HDP Developer:
Enterprise Apach \S__park 1

Scala Lab Guide Guide

Rev 1

AR AR\

HORTONWORKS

UNIVERSITY
=

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.
These training materials, both print and digital content, are Copyright © 2012 — 2016 Hortonworks, Inc.

No part of these materials may be stored in a retrieval system, transmitted, altered or reproduced in any way, including,
but not limited to, editing, photocopy, photograph, magnetic, electronic or other record, without the prior written permission
of Hortonworks, Inc.

This instructional program, including all material provided herein, is supplied without any
guarantees from Hortonworks, Inc. Hortonworks, Inc. assumes no liability for damages or legal action arising from the use
or misuse of contents or details contained herein.

Java® is a registered trademark of Oracle and/or its affiliates.
All other trademarks are the property of their respective owners.

Apache Projects

Hortonworks makes frequent reference to Apache projects throughout our training materials. The following project names
are either registered trademarks or trademarks of the Apache Software Foundation in the United States or other countries.
For more information, see http://www.apache.org/. No endorsement by The Apache Software Foundation is implied by the
use of these marks.

Accumulo HBase Phoenix
Ambari HDFS Pig
Apache Hive Ranger
Atlas Kafka Slider
Beam Karaf Solr
Cassandra Knox Spark
CloudStack Mahout Sqoop
Falcon MapReduce Storm
Flink Maven Tez

Flume Metron Tomcat
Hadoop MiniFi WebHDFS
HAWQ NiFi YARN
HBase Oozie Zeppelin
HDFS ORC Zockeeper

Copyright Hortonworks Inc. 2012 — 2016. All Rights Reserved

http://www.apache.org/
http://www.apache.org/

®y
HORTONWORKS HORTONWORKS'

CERTIFIED HDP CERTIFIED

PROFESSIONAL

DEVELOPER

Become a Hortonworks Certified Professional and establish your credentials:

¢ HDP Certified Developer: for Hadoop developers using frameworks like Pig, Hive, Sqoop and
Flume.

¢ HDP Certified Administrator: for Hadoop administrators who deploy and manage Hadoop
clusters.

¢ HDP Certified Developer: Java: for Hadoop developers who design, develop and architect
Hadoop-based solutions written in the Java programming language.

e HDP Certified Developer: Spark: for Hadoop developers who write and deploy applications for
the Spark framework.

How to Register: Visit www.examslocal.com and search for “Hortonworks” to register for an
exam. The cost of each exam is $250 USD, and you can take the exam anytime, anywhere
using your own computer. For more details, including a list of exam objectives and instructions
on how to attempt our practice exams, visit http://hortonworks.com/training/certification/

Earn Digital Badges: Hortonworks Certified Professionals receive a digital badge for each
certification earned. Display your badges proudly on your résumé, LinkedIn profile, email
signature, etc.

man AR

HORTONWORKS'

UNIVERSITY
=

Copyright Hortonworks Inc. 2012 — 2016. All Rights Reserved

PR

HORTONWORKS"

UNIVERSITY
>

Self Paced Learning Library

On Demand Learning

Hortonworks University Self-Paced Learning Library is an on-demand dynamic repository
of content that is accessed using a Hortonworks University account. Learners can view
lessons anywhere, at any time, and complete lessons at their own pace. Lessons can be
stopped and started, as needed, and completion is tracked via the Hortonworks University
Learning Management System.

Hortonworks University courses are designed and developed by Hadoop experts and
provide an immersive and valuable real world experience. In our scenario-based training
courses, we offer unmatched depth and expertise. We prepare you to be an expert with
highly valued, practical skills and prepare you to successfully complete Hortonworks
Technical Certifications.

Target Audience: Hortonworks University Self-Paced Learning Library is designed for
those new to Hadoop, as well as architects, developers, analysts, data scientists, and IT
decision makers. It is essentially for anyone who desires to learn more about Apache
Hadoop and the Hortonworks Data Platform.

Duration: Access to the Hortonworks University Self-Paced Learning Library is provided
for a 12-month period per individual named user. The subscription includes access to over
400 hours of learning lessons.

The online library accelerates time to Hadoop competency. In addition, the content is
constantly being expanded with new material, on an ongoing basis.

Visit: http://hortonworks.com/training/class/hortonworks-university-self-paced-learning-
library/

Copyright Hortonworks Inc. 2012 — 2016. All Rights Reserved

Table of Contents

(0= o Q0 T o F= 1o TR Y=Y {1] o PSSP 1
Y o o T UL I 1= 1 | o 1
= o TR =Y o L= PSSR 1

== N 6

Lab 1: USiNg HDFS COMMANGSueiiiiiieiieriaeemreesessameeessssssseesessssmee s sessssneeseasssnseesessssnsessssssnseeseasasnneseasen 7
Y o o T UL I 1= 1 | o 7
= o TR (=Y o L= PSSR 7

== N 15

Lab 2: Introduction to Spark REPLS and Zeppelin.......uuicccccerceeerrereressssssssssssseeesesssessssssssssssmsssssssssssssas 17
Y o o T UL I 1= 1 | o 17
= o TR (=Y o L= 17

== N 30

Lab 3: Creating and Manipulating RDDS (SCal@)ccuviiiiiaecssssmmmrrrererssssssssssssssssesssesssessssssssssssnssssssssssssss 31
Y o o T UL I 1= 1 | o 31
= o TR =Y o L= P 31

== N 39

Lab 4: Create and Manipulate Pair RDDS (SCala).....c.ccuuireeeressmmmrrrmrererissssssssssnsesssssesesssssssssssssssnsssssssssns 1
Y o Lo T UL I 1= 1 | o 41
= o TR =Y o L= P 1

== N 47
L0 0T 11 1= g o 1= = o 47
1270 TE L3 0 = | 1=T g T = I o X 60

Lab 5: Basic Spark Streaming (SCala)ccccevvemmrrrrrrriiiiisssssssssmsneeresessssssssssssssssssessesssessessassssssnnsnsssenssesss 61
Y o Lo T UL I 1= 1 | o 61
= o TR =Y o L= P 61

== N 67

Lab 6: Basic Spark Streaming Transformations (SCala)ccccccerrrrrrrriisssssssssmnerrreneeessssssssssssmsesssesssesss 69
Y o Lo T UL I 1= 1 | o 69
= o TR (=Y o L= 69

== N 78

Lab 7: Spark Streaming Window Transformations (Scala)ccccceerririiiscccsssmmeerrenssesssssssssssssseessesssesnas 79

Y o Lo T UL I 1= 1 | o 79

= o TR =Y o L= P 79

Y] 1 89

Lab 8: Create and Save DataFrames & Tables (SCala)cccvaemrrrrrrrrriiissssssssmnerrrenesesssssssssssssmsssssesssesss 91
Y o o T UL I 1= 1 | o 91
= o TR (=Y o =P 91

== | N 98

Lab 9: Working with DataFrames (SCal@)........ccccccerrrrrrrriisssssssssnmerreneressssssssssssssssssssesssssssasssssssnsnssssnsseess 99
Y o o T UL I 1= 1 o 929
= o TR =Y o L= P 99

== 106

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)ccccevrmerrrrrrernnnn. 107
Y o o T UL I 1= 1 | o 107
= o TR (=Y o L= SO 107

== 124

Lab 11: Job MonNitoring (SCaAlQ) ...ceueerririiiiiceeissnmerrrrerrsrssssssssssssmesseesressssssssssssssnessessesssssssssssssnnsnssnnssnesss 125
Y o o T UL I 1= 1 | o 125
= o TR (=Y o L= SO 125

== 137

Lab 12: Performance TunNiNg (SCal@).......cccceersrmrrrrrmrrrrissssssssssnsmerrssssssssssssssssssssnessessesssssssssssssnnsnsssnsssesss 139
Y o o T UL I 1= 1 | o 139
= o TR (=Y o L= SO 139

== 146

Lab13: Build and Submit Applications to YARN (SCal@)ccccccrrrrrrriiissscssssnemrrresssssssssssssssmssssssssssesnas 147
Y o o T UL I 1= 1 | o 147
= o TR (=Y o L= SO 147

== 153

Lab 14: Machine Learning WalKthrough..........cccceeiiiiiiiiiiiieeceer s 155
Y o o T UL I 1= - | o 155
= o TR (=Y o L= SO 155

Y] | 159

Lab 0: Pre-lab Setup

About This Lab

Objective:
Set up the lab environment and confirm functionality

File Locations:
N/A

Successful Outcome:
User will set up the HDP cluster and verify login

Before You Begin:
Connect to the lab Environment

Lab Steps

Perform the following steps:
1. Start the HDP cluster.

a. Connect to the lab environment.

Y o

Hortonworks

b. Double-click on the Terminal icon on the desktop.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 0: Pre-lab Setup

Frefoxwen
BIOWSCTS

OO root@ubuntu: ~
File Edit View Search Terminal Help
root@ubuntu:~# l

c. Use SSH to connect to the Docker container - named “sandbox” — that has been a
single-node HDP cluster installation configured.

ssh sandbox

root@ubuntu:~# ssh sandbox
Warning: Permanently added the RSA host key for IP address '172.17.0.1' to the

ist of known hosts.
Last login: Thu Apr 21 23:53:04 2016 from ip-172-17-0-1.ec2.internal

2 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 0: Pre-lab Setup

2. Verify and, if necessary, start HDP cluster services.

a. Open a Firefox web browser and log into the Ambari Web Ul using http://sandbox:8080.

Ambarli - Mozilla Firefox

N Ambari B

€ @127.00.1 ’ v B QB8 & #®

Py Ambari

Sign in
Usermmame

Password

b. Supply a username and password of admin and admin, then click the Sign in button to
get to the Ambari Web Ul dashboard.

Username

admin

Password

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 0: Pre-lab Setup

® HDFS Metrics Heatmaps Config History
© MapReduce2 Metric Actions v Last 1 hour
© YARN
Q Tez HDFS Disk Usage DataNodes Live HDFS Links Memory Usage Network Usage
© Hve NareNode No Data Available No Data Avallable
Q Pig 44% 1 /1 Socondary NameNodo
1 DataNoos
©@ ZooKeeper D
A Ambari Metrics
@ Spark
CPU Usage Cluster Load NameNode Heap NameNode RPC NameNode CPU
Zeppeln Nolebook wio
A2 No Data Avallable No Dala Available '
Actions ~ 11% 0 ms
c. All services should be running. If not, start any stopped services by clicking on the

Actions button at the bottom left and selecting Start All.

