary table to it. The code to accomplish this would be: 
sqlContext.sql("CREATE TABLE table1hive AS SELECT * FROM table1") 
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This creates a table named table1hive in Hive, copying all of the contents from temporary table 
table1. The following screenshot demonstrates that table1hive is now registered as a permanent 
table. 
 

 
Using	SHOW	TABLES	to	Show	that	table1hive	is	Registered	as	a	Permanent	Table	

Creating DataFrames from Existing Hive Tables 
Just as DataFrames can be converted to tables, tables can also be converted to DataFrames, which 
can then be directly manipulated using the DataFrames API. This is accomplished by using 
sqlContext.table(), as in the example below: 
dataframe1 = sqlContext.table("permab") 

 
 

 
Creating	a	DataFrame	from	an	Existing	Hive	Table	

Saving DataFrames from HDFS 
You can save DataFrames from data stored in HDFS using: 

• read() 

• write() 
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Saving DataFrames as Files using write()  

DataFrames can be permanently stored in HDFS in several non-table formats as well using write(). 
Some of the common ones used include ORC, JSON, and parquet. The command to save the 
DataFrame contents to these file types follows the following syntax: 
DataFrameName.write.format("selectedFormat").save("HDFSfolder") 

Specific examples for JSON, ORC, and parquet files: 
dataframe1.write.format("json").save("dfjson") 
dataframe1.write.format("orc").save("dforc") 
dataframe1.write.format("parquet").save("dfparquet") 

 
 

 
 

Save Modes 

By default, if a write() is used and the file already exists, an error will be returned. This is because of 
the default behavior of save modes. However, this default can be modified. Here are the possible 
values for save mode when writing a file and their definitions: 

• ErrorIfExists: Default mode, returns an error if the data already exists 

• Append: Appends data to file or table if it already exists 

• Overwrite: Replaces existing data if it already exists 

• Ignore: Does nothing if the data already exists 

For example, if you were using the write() command from before to save an ORC file and you 
wanted the data to be overwritten / replaced if a file by the same name already existed, you would use 
the following code: 
 

 

Creating DataFrames from Files using read() 

DataFrames can be created from files of many structured file types, including ORC, parquet, and JSON 
files if they are properly formatted using read().  

 

REFERENCE:  

For a complete list of supported file types for direct import into DataFrames, please 
refer to Spark SQL documentation. (http://spark.apache.org/documentation.html) 
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The syntax is similar to the write() command used before, only read() is used, and an appropriate 
file is loaded. For example, to use the JSON file created earlier to create a DataFrame: 
dataframeJSON = sqlContext.read.format("json").load("dfsamp.json") 
 

Or, if reading from a folder of part-* files created using write(): 
dataframeJSON = sqlContext.read.format("json").load("folderName/*") 
 

 
 

 
Creating	a	DataFrame	from	Files	using	read()	

 

NOTE:  

If you peruse the documentation, you will note that some file formats have read() 
shortcuts - for example: read.json instead of read.format("json"). We do not 
demonstrate them in class because they are not consistent across all supported file 
types, however if a developer works primarily with JSON files on a regular basis, using 
the read.json shortcut may be beneficial.  
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Manipulating DataFrames and Tables 
You can manipulate SQL tables by using standard SQL commands via Spark SQL or from within the 
DataFrames API using sqlContect.sql(). In this class, we do not explicitly teach a significant 
number of SQL commands, as it is assumed most Spark developers have prior exposure to this topic. 

DataFrames are manipulated using the DataFrames API. 

Manipulating SQL Tables 
Tables can be manipulated using SQL and HiveQL commands via Spark SQL or within the DataFrames 
API using sqlContext.sql(). In both cases, queries are optimized using Catalyst, meaning highly 
optimized operations occur by default. 
 

 
Methods	for	Manipulating	SQL	Tables	

Manipulating DataFrames using the DataFrames API 
In addition to sqlContext.sql(), the DataFrames API contains a number of functions that are 
designed to manipulate DataFrames (rather than tables) in a similar fashion to how SQL queries 
manipulate tables.  
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show(), printSchema(), and withColumn() 
 

 
show(), printSchema(), and withColumn()	Functions	

The show() function displays the contents of a DataFrame, the output of an SQL command run within 
sqlContext.sql(), and is also required for on-screen display of several other functions that will be 
discussed. 

The printSchema() function displays the schema for a DataFrame. 

The withColumn() function returns a new DataFrame with a new column based on criteria you 
provide. In the example, a new column named multiplied was created, and the numbers in that column 
are the numbers in the value column multiplied by two. 
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withColumnRenamed() and select()  
 

 
withColumnRenamed	and	select()	Functions	

The withColumnRenamed() function returns a new DataFrame with a column renamed - in the 
example, from multiplied to annual. 

The select() function returns a new DataFrame with only the explicitly named columns and their 
data.  

f i lter() and l imit() 
 

 
filter()	and	limit()	Functions	

The filter() function returns a DataFrame with only rows that have column values that meet a 
defined criteria - in the screenshot, only rows that had values less than 100,000 were returned.  

The limit() function returns a DataFrame with the first n rows of the DataFrame. In the example, only 
the first row was returned.  
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describe() and distinct() 
 

 
describe()	and	distinct()	Functions	

The describe() function returns count, mean, standard deviation, minimum, and maximum values for 
named columns in a DataFrame. If no columns are named, all numerical columns will be used and 
reported on. 

The distinct() function returns a new DataFrame of only the unique rows from the original 
DataFrame. 
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drop() and groupBy() 
 

 
drop()	and	groupBy()	Functions	

The drop() function returns a DataFrame without specific volumes included. Think of it as the 
opposite of the select() function. 

The groupBy() function groups rows by matching column values, and can then perform other 
functions on the combined rows such as count().  

The screenshot shows two examples. In the first one, the code column is grouped and the number of 
matching values are counted and displayed in a separate column. In the second one, the values 
column is scanned for matching values, and then the sums of the identical values are displayed in a 
separate column.  

count(),  take(),  and head() 
 

 
count(),	take(),	and	head()	Functions	

The count() function returns the number of rows in the DataFrame as a result. 

The take() function returns a number of rows in the DataFrame and returns them as Row objects. 

The head() function returns the first row in the DataFrame as a Row object.  
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IMPORTANT:  

In the screenshot provided, these functions are shown prepended with print. However, 
the print command is not required for Scala, nor is it required for Python when using the 
REPL.  

Technically, these functions should probably not have required the print function in 
order to produce output either, but via trial and error testing we discovered that they 
worked when print was supplied in Zeppelin.  In addition, at the time of this writing, a 
handful of pyspark functions did not operate correctly *at all* when run inside Zeppelin, 
even in conjunction with the print command.  

Some examples include first(), collect(), and columns(). This is likely the result 
of a bug in the version of Zeppelin used to write this course material and may no longer 
be the case by the time you are reading this.  

For additional DataFrames API functions, please refer to the online Apache Spark SQL 
DataFrames API documentation. Testing these pyspark functions without the print 
command will likely result in success in a future implementations. 
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Knowledge Check 

Questions 
1 ) While core RDD programming is used with [structured/unstructured/both] data Spark SQL is 

used with [structured/unstructured/both] data. 
 

2 ) True or False: Spark SQL is an extra layer of translation over RDDs. Therefore while it may be 
easier to use, core RDD programs will generally see better performance. 
 

3 ) True or False: A HiveContext can do everything that an SQLContext can do, but provides 
more functionality and flexibility.  
 

4 ) True or False: Once a DataFrame is registered as a temporary table, it is available to any 
running sqlContext in the cluster.  
 

5 ) Hive tables are stored [in memory/on disk]. 
 

6 ) Name two functions that can convert an RDD to a DataFrame. 
 

7 ) Name two file formats that Spark SQL can use without modification to 
create DataFrames. 
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Answers 
1 ) While core RDD programming is used with [structured/unstructured/both] data Spark SQL is 

used with [structured/unstructured/both] data. 
 
Answer:  Both / Structured  
 

2 ) True or False: Spark SQL is an extra layer of translation over RDDs. Therefore while it may be 
easier to use, core RDD programs will generally see better performance. 
 
Answer : False. The Catalyst optimizer means Spark SQL programs will generally outperform 
core RDD programs 
 

3 ) True or False: A HiveContext can do everything that an SQLContext can do, but provides 
more functionality and flexibility.  
 
Answer : True 
 

4 ) True or False: Once a DataFrame is registered as a temporary table, it is available to any 
running sqlContext in the cluster. 
 
Answer : False. Temporary tables are only visible to the context that created them. 
 

5 ) Hive tables are stored [in memory/on disk]. 
 
Answer : On Disk 
 

6 ) Name two functions that can convert an RDD to a DataFrame. 
 
Answer : toDF() and createDataFrame() 
 

7 ) Name two file formats that Spark SQL can use without modification to 
create DataFrames. 
 
Answer : The ones discussed in class were ORC, JSON, and parquet files. 
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Summary 
• Spark SQL gives developers the ability to utilize Spark's in-memory processing capabilities on 

structured data 

• Spark SQL integrates with Hive via the HiveContext, which broadens SQL capabilities and 
allows Spark to use Hive HCatalog for table management 

• DataFrames are RDDs that are represented as table objects which can used to create tables 
for SQL interactions 

• DataFrames can be created from and saved as files such as ORC, JSON, and parquet 

• Because of Catalyst optimizations of SQL queries, SQL programming operations will generally 
outperform core RDD programming operations 
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Data Visualization in Zeppelin  

Lesson Objectives 
After completing this lesson, students should be able to:  

ü Explain the purpose and benefits of data visualization 

ü Perform interactive data exploration using visualization in Zeppelin 

ü Collaborate with other developers and stakeholders using Zeppelin 

Data Visualization Overview 
The usefulness of data in tabular format is limited from a human decision-making perspective. We 
simply lack the ability to look at hundreds of rows of varied data and make inferences or draw accurate 
conclusions. Thus tabular data on its own is limited in its ability to assist with real-world decision-
making.  

Data visualizations allow human beings to look at large amounts of consolidated data in a graphical 
form, allowing us to quickly make inferences and draw conclusions based on visual input alone. While 
several categories of data visualizations have become standard content for things like reports and 
dashboards, the possible types of data visualizations available are limited only by human imagination. 
Numerous programs and code libraries are available to produce them, and in addition, custom 
visualizations can easily be made using tools such as HTML and JavaScript. 
 

 
Data	Visualizations	

Data Visualization and Spark 
The Spark project contains a module named GraphX. It is a Scala-only set of tools that enable a 
developer to programmatically produce relatively complex data visualizations in Spark. 

In addition, however, Zeppelin comes with a feature-rich, easy to use, and highly extensible set of data 
visualization capabilities. Not only can Zeppelin produce data visualizations.  

It enables a developer to: 

• Collaborate with others via controlled notebook sharing 

• Produce reports for external consumption by only sharing paragraph results 

• Add manipulation tools to those published paragraphs so users without any code knowledge 
can be granted the ability to manipulate those results in real time for various purposes 
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Because of Zeppelin's direct integration with Spark, flexibility in terms of supported languages, and 
collaboration and reporting capabilities - the rest of this lesson will explore how to use this tool for 
greatest effect.  

Keep in mind, however, that Zeppelin also supports HTML and JavaScript, and can also work with 
other data visualization libraries available to Python, Java, and other languages. If Zeppelin's built-in 
capabilities don't quite meet your needs, you always have the ability to expand on them. 

Data Exploration in Zeppelin 
Zeppelin provides several different ways to visualize tables, and will provide these options by default 
whenever working with %sql binding in a note. The six views provided are:  

• Table, which shows rows and columns much like a spreadsheet 

• Bar chart 

• Pie chart 

• Area chart 

• Line chart 

• Scatter plot chart 

Visualizations on Tables - %sql default 
Table 
 

 
Bar Chart 
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Pie Chart 
 

 
Area Chart 
 

 
Line Chart 
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Scatter Plot Chart 
 

 
	

Visualizations on DataFrames 
Zeppelin can also provide visualizations on DataFrames that have not been converted to SQL tables by 
using the following command: 
z.show(DataFrameName) 

This command tells Zeppelin to treat the DataFrame like a table for visualization purposes. Since a 
DataFrame is already formatted like a table, the command should work without issue on every 
DataFrame.  
 

 
DataFrame	Visualization	in	Zeppelin	

Visualizations on Other Formatted Data 
Zeppelin also comes with a %table indicator, which can be used to tell Zeppelin that any properly 
formatted data should be treated as a table. In the following example, we start by using the Scala 
println() command and create a simple table programmatically.  
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This screenshot shows what Zeppelin shows when %table is not part of the command. 
 

 
	

Zeppelin then displays the content as a table, with supporting data visualizations available as below.  
 

 
	

If the data is not formatted correctly, Zeppelin would simply return the string as a table name with no 
data. 

Interactive Programmatic Visualization 
Zeppelin will update a visualization any time a new query is run in a paragraph. 
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For example, in the previous screenshot, the SQL command displays a visualization for all columns 
and rows. 
 

 
	

However, in the second screenshot, the query was updated to only include rows with a value in the age 
column that exceeded 45. 

Interactive Pivot Chart Visualization 
You can write and rewrite, and then rerun, SQL statements to get exactly the data you want. However, 
Zeppelin also provides a pivot chart capability that becomes available when you click settings to the 
right of the chart options. 
 

 
	

This provides you with the ability to manipulate the chart output in a number of ways without requiring 
you to modify the initial query.  

  



Data Visualization in Zeppelin 

 

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 111 

In the example above, we see that the default chart uses age as a key, and sums the balances for all 
persons of a given age as the value.  
 

 
	

This was done automatically, without any grouping or sum command as part of the SQL statement 
itself.  

Pivot Chart Value Options 
 

 
Pivot	Chart	–	Value	Options	

The pivot chart feature allows you to change the action performed on the Values column selected. 
Click on the box (in the screenshot, the one that says balance) and a drop-down menu of options 
appear which can be used to change the default value action. Options include SUM, AVG, COUNT, 
MIN, and MAX. 