Actions ~

<+ Add Service

» Start All
Il Stop All Na

If a restart was necessary, give the services a couple of minutes to start. One or more
of them may initially report failure, but after waiting will go green. When everything has
settled, your dashboard list of services should look similar to this:

@ HDFS

@ MapReduce?2
@ YARN

0 Tez

@ Hive

O Pig

@ ZooKeeper

@ Ambari Metrics
@ Spark

@ Zeppelin Notebook

Actions ~

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 0: Pre-lab Setup

3. Confirm HDFS (Hadoop Distributed File System) access from the command line.

a. Go back to the terminal window that is connected to the sandbox Docker container
(reopen and reconnect if necessary) and switch users so that you can run HDFS
administrative commands.

su hdfs

[root@sandbox ~]# su hdfs
[hdfs@sandbox root]# i

b. To verify HDFS connectivity, run the hdfs dfsadmin -report command. Verify that it
provides output similar to the screenshot provided.

hdfs dfsadmin -report

[hdfs@sandbox root]# hdfs dfsadmin -report
Configured Capacity: 100000174080 (93.13 GB)
Present Capacity: 57822167040 (53.85 GB)

DFS Remaining: 56309686272 (52.44 GB)

DFS Used: 1512480768 (1.41 GB)

DFS Used%: 2.62%

Under replicated blocks: 82

Blocks with corrupt replicas: ©

Missing blocks: ©

Missing blocks (with replication factor 1): ©

Live datanodes (1):

Name: 172.17.0.1:50010 (sandbox)

Hostname: sandbox

Decommission Status : Normal

Configured Capacity: 100000174680 (93.13 GB)
DFS Used: 1512480768 (1.41 GB)

Non DFS Used: 42178007040 (39.28 GB)

= = atels L

c. Exit the HDFS administrative user and go back to being the root user.

exit
[hdfs@sandbox root]# exit
exit
[root@sandbox ~]#
d. Run the jps command and verify that a process called NameNode is running.
jps

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 0: Pre-lab Setup

[root@sandbox ~]1# jps
3199 JobHistoryServer
process information unavailable
SecondaryNameNode
HistoryServer
RunlJar
ApplicationHistoryServer
RunJar
NodeManager
QuorumPeerMain
18604 -- process information unavailable
12122 ZeppelinServer
18406 Jps
2284 AmbariServer
2697 DataNode

11056 HMaster
2461 NameNode *
11097 Applicatio storyServer

3860 Runlar
2995 ResourceManager
[root@sandbox ~]# [|

Result

You have successfully connected to your lab environment, used SSH to connect to the HDP cluster
Docker container, started Ambari and all HDP services, and verified connection to HDFS and operation
of the NameNode process.

6 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 1: Using HDFS Commands

About This Lab

Objective:
View, add, manipulate, and remove files and directories to and from HDFS using hdfs dfs
commands.

File Locations:
/root/spark/data/

Successful Outcome:
You will have added, manipulated, and deleted several files and folders in HDFS

Before You Begin:
You should be logged in to your lab environment

Lab Steps

Perform the following steps:
1. View the hdfs dfs command.

a. Open a Terminal window and use ssh to connect to the sandbox virtual machine.

ssh sandbox

root@ubuntu:~# ssh sandbox
Last login: Thu May 19 15:55:24 2016 from ip-172-17-42-1.ec2.internal

[root@sandbox ~]#

b. From the command line, enter the hdfs dfs command with no arguments to view its
usage.

hdfs dfs

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 1: Using HDFS Commands

[root@sandbox ~]# hdfs dfs
Usage: hadoop fs [generic options]

[-appendToFile <localsrc> ... <dst>]

[-cat [-ignoreCrc] <src> ...]

[-checksum <src> ...]
-chgrp [-R] GROUP PATH...]
-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
-chown [-R] [OWNER][:[GROUP]] PATH...]
-copyFromLocal [-f] [-p] [-1] <localsrc> ... <dst>]
-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
-count [-q] [-h] [-v] [-t [<storage type>]] <path> ...]
-cp [-f] [-p | -p[topax]] <src> ... <dst>]
-createSnapshot <snapshotDir> [<snapshotName>]]
-deleteSnapshot <snapshotDir> <snapshotName>]
-df [-h] [<path> ...]]
-du [-s] [-h] <path> ...]
-expunge]
-find <path> ... <expression> ...]
-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
-getfacl [-R] <path>]
-getfattr [-R] {-n name | -d} [-e en] <path>]
-getmerge [-nl] <src> <localdst>]
-help [emd ...]]
-1s [-d] [-h] [-R] [<path> ...]]
-mkdir [-p] <path> ...]
-moveFromLocal <localsrc> ... <dst>]
-moveToLocal <src> <localdst>]
-mv <src> ... <dst>]
-put [-f] [-p] [-1] <localsrc> ... <dst>]
-renameSnapshot <snapshotDir> <oldName> <newName>]
-rm [-f] [-r|-R] [-skipTrash] [-safely] <src> ...]
-rmdir [--ignore-fail-on-non-empty] <dir> ...]
-setfacl [-R] [{-b]|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <pa

[
|
[
[
|
[
[
|
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

-setfattr {-n name [-v value] | -x name} <path>]
-setrep [-R] [-w] <rep> <path> ...]

-stat [format] <path> ...]

-tail [-f] <file>]

-test -[defsz] <path>]

-text [-ignoreCrc] <src> ...]

-touchz <path> ...]

-truncate [-w] <length> <path> ...

-usage [cmd ...]]

Y Y Y Y Y Y Y

Generic options supported are

-conf <configuration file> specify an application configuration file

-D <property=value> use value for given property

-fs <local|namenode:port> specify a namenode

-jt <local|resourcemanager:port> specify a ResourceManager

-files <comma separated list of files> specify comma separated files to be cd

pied to the map reduce cluster

-libjars <comma separated list of jars> specify comma separated jar files to
include in the classpath.

-archives <comma separated list of archives> specify comma separated archiveg
to be unarchived on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

root@sandbox ~1#

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 1: Using HDFS Commands

2. Create directories in HDFS.

a. Enterthe hdfs dfs -1s command with no directory specified to view the contents of
the current user’s home directory in HDFS. Since you are logged in as the user root, the
typical home directory location will be /user/root.

hdfs dfs -1s

[root@sandbox ~]# hdfs dfs -1s

root hdfs 0 2016-04-02 - .Trash
root hdfs 0 2016-04-24 - .hivelars
root hdfs 0 2016-04-13 - .sparkStaging
root hdfs 205888 2016-04-01 - airports.csv
root hdfs 37794 2016-04-01 - carriers.csv
root hdfs 0 2016-04-02 - checkpointDir
root hdfs 136035258 2016-04-01 16: flights.csv
root hdfs 428796 2016-04-01 16: plane-data.csv
-fW-r--r-- root hdfs 8596 2016-04-13 06: selfishgiants. txt
drwxr-xr-x root hdfs 0 2016-04-01 - test
@sandbox ~]#

b. Run the command again, but this time specify the root folder for all of HDFS.

hdfs dfs -1s /

[root@sandbox ~]# hdfs dfs -1s /
Found 9 items

drwxrwxrwx - yarn hadoop
drwxr-xr-x - hdfs hdfs
drwxr-xr-x - yarn hadoop
drwxr-xr-x - hdfs hdfs
drwxr-xr-x mapred hdfs
drwxrwxrwx - mapred hadoop
drwxrwxrwx spark hadoop
drwxrwxrwx - hdfs hdfs
drwxr-xr-x - hdfs hdfs
[root@sandbox ~1#

2016-04-22 : /app-logs
2015-12-17 : S
2016-04-01 . /ats
2015-12-02 10:30 /hdp
2015-12-02 - /mapred
2015-12-02 : /mr-history
2016-05-27 - /spark-history
2016-04-25 12:12 /tmp
2015-12-17 - Juser

(ool loNooNooo

c. Create a directory named dirTest in the current user’s home directory in HDFS.
hdfs dfs -mkdir dirTest

[root@sandbox ~]# hdfs dfs -mkdir dirTest

[root@sandbox ~]# [

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 1: Using HDFS Commands

d. Verify the folder was created successfully.

hdfs dfs -mkdir dirTest

[root@sandbox ~]# hdfs dfs -1s

- root hdfs © 2016-05-27 09:35 dirTest

e. Verify that this directory was created in the user’s home directory.
hdfs dfs -1s /user/root

[root@sandbox ~]# hdfs dfs -1s /Juser/root

- root hdfs 0 2016-05-27 09:35 dirTest

% NOTE:
l There is no difference between performing the -1s command when you specify no
directories and when you specify the user’s home directory. All commands will be
executed in the user’s home directory unless otherwise specified.

f. Use -mkdir to create subdirectory dirl in the dirTest directory. Then run the
command again with the —-p option to create an additional subdirectory, dir2, which
also contains its own subdirectory, dir3.

hdfs dfs -mkdir dirTest/dirl

hdfs dfs -mkdir -p dirTest/dir2/dir3

[root@sandbox ~]# hdfs dfs -mkdir dirTest/dir1

[root@sandbox ~]# hdfs dfs -mkdir -p dirTest/dir2/dir3
@sandbox ~]#

g- Runthe hdfs dfs -1s -Rcommand to recursively view the contents of the user’s
home directory, and verify that all three directories from the previous step were
successfully created.

hdfs dfs -1s -R

drwxr-xr-x - root hdfs ® 2016-05-27 12:48 dirTest
drwxr-xr-x - root hdfs 0 2016-05-27 12:48 dirTest/dir1

drwxr-xr-x - root hdfs 0 2016-05-27 12:48 dirTest/dir2
drwxr-xr-x - root hdfs 0 2016-05-27 12:48 dirTest/dir2/dir3

10 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 1: Using HDFS Commands

3. Delete directories in HDFS.

a. Delete the dir1 directory and verify it no longer exists.

hdfs dfs -rmdir dirTest/dirl

[root@sandbox ~]# hdfs dfs -rmdir dirTest/dir1

[root@sandbox ~]# [}

hdfs dfs —-1ls dirTest

[root@sandbox ~]# hdfs dfs -1s dirTest
Found 1 items

drwxr-xr-x - root hdfs ® 2016-05-27 12:48 dirTest/dir2

b. This command works because the directory is empty. Run the command again, and
this time try to delete the dir2 directory and note the error message. Then verify that the
directory still exists.

hdfs dfs -rmdir dirTest/dir2

hdfs dfs —-1ls dirTest

[root@sandbox ~]# hdfs dfs -rmdir dirTest/dir2
rmdir: "dirTest/dir2': Directory is not empty
[root@sandbox ~]# hdfs dfs -1s dirTest

Found 1 items

drwxr-xr-x - root hdfs O 2016-05-27 12:48 dirTest/dir2
[root@sandbox ~]#

c. To delete a directory and all of its contents, use hdfs dfs -rm -R <directory
path>.