Pivot Chart Change Values or Keys 

Any column in the table can be set as a Key or Value. 
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To remove a column, click the "x" to the top right of the name box and it will disappear. 
 

 
	

If either the Key or Value field is blank, the output indicates that there is no data available. 
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Then you simply drag and drop the field you want as a value into the appropriate box and the output 
refreshes to match. 

 
 

 
	

In this example, we elected to use the age column for both Keys and Values, and used the COUNT 
feature to count the number of individuals in each age category. 

Pivot Chart Add Groups 

In addition to Keys and Values, pivot charts also allow you to specify Group columns which can 
provide a further breakdown of the data. 
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In this example, the marital column was defined as a grouping, and therefore every unique value in that 
column (married, single, or divorced) became its own bar color in the bar chart.  
 

 
 

Dynamic Forms 
Dynamic Forms give you the ability to define a variable in the query or command and allow that value 
to be dynamically set via a form that appears above the output chart. These can be done in various 
programming languages. For SQL, you would use a WHERE clause and then specify the column name, 
some mathematical operator, and then a variable indicated by a dollar sign with the form name and the 
default value specified inside a pair of curly braces.  
SELECT * FROM table WHERE colName [mathOp] ${LabelName=DefValue} 
 

 
	

In the following screenshot, we select the age column, where age is greater than or equal to the 
variable value, label the column Minimum Age and set the default value to 0 so that all values will 
appear by default.  
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Then, in the resulting dynamic form, we set the minimum age to 45 and press enter, which results in 
the chart updating to reflect a minimum age of 45 in the output. 
 

 
 

Multiple Variables 

Multiple variables can be included as dynamic forms.  

In this example, the WHERE clause has been extended with an AND operator, so both a minimum age of 
0 and a maximum age of 100 are set as defaults. The user then sets the minimum age value to 30 and 
the maximum age to 55 and presses enter, resulting in the underlying output changing to meet those 
criteria. 
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Select Lists 

Dynamic forms can also include select lists (a.k.a. drop-down menus). The syntax for a select list within 
a WHERE clause would be: 
... WHERE colName = "${LabelName=defaultLabel,opt1|opt2|opt3|…}" 
 

 
In the example shown, the marital column is specified, a variable created, and within the variable 
definition we specify the default value for marital = married.  

Then, insert a comma, and provide the complete list of options you wish to provide separated by the | 
(pipe) character - in our case, married, single, and divorced.  

This result is a new dynamic form, and the output will respond to changes in the drop-down menu. 
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Collaboration and Sharing 
You can use Notes to collaborate and share in Zeppelin. 

Cloning and Exporting Notes 
Before sharing a note with others, it may be a good idea to make a copy of it. There are two easy ways 
to do this:  

• Clone   
Makes a copy of the note in your Zeppelin notebook. You can clone a note by clicking on the 
button labeled "Clone the notebook" (when you hover over it with your mouse pointer) at the 
top of the note. 

 

 
• Export 

Downloads a copy of the note to the local file system in JSON format. You can export a note by 
clicking on the button labeled "Export the notebook" at the top of the note.  
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Importing Notes 
Exporting a note also gives you the ability to share that file with another developer, which they can 
then import into their own notebook from the Zeppelin landing page by clicking on "Import note."  
 

 

Note Cleanup 
Often note development will be a series of trial and error approaches, comparing methods to pick the 
best alternative. This can result in a notebook that contains paragraphs that you don't want to keep, or 
don't want distributed to others for sake of clarity. Fortunately cleaning up a note prior to distribution is 
relatively easy.  

Individual paragraphs that are no longer needed can be removed/deleted from the note. In the 
paragraph, click on the settings button (gear icon) and select remove to delete it.   
 

 
Paragraphs can also be moved up or down in the note and new paragraphs can be inserted (for 
example, to add comments in Markdown format describing the flow of the note). 
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Interactive Note Sharing 
Zeppelin enables collaboration between developers by sharing the URL of the note.  All connections 
using this URL are live, real-time connections, similar to joint editing of a Microsoft Office Online or 
Google Drive doc. 
 

 

Note Access Control 
By default, note permissions are open, meaning anyone with the note link can do anything with the 
note - including changing permissions, reading, and writing. To control what individuals can do with a 
shared note, click the Note Permissions (padlock) icon at the top-right corner of the note and set 
permissions accordingly. The exact format will vary based on the authentication mechanisms 
employed in your environment. 
 

 
 

 

Formatting Notes 
Note owners can control all paragraphs at the note level, via a set of buttons at the top of the note. 
These controls include: 

• Hide/Show all code via the button labeled "Show/hide the code," 

• Hide/Show all output via the button labeled "Show/hide the output" (which changes from an 
open book to a closed book icon based on the current setting), and 

• Clear all output via the eraser icon button labeled "Clear output." 
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There are also two additional note views: 

• The Simple view removes the note-level controls at the top of the note 

• The Report view removes all note-level controls, as well as hides all code in the note, resulting 
in a series of outputs 

These views can be selected by clicking the button labeled "default" at the top-right corner of the 
note and choosing the appropriate option from the resulting drop-down menu.  
 

 
 

Automating Note Updates 
An entire note can be played, paragraph-by-paragraph, by using the Play icon button labeled "Run 
all  paragraphs." 
 

 
	

This operation can be scheduled to run on a regular basis using the scheduling feature, which is 
enabled by clicking the clock icon button labeled "Run scheduler." This allows you to schedule the 
note to run at regular intervals including every minute, every five minutes, every hour, and so on up to 
every 24 hours via preset links that can simply be clicked to activate. If these options are not granular 
enough for you, you can also schedule the note at a custom interval by supplying a Cron expression.  

 
 

 



Data Visualization in Zeppelin 

 

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 121 

Paragraph Formatting 
Paragraphs can also be formatted prior to distribution on an individual basis. These settings are 
available in the buttons menu at the top right of each paragraph, as well as underneath the settings 
menu (gear icon) button. 
 

 
 

 
	

Formatting options that were also available at the note level include: 

• Hide/Show paragraph code, 

• Hide/Show paragraph output, and 

• Clear paragraph output (only available under settings). 

Paragraph Enhancements 
The visual appearance of paragraphs can be enhanced to support various collaboration goals. Such 
enhancements include: 

• Setting paragraph width 

• Showing paragraph title 

• Showing line numbers 
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Width 

Example: 

Let's assume you want to create a dashboard within a Zeppelin note, showing multiple views of the 
same data on the same line.  
 

 
This can be accomplished by modifying the Width setting, found in paragraph settings. By default, the 
maximum width is used per paragraph, however, this can be modified so that two or more paragraphs 
will appear on the same line.  
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Show Title 

Paragraphs can be given titles for added clarity when viewing output. To set a title, select Show tit le 
under paragraph settings. The default title is "Untitled." 
 

 
	

Click on the title to change it, type the new title, and press the Enter key to set it.  
 

 

Line Numbers 

Paragraphs displaying code can also be enhanced by showing line numbers for each line of code.  
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To turn on this feature, select Show line numbers under paragraph settings.  
 

 
The numbers will appear to the left of the code lines. Lines that are wrapped based on the width of the 
paragraph will only be given a single number, even though on the screen they will appear as multiple 
lines.  

Sharing Paragraphs 
Individual paragraphs can be shared by generating a link, which can be used as an iframe or otherwise 
embedded in an external-to-Zeppelin report. To generate this URL, select Link this paragraph under 
paragraph settings.  
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This will automatically open the paragraph in a new browser tab, and the URL can be copied and 
pasted into whatever report or web page is needed. 
 

 
If dynamic forms have been enabled for this note, anyone who modifies the form values will change the 
appearance of the paragraph output for everyone looking at the link. This can be a valuable tool if, for 
example, a marketing department wants to generate multiple outputs based on slight tweaks to the 
query. You can allow them to do this without giving them access to the entire note, and without the 
need to modify the code on the backend. 
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Disabling Paragraph Output Changes 
In some cases, you may want to freeze a paragraph's output in its current form. To do so, select the 
Disable run under paragraph settings.  
 

 
Any changes to the code, as well as changes to dynamic forms input, will not change the output 
presented as long as the Disable run option is selected.  
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Knowledge Check 
Use the following questions to assess your understanding of the concepts presented in this lesson. 

Questions 
1 ) What is the value of data visualization? 

 

2 ) How many chart views does Zeppelin provide by default? 
 

3 ) How do you share a copy of your note (non-collaborative) with another developer? 
 

4 ) How do you share your note collaboratively with another developer? 
 

5 ) Which note view provides only paragraph outputs? 
 

6 ) Which paragraph feature provides the ability for an outside person to see a paragraph's output 
without having access to the note? 
 

7 ) What paragraph feature allows you to give outside users the ability to modify parameters and 
update the displayed output without using code? 
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Answers 
1 ) What is the value of data visualization? 

 
Answer : Enable humans to make inferences and draw conclusions about large sets of data 
that would be impossible to make by looking at the data in tabular format. 
 

2 ) How many chart views does Zeppelin provide by default? 
 
Answer : Five 
 

3 ) How do you share a copy of your note (non-collaborative) with another developer? 
 
Answer : Export to JSON format, then they can import it. 
 

4 ) How do you share your note collaboratively with another developer? 
 
Answer : Give them the note URL 
 

5 ) Which note view provides only paragraph outputs? 
 
Answer : The Report view. 
 

6 ) Which paragraph feature provides the ability for an outside person to see a paragraph's output 
without having access to the note? 
 
Answer : Link the paragraph 
 

7 ) What paragraph feature allows you to give outside users the ability to modify parameters and 
update the displayed output without using code? 
 
Answer : Dynamic forms 
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Summary 
• Data visualizations are important when humans need to draw conclusions about large sets of 

data 

• Zeppelin provides support for a number of built-in data visualizations, and these can be 
extended via visualization libraries and other tools like HTML and JavaScript 

• Zeppelin visualizations can be used for interactive data exploration by modifying queries, as 
well as the use of pivot charts and implementation of dynamic forms 

• Zeppelin notes can be shared via export to a JSON file or by sharing the note URL 

• Zeppelin provides numerous tools for controlling the appearance of notes and paragraphs 
which can assist in communicating important information 

• Paragraphs can be shared via a URL link 

• Paragraphs can be modified to control their appearance and assist in communicating 
important information 
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Job Monitoring 

Lesson Objectives 
After completing this lesson, students should be able to:  

ü Describe the components of a Spark job  

ü Explain default parallel execution for stages, tasks, across CPU cores 

ü Monitor Spark jobs via the Spark Application UI 

Spark Job Anatomy  
Spark data processing operations can be spoken about in terms of jobs.  

Jobs and Tasks 
 

 
Spark applications require a Driver, which in turn loads and monitors the SparkContext. The 
SparkContext is then responsible for launching and managing Spark jobs. But what do we mean 
when we say job? When you type a line of code to use a Spark function, such as flatMap(), 
filter(), or map(), you are defining a Spark task which must be performed. A task is a unit of work, 
or "a thing to be done." When you put one or more tasks together with a resulting action task - such as 
collect() or save() - you have defined a Spark job. A job, then, is a collection of tasks (or things to 
be done) culminating in an action.  
 

 
 

 

NOTE:  

Not explicitly called out here: a Spark application can consist of one or more Spark jobs. 
Every action is considered part of a unique job, even if the action is the only task being 
performed. 
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Job Stages 
A Spark job can be made up of several types of tasks. Some tasks don't require any data be moved 
from one executor to another in order to finish processing. This is referred to as a "narrow" operation, 
or one that does not require a data "shuffle" in order to execute.  

Transformations that do require that data be moved between executors are called "wide" operations, 
and that movement of data is called a shuffle.  

When executed, Spark will evaluate tasks that need to be performed and break up a job at any point 
where a shuffle will be required. While non-shuffle operations can happen somewhat asynchronously if 
needed, a task that follows a shuffle *must* wait for the shuffle to complete before executing.  
 

 
This break point, where processing must complete before the next task or set of tasks is executed, is 
referred to as a stage.  A stage, then, can be thought of as "a logical grouping of tasks" or things to be 
done. A shuffle is a task requiring that data between RDD partitions be aggregated (or combined) in 
order to produce a desired result.  

Job Anatomy Summary 
To put it all together: 

• A Spark job is a collection of tasks that culminate in an action. 

• Tasks are a unit of work, or a thing to be done. Each transformation and action is a separate 
task. 

• Because shuffled data must be complete before a following task can begin, jobs are divided 
into stages based on these shuffle boundaries.  

 

 
Anatomy	of	a	Spark	Job	
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Parallel Execution 
Spark jobs are automatically optimized via parallel execution at different levels.  

DAGs and Stages 
A job may have several stages (in this example, the job is divided into eight stages).  
 

 
However, not all stages are dependent on one another. For example, in this job Stage 1 has to run first, 
but once it has completed there are three other stages (two, four, and seven) that can begin execution.  
 

 
Operating in this fashion is known as a Directed Acyclic Graph, or DAG. A DAG is essentially a 
logical ordering of operations (in the case of our discussion here, Spark stages) based on 
dependencies. Since there is no reason for Stage 7 to wait for all of the previous six stages to 
complete, Spark will go ahead and execute it immediately after Stage 1 completes, along with Stage 2 
and Stage 4.  
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This parallel operation based on logical dependencies allows, in some cases, for significantly faster job 
completion across a cluster compared to platforms that require stages to complete, one at a time, in 
order.  

The tracking and managing of these stages and their dependencies is managed by a Spark component 
known as a DAG Scheduler. It is the DAG scheduler that tells Spark which stages (sets of tasks) to 
execute and in what order. The DAG Scheduler ensures that dependencies are met, and any 
dependent stages have completed prior to the next stage completing.  

Task Steps 
A task is actually a collection of three separate steps. When a task is first scheduled, it must first fetch 
the data it will need - either from an outside source, or perhaps from the results of a previous task. 
Once the data has been collected, the operation that the task is to do on that data can execute. Finally, 
the task produces some kind of output, either as an action, or perhaps as an intermediate step for a 
task to follow.  
 

 
Task	Steps:	Fetch	Input,	Execute	Task,	Write	Output	

Tasks can begin execution once data has started to be collected. There is no need for the entire set of 
data to be loaded prior to performing the task operation. Therefore, execution begins as soon as the 
first bits of data are available, and can continue in parallel while the rest of the data is being fetched.  
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Parallel	Task	Step	Execution	

Furthermore, the output production step can begin as soon as the first bits of data have been 
transformed, and can theoretically be happening while the operation is being executed and while the 
rest of the data is being fetched. In this manner, all three steps of a task can be running at the same 
time, with the execute phase starting shortly after the fetch begins, and the output phase starting 
shortly after the execute phase begins. In terms of completion, the fetch will always complete first, but 
the execute can finish shortly thereafter, with the output phase shortly after that.  

Tasks and CPU Cores 
Tasks are independent units of work. Therefore, CPU cores can be operating on different tasks at 
different times without issue. If an executor has more than one CPU core available, it can work on 
multiple tasks at the same time, further increasing the parallelization of job tasks and decreasing the 
amount of time it takes to complete a Spark job. 
 

 
CPU	Cores	on	Each	Node	can	Process	Tasks	Independently	
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Spark Application UI 
Now that we've explored the anatomy of a Spark job and understand how they are executed on the 
cluster, let's take a look at monitoring those jobs and their components via the Spark Application UI. 

Spark Application UI 
The Spark Application UI is a web interface generated by a SparkContext. It is therefore available 
for the life of the SparkContext. Once the SparkContext has been shut down, the Spark Application 
UI will no longer be available.  

You access the Spark Application UI by default via your Driver node at port 4040.  

Every SparkContext instance manages a separate Spark Application UI instance. Therefore, if 
multiple SparkContext instances are running on the same system, multiple Spark Application UIs will 
be available. Since they cannot share a port, when a SparkContext launches and detects an existing 
Spark Application UI, it will generate its own version of the monitoring tool at the next available port 
number, incremented by 1. Therefore, if you are running Zeppelin and it has created a Spark 
Application UI instance at port 4040, and then you launch an instance of the PySpark REPL in a 
terminal on the same machine, the REPL version of the monitoring site will exist at port 4041 instead of 
4040. A third SparkContext would create the UI at port 4042, and so on. 

Once a SparkContext is exited, that port number becomes available. Therefore, if you exited Zeppelin 
(using port 4040) and opened another REPL, it would create its Spark Application UI at port 4040. The 
two older SparkContext instances would keep the port numbers they had when they started. 

Application UI Landing Page 
 

 
Spark	Application	UI	Landing	Page	

The Spark UI landing page opens up to a list of all of the Spark jobs that have been run by this 
SparkContext instance. You can see information about the number of jobs completed, as well as 
overview information for each job in terms of ID, description, when it was submitted, how long it took 
to execute, how many stages it had and how many of those were successful, and the number of tasks 
for all of those stages (and how many were successful.)  
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Clicking on a job description link will result in a screen providing more detailed information about that 
particular job. 

 

NOTE:  

The URL - which was typed as "sandbox:4040" - was redirected to port 8088. Port 
8088 is the YARN ResourceManager UI, which tracks and manages all YARN jobs. This 
means that in this instance, Zeppelin has been configured to run on (and be managed 
resource-wise by) YARN.  

 

Landing Page Events Timeline 
 

 
Spark	Application	UI	Landing	Page	Events	Timeline	

On the Spark Application UI landing page, you will notice a link called Event Timeline. Clicking on this 
link results in a visualization that shows executors being added and removed from the cluster, as well 
as jobs being tracked and their current status. Enabling zoom allows you to see more granular detail, 
which can be particularly helpful if a large number of jobs have been executed over a long period of 
time for this SparkContext instance.  
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Job View 
 

 
S[ark	Application	UI	Job	View	

Clicking on a job description on the Jobs landing page takes you to the "Details for Job nn" page (in 
our example Job 11). Here you can see more specific information about the job stages, including 
description, when they were submitted, how long they took to run, how many tasks succeeded out of 
how many attempted, the size of the input and output of each stage, how much data shuffling occurred 
between stages.  

Job Events Timeline 
 

 
Event	Timeline	on	Spark	Application	UI	Job	View	
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Clicking on the Event timeline once again results in a visualization very similar to the one on the landing 
page, but this time only for the stages of that particular job instead of all jobs.  
 

 
Spark	Application	UI	Job	Events	Timline	

Job DAG 
 

 
DAG	Link	on	Spark	Application	UI	Job	View	

In addition, a new link is available on this screen: DAG Visualization.  
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Clicking the DAG Visualization link results in a visual display of the stages (red outline boxes) and 
the flow of tasks each contains, as well as the dependencies between the stages.  
 

 
Spark	Application	UI	Job	DAG	

Stage View 
 

 
Spark	Application	UI	Stage	View	

At the top of the window, to the right of the Jobs tab you will see a tab called Stages.  
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Clicking on the Stages tab will result in a screen similar to the Jobs landing page, but instead of 
tracking activity at the job level it tracks it at the stage level, providing pertinent high-level information 
about each stage. 

Stage Detail  
 

 
Spark	Application	UI	Stage	Detail	

Stage DAG 
 

 
DAG	Visualization	Link	

Clicking on the DAG Visualization link from this page results in a visual display of the operations within 
the stage in a DAG formatted view.  
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DAG	Visualization	

Stage Additional Metrics 
 

 
Clicking on the Show Additional Metrics link allows you to customize the display of information 
collected in the table below. Hovering over the metric will result in a brief description of the information 
that metric can provide.  
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This can be particularly useful when troubleshooting and determining the root cause of performance 
problems for an application.  
 

 
Stage	Additional	Metrics	

Stage Event Timeline 
 

 
Stage	Event	Timeline	Link	
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The Stage Detail  page also provides an Event Timeline visualization, which breaks down tasks 
and types of tasks performed across the executors it utilized.  
 

 
Stage	Event	Timeline	

Stage Task List 
 

 
Task	List	

At the bottom of the Stage Detail page is a textual list of the tasks performed, as well as various 
information on them including the ID, status, executor and host, and duration. 
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Stage	Task	Listing	

Executor View 
 

 
Spark	Application	UI	Executor	View	

The last standard tab (visible regardless of what kind of jobs have been performed) is the Executor 
tab. This shows information about the executors that have been used across all Spark jobs run by this 
SparkContext instance, as well as providing links to logs and thread dumps, which can be used for 
troubleshooting purposes as well. 
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SQL View 
 

 
Spark	Application	UI	SQL	View	

When you run a Spark job that uses one of the Spark modules, another tab appears at the top of the 
window that provides module-specific types of information for those jobs. In this screenshot, we see 
that a Spark SQL job has been executed, and that a tab labeled SQL has appeared at the top-right. The 
information provided is in terms of queries rather than jobs (although the corresponding Spark job 
number is part of the information provided.) 

SQL Visual Query Details 
 

 
SQL	Query	Details	–	Visual	
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Clicking on a query description will take you to a Details for Query "X" page, which will show a DAG of 
the operations performed as part of that query.  

SQL Text Query Details 
 

 
SQL	Query	Details	–	Text	

Below the query DAG, there is a Details link which - when clicked - provides a text-based view of the 
details of the query. 

Streaming Tab 
 

 
Spark	Application	UI	Streaming	Tab	
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When running Spark Streaming jobs, a Streaming tab will appear in the Spark Application UI. In this 
view we can see details about each job Spark runs, equating to a DStream collection and processing.  

Streaming View 
 

 
Streaming	Job	Statistics	

Clicking on a streaming job description link results in a page that shows streaming statistics charts for 
a number of different metrics. Shown here are input rate and scheduling delay. Input Rate is a link that 
can be clicked to expand the metrics window and show the rate per receiver, if multiple receivers are in 
use. In our example, only one receiver was in use and active.  

Additional Streaming Charts 
 

 
Additional	Streaming	Charts	
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Additional Spark Streaming charts include scheduling delay, processing time, and total delay.  

When you need to understand what the cause of slowness might be, the charts on this page can be 
particularly useful when troubleshooting performance issues with a Spark Streaming job.  

Streaming Batches 
 

 
Streaming	Batch	Statistics	

Beneath the charts is a list of batches, with statistics available about each individual batch and 
whether the output operation was successful. 

Batch Detail 
 

 
Batch	Detail	Link	
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Clicking on the batch time link results in a batch details page, where additional information may be 
found. 
 

 
Streaming	Batch	Detail	
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Knowledge Check 
You can use the following questions to assess your understanding of the concepts presented in this 
lesson. 

Questions 
1 ) Spark jobs are divided into _____________, which are logical collections of _______________. 

 

2 ) A job is defined as a set of tasks that culminates in a ________________. 
 

3 ) What Spark component organizes stages into logical groupings that allow for parallel 
execution? 
 

4 ) What is the default port used for the Spark Application UI? 
 

5 ) If two SparkContext instances are running, what is the port used for the Spark Application UI of 
the second one? 
 

6 ) As discussed in this lesson, what tabs in the Spark Application UI only appear if certain types 
of jobs are run? 
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Answers 
1 ) Spark jobs are divided into _____________, which are logical collections of _______________. 

 
Answer : Stages, tasks 
 

 

2 ) A job is defined as a set of tasks that culminates in a ________________. 
 
Answer : Action 
 

3 ) What Spark component organizes stages into logical groupings that allow for parallel 
execution? 
 
Answer : DAG Scheduler 
 

4 ) What is the default port used for the Spark Application UI? 
 
Answer : 4040 
 

5 ) If two SparkContext instances are running, what is the port used for the Spark Application UI of 
the second one? 
 
Answer : 4041 
 

6 ) As discussed in this lesson, what tabs in the Spark Application UI only appear if certain types 
of jobs are run? 
 
Answer : SQL and Streaming 
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Summary 
• Spark applications consist of Spark jobs, which are collections of tasks that culminate in an 

action. 

• Spark jobs are divided into stages, which separate lists of tasks based on shuffle boundaries 
and are organized for optimized parallel execution via the DAG Scheduler. 

• The Spark Application UI provides a view into all jobs run or running for a given SparkContext 
instance, including detailed information and statistics appropriate for the application and tasks 
being performed.  
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Performance Tuning 

Lesson Objectives 
After completing this lesson, students should be able to:  

ü Explain why mapPartitions usually performs better than map 

ü Describe how to repartition RDDs and how this can improve performance 

ü Explain the different caching options available  

ü Describe how checkpointing can reduce recovery time in the event of loosing an executor 

ü Describe situations where broadcasting increases runtime efficiencies 

ü Detail the options available for configuring executors  

ü Explain the purpose and function of YARN 

mapPartitions() vs. map()  
As a reminder, mapper transformations are narrow operations that benefit from partitions being 
operated on independently from each other. 

The mapPartitions API is a special kind of map transformation that can be used when both the 
inputs and outputs are iterable. It operates at the RDD partition level. The map API, in contrast, 
operates at the element level. To see why that can matter, let's look at an example: 

You want to initialize a database connection when mapping an RDD that contains 2,000,000 elements 
and is spread across four RDD partitions. If we use the map API to accomplish this, each element will 
require a database connection to be made which results in 2,000,000 initializations. However, if we use 
the mapPartitions API, each whole partition gets sent to the mapper’s function at once, resulting in 
only four database connection initializations. Once initialized, the elements in the partition can then be 
iterated through and transformed. This reduction in the number of initializations that must take place 
can result in significantly improved performance.  

As a simple (but not perfect, since this would be better done with a reducer) example of how this 
works, take a look at the following code: 
rdd1 = sc.parallelize((1,2,3,4,5,6,7,8),2) 
rdd1.mapPartitions(lambda x: [sum(x)]).collect() 
[(10, 26)] 

The first line creates rdd1 as an iterable list of numbers, and tells Spark to split this into two partitions. 
The next line uses mapPartitions() to sum the values in each partition and return the individual 
results. If these results needed to be further combined, the output could have been saved as a new 
RDD by changing the second line as follows: 
rdd2 = rdd1.mapPartitions(lambda x: [sum(x)]) 
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IMPORTANT:  

The brackets [ ] around sum(x) are required in this example because the input and 
output of mapPartitions() must be iterable. Without the brackets to keep the 
individual partition values separate, the function would attempt to return a number rather 
than a list of results, and as such would fail. If the total sum was needed, you would 
need to perform an additional operation on rdd2 (from the modification to line 2 above) in 
order to compute it such as the operation below: 
rdd1.mapPartitions(lambda x: [sum(x)]).reduce(lambda a,b: a+b)  # or 
just rdd1.reduce(lambda a,b: a+b) in the first place if not trying 
to explain mapPartitions 

 

RDD Parallelism  
The cornerstone of performance in Spark centers around the concepts of narrow and wide operations.  
How RDDs are partitioned, initially and via explicit changes, can make a significant impact on 
performance. 

Inherent Parallelism – parallelize() 
If a dataset has no parent, such as from an sc.parallelize() operation, then the total number of 
CPU cores across all the executor YARN containers for the full Spark application is used unless the 
value is less than two (the minimum number of partitions).  The spark.default.parallelism 
property could be set (as described in http://spark.apache.org/docs/latest/configuration.html) for each 
application to override this.   

Spark’s goal of aligning the RDD’s number of partitions to that of the cores available is based on the 
intention of making sure no resources are idle when an operation on the RDD is being performed.   

For small datasets running in very resource-intensive Spark applications, this could mean partitions 
that are very shallow - or in other words, partitions that have a small number of elements, or in extreme 
cases, no elements.  Depending on circumstances, this can either improve or hurt performance.  