WARNING:

Be very careful not to run this without specifying a directory, as the default
behavior would be to delete the user’s home directory and all contents (in our case, the
/user/root directory and everything it contains).

Use this command to delete the dir2 directory and its contents, and verify that the directory
has been deleted.

hdfs dfs -rm -R dirTest/dir2

hdfs dfs —-1ls dirTest

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

11

Lab 1: Using HDFS Commands

[root@sandbox ~]# hdfs dfs -rm -R dirTest/dir2
16/05/27 13:13:57 INFO fs.TrashPolicyDefault: Namenode trash configuration: Dele
tion interval = 360 minutes, Emptier interval = @ minutes.

Moved: 'hdfs://sandbox:8026/user/root/dirTest/dir2' to trash at: hdfs://sandbox:
8020 /user/root/.Trash/Current
[root@sandbox ~1# hdfs dfs -1s dirTest

[root@sandbox ~]#

4. Upload, copy, and delete HDFS files.

a. The sandbox container image should be preloaded with some test files. Change
directories to /root/spark/data/ and view the contents of this directory.

cd /root/spark/data/

1s

hdfs

hdfs

hdfs

hdfs

12

[root@sandbox ~]# cd /root/spark/data/
[root@sandbox data]# 1s

alrports.csv data.txt plane-data.csv small_blocks. txt
carriers.csv flights.csv selfishgiant.txt spamEmail

b. Put the data.txt file into the dirTest directory in HDFS.
dfs -put data.txt dirTest/
[root@sandbox data]# l
c. \Verify the file was uploaded successfully.

dfs -1s dirTest

[root@sandbox data]# hdfs dfs -1s dirTest
Found 1 items

-fW-r--r-- 3 root hdfs 20 2016-05-27 13:22 dirTest/data.txt
root@sandbox datal#

d. Create a copy of the data.txt file named datacopy. txt and verify the operation was
successful.

dfs -cp dirTest/data.txt dirTest/datacopy.txt

dfs —-1s dirTest

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 1: Using HDFS Commands

[root@sandbox data]# hdfs dfs -cp dirTest/data.txt dirTest/datacopy.txt
[root@sandbox data]# hdfs dfs -1ls dirTest
Found 2 items

-rW-r--r-- 3 root hdfs 20 2016-05-27 13:22 dirTest/data.txt
-fW-r--r-- 3 root hdfs 20 2016-05-27 13:28 dirTest/datacopy.txt
[root@sandbox datal# |}

9 QUESTION:
What do you think would have happened if the dirTest directory had not been explicitly
u specified as the location for the datacopy. txt file?

e. Now delete the datacopy. txt file and verify it has been removed.

hdfs dfs -rm dirTest/datacopy.txt

hdfs dfs —-1ls dirTest

[root@sandbox datal# hdfs dfs -rm dirTest/datacopy.txt

16/05/27 13:32:41 INFO fs.TrashPolicyDefault: Namenode trash configuration: Dele
tion interval = 360 minutes, Emptier interval = @ minutes.

Moved: 'hdfs://sandbox:8020/user/root/dirTest/datacopy.txt' to trash at: hdfs://
sandbox:8020/user/root/.Trash/Current

[root@sandbox data]# hdfs dfs -1s dirTest

Found 1 items

W=~~~ 3 root hdfs 20 2016-05-27 13:22 dirTest/data.txt
[root@sandbox datal#

5. View, download, and download merged files in HDFS.

a. View the contents of the data. txt file in HDFS.

hdfs dfs -cat dirTest/data.txt

[root@sandbox data]# hdfs dfs -cat dirTest/data.txt
This is a test file
@sandbox datal#

OR
hdfs dfs -tail dirTest/data.txt

[root@sandbox data]# hdfs dfs -tail dirTest/data.txt

This is a test file
@sandbox datal#

b. Download the data.txt file from HDFS to the /tmp directory on the local file system
and verify the operation was successful.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

13

Lab 1: Using HDFS Commands

hdfs dfs -get dirTest/data.txt /tmp

1ls /tmp/data*

[root@sandbox data]# hdfs dfs -get dirTest/data.txt /tmp
[root@sandbox data]# 1s /tmp/data*

/tmp/data. txt
[root@sandbox datal# |

c. View the contents of the small blocks. txt file on the local file system. It should be
in the current directory.

cat small blocks.txt

[root@sandbox data]# cat small_blocks.txt
This is data in the small blocks file
[root@sandbox datal# |

d. Upload the small blocks.txt into the dirTest folder in HDFS and verify that you
now have two files in dirTest.

hdfs dfs -put small blocks.txt dirTest/

hdfs dfs -1ls dirTest

[root@sandbox data]# hdfs dfs -put small_blocks.txt dirTest/

[root@sandbox data]# hdfs dfs -1ls dirTest

Found 2 items

-fW-r--r-- 3 root hdfs 20 2016-05-27 13:22 dirTest/data.txt
-fW-F--r-- 3 root hdfs 38 2016-05-27 13:48 dirTest/small_blocks.txt
[root@sandbox datal# i

e. Merge and download all of the contents of the dirTest directory in HDFS to a file
named merged. txt in the /tmp directory on the local file system. Verify that the
merged. txt file was successfully created.

hdfs dfs -getmerge dirTest /tmp/merged.txt
1ls /tmp/merged*

[root@sandbox data]# hdfs dfs -getmerge dirTest /tmp/merged.txt
[root@sandbox data]# 1s /tmp/merged*

/tmp/merged. txt
[root@sandbox data]#

View the contents of the merged. txt file to confirm that it contains the contents of both files
that were in the dirTest directory.

cat /tmp/merged.txt

14 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 1: Using HDFS Commands

[root@sandbox data]# cat /tmp/merged.txt
This is a test file

This is data in the small blocks file
@sandbox datal#

f. Change directories back to the root user’s home directory.

cd ~
pwd
[root@sandbox data]# cd ~
[root@sandbox ~]# pwd
@sandbox ~1#
Result

You have successfully created, manipulated, and deleted files and directories in HDFS.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

15

Lab 2: Introduction to Spark REPLs and Zeppelin

About This Lab

Objective:
Access and browse Spark REPLs and Zeppelin

File Locations:
N/A

Successful Outcome:
Use Spark REPLs and browse Zeppelin

Before You Begin:
Complete the Pre-Lab and confirm cluster operation

Lab Steps

Perform the following steps:
1. Access the Spark REPLs.

a. Open a Terminal window and use ssh to connect to the sandbox virtual machine.

ssh sandbox

root@ubuntu:~# ssh sandbox
Last login: Thu May 19 15:55:24 2016 from ip-172-17-42-1.ec2.internal

[root@sandbox ~]#

b. Run the Spark REPL for Scala.

spark-shell

[root@sandbox ~]1# spark-shell

16/65/04 10:26:35 INFO metastore: Connected to metastore.

16/05/04 10:26:35 INFO SessionState: Created local directory: /tmp/0b672003-16b5
-4a63-973f-ee6b35238448_resources

16/65/04 10:26:35 INFO SessionState: Created HDFS directory: /tmp/hive/root/0b67
2003-16b5-4a63-973f-ee6b35238448

16/05/04 10:26:35 INFO SessionState: Created local directory: /tmp/root/0b672003
-16b5-4a63-973f-ee6b35238448

16/65/04 10:26:35 INFO SessionState: Created HDFS directory: /tmp/hive/root/0b67
2003-16b5-4a63-973f-ee6b35238448/_tmp_space.db

16/05/04 10:26:35 INFO SparkILoop: Created sql context (with Hive support)..

SQL context available as sqlContext.

scala> I

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 2: Introduction to Spark REPLs and Zeppelin

c. View the values for the SparkContext, appname, and version.

scala> sc
scala> sc.appname

scala> sc.version

scala> sc
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@5ca86715

scala> sc.appName
resl: String = Spark shell

scala> sc.version
res2: String = 1.6.0

d. Exit the Spark Scala REPL.

scala> exit ()
scala> exit()

e. Run the Spark REPL for Python.

pyspark

[root@sandbox ~]# pyspark

Welcome to

/|]
AN _ N\ _ "1 1 ']

/| . I_,_ /]] /\.\ version 1.6.0
/_1

Using Python version 2.6.6 (r266:84292, Jul 23 2015 15:22:56)
SparkContext available as sc, HiveContext available as sqlContext.
>>>

f. View the values for the SparkContext, appName, and version.

>>> sc
>>> sc.appName

>>> sc.version

18 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 2: Introduction to Spark REPLs and Zeppelin

>>> SC
<pyspark.context.SparkContext object at 0xd093906>
>>> SC.appName

u'PySparkShell'
>>> sc.version
u'1.6.0'

g. Exit the Spark Python REPL.

>>> exit ()

2. Access and browse Zeppelin.

a. Open the Firefox browser and enter the following URL to view the Zeppelin Ul:
http://sandbox:9995/

sandbox v B~ Qa6 & ¢ =
‘ 2eppelin Notebook ~ Interpreter Configuration y Q
Welcome to Zeppelin! 0.6.0-incubating-SNAPSHOT)

Zeppein is web

sed notebook that enables interactive data analytics
You can make "

sl data-ceiven, interactive, colaborative document with SQL. code and even more!