The parallelize operation can take an optional parameter to make the number of partitions larger or 
smaller than the default value for the application. 
sc.defaultParallelism 
4 
rdd1 = sc.parallelize((1,2,3,4,5,6)) 
rdd1.getNumPartitions() 
4 
rdd1 = sc.parallelize((1,2,3,4,5,6),numSlices=8) 
rdd1.getNumPartitions() 
8 
rdd1 = sc.parallelize((1,2,3,4,5,6),2) 
rdd1.getNumPartitions() 
2 
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Inherent Parall ism – textFile() 
Default parallelism aligns with the number of blocks the file(s) take up on the HDFS when using 
textFile.  If the file is only one block in size, the RDD will be created with the minimum size of two 
partitions. This can be increased by providing a second optional argument declaring the preferred 
number of partitions. This number cannot be less than the number of HDFS blocks, but this will not 
surface and error.  Instead, it will just be created with the number of partitions equal to the number of 
blocks. 

This is primarily due to the fact that the HDFS default block size of 128MB is being easily accounted for 
as an RDD partition size.  Furthermore, Spark can more quickly create the RDD by reading a single 
HDFS block and creating two, or more, RDD partitions from it than it can read from multiple HDFS 
partitions (usually on separate worker nodes) to create a single RDD partition. 

Here is an example of creating an RDD from a one-block HDFS file. 
rdd1 = sc.textFile("statePopulations.csv") 
rdd1.getNumPartitions() 
2 
rdd1 = sc.textFile("statePopulations.csv", minPartitions=4) 
rdd1.getNumPartitions() 
4 
rdd1 = sc.textFile("statePopulations.csv", 1) 
rdd1.getNumPartitions() 
1 

Notice that it defaults to two partitions, but can be created with only one since the number of blocks 
used is also one. 

Here is an example of creating an RDD from a five-block HDFS file. 
rdd2 = sc.textFile("/proto/2000.csv") 
rdd2.getNumPartitions() 
5 
rdd2 = sc.textFile("/proto/2000.csv",10) 
rdd2.getNumPartitions() 
10 
rdd2 = sc.textFile("/proto/2000.csv",minPartitions=2) 
rdd2.getNumPartitions() 
5 

Notice that trying to reduce the number of partitions to a value smaller than the number of blocks does 
not produce an error but simply sets it to the minimum size based on the number of blocks. 

As with parallelize, the goal is still to have enough RDD partitions to allow for all executors to be 
working during operations; especially narrow ones.  The reverse can happen with a small HDFS file 
compared with parallelize.  A small file will take up few partitions.  Generally speaking, you should 
increase this number on smaller files to be more inline with the number of cores available.  
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Narrow Dependencies/Operations 
 

 
Narrow	Dependencies/Operations	with	map(),	flatMap()	or	filter()	

Narrow operations can be executed locally and do not depend on any outside the current element.  
Examples of narrow operations are map(), flatMap(), union(), and filter(). 

The picture above depicts examples of how narrow operations work.  As visible in the picture above, 
there are no interdependencies between partitions.   

Transformations maintain the partitioning of the largest parent RDD for the operation.  For single parent 
RDD transformations, including filter(), flatMap(), and map(), the resulting RDD has the same 
number of partitions as the parent RDD.   
 

 
Narrow	Dependencies/Operations	with	union()	

For combining transformations such as union(), the number of resulting partitions will be equal to the 
total number of partitions from the parent RDDs. 

Wide Dependencies/Operations 

Wide operations occur when shuffling of data is required.  Examples of wide operations are 
reduceByKey(), groupByKey(), repartition(), and join(). 
 

 
Wide	Dependencies/Operations	

Above is an example of a wide operation.  Notice that the child partitions are dependent on more than 
one parent partition.  This should help explain why wide operations separate stages.  The child RDD 
cannot exist completely unless all the data from the parent partitions have finished processing.   

The above example shows the four RDD1 partitions reducing to a single RDD2 partition, but in reality 
multiple RDD2 partitions would have been generated, each one pulling a different subset of data from 
each of the RDD1 partitions. The diagram shows the logical combination rather than a physical result. 
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All shuffle-based operations’ outputs use the number of partitions that are present in the parent with 
the largest number of partitions.  In the previous diagram this would have resulted in RDD2 being 
spread across four partitions.  Again, it was shown as a single partition to help visualize what is 
happening and to prevent an overly complicated diagram.  The developer can specify the number of 
partitions the transformation will use, instead of defaulting to the larger parent.  This is shown by 
passing a numPartitions as an optional parameter, as shown in the following two versions of the 
same operation. 
reduceByKey(lambda c1,c2: c1+c2, numPartitions=4) 

or simply 
reduceByKey(lambda c1,c2: c1+c2, 4) 

Controll ing Parallelism 
The following RDD transformations allow for partition-number changes: distinct(), groupByKey(), 
reduceByKey(), aggregateByKey(), sortByKey(), join(), cogroup(), coalesce(), and 
repartition(). 

Generally speaking, the larger the number of partitions, the more parallelization the application can 
achieve.  There are two operations for manually changing the partitions without using a shuffle-based 
transformation: repartition() and coalesce().   

A repartition() operation will shuffle the entire dataset across the network.  A coalesce() just 
shuffles the partitions that need to be moved.  Coalesce should only be used when reducing the 
number of partitions. Examples: 
Use reparition() to change the number of partitions to 500: 
rdd.repartition(500) 
 
Use coalesce() to reduce the number of partitions to 20: 
rdd.coalesce(20) 

Changing Parallel ism During a Transformation 

The code below represents a simple application that is summing up population counts by state.   
sc.textFile("statePopulations.csv").map(lambda line: 
line.split(",")).map(lambda rec: (rec[4],int(rec[5]))).reduceByKey(lambda 
c1,c2: c1+c2, numPartitions=2).collect() 

The following series of diagrams is an example of what would be going on with the RDD partitions of 
data.   

In the first line of code, a file is read in.   
sc.textFile("statePopulations.csv") 



Performance Tuning 

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 160 

 

 
The number of partitions defaults to the number of blocks the file takes up on the HDFS.  Here, if the 
file takes up three blocks on HDFS it is represented by a three-partition RDD spread across three 
worker nodes. 

In the first map operation that is splitting the CSV record into attributes, no data needed to be 
referenced from another partition to perform the map transformation.   
.map(lambda line: line.split(",")) \ 
 

 
The same is true for the next map that is creating a PairRDD for each row’s particular state and 
population count.   
.map(lambda rec: (rec[4],int(rec[5]))) 
 

 
In the reduceByKey transformation that calculates final population totals for each state, there is an 
explicit reduction in the number of partitions.   
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The reduction of partitions is controlled by an optional numPartitions argument that 
reduceByKey() takes.   
.reduceByKey(lambda c1,c2 : c1+c2, numPartitions=2) 
 

 
Notice also, when doing a reduceByKey(), the same key may be present in multiple partitions that are 
output from the map operation.  When this happens, the data is required to shuffle.   
 

 
Finally, at the end, the collect() returns all the results from the two partitions in the reduceByKey 
operation to the driver. 

Changing Parallel ism without a Transformation 

Changing the level of parallelism is a very common performance optimization task.  These diagrams 
below illustrate the difference between repartition() and coalesce().   
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Whenever reducing the number of partitions, always use coalesce(), as it minimizes the amount of 
network shuffle.  A repartition() is required if the developer is going to increase the number of 
partitions. 

PairRDD Parallelism – Hashed Partitions 
PairRDDs can be partitioned in such a way that their keys are leveraged when determining how to 
partition data. This means that a PairRDD could be created such that all pairs for a given key wind up 
in the same partition. When this is done, the resulting partitions are referred to as "hashed" partitions. 
Simply reading an HDFS file or calling parallelize() on a non-RDD dataset does not guarantee that 
partitions will be hashed partitions. The same is true for map() operations that create PairRDDs. 

On the other hand, operations such as partitionBy(), cogroup(), join(), reduceByKey() and 
sortByKey() create hashed partitions by default.  The HashPartitioner component (which must be 
explicitly imported and called when coding in Scala) guarantees identical keys go to the same partition.  
The following demo code explores this concept  
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rdd1 = sc.parallelize(range(3),1).map(lambda x:(x,'X')) 
rdd1.getNumPartitions() 
1 
rdd1.collect() 
[(0, 'X'), (1, 'X'), (2, 'X')] 
   
rdd2 = sc.parallelize((1,2,3),1).map(lambda y:(y,'Y')) 
rdd2.getNumPartitions() 
1 
rdd2.collect() 
[(1, 'Y'), (2, 'Y'), (3, 'Y')] 
   
rdd3 = rdd1.union(rdd2) 
rdd3.getNumPartitions() 
2 
rdd3.collect() 
[(0, 'X'), (1, 'X'), (2, 'X'), (1, 'Y'), (2, 'Y'), (3, 'Y')] 
  
rdd3.glom().collect() 
[[(0, 'X'), (1, 'X'), (2, 'X')], [(1, 'Y'), (2, 'Y'), (3, 'Y')]] 
rdd3.glom().collect()  # make an array for each partition 
[[(0, 'X'), (1, 'X'), (2, 'X')], [(1, 'Y'), (2, 'Y'), (3, 'Y')]] 
   
rdd4 = rdd3.partitionBy(2) 
rdd4.glom().collect()  # this one shows all of same key in same part 
[[(0, 'X'), (2, 'X'), (2, 'Y')], [(1, 'X'), (1, 'Y'), (3, 'Y')]] 

This concept allows many operations to skip shuffle steps knowing all the keys are in a single location, 
and thus increasing the performance.  When partitioning data manually, by specifying number of 
partitions, be aware of how many executors are being used and try to have at least one partition per 
executor. 

This can result in performance improvements, particularly when implementing joins. 

Preserving Hashed Partit ions 

Once data is using hashed partitioning, maintaining this partitioning is important to help downstream 
operations run faster. Examples of operations that preserve partitioning are mapValues(), 
flatMapValues(), filter(), reduceByKey(), groupByKey(), and join().  

These operations don't modify keys in hashed partitions. Spark assumes the data is properly 
partitioned and uses this assumption to speed up downstream operations.  For example, when using 
reduceByKey(), all the values for each key are aggregated.  If the data is properly partitioned 
beforehand, Spark can assume that all the instances of a single key are in the same partition, on the 
same machine.  With this knowledge, Spark can avoid doing a dataset wide shuffle, and instead all the 
aggregations can be performed locally. 
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Continuing the same hash partitioning demo from the previous section, the following example shows 
that the two partitions from rdd4 are still observed after performing a filter operation. 
rdd4.glom().collect() 
[[(0, 'X'), (2, 'X'), (2, 'Y')], [(1, 'X'), (1, 'Y'), (3, 'Y')]] 
   
rdd4.filter(lambda kvp: kvp[0]>=2).glom().collect() 
[[(2, 'X'), (2, 'Y')], [(3, 'Y')]] 

Partit ioning Optimization 

There is no perfect formula, but the general rule of thumb is that too many partitions is better than too 
few.  Since each dataset and each use case can be very different from all others, experimentation is 
required to find the optimum number of partitions for each situation. 

The more partitions you have, the less time it will take to process each.  Eventually, you will reach a 
point of diminishing returns. Spark schedules its own tasks within the executors it has available.  This 
scheduling of tasks takes approximately 10-20ms in most situations. Spark can efficiently run tasks as 
fast as 200ms without any trouble.  With experimentation, you could have tasks run for even less time 
than this, but tasks should take at least 100ms to execute to prevent the system from spending too 
much time scheduling instead of executing tasks. 

A simple and novel approach to identifying the best number of partitions is to keep increasing the 
number by 50% until performance stops improving.  Once that occurs, find the mid-point between the 
last two partition sizes and execute the application in production there. If anything changes regarding 
the executors (number available or sizing characteristics) then the tuning exercise should be executed 
again. 

It is optimal to have the number of partitions be just slightly smaller than a multiple of the number of 
overall executor cores available.  This is to ensure that if multiple waves of tasks must be run that all 
waves are fully utilizing the available resources.  The slight reduction from an actual multiple is to 
account for Spark internal activities such as speculative execution (a process that looks for 
performance outliers and reruns potentially slow or hung tasks).  For example, if there are 10 executors 
with two cores (20 cores total), make RDDs with 39, 58, or 78 partitions. 

Generally speaking, this level of optimization is for programmers who work directly with RDDs.  Spark 
SQL and it’s DataFrame API were created to be a higher level of abstraction that lets the developer 
focus on what needs to be done as opposed to exactly how those steps should be executed. Spark 
SQL's Catalyst optimizer eliminates the need for developers to focus on this level of optimization in the 
code. 

 

REFERENCE:  

Spark SQL (as of 1.6.1) still has some outstanding unsupported Hive functionality that 
developers should be aware of.  These are identified at 
http://spark.apache.org/docs/latest/sql-programming-
guide.html#unsupported-hive-functionality. These shortcomings will likely be 
addressed in a future release. 
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Caching and Persisting 
The first thing people think of when they hear Apache Spark is in-memory data.  While this is 
technically accurate, data is only in-memory once you tell it to go to memory.  This is why caching and 
persisting can improve performance.  When these operations are used, they put data into memory.  
This makes applications that reuse this data much faster.  Caching data should be used when an 
application is going to reuse the same dataset, like when doing an iterative application, or when 
creating multiple output files from the same input. 

The concepts of "in-memory processing" and actual caching of datasets is often mixed together and 
can be confusing.  "In-memory processing" applies to just about all programming models. Most 
languages/frameworks read data from a non-memory location and then bring the data into computer 
memory to perform processing.  Conceptually, Spark is no different than any other similar platform. 

The key difference for Spark is how it can perform a series of narrow tasks within a single stage.  Since 
each partition can be acted upon independently from all other partitions in an RDD or DataFrame, 
Spark can perform each task on the data element(s) without having to write the data back to persistent 
storage (such as HDFS).  This does not mean that Spark can always fit into memory completely during 
these transformations, and in those situations it can fall back to a local disk used by the executors as 
needed. This is still far faster than having to write this information to HDFS on completion of each task. 

This concept actually works very well when applications are written so that no previous RDD is 
programmatically referenced again.  For example, rddA > rddB > rddC > rddD.  If a previously created 
RDD is referenced later -- for example, rddB is used to create a new rddE -- a consequence arises. In 
this case, Spark consults the underlying lineage/recipe, and then recreates rddA and rddB so it can 
create rddE.  Caching rddB prior to creating rddE could increase overall performance.  

A typical example might be an application where a "clean" file, reject file, and summary file are each 
created by processing the same original file. Caching the original file prior to performing the 
transformations would result in performance improvements. 

Memory Representations and Limitations 
The cache of an RDD is either stored in serialized or "raw" format.  The raw format is the data just as it 
exists in memory and is the fastest to process. This comes at the cost of memory used - usually 
between two and ten times the amount of memory is needed compared to a more compact, serialized 
version of the cache.  Serialization converts the memory object into a series of bytes, typically for the 
benefit of storing to a persistent store and/or to stream to another process.   

Serialization can take up significantly less space than raw caching, but it has to go through the 
complimentary deserialization process to re-inflate objects back to their raw state for processing. This 
requires additional processing resources when the cached file is needed.  

Serialization happens at the partition level rather than at the entire RDD level.  

DataFrame objects act differently in regards to caching and are actually more efficient.  DataFrames 
have a schema assigned to them and therefore can leverage an "in-memory columnar format" when 
caching the overall dataset.  This approach ends up storing each column separately, which can aid 
performance by only looking at the columns needed for a given operation.  Spark SQL also makes 
intelligent decisions on its own regarding compression and garbage collection. Because of this, it is 
recommended that cache() be leveraged to persist a DataFrame in memory. 
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There is a finite amount of memory allocated within an executor for caching of datasets.  When an 
attempt is made to store more data in cache than physical memory allows, some type of control must 
be in place to help the system determine what to do.  Spark fundamentally leverages a Least 
Recently Used (LRU) strategy to determine what to do.  This system keeps track of when cached 
data was last accessed and evicts datasets from memory based on when they were last used.  

If an operation tries to use cached data that for some reason was lost, the operation will attempt to use 
whatever is still in cache, but will recompute the lost data.  As the data is recomputed, the data will be 
re-cached assuming space is available. 

Caching Syntax 
The functions for caching and persisting have the same names for RDDs and DataFrames.  

• persist() - Developer can control caching storage level. Syntax: persist(StorageLevel). 
Example: persist(MEMORY_AND_DISK). 

• cache() - Simple operation, equivalent to persist(MEMORY_ONLY).  

• unpersist() –remove data from cache. 

To use caching, we must do a two things:   

• The first is to import the library.  Here is how to import the library for Scala and Python: 
 
Scala: import org.apache.spark.storageLevel_ 
Python: from pyspark import StorageLevel 

• Once the libraries are imported, we can then call the persist/cache operations.   
Here is an example of persisting our RDD "rdd" 
 
rdd.persist(StorageLevel) 

The Spark SQL SQLContext object also features a cacheTable(tableName) method for any table 
that it knows by name and the complimentary uncacheTable(tableName) method.  Additional helper 
methods isCached(tableName) and clearCache() are also provided. 

 

 

NOTE:  

In Python, cached objects will always be serialized, so it does not matter whether you 
choose serialization or not.  When we talk about storage levels next, when using 
pyspark, MEMORY_ONLY is the same as MEMORY_ONLY_SER. 
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Physical Options for Caching 
 

 
Use of the persist API is recommended for use with RDDs as it requires the developer to be 
completely aware of which "storage level" is best for a given dataset and its use case.  The ultimate 
decision on which storage level to use is based on questions centered around serialization and disk 
usage. 

First: should the cached data live in-memory or on disk.  It may not sound like disk is a great choice, 
but remember that the RDD could be the result of multiple transformations that would be costly to 
reproduce if not cached.  Additionally, the executor can very quickly get to data on its local disk when 
needed.  This storage level is identified as DISK_ONLY. 

If in-memory is a better choice, then the second question is whether raw or serialized caching (for 
Scala - as previously mentioned, Python automatically serializes cached objects) should be used.   

Regardless of that answer, the third question to answer is should the cached data be rolled onto local 
disk if it gets evicted from memory or should it just be dropped?  There still may be significant value 
from this data on local disk compared to having to recompute an RDD from the beginning.  

Raw in-memory caching has an additional option to store the cached data for each partition in two 
different cluster nodes.  This storage level allows for some additional levels of resiliency should an 
executor fail. 
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NOTE:  

There is also an experimental storage level identified as OFF_HEAP which is most similar 
to MEMORY_ONLY_SER except that, as the name suggests, the cache is stored off of the 
JVM heap. 

 

Again, while there are many choices above which indicate some level of testing will be required to find 
the optimal storage level, the use of persist() with RDD caching and specifically identifying the best 
storage level possible is recommended.  For Spark SQL, continue to use cache(DataFrame) or 
cacheTable(table) and let the Catalyst optimizer determine the best options. 

Caching Example 

Here is an example where an RDD is reused more than once: 
from pyspark import StorageLevel 
ordersRrdd = sc.textFiles("/orders/received/*") 
ordersRdd.persist(StorageLevel.MEMORY_ONLY_SER) 
ordersRdd.map(…).saveAsTextFile("/orders/reports/valid.txt") 
ordersRdd.filter(…).saveAsTextFile(”/orders/reports/filtered.txt") 
ordersRdd.unpersist() 

Choosing a Storage Level 
While there is no perfect rule of thumb to follow, the following are generally considered best practices 
for persisting data: 

• If the RDD fits in memory, use the default MEMORY_ONLY, as it will be the fasted option for 
processing. (Again, in Python coding, serialization is automatic, therefore this setting is 
identical to MEMORY_ONLY_SER.) 

• If RDDs don’t fit in memory, try MEMORY_ONLY_SER with a fast serialization library.  Doing this 
uses more CPU, so use efficient serialization like Kryo (described later).  

• If the RDDs don’t fit into memory even in serialized form, consider the time to compute this 
RDD from parent RDDs vs the time to load it from disk.  In some cases, re-computing an RDD 
may sometimes be faster than reading it from disk. The best way to decide which one is better 
is to try them both and see what happens.  

Another option is replicated storage. In replicated storage, the data is replicated on two nodes, 
instead of one.  Replicated storage is good for fast fault recovery, but usually this is overkill, and not a 
good idea if you’re using a lot of data relative to the total memory of the system. 

DataFrame objects are actually more efficient when left to their defaults due to Catalyst optimizations.  
Use cache() rather than persist() when working with DataFrames. 
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Serialization Options 
For Scala 

For JVM-based languages (Java and Scala), Spark attempts to strike a balance between convenience 
(allowing you to work with any Java type in your operations) and performance. It provides two 
serialization libraries: Java serialization (by default), and Kryo serialization. 

Kryo serializing is significantly faster and more compact than the default Java serialization, often as 
much as 10 times faster.  The reason Kryo wasn’t set as default is because initially Kryo didn’t support 
all serializable types and users would have had to register custom classes. 

Since these issues have been addressed in recent versions of Spark. Kryo serialization should always 
be used.   

For Python 

In Python, applications use the Pickle library for serializing, unless you are working with DataFrames or 
tables, in which case the Catalyst optimizer manages serialization. The optimizer converts the code 
into Java byte code, which - if left unspecified - will use the Java default serialization. Thus, Python 
DataFrame applications will still need to specify the use of Kryo serialization.  

Kryo Serial ization 

To implement Kryo Serialization in your application, include the following in your configuration: 
conf = SparkConf() 
conf.set('spark.serializer’, 'org.apache.spark.serializer.KryoSerializer') 
sc=SparkContext(conf=conf) 

This works for DataFrames as well as RDDs since the SQLContext (or HiveContext) are passed the 
SparkContext in their constructor method. 

If using the pyspark or spark-shell REPLs, add  -conf 
spark.serializer=org.apache.spark.serializer.KryoSerializer as a command-line 
argument to these executables. 

Checkpointing  
Since Spark was initially built for long-running, iterative applications, it keeps track of an RDD's recipe 
or lineage.  This provides reliability and resilience, but as the number of transformations performed 
increases and the lineage grows, an application can run into problems.  The lineage can become too 
big for the object allocated to hold everything.  When the lineage gets too long, there is a possibility of 
a stack overflow. 

Also, when a worker node dies, any intermediate data stored on the executor has to be re-computed.  
If 500 iterations were already performed, and part of the 500th iteration was lost, the application has to 
re-do all 500 iterations.  That can take an incredibly long time, and can become inevitable given a long 
enough running application processing a large amount of data. 

Spark provides a mechanism to mitigate these issues: checkpointing.   
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About Checkpointing 
When checkpointing is enabled, it does two things: data checkpointing and metadata checkpointing.  
(Checkpointing is not yet available for Spark SQL). 

Data checkpointing – Saves the generated RDDs to reliable storage. As we saw with Spark 
Streaming window transformations, this was a requirement for transformations that combined data 
across multiple batches. To avoid unbounded increases in recovery time (proportional to the 
dependency chain), intermediate RDDs of extended transformation chains can be periodically 
checkpointed to reliable storage (typically HDFS) to shorten the number of dependencies in the event 
of failure. 

Metadata checkpointing – Saves the information defining the streaming computation to fault-
tolerant storage like HDFS. This is used to recover from failure of the node running the driver of the 
streaming application.  

Metadata includes: 

• Configuration - The configuration that was used to create the streaming application. 

• DStream operations - The set of DStream operations that define the streaming application. 

• Incomplete batches - Batches whose jobs are queued but have not completed yet. 

When a checkpoint is initialized, the lineage tracker is "reset" to the point of the last checkpoint.  

When enabling checkpointing, consider the following: 

• Checkpointing is performed at the RDD level, not the application level 

• Checkpointing is not supported in DataFrames or Spark SQL 

• There is a performance expense incurred when pausing to write the checkpoint data, but this is 
usually overshadowed by the benefits in the event of failure 

• Checkpointed data is not automatically deleted from the HDFS.  The user needs to manually 
clean up the directory when they’re positive that data will no longer be required.  

Node Loss Without Checkpointing 
 

 
Without	Checkpointing,	all	processes	must	be	repeated	–	potentially	thousands	of	transformations	–	if	a	node	is	lost	

This is a typical application that iterates and has a lineage of "n" number of RDDs.  There is no 
checkpointing enabled.  If an in-use node fails during processing, all processing steps up to that point 
must be repeated from the beginning. This might be hundreds, or even thousands of transformations, 
which can result in significant time lost to reprocessing.  
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Node Loss With Checkpointing 
 

 
With	Checkpointing,	only	processes	performed	since	the	last	checkpoint	must	be	repeated	

In this example, we have the same application with checkpointing enabled.  We can see that every nth 
iteration, data is being permanently stored to the HDFS.  This may not seem intuitive at first as one 
might ask why we should save data to the HDFS when it is not needed.  In the case that a worker node 
goes down, instead of trying to redo all previous transformations (which again, can number in the 
thousands), the data can be retrieved from HDFS and then processing can continue from the point of 
the last checkpoint.   

This example shows that checkpointing can be viewed as a sort of insurance for events such as this.  
Instead of simply hoping a long-running application will finish without any worker failures, the 
developer makes a bit a performance tradeoff up front in choosing to pause and write data to HDFS 
from time to time. 

Checkpointing vs. Caching 
It is very common for developers to become confused with checkpointing and caching when first 
learning about the two concepts.  While they initially sound like they do similar things, that is not the 
case.   

Checkpointing saves a permanent copy of intermediate data to HDFS. Lineage is updated, so the 
current RDD only has to go as far back as the checkpointed data in case of worker failure. 

Caching saves a temporary copy of the data to local disk or RAM. Lineage is preserved from the base 
data, and thus caching has no effect on recomputation. When an application uses data from a cached 
RDD, it is aware the data is cached and attempts to use the data cached first.  If the data cached is 
lost for some reason, the data will then be recomputed from base data. 

When to Use Checkpointing 

Checkpointing is typically used in applications doing more than a few iterations and almost all real-
world Spark Streaming applications.  It is also frequently used in machine learning (MLlib) applications. 
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Implementing Checkpointing 
To implement checkpointing, the developer must specify a location for the checkpoint directory before 
using the checkpoint function. Here is an example: 
sc.setCheckpointDir("hdfs://somedir/") 
rdd = sc.textFile("/path/to/file.txt") 
while x in range(<large number>) 
rdd.map(…) 
if x % 5 == 0 
rdd.checkpoint() 
rdd.saveAsTextFile("/path/to/output.txt") 
 

This code generates a checkpoint every fifth iteration of the RDD operation. 

Broadcast Variables  
A broadcast variable is a read-only variable cached once in each executor that can be shared among 
tasks. It cannot be modified by the executor. The ideal use case is something more substantial than a 
very small list or map, but also not something that could be considered “Big Data”.   

Broadcast variables are implemented as wrappers around collections of simple data types. They are 
not intended to wrap around other distributed data structures such as RDDs and DataFrames. 

The goal of broadcast variables is to increase performance by not copying a local dataset to each task 
that needs it and leveraging a broadcast version of it.  This is not a transparent operation in the 
codebase - the developer has to specifically leverage the broadcast variable name. 

Spark uses concepts from P2P torrenting to efficiently distribute broadcast variables to the nodes and 
minimize communication cost.  Once a broadcast variable is written to a single executor, that executor 
can send the broadcast variable to other executors.  This concept reduces the load on the machine 
running the driver and allows the executors (aka the peers in the P2P model) to share the burden of 
broadcasting the data. 

Broadcast variables are lazy and will not receive the broadcast data until needed.  The first time a 
broadcast variable is read, the node will retrieve and store the data in case it is needed again.  Thus, 
broadcast variables get sent to each node only once. 

How do Broadcast Variables Work? 
 

 
Without	Broadcast	Variables	Reference	Data	is	Sent	to	every	Task	



Performance Tuning 

 

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 173 

Without broadcast variables, reference data (such as lookup tables, lists, or other variables) is sent to 
every task on the executor, even though multiple tasks reuse the same variables. This what an 
application does normally. 
 