Notebook & Help
x Gat startod with
Cammunity

Flease feel free 10 help us % Improve Zeppein
Ay COnrDUION Are Wokbome

L
o

o

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

19

Lab 2: Introduction to Spark REPLs and Zeppelin

b. Click Interpreter in the top menu and note that Zepplin’s default interpreter is set to
Spark and has a number of default settings configured.

aZeppelin Notebook ~ Interpreter Configuration

Interpreters

Manage interpreters settings. You can create create / remove settings. Note can bind/unbind these interpreter settings.

Spark %ospark (default), Yopyspark, %sql, %dep

Option

Separate Interpreter for each note

Properties

name value

spark.cores.max

zeppelin.spark.printREPLOutput true
master yarn-client
zeppelin.spark.maxResult 1000
zeppelin.dep.localrepo local-repo
spark.app.name Zeppelin
spark.executor.memory 512m

c. Click on Notebook in the top menu and select Create new note from the resulting drop
down options.

‘a Zeppelin Notebook v Interpreter Configuration

+ Create new note
Interpreters
Manage interpreters settings. Y Q Filter h

AON Demo
Australian Dataset (Hive example)
spark %spark (default), %f

Aunstralian Nataset (SnarkSOIl examnle)

20 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 2: Introduction to Spark REPLs and Zeppelin

d. Name this note Introduction to Zeppelin and click Create Note.

Create new note

Note Name

Introduction to Zeppelin|

Create Note

-‘ Zeppelm Notebook ~ Interpreter Configuration

Introduction to Zeppelin > =s02a o o © 08 dduhe

e. At the top right click on the gear icon to change interpreter binding. Your administrator
has enabled an interpreter called “spark yarn-client” which is configured for the HDP
cluster you are using. Drag it to the top of the list of interpreters, and click the Save
button.

Q) @Q default v

Introduction to Zeppelin oA - 0a ~ea-

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

21

Lab 2: Introduction to Spark REPLs and Zeppelin

Introduction to Zeppelin c2a os

The first interpreter on the list is treated as the default interpreter. Scroll down to find the Save

button.

f. Find the values for Spark version and the Spark home directory. When you type the
commands, run them either by pressing the Shift + Enter keys, or by clicking on the
Play icon to the right of the word Ready.

'\ NOTE:
» The first time this is run, it may take a few minutes to complete. Future commands will
run much faster, including this one if repeated.

sc.version
sc.getConf.get ("spark.home™)

sc.version O
sc.getConf.get(“spark.home")

While processing, Zeppelin will display a status of RUNNING. It will also display a Pause icon
should it become necessary.

22 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 2: Introduction to Spark REPLs and Zeppelin

The output may vary slightly from the screenshot below, but should look something like this when
processing is completed:

sc.version
sc.getConf.get("spark.home")

res@: String = 1.6.0
resl: String = Jusr/hdp/2.4.0.0-169/spark

g. Zeppelin can be instructed to use multiple languages in an interactive fashion within
the same notebook. Simply specify the desired language prior to the command.

Run the following commands to demonstrate this flexibility using Shell, Python, Scala,

Markdown, and Spark SQL. Execute each command by clicking on the Play icon or
pressing Shift + Enter when you are finished typing.

Shell:

%$sh echo "Introduction to Zeppelin"

%sh echo "Introduction to Zeppelin"

Introduction to Zeppelin

Python:

tpyspark
print "Introduction to Zeppelin"

“pyspark
print "Introduction to Zeppelin"

Introduction to Zeppelin

Scala (default, so no need to specify prior to running command):

val s = "Introduction to Zeppelin"

val s = "Introduction to Zeppelin"

s: String = Introduction to Zeppelin

Markdown:

gmd Introduction to Zeppelin

%md Introduction to Zeppelin

Introduction to Zeppelin

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 2: Introduction to Spark REPLs and Zeppelin

Spark SQL:

%sqgl
show tables

#sql
show tables

B i ¢ M |

tableName isTemporary

3. Use a preconfigured notebook to browse Zeppelin’s capabilities.

a. Zeppelin has four major functions: data ingestion, data discovery, data analytics, and
data visualization. One of the easiest ways to explore these functions is with a
preconfigured notebook, many of which are available by default.

Click on Notebook at the top of the browser window and find and select the notebook
labeled loT Data Analysis (Keynote Demo) in the resulting drop-down menu.

N Notebook ~ Interpreter Configuration

<+ Create new note

Q Filter

ome") AON Demo

Australian Dataset (Hive example)

2:4.8. Aystralian Dataset (SparkSQL example)
Create and Manipulate RDDs
Hello World Tutorial

to Zeg

Introduction to Zeppelin

Introduction to Zeppelin

loT Data Analysis (Keynote Demo

I ah 101" Intra tn Snark with Puthan

24 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 2: Introduction to Spark REPLs and Zeppelin

b. At the top right click on the gear icon to change interpreter binding.

Q) @ﬂ default v

Introduction to Zeppelin = v #2400 °

ey

SPATYBON CRONE Maperk, Mapart yspart, Magart act \apart. dep

Drag the spark-yarn-client to the top and click save.

Introduction to Zeppelin = =5 #2200 °
prrensay

Bind interpreter for s note. Click 55 Bind/Undind interpreter. Drag and drop 10 reonder interpretens.
The fest nterpreter 0n The St Decomen defaull. T0 Create/Mrmove INterpreners, 0O 10 Werpreter Meny

SOIYEN RO \agart (Sefast) \oyapars, Mgk, Namp

The first interpreter on the list becomes default.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

06 wens

25

C.

Lab 2: Introduction to Spark REPLs and Zeppelin

For the purposes of this lab, all necessary code has already been entered for you in the
saved notebook. All you have to do is scroll to the appropriate section and click the
Play icon or press Shift + Enter.

i Notebook » Interpreter Configuration oa1ch in ¥ obooks a B
@ zeei | =)

loT Data Analysis (Keynote Demo) v :xms2aa o o

D oR whue

Using Zeppelin for Data Science Tasks: Data Ingestion, Data Formatting, Exploratory
Analysis and Model Building.

Data Scence
Platface

nvolves a typcal sequence of tasks: aquiring data. deaning i, analyzing it for relationships, and then bulkding a model. Zeppeln allows you % do ¥l these from one unifed

First, let's load the data into HDFS and make sure we can access it.

=i
whaan,

ol S5 0T

arip Lotdere motebook dets. rip

Aadocp fu -mhd!

NULES 1 | e A oobeen . Con) 3 /90 517 ohnnp] Ser L Lot dono - natedoch -date, 2ia”

e -p uner /eppelialotdeno

Aadocp fe -copyfromlacal -f tratalaghete (wier/neppetin iotdeno
Asdiop 5 -copfromacal -f encichedivests voer/ Teppelin Latdens

e AR

d.

wier | peppel Lot dess

The first major block of code ingests data from an online source into HDFS and then
displays those files using the shell scripting interpreter. Find and run that code.
NOTE:

The label to the left of the Play icon says FINISHED, but this will not prohibit you from
running the code again on this machine.

This notebook uses a deprecated command, hadoop fs, rather than the more updated hdfs
dfs command we used in the previous lab. This should not affect the functionality of the demo.

%sh
whoami

curl -sSL -0 "https://www.dropbox.com/s/ggjlrobwxpl9vrt/iotdemo-notebook-data.zip"
unzip iotdemo-notebook-data.zip

hadoop fs
hadoop fs
hadoop fs

hadann fe

26

-mkdir -p /user/zeppelin/iotdemo
-copyFromLocal -f trainingData /user/zeppelin/iotdemo/
-copyFromLocal -f enrichedEvents /user/zeppelin/iotdemo/

-1« /user/7ennelin/intdemn/

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 2: Introduction to Spark REPLs and Zeppelin

When the code has finished, the output at the bottom should look like this:

hadnnn fs -1< /u<er/7zennelin/intdemn/ (

zeppelin

Archive: 1otdemo-notebook-data.zip

Found 2 items

~rw-r--r-- 3 zeppelin zeppelin 63570 2016-05-27 16:50 Juser/zeppelin/iotdemo/enrichedEvents
“fW===f~~ 3 zeppelin zeppelin 33084 2016-05-27 16:58 [user/zeppelin/iotdemo/trainingData

e. The next section of the notebook once again uses the shell scripting interpreter to view
some of the raw data in one of the downloaded files. Scroll down and run this code,
then view its output.

%sh
hadoop fs -cat /user/zeppelin/iotdemo/enrichedEvents | tail -n 10

Overspeed,"Y","hours",45,2773,-90.07,35.68,0,1,1

Lane Departure,"Y","hours",45,2773,-90.04,35.19,1,1,0
Normal,"Y","hours",45,2773,-90.68,35.12,1,0,0
Normal,"Y","hours",45,2773,-91.14,34.96,0,0,0
Normal,"Y","hours",45,2773,-91.93,34.81,0,0,0
Normal,"Y","hours",45,2773,-92.31,34.78,0,1,0
Normal,"Y","hours",45,2773,-92.09,34.8,0,0,0
Normal,"Y","hours",45,2773,-91.93,34.81,0,0,0

AMarmaT "UM Thaiim~ " oAC "NT7TT72 N £0 2C 17 o o n

f. The next section of the notebook performs actions necessary to import and use this
data with Spark SQL. You may note that the status to the left of the Play icon is shown
as ERROR. This is due to the fact that the file being manipulated did not exist at the
time the notebook was opened on this system. Run this code and view the output.

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val eventsFile = sc.textFile("hdfs:///user/zeppelin/iotdemo/enrichedEvents")

case class Event(eventType: String,
isCertified: String,
paymentScheme: String,
hoursDriven: Int,
milesDriven: Int,
lat: Float,
long: Float,
isFoggy: Int,

icRainu+ Tnt

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

27

Lab 2: Introduction to Spark REPLs and Zeppelin

The output should look like this:

eventsRDD. toDF().registerTempTable("enrichedEvents™)

sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@312d2a12
eventsFile: org.apache.spark.rdd.ROD[String] = MapPartitionsRDD[3] at textFile at <console>:29
defined class Event

eventsRDD: org.apache.spark.rdd.RDD[Event] = MapPartitionsRDD[5] at map at <console>:35
res4: Long = 1359

d.- The next block of code utilizes Spark SQL to view this data. Run this code and examine
the output.

xsql

select * from enrichedEvents order by hoursDriven desc linit 18

B o ¢ M

eventType isCertified paymentScheme hoursDriven milesDriven lat long isFoggy isRainy
Normal N miles 4,300 -90.29 40.96 0 0
Lane N miles 4,300 -88.42 41.11 1 1

Nonartiira

h. Note that at the top of the results there are six buttons that allow you to display the
results using six different visualizations. Click on each one to view the differences
between them.