 
Using	Broadcast	Variables,	Spark	sends	Reference	Data	to	the	Node	only	Once	

Using broadcast variables, Spark sends a copy to the node once and the data is stored in memory.  
Each task will reference the local copy of the data. These broadcast variables get stored in the 
executor memory overhead portion of the executor. 

Why Use Broadcast Variables? 
There are several reasons to use broadcast variables.  The most obvious reason is to minimize network 
traffic by moving the dataset only once between executor worker processes instead of each time a 
task is run.  As a general rule, always share/broadcast utilized local variables if they are at least 20K in 
size.  Sizes smaller than this can be useful, but might require additional testing to determine how much 
performance increase can be expected. 

An example of minimizing network traff ic: Assume each task requires a small lookup table that 
is some number of megabytes in size. Spark can have thousands of tasks operating over hundreds of 
executors.  Instead of sending a couple of megabytes over the network thousands of times, by 
broadcasting the small lookup table, the application will only have to send it 10-100 times, depending 
on the number of executors.  Additionally, sending this data to the executors will be done in a P2P 
model as described earlier instead of all from the driver to each executor. 

Spark’s task scheduling system is optimized for running small tasks. The movement of data at the 
beginning of each task does not align well with the desired runtime behavior. It puts additional 
overhead on the task, which then takes more time to complete.  Reducing task-launching overhead 
can speed up an application greatly. 

It should be noted that broadcast variables are primarily used in RDD operations.  Spark SQL has its 
own optimizations that provide some of the benefits being obtained in the more granular concept of 
broadcast variables. 

Implementing Broadcast Variables 
It is useful to see a code example of using broadcast variables, as well as how a particular problem 
could be solved with, and without, using them. We can then compare to verify that the same final 
results can be obtained. 
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For this example, the use case could be to break all of the words from a story into an RDD as shown by 
these two lines of code. 
story = sc.parallelize(["I like a house", "I live in the house"]) 
words = story.flatMap(lambda line: line.split(" ")) 

This example is just creating a small two-line story and in practice the “story” RDD would be more 
likely created by using sc.textFile() to read a large HDFS dataset.  The rest of the use case would 
be to strip out any words that were considered irrelevant (aka “noise”) to further processing steps.  In 
the code statements below, we are simply building a new RDD of elements that are not in the irrelevant 
word list. 
noise = (["the","an","a","in"]) 
words.filter(lambda w: w not in noise).collect() 
['I', 'like', 'house', 'I', 'live', 'house'] 

Next, we can elevate the irrelevant word list to a broadcast variable to distribute it to all workers and 
then simply reference it with the new variable name to obtain the same results. 
bcastNoise = sc.broadcast(noise) 
words.filter(lambda w: w not in bcastNoise.value).collect() 
['I', 'like', 'house', 'I', 'live', 'house’] 

Notice that the results are the same. While in this small illustrative example we would not show any 
performance gain, we would see improvements if the input “story” was of significant size and the 
irrelevant filter data itself was much bigger.  Additionally, more savings would surface if the broadcast 
variable was used over again in subsequent stages. 

Joining Strategies 
While joins can happen on more than two datasets, this discussion will illustrate the use case of only 
two datasets which can be extrapolated upon when thinking of more than two datasets being joined.   
Additionally, the concepts discussed (unless otherwise called out) relate to RDD and DataFrame 
processing even though the illustrations will often reference RDD as the DataFrame will use the 
underlying RDD for these activities.   

Spark Joins at the Partition Level 
 

 
Joins	are	performed	at	the	partition	level	

Spark performs joins at the partition level.  It ensures that each partition from the datasets being joined 
are guaranteed to align with each other.  That means that the join key will always be in the same 
numbered partition from each dataset being joined.  
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For that to happen, both datasets need to have the same number of partitions and have used the same 
hashing algorithm (described as "Hashed Partitions" earlier in this module) against the same join key 
before it can start the actual join processing.   

Worst Case – No Common Hash Partitioning 
 

 
No	Common	Hash	Partitioning	

To help explain the intersection of joins and hash partitions, let's look at the worst case situation. We 
have two datasets that have different numbers of partitions (two on the left, four on the right) and 
which were not partitioned with the same key.  Both of the datasets will require a shuffle to occur so 
that the equal number of hashed partitions will be created on the join key prior to the join operation 
being executed. 

 

 

NOTE:  

The number of hashed partitions created for the JOIN RDD was equal to the number of 
partitions from the dataset with the largest number of partitions. 
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Better Case – One Dataset Hashed Partitioned 
 

 
One	Dataset	Hashed	Partitioned	

A better scenario would occur if the larger dataset was already hashed partitioned on the join key.  In 
this situation, only the second dataset would need to be shuffled.  As before, more partitions would be 
created in the newly created dataset. 
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Best Case – Co-Partitioned 
 

 
Co-Partitioned	Datasets	

The best situation would occur when the joining datasets already have the same number of hashed 
partitions using the same join key.  In this situation, no additional shuffling would need to happen.  This 
is called a co-partit ion join  and is classified as a narrow operation.   

Most likely, the aligned partitions will not be always on the same executor and thus one of them will 
need to be moved to the executor where its counterpart is located.  While there is some expense to 
this, it is far less costly than requiring either of the joined datasets to perform a full shuffle operation. 

Consideration and Guidelines 
While the scenarios just described are representative of both RDD and DataFrame processing, core 
RDD programming needs to consider the order of operations more than with DataFrame programming 
since the Catalyst SQL optimizer, unlike the DAG optimizer, can reorder operations to improve 
performance. 

When joining a dataset that will end up with a significant portion of its data removed from the final 
results, consider filtering the dataset first to be as close as possible a candidate set for the targeted 
join.  An example would be if you join all flight data for many years to a dataset that contains data only 
from a single year from a single carrier, it would be beneficial to create a new dataset from the 
complete flight history that only contains the given year and carrier information.  

And – If an explicitly built and referenced hash partitioned dataset will be used in subsequent joins, it is 
advisable to cache it.  Otherwise, the transformation dataset will need to be recreated for each 
additional join, thus consuming additional processing time and resources. 
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Executor Optimization 
Executors are highly configurable and are the first place to start when doing optimizations.  
 

 
Executor	Regions	

Executors are broken into memory regions.  The first is the overhead of the executor, which is almost 
always 384MB.  The second region is reserved for creating Java objects, which makes up 40% of the 
executor.  The third and final region is reserved for caching data, which makes up the other 60%. While 
these percentages are configurable, it is recommended that initial tuning occur in the overall 
configuration of an executor as well as the multiple of how many executors are needed. 

When submitting an application, we tell the context how many and what size resources to request.  To 
set these at runtime, we use the three following flags:  
--executor-memory  

This property defines how much memory will be allocated to a particular YARN container that will run a 
Spark executor. 
--executor-cores 

This property defines how many CPU cores will be allocated to a particular YARN container that will 
run a Spark executor. 
--num-executors 

This property defines how many YARN containers are being requested to run Spark executors within. 

Configuring Executors 
Deciding how many and how much resources for the executors can be difficult.  Heres a good starting 
point. 
 

• executor-memory 

- Should be between 8GB and 32GB. 
- 64GB would be a strong upper limit as executors with too much memory often are 

troubled with long JVM garbage collection processing times. 

• executor-cores 

- At least two, but a max of four should be configured without performing tests to 
validate the additional cores are an overall advantage considering all other properties. 

• num-executors 

- This is the most flexible as it is the multiple of the combination of memory and cores 
that make up an individual executor.   

- If caching data, it is desirable to have, at least, twice the dataset size as the total 
executor memory. 
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Many variables come into play including the size of the YARN cluster nodes that will be hosting the 
executors.  A good starting point would be 16GB and two cores as almost all modern Hadoop cluster 
configurations would support YARN containers of this size.   

If data set is 100GB, it would be ideal to have 100GB*2/(16GB) executors, which is 12.5.  For this 
application, choosing 12 or 13 could be ideal. 

This section presents the primary configuration switches available. Fine-tuning final answers will be 
best derived from direct testing results. 
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Knowledge Check 
You can use the following question to assess your understanding of the concepts presented in this 
lesson. 

Questions 
1 ) By default, parallelize() creates a number of RDD partitions based on the number of 

___________________.  
 

2 ) By default, textFile() creates a number of RDD partitions based on the number of 
______________________.  
 

3 ) Operations that require shuffles are also known as ___________ operations. 
 

4 ) Which function should I use to reduce the number of partitions in an RDD without any data 
changes? 
 

5 ) When all identical keys are shuffled to the same partition, this is called a _______________ 
partition. 
 

6 ) True or False: DataFrames are structured objects, therefore a developer must work must work 
harder to optimize them than when working directly with RDDs. 
 

  



Performance Tuning 

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 182 

Answers 
1 ) By default, parallelize() creates a number of RDD partitions based on the number of 

___________________. 
 
Answer: Executor CPU cores available 
 

2 ) By default, textFile() creates a number of RDD partitions based on the number of 
______________________. 
 
Answer: HDFS blocks 
 

3 ) Operations that require shuffles are also known as ___________ operations. 
 
Answer: Wide 
 

4 ) Which function should I use to reduce the number of partitions in an RDD without any data 
changes? 
 
Answer: coalesce() 
 

5 ) When all identical keys are shuffled to the same partition, this is called a _______________ 
partition. 
 
Answer: Hash (or hashed) 
 

6 ) True or False: DataFrames are structured objects, therefore a developer must work must work 
harder to optimize them than when working directly with RDDs. 
 
Answer: False.  The Catalyst optimizer does this work for you when working with DataFrames. 
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Summary 
• mapPartitions() is similar to map() but operates at the partition instead of element level 

• Controlling RDD parallelism before performing complex operations can result in significant 
performance improvements 

• Caching uses memory to store data that is frequently used 

• Checkpointing writes data to disk every so often, resulting in faster recovery should a system 
failure occur 

• Broadcast variables allow tasks running in an executor to share a single, centralized copy of a 
data variable to reduce network traffic and improve performance 

• Join operations can be significantly enhanced by pre-shuffling and pre-filtering data 

• Executors are highly customizable, including number, memory, and CPU resources 

• Spark SQL makes a lot of manual optimization unnecessary due to Catalyst 
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Build and Submit Spark Applications 

Lesson Objectives 
After completing this lesson, students should be able to:  

ü Create an application to submit to the cluster 

ü Describe client vs cluster submission with YARN 

ü Submit an application to the cluster 

ü List and set important configuration items 

Creating an Application to Submit to a Cluster 
Zeppelin and REPLs are great tools for interactive analysis, as well as prototyping and testing 
programming logic before committing to production.   

Spark Applications are the next stepping-stone.  Spark applications run as standalone applications 
that can be integrated into workflows and scheduled with tools such as Falcon and Oozie.  Fortunately, 
the differences between a Spark Application and running a job in Spark are minimal, which makes it 
easy to take code developed in Zeppelin and port it into an independent application with few to no 
modifications. 

Writing an Application to Submit to YARN 
When Zeppelin or a REPL is started, they do several things for the developer behind the scenes, 
including:   

• Importing the SparkContext and SparkConf libraries,  

• setting up a main program,  

• creating an appropriate configuration object, and then  

• creating and starting a SparkContext instance.   

The developer has to do these things in a standalone application. 

The difference between what a developer does in Zeppelin or a REPL and what a developer must do in 
a standalone application can be as simple as adding about five lines of code. 

Importing Libraries 

The first part a developer must do is import the SparkContext and SparkConf libraries.  In addition, 
they will need to import all the other libraries they want to use in the application - for example, the 
SQLContext libraries.  Doing this looks like any other application.  Here is an example of importing 
some important libraries in Python.  
 
import os 
import sys 
from pyspark import SparkContext, SparkConf 

To import other Spark libraries, it’s the same as with any other application.  Here is an example of 
importing more Spark libraries that are related to Dataframe processing: 
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from pyspark.sql import SQLContext 
from pyspark.sql.types import Row, IntegerType 

Developers should be familiar with this concept.  Applications are built with dependencies all the time, 
and Spark is no exception. 

Creating a "main" Program 

Zeppelin and the REPLs automatically set up the main program. Here is an example of how to set it up 
for a standalone application: 
import os 
import sys 
from pyspark import SparkContext, SparkConf, SQLContext 
if __name__ == "__main__": 
#Spark Program 

Again, this should look exactly the same as in any other application.  There is some main part of the 
application that gets executed, and the same goes with Spark. 

Creating a Spark Configuration 

The next thing the developer must do is create the SparkConf configuration object.  This configuration 
will tell the context some very important information about the application, like the resource manager, 
application name, amount of resources to request, etc.  The developer can set configurations in 
multiple ways. Here is an example of creating the configuration. 
conf = SparkConf().setAppName("AppName").setMaster("yarnMode") 
conf.set('spark.executor.instances', '5') 
conf.set('configuration', 'value') 

The conf.set(‘configuration’,’value’) lets the developer set any number of configurations.  It 
is very common to have several of these in the application. 

Creating the SparkContext 

After creating the Spark Configuration, the developer must create the SparkContext.  The 
SparkContext will communicate to the cluster, schedule tasks, and requests resources, among other 
things.  Once the SparkContext is created, the application will begin interacting with other Hadoop 
resources such as YARN’s Resource Manager.  After creating the SparkContext, we now have an 
application that is ready to process distributed data in a parallel manner. 

The SparkContext has some configurations that can be set as well.  This example sets the log level to 
ERROR: 
sc.setLogLevel("ERROR") 

Check the API documentation for information about all the setters that can be used on the 
SparkContext after it has been created. 

At the end of the application, the developer should stop the context.  Failing to do so can leave some 
ghost processes running which will hold on to resources and may be very difficult to find and kill.  
Spark will not throw an error if the stop() method is not utilized, but the best practice is to use it.   