B 2 ¢ =

eventType isCertified paymentScheme hoursDriven milesDriven lat long isFoggy isRainy isWindy
Neemad N mies €0 4,300 -90.29 4006 0 0 1
Lane Departure N mies €0 4,300 88.42 an 1 1 1
Normad N mies €0 4,300 839 40.86 o 0 0
Overspoad N mies €0 4,300 93.04 an 1 0 0
Ursafe tl dstance N mies €0 4,300 8767 4187 1 1 1
Normad N mies €0 4,300 89,52 407 0 0 0
Normal N mies 20 4,300 91.05 172 0 0 1
Normal N mies 20 4,200 947 4174 0 0 0
Lane Decarture N mies €0 4.300 91.59 a7 1 0 0
28 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 2: Introduction to Spark REPLs and Zeppelin

LT B I R S TS -

Al tw

cwrtlyoe sCersted & ooy mfoggy mRary EWIndy

Ko Orooe Vaes
=

@Goped O Sacked @ Catied

.

Owerpeed Unsale tal datance Unsafe ioliowrng datasce
B w0 e & wang.
N oo
oweToe BCetlied D W kng WFoggy WRamy eWndy
Kevs Groues Vakss
= o 20 1

Oy O Lare Deparire @ Oversgeed 0 Ursofe Wl demorce @ Ussale Ilowing dolanie

NG e e wlnge

owerlyse BCetfied paymewSchere | SousDeven | mieOrven | et krg oPogyy | BRamy sWiey

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 29

Lab 2: Introduction to Spark REPLs and Zeppelin

E 4 0 = &

force Y80 0

show Iine chart wih fscus
22 et

@ nlatfc
Lo

Moeral Lane Oepartane Overspeed

Ursafe Ll Solance Urrsafe teliowng
B a0 & 2
| ewertioe x| eceres x|
@ ot
1
4
Narmal L Deparnace Oversgand Ustade 3 Setarce Unsate foliowng
<I' TIP:
- In this lab you ran each section of code, known as a paragraph, individually. The entire

notebook could have been played at once, however, by clicking the Play icon labeled
Run all paragraphs directly to the right of the notebook title at the top of the browser.

loT Data Analysis (Keynote Demo)O: Wesasa 0 |o

Result

You have accessed the Spark REPLs for both Scala and Python, created a Zeppelin notebook and
demonstrated Zeppelin’s ability to interpret multiple languages, and used a pre-built Zeppelin
notebook to briefly explore Zeppelin’s ability to ingest, view, analyze, and visualize data.

30 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 3: Creating and Manipulating RDDs (Scala)

About This Lab

Objective:
Create and Manipulate RDDs using Scala and Zeppelin

File Locations:
/home/zeppelin/spark/data/

Successful Outcome:
Perform basic RDD transformations and actions using Zeppelin.

Before You Begin:
Complete the Pre-Lab

Lab Steps
Perform the following steps:
1. View the raw data for this lab.

a. In anew terminal window, ssh to sandbox and change directories to
/home/zeppelin/spark/data. View the files in this directory.

ssh sandbox
cd /home/zeppelin/spark/data/

1s

root@ubuntu:~# ssh sandbox

Last login: Mon May 30 ©09:23:47 2016 from ip-172-17-42-1.ec2.internal
[root@sandbox ~]# cd /home/zeppelin/spark/data

[root@sandbox data]# 1s

airports.csv data.txt plane-data.csv small_blocks.txt
carriers.csv flights.csv selfishgiant.txt
[root@sandbox datal# I

b. Use less to view the “selfishgiant.txt” data file. Press g to quit when you are finished
reviewing.

less selfishgiant.txt

[root@sandbox datal# less selfishgiant.txt

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

31

32

Lab 3: Creating and Manipulating RDDs (Scala)

EVERY afternoon, as they were coming from school, the children used to go and pl
ay in the Giant's garden.It was a large lovely garden, with soft green grass

. Here and there over the grass stood beautiful flowers like stars, and there we
re twelve peach-trees that in the springtime broke out into delicate blossoms of
pink and pearl, and in the autumn bore rich fruit. The birds sat on the trees a
nd sang so sweetly that the children used to stop their games in order to listen

to them. Hi¥EHow happy we are here![I they cried to each other.Jil@one day th
e Giant came back. He had been to visit his friend the Cornish ogre, and had sta
yed with him for seven years. After the seven years were over he had said all th
at he had to say, for his conversation was limited, and he determined to return
to his own castle. When he arrived he saw the children playing in the garden.
hat are you doing there? he cried in a ver ruff voice, and the chil
dren ran away.mhy own garden is my own garden,& said the Giant; an
y one can understand that, and I will allow nobody to play in it but myself.

So he built a high wall all round it, and put up a notice-board. TRESPASSE
RS EBWILL BE MEPrOSECUTEDIMEHe was a very selfish Giant.Jl@The poor children h
ad now nowhere to play. They tried to play on the road, but the road was very du
sty and full of hard stones, and they did not like it. They used to wander round

the high wall when their lessons were over, and talk about the beautiful garden

inside. QkEHow happy we were there, they said to each other.WThen the S
pring came, and all over the country there were little blossoms and little birds
. Only in the garden of the Selfish Giant it was still winter. The birds did not
care to sing in it as there were no children, and the trees forgot to blossom.

2. Perform basic RDD manipulations using the Zeppelin notebook.

a. Open the Firefox browser and enter the following URL to view the Zeppelin Ul.

http://sandbox:9995/
sandbox v B~ Qa8 $ & =

. Zeppe]jn Notebook ~ Interpreter Configuration y : Q

Welcome to Zeppelin! (0.6.0-incubating-SNAPSHOT)

Zeppein is web-Dased nolebook that enabies interactive data analytics

You can make beaulyul data-ceiven, nlaractive, colaborative documaent with SQL. code and even meee!

Notebook & Help

R A Gat started with

Cammunity

Please feel free 10 help us % Improve Zeppein

Aty CONrDUon are Wolkome

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 3: Creating and Manipulating RDDs (Scala)

b. Click on Notebook and select Create new note on the drop down. Name this note
Create and Manipulate RDDs.

a Zeppelin Notebook ~ Interpreter Configuration
Lab 101 . Intro t + Create new note 2

Create new note

Note Name

Create and Manipulate RDDs]|

Create Note

c. At the top right click on the gear icon to change interpreter binding.

Q) @Q default v

Introduction to Zeppelin {weeala o 08 ttea-

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 33

Lab 3: Creating and Manipulating RDDs (Scala)

Drag the spark-yarn-client to the top and click save.

Introduction to Zeppelin c2a o&

The first interpreter on the list becomes default.

d. Place the selfishgiant.txt file into the Zeppelin user’s home directory on HDFS,
/user/zeppelin. (There are no line breaks in the code below after $sh. Please refer
to the screenshot.)

%sh
hdfs dfs —-put /home/zeppelin/spark/data/selfishgiant.txt
/user/zeppelin/selfishgiant.txt

%sh
hdfs dfs -put /home/zeppelin/spark/data/selfishgiant.txt /user/zeppelin/selfishgiant.txt

O REMINDER:
b After entering a command, press Shift + Enter keys or press the Play button on the
- right side of the paragraph to execute the commands. The text to the left of the Play
button should change from READY to FINISHED when it is complete.

34 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 3: Creating and Manipulating RDDs (Scala)

e. Verify the file was uploaded successfully.

%sh
hdfs dfs —-1s /user/zeppelin

%sh
hdfs dfs -1s /user/zeppelin

Found 5 itenms

drwx------ - zeppelin zeppelin 0 2016-04-25 20:00 Juser/zeppelin/.Trash
drwxr-xr-x - zeppelin zeppelin © 2016-085-27 16:06 Juser/zeppelin/.sparkStaging
-rW-F--F-- 3 zeppelin zeppelin 4610348 2016-04-18 09:24 Juser/zeppelin/bank-full.csv
drwxr-xr-x - zeppelin zeppelin © 2016-05-27 16:50 Juser/zeppelin/iotdemo
“fW-F==F~~ 3 zeppelin zeppelin 8596 2016-05-30 10:52 Juser/zeppelin/selfishgiant.txt

f. Create an RDD named baseRdd using this file. Verify the RDD exists by using the
take () function to print the first line of the file.

val baseRdd = sc.textFile (“/user/zeppelin/selfishgiant.txt”)
baseRdd.take (1)

val baseRdd sc.textFile(" Juser/zeppelin/selfishglant.txt”™)
baseRdd. take(1)

baseRdd: org.apache.spark.rdd.ROD[String] = MapPartitionsRDD[32] at textFile at <console»:29
res10: Array[String) = Array(EVERY afternoon, as they were coming from school, the children used to go and play in t
he Gilant's garden.)

g.- Each line of the file is currently a string. Transform the lines into arrays of individual
elements (words) stored in a new RDD named splitRdd, then take a look at the first
five elements.

val splitRdd = baseRdd.flatMap(line => line.split (" "))
splitRdd.take (5)

val splitRdd = baseRdd.flatMap(line => line.split(" "))
splitRdd. take(5)

splitRdd: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[33] at flatMap at <console>:31
resl12: Array[String] = Array(EVERY, afternoon,, as, they, were)

h. Create a new RDD named filterRdd that only contains words in splitRdd that are
longer than 10 characters. Use collect () to view the entire output.

val filterRdd = splitRdd.filter (word => word.length () > 10)
filterRdd.collect ()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

35

Lab 3: Creating and Manipulating RDDs (Scala)

i. Display a count of the total number of words in splitRdd.

splitRdd.count ()

splitRdd.count()

resl6: Long = 1683

j- Create an RDD named distinctRdd that eliminates any duplicate words in sp1itRdd.
Then display a count of the number of distinct words in the RDD.

val distinctRdd = splitRdd.distinct ()
distinctRdd.count ()

val distinctRdd splitRdd.distinct()
distinctRdd.count()

distinctRdd: org.apache.spark.rdd.ROD[String] = MapPartitionsRDD[43] at distinct at <console>:33
res20: Long = 594

k. Save the contents of distinctRDD to text in HDFS. Put the contents in a folder named
“distinct” for future reference.

distinctRdd.saveAsTextFile (“/user/zeppelin/distinct”)

distinctRdd.saveAsTextFile(" /user/zeppelin/distinct")

I. Verify the contents of the RDD were written to HDFS.

%sh
hdfs dfs —-1s /user/zeppelin/distinct

%sh
hdfs dfs -1s /user/zeppelin/distinct

Found 3 items

“fW-F=-~F~~ 3 zeppelin zeppelin 0 2016-05-30 11:37 Juser/zeppelin/distinct/_SUCCESS
-fW-F--F-~ 3 zeppelin zeppelin 1987 2016-05-30 11:37 Juser/zeppelin/distinct/part-00000
“FW-F==-F~-- 3 zeppelin zeppelin 1860 2016-85-30 11:37 Juser/zeppelin/distinct/part-00001

m. View the contents of one of the part-* files and verify that an array of unique words
has been generated and saved. (Your output may differ from the screenshot below.)