Build and Submit Spark Applications 

 

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 187 

Below is an example of creating the SparkContext, setting a configuration, and stopping the 
SparkContext.  While not including the sc.stop() may have no impact on the developer, the overall 
cluster experience will diminish as resources will still be allocated and administrators will start having 
to manually kill these processes.  This process is not trivial as identifying which processes are related 
to this problem amongst all YARN processing running is difficult.  Developers should be cognizant of 
this multi-tenant nature of most Hadoop clusters and the fact that resources should be freed when no 
longer needed.  This is easy to do by simply including the necessary call to sc.stop() in all 
applications. 
sc = SparkContext(conf=conf) 
sc.setLogLevel("ERROR") 
sc.stop() 

A Complete Python Application 
Here is an example of a complete application: 
import os 
import sys 
from pyspark import SparkContext, SparkConf 
if __name__ == "__main__": 
conf = SparkConf() \ 
.setAppName("App Name") \ 
.setMaster("yarn-client") 
sc = SparkContext(conf=conf) 
sc.textFile("myfile.txt”) ## Do Stuff with this RDD 
## Do more processing 
sc.stop() 

Once this scaffolding is in place, programmer-supplied code can be added from interactive learning 
and testing done in the REPL. 

YARN Client vs. YARN Cluster 
There are two modes to choose from when deploying Spark applications to YARN. 
 

 
yarn-client	Deployment	Mode	

The first, and probably the one that developers have the most experience with, is "yarn-client."  In 
yarn-client mode, the driver program is a JVM started on the machine the application is submitted 
from.  The SparkContext then lives in that JVM.  This is the way the REPLs and Zeppelin start a Spark 
application.  They provide an interactive way to use Spark, so the context must exist where the 
developer has access. 

The other option, and the one that should be used for production applications, is "yarn-cluster." The 
biggest difference between the two is the location of the Spark Driver.  

  



Build and Submit Spark Applications 

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 188 

In client mode, the Spark driver exists on the client machine. If something should happen to that client 
machine, the application will fail. 
 

 
Client	failure	means	application	failure	

 

In cluster mode, the application puts the Spark driver on the YARN ApplicationMaster process which is 
running on a worker node somewhere in the cluster.   
 

 
yarn-cluster	Deployment	Mode	

 

One big advantage of this is that even if the client machine that submitted the application to YARN 
fails, the Spark application will continue to run. 
 

 
Client	can	fail	and	application	will	continue	to	run	

 

YARN Application Submission 
Use yarn-client when: 

• Initial development of an application, especially if items are being printed to the screen 

• Testing applications 

• Used by default for REPLs and can be set for Zeppelin 

Use yarn-cluster when: 

• Scheduling a running production application 
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YARN Client Submission Process 
 

 
YARN	Client	Submission	Process	

In yarn-client mode, the driver and context are running on the client, as seen in the example.  

When the application is submitted, the SparkContext reaches out to the resource manager to create 
an Application Master.  The Application Master is then created, and asks the Resource Manager for the 
rest of the resources that were requested in the SparkConf, or from the runtime configurations.  After 
the Application Master gets confirmation of resource availability, it contacts the Node Managers to 
launch the executors.  The SparkContext will then start scheduling tasks for the executors to 
execute. 
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YARN Cluster Submission Process 
 

 
YARN	Cluster	Submission	Process	

In a yarn-cluster submission, the application starts similarly to yarn-client, except that a Spark client is 
created.  The Spark client is a proxy that communicates with the Resource Manager to create the 
Application Master. 

The Application Master then hosts the Spark driver and SparkContext.  Once this handoff has 
occurred, the client machine can fail with no repercussions to the application.  The only job the client 
had was to start the job and pass the binaries.  Once the Application Master is started, it is the same 
internal process as during a yarn-client submission.  The Application Master talks to the Node 
Managers to start the executors.  Then the SparkContext, which resides in the Application Master 
can start assigning tasks to the executors. 

This removes the single point of failure that exists with yarn-client job submissions.  The Application 
Master needs to be functional, but in yarn-cluster, there is no need for the client after the application 
has launched.   

In addition, many applications are often submitted from the same machine.  The driver program, which 
holds the application, requires resources and a JVM. If there are too many applications running on the 
client, applications may have to wait until resources free up, which can create a bottleneck.  A yarn-
cluster submission moves that resource usage to the cluster. 

Submitting and Application to YARN 
After creating an application, the developer may submit it to the cluster.  Spark uses the command 
spark-submit to submit a spark application from the command line.  Here is an example of 
submitting an application named sparkDemo.py to the cluster:  
spark-submit /path/to/sparkDemo.py 
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Between the spark-submit and the application file, the developer can add runtime configurations.   

Here are some of the runtime configurations that can be set, with the format to submit them: 
--num-executors 2 
--executor-memory 1g 
--master yarn-cluster 
--conf spark.executor.cores=2     
 

 

NOTE:  

The last configuration property in this list could also have been added as: 
 --executor-cores=2. 

 

 

Arguments can be added after the file name. 

 

	

TIP:  

Be careful when requesting resources.  Spark will hold on to all resources 
it is allocated, even if they are not being used.  While YARN can pre-empt 
containers, it is the developer's duty to make sure they are using a 
reasonable number of resources.  Once allocated, Spark does not easily 
give up resources. 

 

Using Different Versions of Python 
A very common issue enterprises face when starting to use Spark with Python is the version of Python 
that is configured, and the location of their Python code.  When submitting to YARN, there can be 
issues with the version of Python in the config file and what is available on the cluster. A safe way to 
circumvent the issue is to set the variable PYSPARK_PYTHON with the path to the version of Python the 
developer is using.  This is a Python-specific issue, with different versions of Python such as Anaconda 
or Python 3. 

A safe way to submit a pyspark application (called sparkDemo.py) using YARN is to use the following 
syntax: 
PYSPARK_PYTHON=/usr/bin/python spark-submit --master yarn-cluster sparkDemo.py 
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Application Submission Example 
Here is a sample of a full-fledged spark-submit example.   
spark-submit --master yarn-cluster --num-executors 4 \ 
--executor-memory 8g /user/root/sparkDemo.py \ 
/home/username/input.json /home/username/output.orc 
 

In the example above, the application is being submitted to YARN in the yarn-cluster mode.  We're 
requesting four executors, each with 8GB of memory.  The application being submitted is 
/user/username/sparkDemo.py which is being passed two arguments -- an input file and an output 
file. 

 

NOTE:  

the PYSPARK_PYTHON variable is not specified here for brevity, but it would be a good 
idea to include this in all submissions where there might be a conflict on Python 
versioning. 

Important Configuration Settings 
Spark applications present an opportunity to set several configurations more than once.  Here is the 
priority in which they are taken from highest to least priority: 

1 ) Set inside the application 

2 ) Set at runtime 

3 ) Set in a configuration file passed to the application 

4 ) Spark installation defaults located at /etc/spark/conf/spark-defaults.conf 
 

 

REFERENCE:  

These can be seen in the documentation at spark.apache.org 

 

 

Because of this, setting as few in the application is best practice, with the exception of some specific 
configurations. Pass the rest in at runtime or in a configuration file. 
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Important Runtime Configuration Settings 
There are several very common, important runtime configurations that the developer will typically need 
to set, contained in the examples below: 

Configurations with keywords 
--num-executors 20 
--executor-mem 8g 
--executor-cores 2 
--master yarn-client 
--driver-memory 1g 

Configurations set using --conf key=val 
spark.shuffle.memoryFraction 
spark.storage.memoryFraction 
spark.default.parallelism 
spark.speculation 

Important In-Application Configuration Settings 
An important configuration to set in the application is to specify the use of the Kryo serializer.   Also, 
register any custom classes that are used if the application is not using Python. Python uses its own 
Pickle serializer for Python objects, but can use Kryo for JVM objects that will be created when using 
Spark SQL. 

Setting speculative execution to true is also usually a good idea. This monitors tasks and compares 
them across their narrow operation counterparts.  If one or more tasks are running slowly compared to 
other partitions in a stage, they will be re-launched. 

Here is an example of setting both the Kryo serializer and speculative execution: 
conf = SparkConf() 
conf.set('spark.serializer', 
'org.apache.spark.serializer.KryoSerializer’) 
conf.set('spark.speculation','true') 

To register a class with Kryo in Scala use the following. 
val kryo = Kryo() 
kryo.register( classOf[ Array[ MyClass[_] ] ] ) 
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Knowledge Check 
You can use the following questions to assess your understanding of the concepts presented in this 
lesson. 

Questions 
1 ) What components does the developer need to recreate when creating a Spark Application as 

opposed to using Zeppelin or a REPL? 
 

2 ) What are the two YARN submission options the developer has? 
 

3 ) What is the difference between the two YARN submission options? 
 

4 ) When making a configuration setting, which location has the highest priority if the event of a 
conflict? 
 

5 ) True or False: You should set your Python Spark SQL application to use Kryo serialization 
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Answers 
1 ) What components does the developer need to recreate when creating a Spark Application as 

opposed to using Zeppelin or a REPL? 
 
Answer:  The developer must import the SparkContext, SparkConf libraries, create the main 
program, create a SparkConf and a SparkContext, and stop the SparkContext at the end 
of the application  
 

2 ) What are the two YARN submission options the developer has? 
 
Answer:  yarn-client and yarn-cluster are the two yarn submission options  
 

3 ) What is the difference between the two YARN submission options? 
 
Answer : The difference between yarn-client and yarn-cluster is where the driver and 
SparkContext reside.  The driver and context reside on the client in yarn-client, and in the 
application master in yarn-cluster. 
 

4 ) When making a configuration setting, which location has the highest priority if the event of a 
conflict? 
 
Answer : Settings configured inside the application 
 

5 ) True or False: You should set your Python Spark SQL application to use Kryo serialization 
 
Answer : True. It is used for JVM objects that will be created when using Spark SQL 
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Summary 
• A developer must reproduce some of the back-end environment creation that Zeppelin and the 

REPLs handle automatically. 

• The main differences between a yarn-client and yarn-cluster application submission is the 
location the Spark driver and SparkContext. 

• Use spark-submit, with appropriate configurations, the application file, and necessary 
arguments, to submit an application to YARN. 
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Introduction to Machine Learning with Spark 

Lesson Objectives 
After completing this lesson, students should be able to:  

ü Describe the purpose of machine learning and some common algorithms used in it 

ü Describe the machine learning packages available in Spark 

ü Examine and run sample machine learning applications 
 

 

DISCLAIMER:  

Machine learning is an expansive topic that could easily span multiple days of training 
without covering everything. Since this is a class for application developers and not 
specifically data scientists, an in-depth discussion on machine learning is out of scope.  

However, Spark does come with a number of powerful machine learning tools and 
capabilities. Fully utilizing the packages and practices this lesson will discuss requires a  
fundamental understanding that goes well beyond what will be covered here. Even so, it 
is well worth a developer's time to be aware of machine learning algorithms and  
generally the kinds of things they can do. 

Furthermore, the lab and suggested exercises that accompany this lesson will consist of 
pre-built scripts and sample applications that will demonstrate some of these topics in 
practice. A student interested in learning more is encouraged to take a look at additional 
and future Hortonworks University offerings that specifically focus on more advanced 
programming, data science, or both. 

Machine Learning Basics 
Machine learning attempts to take data and find actionable patterns within it.  Machine learning 
algorithms create a model from previous data, and apply that model to new data in order to predict 
something.  

There are two basic types of machine learning: supervised and unsupervised. Technically, there are 
others - such as semi-supervised and reinforcement learning - but discussions of those goes beyond 
the scope of this class.  

Supervised Learning 
Supervised learning is the most common type of machine learning. It occurs when a model is created 
using one or more variables to make a prediction, and then the accuracy of that prediction can be 
immediately tested.  

There are two common types of predictions: Classif ication and Regression.  

Classif ication attempts to answer a discrete question - is the answer yes or no? Will the application 
be approved or rejected? Is this email spam or safe to send to the user? "Will the flight depart on 
time?" It's either a yes or no answer - if we predict the flight departs early or on time, the answer is yes. 
If we predict it will be one minute late or more, the answer is no. 
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Regression attempts to determine what a value will be given specific information. What will the home 
sell for? What should their life insurance rate be? What time is the flight likely to depart? It's an answer 
where a specific value is being placed, rather than a simple yes or no is being applied. Therefore, we 
might say the flight will depart at 11:35 as our prediction.  

Supervised learning starts by randomly breaking a dataset into two parts: training data and testing 
data. 

Training data is what a machine-learning algorithm uses to create a model. It starts with a dataset, 
then performs statistical analysis of the effect one or more variables has on the final result. Since the 
answers (yes or no for classification, or the exact value - ex: flight departure time) are known, the 
training dataset can know with a high degree of certainty that the weight it applies to a variable is 
accurate within the training data. 

Once a model that is accurate for the training dataset is built, that model is then applied to the testing 
dataset to see how accurate it is when the correct answers are not known ahead of time. The model 
will almost never be 100% accurate for testing data, but the better the model is, the better it will be at 
accurately predicting results where the answers are not known ahead of time. 

Supervised Learning Example Dataset 
 

 
Thousands	upon	Thousands	of	Data	Points	are	collected	and	Available	Every	Day	

This is a simple example of what a supervised learning dataset might look like. We have many columns 
to choose from when selecting the variables we want to test. There would likely be thousands upon 
thousands of data points collected and available, with new information streaming in on a continuous 
basis, giving us massive historical data to work from.  

Notice that this dataset could be used either for regression or classification. Classification would 
compare the Sched vs. Actual column and if the Actual value was less than or equal to Sched interpret 
it as a yes. If not, it would be a no. For regression, the actual departure time is known. 

Terminology 

• Each row in the dataset is called an "observation" 

• Each column in the dataset is called a "feature" 

• Columns selected for inclusion in the model are called "target variables" 
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Supervised Learning Example Workflow 
When creating a supervised learning application, there is a well-defined end-to-end flow.   