$sh
hdfs dfs —-cat /user/zeppelin/distinct/part-00001

36 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 3: Creating and Manipulating RDDs (Scala)

%sh
hdfs dfs -cat /user/zeppelin/distinct/part-00001

furs,
BE
since
Winter
don't
spot,e
wall,
felt
wall.
seen
tree,
tree.
away.e
covered
corner

still

rhildran

n. Create an RDD named numbersRdd that contains an array of the following numbers:

15, 20, 95, and 80. View the contents of the RDD to verify it was successfully created.

val numbersRdd = sc.parallelize(List (15, 20, 95, 80))
numbersRdd.collect ()

val numbersRdd = sc.parallelize(List(15, 26, 95, 80))
nunbersRdd.collect()

nunbersRdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[46] at parallelize at <console>:29
res25: Array[Int] =~ Array(15, 20, 95, 890)

o. Display a count of the elements in numbersRdd, as well as the mean, standard
deviation, maximimum, and minimum values.

numbersRdd.stats ()

nunbersRdd.stats()

res27: org.apache.spark.util.StatCounter = (count: 4, mean: 52.500000, stdev: 35.443617, max: 95.000000, min: 15.0
00000)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

37

Lab 3: Creating and Manipulating RDDs (Scala)

p- Create a variable named maryFile that contains the string “Mary had a little lamb” and
then convert that variable into an RDD named maryRdd. View the RDD contents when

finished.

val maryFile = Array(“Mary had a little lamb”)
val maryRdd = sc.parallelize (maryFile)
maryRdd.collect ()

val maryFile Array("Mary had a little lamb™)
val maryRdd - sc.parallelize(maryFile)
maryRdd.collect()

maryFile: Array[String] = Array(Mary had a little lamb)
maryRdd: org.apache.spark.rdd.ROD[String] = ParallelCollectionRDD[49] at parallelize at <console>:31

res30: Array[String] = Array(Mary had a little lamb)

g. In Scala, to combine RDDs their types must match. Thus, if we attempt to perform a
union () using maryRdd and numbersRdd at this point, we will get a type mismatch
error. To alleviate this before the next lab step, cast the integer values in numbersRdd
to strings in an RDD named numbersRddString.

val numbersRddString = numbersRdd.map (num => num.toString)

val numbersRddString = numbersRdd.map(num => num.toString)
numbersRddString.collect()

numbersRddString: org.apache.spark.rdd.ROD[String] = MapPartitionsRDD[52] at map at <console>:31
res34: Array[String] = Array(15, 20, 95, 80)

% NOTE:
Vg

In Python, casting the integers to string values before performing a union () is handled
automatically, thus the equivalent to this step does not exist in the Python version of the
lab book.

38 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 3: Creating and Manipulating RDDs (Scala)

r. Create a new RDD named comboRdd that creates a union between maryRdd and
numbersRddString. Then view the combined RDD.

val comboRdd = maryRdd.union (numbersRddString)
comboRdd.collect ()

val comboRdd = maryRdd.union(numbersRddString)
comboRdd.collect()

comboRdd: org.apache.spark.rdd.RDD[String] = UnionRDD[53] at union at <console>:37
res36: Array[String] = Array(Mary had a little lamb, 15, 20, 95, 80)

Result

You have created several RDDs and performed various transactions and actions using the Zeppelin
notebook.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

39

Lab 4: Create and Manipulate Pair RDDs (Scala)

About This Lab

Objective:
Create pair RDD’s and use various functions to transform these RDD’s using Scala in Zeppelin.

File Locations:
/home/zeppelin/spark/data/

Successful Outcome:
REQUIRED: Create pair RDDs and perform various operations.
OPTIONAL: Complete challenge labs performing more complex operations.

Lab Steps

Perform the following steps:

1.

a.

% sandbox

Create a Pair RDD note in Zeppelin.

Open the Firefox browser and enter the following URL to view the Zeppelin Ul.

http://sandbox:9995/

‘Zeppelin Notebook ~ Interpreter Configuration

Qoe 3 &

Welcome to Zeppelin! (0.6.0-incubating-SNAPSHOT)

Zeppein is web-Dased notebook that enabies interactive data analytics.
You can make beausiul data-ceiven, nleractive, colaborative document with SOL. code and even more!

Notebook &

L

o Word Tueral O

Help

Gat startod with 2

Cammunity

Please feel free 10 help us to Improve Zeppein

Aty contributon are walkcome!

.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

M

Lab 4: Create and Manipulate Pair RDDs (Scala)

b. Click on Notebook and select Create new note on the drop down. Name this note Pair
RDDs.

a Zeppelin Notebook ~ Interpreter Configuration
Lab -I 01 . |n'|II'O t + Create new note r

Create new note

Note Name

‘ Pair Rdds|

Create Note

c. At the top right click on the gear icon to change interpreter binding.

Q) @Q default v

Introduction to Zeppelin s 2ala 0 08 wea-

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

Drag the spark-yarn-client to the top and click save.

Introduction to Zeppelin ez a oa

The first interpreter on the list becomes default.

m Cancel

2. Create a Pair RDD from a text file using map().

a. Recreate the RDD splitRDD using the selfishgiant.txt file by importing it to an
RDD as a text file and then flattening it into individual word elements. Then view the
first 5 words to confirm the RDD exists and is correctly formatted.

In the code below, there are no line breaks between splitRdd and (™ “)).Please
refer to the screenshot.

val splitRdd = sc.textFile (“/user/zeppelin/selfishgiant.txt”).flatMap (line =>
line.split (™ “))

splitRdd.take (5)

val splitRdd = sc.textFile("/user/zeppelin/selfishgiant.txt").flatMap(line => line.split(" "))
splitRdd. take(5)

splitRdd: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[226] at flatMap at <console>:29
resd0: Array[String] = Array(EVERY, afternoon,, as, they, were)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

43

Lab 4: Create and Manipulate Pair RDDs (Scala)

% NOTE:
P (

In the previous lab, this RDD creation was performed over two steps, creating an
intermediary RDD named baseRdd. The creation of the intermediary is not necessary
unless it needs to be used in a future step.

b. Use map () to create an RDD named mappedRdd that converts each element
into a key-value pair with a value of 1. View the first five elements to
confirm successful operation.

val mappedRdd = splitRdd.map (word => (word, 1))

mappedRdd. take (5)

val mappedRdd = splitRdd.map(word => (word, 1))
mappedRdd. take(5)|

mappedRdd: org.apache.spark.rdd.ROD[(String, Int)] = MapPartitionsRDD[227] at map at <console>:31
resd42: Array[(String, Int)] = Array((EVERY,1), (afternoon,,1), (as,1), (they,1), (were,1))

3. Create Pair RDDs using zip functions and perform simple transformations.

a. Create a variable named months that contains the values Jan, Feb, Mar, Apr, May,
Jun, and Jul as a list of string values. Convert this to an RDD named monthsRdd. Then
create another RDD named monthsIndexed0ORdd using zipWithIndex () to create a

Pair RDD that automatically assigns a value to each element based on its position in
the list.

REMINDER:
The first element will be assigned a value of “0” using this function.

val months = Array("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul")
val monthsRdd = sc.parallelize (months)
val monthsIndexedORdd = monthsRdd.zipWithIndex ()

monthsIndexed0ORdd.collect ()

val months = Array("Jan", "Feb", "Mar", "Apr”, "May", "Jun", "Jul")
val monthsRdd = sc.parallelize(months)

val monthsIndexedoRdd = monthsRdd.zipWithIndex()
monthsIndexed8Rdd.collect()

months: Array[String] = Array(Jan, Feb, Mar, Apr, May, Jun, Jul)

monthsRdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[228] at parallelize at <console>:31
ronthsIndexedoRdd: org.apache.spark.rdd.RDO[(String, Long)] = ZippedWithIndexRDD[229] at zipWithIndex at <console>:33
resd4: Array[(String, Long)] = Array((Jan,0), (Feb,1), (Mar,2), (Apr,3), (May,4), (Jun,S), (Jul,6))

44 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

b. Usemap () to convert the value for each month to the actual month number and store
this in a new RDD named monthsIndexedlRdd. For reference, Jan should have a
value of 1, Feb should have a value of 2, and so on. View the new RDD to confirm
success.

val monthsIndexedlRdd = monthsIndexedORdd.map{case (x,y) => (x, y + 1)}

monthsIndexedlRdd.collect ()

val monthsIndexediRdd = monthsIndexedORdd.map{case (x,y) => (x, y+1)}
monthsIndexed1Rdd.collect()

monthsIndexediRdd: org.apache.spark.rdd.RDD[(String, Long)] = MapPartitionsRDD[243] at map at <console>:35
res67: Array[(String, Long)] = Array((Jan,1), (Feb,2), (Mar,3), (Apr,4), (May,5), (Jun,6), (ul,7))

c. Usemapvalues () to convert the value for each month to the actual month number
and store this in a new RDD named monthsIndexed2Rdd. For reference, Jan should
have a value of 1, Feb should have a value of 2, and so on. View the new RDD to
confirm success.