• Randomly break data into two parts for training vs. test data 

- In Spark, extremely large datasets can be used due to availability of cluster resources 

• Pick one or more variables to use to build model 

- For example: airplane age, weather, and airport 
- Pick too few and the model may not be accurate enough 
- Pick too many and the model is only accurate for the training data 

• Run machine learning algorithm to build model based on those variables 

• Run the model against the test data and see how accurately it predicts results 

- Then go back and alter variables, build new model, and test again until satisfied 

The developer starts with a training dataset, labels and a target variable.  The features must be 
extracted and then turned into a feature matrix.  Given the labels and the feature matrix, a model can 
be trained.  Once the model is created, as new data comes in, a feature vector must be extracted from 
the new data. Then the target variable can be predicted, using the model created. 

Examining Supervised Learning Results 
Once a model has been run against the testing dataset, its level of accuracy can be determined.  

For classification results, the model either correctly or incorrectly predicts the result. For example: Will 
the flight depart on time? The model will accurately predict the answer to this question a certain 
percentage of the time, and will be inaccurate for all other observations in the testing dataset. Making 
that percentage incorrect as small as possible for the testing data is the overall goal of the model-
building process.  

For regression results, real-world predictions will often be inexact, but the better the model is, the 
closer it will come to predicting actual values for the test data.  

The accuracy of a regression model is based on minimizing a value called "sum of mean squared 
error." The basic notion is that two different regression models may produce results that have the 
same average error, but a model with greater volatility will be penalized.  

Sum of Mean Squared Error 

To help understand the sum of mean squared error, take the following simple example: 

Your training dataset contains four observations. Both Model A and Model B have an average value 
error of two. If we evaluated just the mean error, we would consider these two models to have equal 
predictive power.  

• Model A variance by observation: 0, 4, 0, 4 

• Model B variance by observation: 1, 3, 2, 2 

Let's take a closer look though and see why simply using the average value isn't the best approach. 

In the case of Model A, in two observations, the model is exactly accurate, and in two it is off by 4. In 
the case of Model B, the model never predicts the value with 100% accuracy, but it tends to be closer, 
more often. Intuitively, Model B seems to fit the data better. This should make sense, but how do we 
quantify this? 
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The sum of mean squared error simply squares each of the variances of every observation and adds 
those values together. This adds an exponential penalty for observations as they get further away from 
the predicted value. Thus, the sum of mean squared error for Model A = 0 + 16 + 0 + 16, for a final 
value of 32. The sum of mean squared error for Model B = 1 + 9 + 4 + 4, for a final value of 18. Since the 
sum of mean squared error is lower for Model B, we can determine that it is the better model. Thus, we 
can both intuitively and mathematically determine that Model B is a better predictor than Model A. 

Decision Tree Algorithm 
 

 
Decision	Tree	Algorithm	Example	

One commonly used classification algorithm is called the Decision Tree algorithm. In essence, a 
decision tree uses a selected variable to determine the probability of an outcome, and then - assuming 
that variable and probability are known - selects another variable and does the same thing. This 
continues through the dataset, with variables and their order of selection/evaluation determined by the 
data scientist. In the graphic, we see a small part of what would be a much larger decision tree, where 
an airport value of ORD has been evaluated, followed by carriers at ORD, followed by weather 
conditions.  

There are often numerous ways in which decision trees might be constructed, and some paths will 
produce better predictions than others. The same target variables can be arranged into multiple 
decision tree paths, which can be combined into what is known as a Forest. In the end, the 
classification (prediction) that has the most "votes" is selected as the prediction.  
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Classif ication Algorithms 
 

 
Classification	Algorithms	

When creating a classif ication visualization, the model draws a line where it predicts the answers will 
be. This line can then be compared to the actual results in the test data. For example, in this simple 
visualization, the white-filled circles represent observations of target variables where actual departure 
time was less than or equal to the scheduled departure time. The red-filled circles represent 
observations where actual departure time was greater than scheduled departure time. The red line 
represents the predictions that the model made. Above the red line would be where the model 
predicted on-time departures, and below the red line would be were the model predicted delayed 
departures.  

Linear Regression Algorithm 
 

 
Linear	Regression	Algorithm	

In the case of regression, the line drawn is predicting an actual value rather than a binary result. In the 
first diagram, we see a regression where only a single variable was selected and weighted - thus the 
result will be a straight line. As more variables are added, the regression curves, and in some cases, 
can curve wildly based on the variables and the weights determined by the model. The second 
diagram is what a model with two variables might look like. To determine which model was a better 
predictor, we would find out how far away each of the dots were from the prediction line and perform a 
sum of means squared error calculation. 
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Unsupervised Learning 
Supervised learning is a powerful tool as long as you have clean, formatted data where every column 
has an accurate label. However, in some cases, what we start with is simply data, and appropriate 
labels may be unknown. For example, take product reviews that people leave on social media, blogs, 
and other web sites. Unlike reviews on retailers’ pages, where the user explicitly gives a negative, 
neutral, or positive rating as part of creating their review (for example, a star rating), the social media 
and other reviews have no such rating or label applied. How then can we group them to determine 
whether any given review is positive, neutral, or negative, and determine whether the general 
consensus is positive or negative? 

For a human evaluator, simply reading the review would be enough. However, if we are collecting 
thousands of reviews every day from various sources, employing a human to read and categorize each 
one would be highly inefficient. This is where unsupervised learning comes in. The goal of 
unsupervised learning is to define criteria by which a dataset will be evaluated, and then find patterns 
in the data that are made up of groupings with similar characteristics. The algorithm does not 
determine what those groupings mean - that is up to the data scientist to fill in. All  it  determines is 
what should be grouped, based on the supplied criteria. 

For example, we might look at examples where certain phrases are compared, and the algorithm might 
determine that when a review contains phrase X, it quite usually also contains phrase Y. Therefore, a 
review that contains phrase X but not phrase Y would still be combined with the phrase Y group. After 
this processing is complete, the data scientist looks at a few of the phrase Y grouped reviews and 
determines that they are generally positive, and thus assigns them to the positive review category. 

The most common type of unsupervised learning, and the one described in this example, is called 
clustering. 

Unsupervised Learning Example Dataset 
 

 
Data	is	Cleaned	of	Extraneous	Phrases	
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In this example, we have observations from which we have picked out phrases from a defined list we 
are looking for. The data has been cleaned of extraneous words and phrases, and then the remaining 
groups of phrases are evaluated to determine how frequently they are used within the same review. 
The algorithm searches for patterns so that reviews can be grouped, but has no idea whether any 
particular grouping represents positive, neutral, or negative reviews.  

K-Means Algorithm 
 

 
K-Means	is	Used	to	Identify	Groupings	that	Likely	Share	the	Same	Label	

Once the algorithm has grouped the results, the data scientist must determine the meaning. In the 
diagram, negative reviews are coded red, positive are coded green, and neutral are coded yellow. A 
clustering algorithm known as the K-Means algorithm was applied and groupings were created. Be 
aware that just as in supervised learning, not all reviews could be grouped closely with some others, 
and in some cases, reviews were grouped with the wrong category. The better the model is, the more 
accurate these groupings will be.  

Other Popular Algorithms 
In addition to the algorithms discussed in this section, there are several other popular algorithms and 
tools commonly employed by data scientists and available in Spark. These include: 

Classif ication 

• Support Vector Machine (SVM) 

• Logistic Regression 

• Naïve Bayes  

Clustering 

• K-Nearest Neighbors 
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Dimensionality Reduction  / Decomposition 
(Help determine target variables when dataset contains large number of features) 

• Principal Component Analysis (PCA) 

• Singular Value Decomposition (SVD) 

Collaborative Filtering / Recommendation 
(Used to predict results based on collaborative data) 

• Alternating Least Squares 

In addition, Spark also offers a range of Basic Statistics tools, such as summary statistics, correlations, 
and random data generation. 

Spark Machine Learning Libraries 
Spark's machine learning capabilities include implementations of common learning algorithms and 
utilities. Because Spark is natively a highly parallelized, cluster-level application, machine learning 
algorithms can be run at cluster scale utilizing resources across dozens, hundreds, or thousands of 
machines at one time.  

There are two packages available for Spark machine learning: spark.mllib, which operates on RDDs; 
and spark.ml, which operates on DataFrames. 

Both packages contain modules with various functions and sub-functions, which provide powerful 
machine learning capabilities. 

mllib Modules 
This is a list of the modules available in Spark's mllib package: 

• classification 

• clustering 

• evaluation 

• feature 

• fpm 

• linalg* 

• optimization 

• pmml 

• random 

• recommendation 

• regression 

• stat* 

• tree* 

• util 
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ml Modules 
This is a list of the modules available in Spark's ml package: 

• attribute 

• classification 

• clustering 

• evaluation 

• feature 

• param 

• recommendation 

• regression 

• source.libsvm 

• tree* 

• tuning 

• util 

Spark Machine Learning Advantages 
Machine learning on Spark provides several advantages over available alternatives. First, most 
machine learning libraries are designed to be run on a single machine, meaning the size of a usable 
dataset is determined in part by what can be fit into local memory on that machine. In addition, 
processing of the data occurs only on the CPU resources available to that one machine, whereas 
Spark can run parallel operations across dozens, hundreds, or thousands of machines at the same 
time.  

There are other Hadoop machine learning libraries available as well - for example Mahout - which are 
based on older, less efficient platforms like MapReduce. Machine learning on Spark leverages Spark's 
in-memory processing capabilities, which can result in significantly faster processing times.  

Between the two Spark packages, ml has several advantages over mllib. Because ml operates on 
DataFrames, it provides greater flexibility as well as automatic performance enhancements due to the 
underlying Catalyst optimization engine.  

Machine Learning Pipelines 

The ml package also provides the ability to create machine learning pipelines. Pipelines extend Spark 
RDD and DataFrame programming concepts like transformations and actions into the machine learning 
world, allowing for the construction of reusable sets of transformations (via components named 
Transformers) that become input for machine learning models (components named Estimators). As of 
Spark 1.6, entire pipelines can be persistent, meaning saved and loaded at a later time or across 
various clusters.  
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Sample Machine Learning Applications 
Spark automatically installs two directories of application samples where machine learning algorithms 
can be seen in action. They are located at /usr/hdp/current/spark-
client/examples/src/main/<language>/<mllib | ml>/. 
 

 
	

For example, if you wanted to view ml samples available for Python, you would browse to 
/usr/hdp/current/spark-client/examples/src/main/Python/ml/. 
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Sample Machine Learning Application Files 
The application files are named according to what they demonstrate. In some cases, there is overlap 
between the two. For example, both the ml and mllib directories for Python contain a file named 
decision_tree_classification_example.py.  
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mllib Decision Tree Classification Example 
 

 
	

Using a text editor, you can open and examine the contents of each application. The examples are well 
commented. They can actually be used as teaching tools to help you learn how to employ Spark's 
machine learning capabilities for your own needs. In this example, we have opened the decision tree 
classification program in the Python mllib directory.  
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ml Logistic Regression Example 
 

 
 

Here is another example, a logistic regression (which, as you will recall, is actually a classification 
algorithm) from the Python ml directory.  
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K-Means Clustering Examples 
It can also be useful to compare similar programs across the two packages to see how they are 
programmed differently, and perhaps even to run them both and see the differences.  

In this example, we took the k-means clustering examples from both the Python ml and mllib 
directories so we could compare them side by side.  

Python ml K-Means Example 
 

 
Python mll ib K-Means Example 
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Zeppelin Machine Learning Lab Note 
Zeppelin has a large number of notes available that can be imported into your Zeppelin notebook. The 
lab that accompanies this lesson will have you import a machine learning note, which also contains 
code that you can run. 
 

 
Sample	code	from	a	machine	learning	note	imported	into	Zeppelin	
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More	sample	code	from	the	imported	machine	learning	note	in	Zeppelin	
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Knowledge Check 
You can use the following questions to assess your understanding of the concepts presented in this 
lesson. 

Questions 
1 ) What are two types of machine learning? 

 

2 ) What are two types of supervised learning? 
 

3 ) What do you call columns that are selected as variables to build a machine learning model? 
 

4 ) What is a row of data called in machine learning? 
 

5 ) What is the goal of unsupervised learning? 
 

6 ) Name the two Spark machine learning packages. 
 

7 ) Which machine learning package is designed to take advantage of flexibility and performance 
benefits of DataFrames? 
 

8 ) Name two reasons to prefer Spark machine learning over other alternatives 
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Answers 
1 ) What are two types of machine learning? 

 
Answer : Supervised and unsupervised 
 

2 ) What are two types of supervised learning? 
 
Answer : Classification and regression 
 

3 ) What do you call columns that are selected as variables to build a machine learning model? 
 
Answer : Target variables 
 

4 ) What is a row of data called in machine learning? 
 
Answer : An observation 
 

5 ) What is the goal of unsupervised learning? 
 
Answer : The goal of unsupervised learning is to find groupings in unlabeled data 
 

6 ) Name the two Spark machine learning packages. 
 
Answer : mllib and ml 
 

7 ) Which machine learning package is designed to take advantage of flexibility and performance 
benefits of DataFrames? 
 
Answer : ml 
 

8 ) Name two reasons to prefer Spark machine learning over other alternatives 
 
Answer : Cluster-level resource availability, parallel processing, in-memory processing (vs. 
older Hadoop machine learning libraries) 
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Summary 
• Spark supports machine learning algorithms running in a highly parallelized fashion using

cluster-level resources and performing in-memory processing

• Supervised machine learning builds a model based on known data and uses it to predict
outcomes for unknown data

• Unsupervised machine learning attempts to find grouping patterns within datasets

• Spark has two machine learning packages available

- mllib operates on RDDs
- ml operates on DataFrames

• Spark installs with a collection of sample machine learning applications



Hortonworks University courses are designed by the leaders and committers of Apache Hadoop. 
We  provide immersive, real-world experience in scenario-based training. Courses offer 
unmatched depth and expertise available in both the classroom or online from anywhere in the 
world. We prepare you to be an expert with highly valued skills and for Certification. 
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