val monthsIndexed2Rdd = monthsIndexedORdd.mapValues(y => y + 1)

monthsIndexed2Rdd.collect ()

val monthsIndexed2Rdd = monthsIndexed®Rdd.mapValues(y y +1)
monthsIndexed2Rdd.collect()

monthsIndexed2Rdd: org.apache.spark.rdd.ROD[(String, Long)] = MapPartitionsRDD[244) at mapValues at <console>:35
res69: Array[(String, Long)] = Array((Jan,1), (Feb,2), (Mar,3), (Apr,4), (May,5), (Jun,6), (Jul,7))

% NOTE:
F No difference exists between the two previous lab steps from Spark’s perspective. The
mapValues function simply performs a map () and returns the key without modification,
while performing the function you define on the value.

d. Create a variable named gquarters that contains the following seven values: 1, 1, 1,
2, 2, 2, and 3. Convert the variable into an RDD named quartersRdd. Then create
an RDD named monthsZipQuarters and use zip () to create a Pair RDD that assigns
each value from quartersRdd to a month in monthsRdd. Finally, view the output and
make sure that each month was assigned to the correct quarter in the final RDD.

val quarters = Array(l, 1, 1, 2, 2, 2, 3)
val quartersRdd = sc.parallelize (quarters)
val monthsZipQuarters = monthsRdd.zip (quartersRdd)

monthsZipQuarters.collect ()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

45

Lab 4: Create and Manipulate Pair RDDs (Scala)

val quarters = Array(1, 1, 1, 2, 2, 2, 3)

val quartersRdd = sc.parallelize(quarters)

val monthsZipQuarters = monthsRdd.zip(quartersRdd)
monthsZipQuarters.collect()

quarters: Array[Int] = Array(1, 1, 1, 2, 2, 2, 3)

quartersRdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[233] at parallelize at <console>:31
monthsZipQuarters: org.apache.spark.rdd.RDO[(String, Int)] = ZippedPartitionsRDD2[234] at zip at <console>:37
res52: Array[(String, Int)] = Array((Jan,1), (Feb,1), (Mar,1), (Apr,2), (May,2), (Jun,2), (Jul,3))

e. Perform the following operations on monthsZipQuarters without creating new RDDs:
view the keys only, view the values only, and view the contents of the RDD sorted
alphabetically by key.

monthsZipQuarters.keys.collect ()
monthsZipQuarters.values.collect ()

monthsZipQuarters.sortByKey () .collect ()

monthsZipQuarters.keys.collect()
monthsZipQuarters.values.collect()
monthsZipQuarters.sortByKey().collect()

resS59: Array[String] = Array(Jan, Feb, Mar, Apr, May, Jun, Jul)
res60: Array[Int] = Array(1, 1, 1, 2, 2, 2, 3)
res61: Array[(String, Int)] = Array((Apr,2), (Feb,1), (Jan,1), (Jul,3), (Jun,2), (Mar,1), (May,2))

4. Count the number of times words appear in a Pair RDD and manipulate the
output.

a. Use the mappedRDD created in a previous step and create a new RDD named
reducedByKeyRdd that reduces the file so that each word appears only once but has a
value equal to the number of times it appeared in the original RDD. View the first five
elements of the new RDD to confirm successful operation.

val reducedByKeyRdd = mappedRdd.reduceByKey ((x,y) => x+y)

reducedByKeyRdd. take (5)

val reducedByKeyRdd = mappedRdd.reduceByKey((x,y) => x+y)
reducedByKeyRdd. take(5)

reducedByKeyRdd: org.apache.spark.rdd.ROD[(String, Int)] = ShuffledRDD[242] at reduceByKey at <console>:33
res65: Array[(String, Int)] = Array((branches,4), (sweet,1), (herele,1), (rubbed,1), (country,1))

46 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

b. Usemap () to create a new RDD named f1ippedRdd that switches your keys and
values so that the current keys become the values, and the values become the keys.
View the first five elements of the new RDD to confirm successful operation.

val flippedRdd = reducedByKeyRdd.map{case (x,y) => (y,x)}

flippedRdd. take (5)
val flippedRdd = reducedByKeyRdd.map{case (x,y) => (y,x)}
flippedRdd. take(5)

flippedRdd: org.apache.spark.rdd.RDD[(Int, String)] = MapPartitionsRDD[245] at map at <console>:35
res71: Array[(Int, String)] = Array((1,rubbed), (4,branches), (1,herele), (1,under), (1,cold))

c. Create a new RDD named orderedRdd that manipulates £1ippedRDD and arranges
the words in descending order by number of times they appear. View the first five
elements of the new RDD to confirm successful operation.

val orderedRdd = flippedRdd.sortByKey (ascending = false)

orderedRdd. take (5)
val orderedRdd = flippedRdd.sortByKey(ascending = false)
orderedRdd. take(5)

orderedRdd: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[248] at sortByKey at <console>:37
res73: Array[(Int, String)] = Array((148,the), (85,and), (44,he), (38,t0), (32,was))

Result

You have successfully created and manipulated Pair RDD’s using various functions.

Challenge Labs

The labs below work with Pair RDDs to perform real-world operations. In some cases, the solutions to
the lab utilize programming techniques not explicitly described in the course lecture. These
techniques, however, should be clear and easy to understand by carefully following the instructions. If
you have questions and are in an instructor-supported class, please ask for assistance as needed.

You may want to start by creating a new notebook named Pair RDD Challenge Labs, but this is up to
you.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

Perform the following steps:

1.

Determine the airlines with the greatest number of flights.

a. Go back to a terminal window that has used SSH to connect to the sandbox Docker
environment and change to the /home/zeppelin/spark/data directory if necessary. View
the contents of this directory and confirm the existence of three files: airports.csv,
plane-data.csv, and flights.csv.

[zeppelin@sandbox datal# pwd
/home /zeppelin/spark/data
[zeppelin@sandbox datal# 1ls

alrports.csv data.txt plane-data.csv small_blocks. txt
carriers.csv flights.csv selfishgiant.txt

[zeppelin@sandbox datal#

b. Use head to view the first few lines of the flights.csv file.

head flights.csv

48

,4,2003,2211,WN,335,N7125W,128,116,-14,8,IAD,TPA,810,4,8,0,,0
,4,926,1054,WN,1746 ,N612SW,88,78,-6,-4,IND,BWI,515,3,7,0,,0

,4,1940,2121,WN,378,N7265SW,101,87,11,25,IND, JAX,688,4,10,0, ,0
,4,1937,2037,WN,509,N763SW, 240,230,57,67,IND,LAS,1591,3,7,0,,
,4,754,940 ,WN, 1144 ,N7785W,226,205,-15,9,IND,PHX,1489,5,16,

’

,4,1954,2239,WN,1754,N243WN,165,155,4,29,1ISP,FLL,1093,3,7,
,4,636,921,WN,2275,N454WN,165,147,-24,1,1SP,FLL,1093,5,13,0,,

,4,2107,2334,WN,362,N7985W,147,134,64,82,15P,MC0O,972,6,7,0,,0

4,1312,1546,WN,1397,N247WN,154,140,-4,12,15P,MC0O,972,7,7,0,,0
pelin@sandbox datal#

L

0

e,,0

,4,1422,1657 ,WN,188 ,N215WN,155,143,47,87,1SP,FLL,1093,6,6,0,,0
0,,0

0

Each column in the file can be interpreted using the guide below. The first comma-separated
value in each line (index number 0) represents the month, the second value represents the day
of the month, and so on. Of note for our purposes: the sixth value (index number 5) represents
the carrier for each flight.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

Field Index | Example data
Month 0 1
DayofMonth 1 3
DayOfWeek 2 4
DepTime 3 1738
AnTime 4 1841
UniqueCarrier | 5 WN
ElightNum. 6 3948
TailNum 7 N467WN
ElapsedTime 8 63
AirTime 9 49
ArrDelay. 10 1
DepDelay. 1 8
Origin 12 JAX
Dest 13 FLL
Distance 14 318
Taxiln 15 6
TaxiOut 16 8
Cancelled 17 0
CancellationCode. | 18

Diverted 19 0

c. Use Zeppelin to import this file into the /user/zeppelin folder in HDFS.

hdfs dfs -put /home/zeppelin/spark/data/flights.csv /user/zeppelin/flights.csv

%sh
hdfs dfs -put /home/zeppelin/spark/data/flights.csv /user/zeppelin/flights.csv

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

9 QUESTION:

[} Why do this in Zeppelin instead of from the command line?
ANSWER:

When the tasks are performed in a Zeppelin notebook, the entire series of actions can be
exported and then imported and replayed on another system. This will be discussed in
more detail in a later lab exercise.

d. Create an RDD named carrierRdd by performing the following transformations:
1. Import the text file from HDFS using sc.textFile ().

2. Split the lines into an array of individual elements using map ()
(Hint: The elements are comma-separated rather than space-separated as in previous
examples.)

3. Use map () to create a key-value pair from only the elements in the sixth column
(index number 5) - which can be specified by appending [5] to the anonymous
function value — and assign each instance a value of 1.

4. View the first five elements to confirm successful operation.

val carrierRdd = sc.textFile (“/user/zeppelin/flights.csv”) .map(x =>
x.split (Y, ”)) .map (column => (column(5),1))

carrierRdd.take (5)
val carrierRdd ~ sc.textFile("/user/zeppelin/flights.csv™).map(x x.split(”,")).map(column (column(5), 1))
carrierRdd.take(5)

carrierRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[252] at map at <console>:29

res75: Array[(String, Int)] = Array((WN,1), (WN,1), (WN,1), (WN,1), (WN,1))

% NOTE:
Vg

As in a previous example, these operations to create carrierRdd could have been
performed in stages, using intermediate RDDs at each transformation step. We do not
need the data in these intermediate forms, however, so chaining together multiple
transformations to get to the final output works fine.

e. Perform a reduce and sort the results, then display the top three carrier codes by
number of flights based on this data.

val carriersSorted = carrierRdd.reduceByKey((x,y) => xty) .map{case (a,b) =>
(b,a) }.sortByKey (ascending = false)

carriersSorted. take (3)

50 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

val carriersSorted = carrierRdd.reduceByKey((x,y) x+y).map{case (a,b) (b,a)}.sortByKey(ascending = false)
carriersSorted. take(3)

carriersSorted: org.apache.spark.rdd.ROD[(Int, String)] = ShuffledRDD[257] at sortByKey at <consolex:31

res77: Array[(Int, String)] = Array((356167,WN), (175969,AA), (166445,00))

2. Determine the most common routes between two cities.

a. The next exercise uses the f1ights.csv file from the previous lab, as well as the
airports.csv file. Go back to the terminal window and take a look at the first few lines of
the airports.csv file.

head airports.csv

[zeppelin@sandbox datal# pwd

/home /zeppelin/spark/data

[zeppelin@sandbox datal# head airports.csv
iata,airport,city,state,country,lat,long

00M, Thigpen,BaySprings,MS,USA,31.95376472,-89.23450472
@0R,LivingstonMunicipal,Livingston,TX,USA,30.68586111,-95.01792778
00V ,MeadowlLake,ColoradoSprings,CO,USA,38.94574889,-104.5698933

01G,Perry-Warsaw,Perry,NY,USA,42.74134667,-78.05208056

©1J,HilliardAirpark,Hilliard,FL,USA,30.6880125,-81.90594389

©1M,TishomingoCounty,Belmont,MS,USA,34.49166667,-88.20111111

©2A,Gragg-Wade,Clanton,AL,USA,32.85048667,-86.61145333

©2C,Capitol,Brookfield,WI,USA,43.08751,-88.17786917

02G,ColumbianaCounty,EastLiverpool,0H,USA,40.67331278,-80.64140639
zeppelin@sandbox datal#

Each column in the file can be interpreted using the guide below. The first comma-separated value in
each line (index number 0) represents the airport code, the second value represents the airport name,
and so on. Of note for our purposes: the airport code (index number 0) and the airport city (index
number 2).

Field Index | Example
AirportCode | 0 00M

Airport 1 Thigpen

City 2 Bay Springs
State 3 MS

Country 4 USA

Lat 5 31.95376472
Long 6 -89.23450472

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

51

Lab 4: Create and Manipulate Pair RDDs (Scala)

From the flights.csv file used earlier, columns 13 and 14 (index values 12 and 13) will be used in
this exercise.

Field Index | Example data

Origin | 12 JAX

Dest | 13 FLL

b. Use Zeppelin to import the airports.csv file into the /user/zeppelin folder in HDFS.

$sh

hdfs dfs -put /home/zeppelin/spark/data/airports.csv
/user/zeppelin/airports.csv

%sh
hdfs dfs -put /home/zeppelin/spark/data/airports.csv /user/zeppelin/airports.csv
c. Create an RDD named cityRdd by performing the following transformations:
1. Import the text file from HDFS using sc.textFile ().

2. Split the lines into an array of individual elements using map ()
(Hint: Once again, the elements are comma-separated rather than space-separated.)

3. Use map () to pull out only the airport code and city elements in the first and third
columns (index numbers 0 and 2).

4. View the first five elements to confirm successful operation.

val cityRdd = sc.textFile (“/user/zeppelin/airports.csv”) .map(x =>
x.split (Y, ”)) .map (column => (column(0), column(2)))

cityRdd.take (5)

val cityRdd - sc.textFile("/user/zeppelin/airports.csv™).map(x => x.split(”,")).map(column => (column(8), column(2)))
cityRdd. take(5)|

cityRdd: org.aspache.spark.rdd.ROD[(String, String)] = MapPartitionsRDD[261]) at map at <console»:29
res79: Array[(String, String)] = Array((iata,city), (06M,BaySprings), (86R,Livingston), (86V,ColoradoSprings), (01G,Perry))

52 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

d. Create an RDD named f1ightOrigDestRdd by performing the following
transformations:

1. Import the text file from HDFS using sc.textFile ().
2. Split the lines into an array of individual elements using map () .

3. Use map () to pull out only the origin and destination elements in the 13th and 14th
columns (index numbers 12 and 13).

4. View the first five elements to confirm successful operation.

% NOTE:
Py

Some of this code can be copied and pasted from a previous paragraph in the Zeppelin
notebook.

val flightOrigDestRdd = sc.textFile (“/user/zeppelin/flights.csv”) .map (x =>
x.split (Y, ”)) .map (column => (column (12),column (13)))

flightOrigDestRdd. take (5)

Jal flightOrigDestRdd = sc.textFile("/user/zeppelin/flights.csv™).map(x x.split(”,")).nap(column => (column(12), column(13)))
flightOrigDestRdd. take(5)

flightOrigDestRdd: org.apache.spark.rdd.ROD[(String, String)] = MapPartitionsRDD[265] at map at <console>:29
res81: Array[(String, String)] = Array((IAD,TPA), (IND,BWI), (IND,JAX), (IND,LAS), (IND,PHX))

e. Use join() tojoin f1ightOrigDestRdd and cityRdd into a third RDD named
origJoinRdd.

This operation will result in an RDD that contains the origin code as the key, with a
value of (destination code, origin city). This is half of the operation needed to get origin
and destination cities.

View the first five elements to confirm successful operation.

val origJoinRdd = flightOrigDestRdd.join (cityRdd)
origJoinRdd. take (5)

val origloinRdd = flightOrigDestRdd. join(cityRdd)
origloinRdd. take(S)

origloinRdd: org.apache.spark.rdd.ROD[(String, (Strimng, String))] = MapPartitionsRDD[268] at join at <console»:})
resB3: Array[(String, (String, String))] = Array((RIC,(CLE,Richmond)), (RIC,(EWR,Richmond)), (RIC,(EWR,Richmond)), (RIC,(EWR,Richmond)), (RIC,(

EWR ,Richmond)))

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

53

Lab 4: Create and Manipulate Pair RDDs (Scala)

f. Nextuse join () again to create an RDD named destOrigJoinRdd using
origJoinRdd as a source and joining it cityRdd once again. Before performing the
join operation, use values () to filter out the origin code (which is no longer needed)
and pull out only the destination code and city name from the previous transformation.

This operation will result in an RDD that contains the destination code as the key, with
a value of (origin city, destination city).

View the first five elements to confirm successful operation.

val destOrigJoinRdd = origJdoinRdd.values.join (cityRdd)

destOrigJdoinRdd. take (5)

val destOrigloinRdd « origloinRdd.values.join(cityRdd)
destOrigloinRdd. take($)

1SRO0[272] at joim at «console»:3$
lando,Richmond)), (RIC,(Orlando,Richmond)), (RIC,(Orlando,Ri

destOrigloinRdd: org.apache.spark.rdd.ROO[(String, (String, String))] = MapPartitio

res85: Array[(String, (String, String))) = Array((RIC,(Orlando,Richmond)), (RIC,(Or

chmond)), (RIC,(Orlando,Richmond)))

g. Create another RDD named citiesCleanedRdd that contains only the values of the
destOrigJoinRdd (in other words, just the origin and destination city names). View
the first five elements to confirm successful operation.

val citiesCleanedRdd = destOrigJoinRdd.values
citiesCleanedRdd. take (5)

L citiesCleanedRdd ~ destOrigloinRdd.values
cltiesCleanedrdd. take(s)

citiesCleanedRdd: org.apache.spark.rdd.ROD[(String, Strimg)] = MapPartitionsROO[273] at values at <comsole>:37

resB7: Array[(String, String)] = Array((Philadelphia,Richmond), (Philadelphia,Richmond), (Philadelphia,Richmond), (Philadelphia,Richmond), (Phi

ladelphia,Richmond))

h. Usemap () to convert the key-value pairs in citiesCleanedRdd into keys for a new
RDD named citiesKV, and give each key a value of 1. View the first five elements to
confirm successful operation.

val citiesKV = citiesCleanedRdd.map (cities => (cities, 1))

citiesKV.take (5)

2l citieskv « citiesCleanedRdd.map(cities (cities, 1))
citieskV.take(5)

ache.spark.rdd.ROO[((String, String), Int)] = MapPartitionsROD[274] at map at <console»:39

citieskV: org.a
[ring, String), Int)] = Array(((Orlando,Richmond),1), ((Orlando,Richmond),1), ((Orlando,Richmond),1), ((Orlando,Richmond),1), (

((
(Orlando,Richmond), 1))

resB8S: Arra

54 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

i. Create an RDD named citiesReducedSortedRdd that reduces by key, swaps the
keys and values, and then sorts by key in descending order. View the first three
elements to confirm successful operation.

val citiesReducedSortedRdd = citiesKV.reduceByKey ((x,y) => x+ty).map{case (x,Vy)
=> (y,x)}.sortByKey(ascending = false)

citiesReducedSortedRdd. take (3)

1 citiesReducedSortedRdd = citieskV.reduceByKey((x,y) x+y).map{case (x,y) (y,x)}.sortByKey(ascending alse)
citiesReducedSortedRdd. take(3)

citiesReducedSortedRdd: org.apache.spark.rdd.ROD[(Int, (String, String))] = ShuffledRDD[279] at sortByKey at <console>:41
res91: Array[(Int, (String, String))] = Array((5548,(NewYork,Boston)), (5478,(Boston, NewYork)), (4183,(Chicago,NewYork)))

% NOTE:
P (

The top three origin city / destination combinations are New York to Boston, Boston to
New York, and Chicago to New York.

3. Find the longest departure delays for any airline that experienced a delay of 15
minutes or more.

a. This exercise once again uses the flights.csv file. This time we use the unique carrier
code in column 6 (index value 5) and the departure delay value in minutes, which is in
column 12 (index value 11).

Field Index | Example data

UniqueCarrier | 5 WN
DepDelay 1 8

b. Create an RDD named delayRdd by performing the following transformations:
1. Import the flights.csv file from HDFS using sc.textFile ().
2. Split the lines into an array of individual elements using map ().
3.Use filter () to remove any lines for which the value of column 12 (index value 11)
is less than 15. Because the sc.textFile () operation reads in all values as strings,
you will need to cast the values in column 12 as integers prior to performing the
filter () evaluation.
4. Use map () to pull out only the carrier code and departure delay elements in the 6th

and 12th columns (index numbers 5 and 11). Store the values from column 12 as
integers.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

5. View the first five elements to confirm successful operation.

val delayRdd = sc.textFile (“/user/zeppelin/flights.csv”) .map(x =>
x.split (Y,”)).filter (delay => (delay(ll).toInt) > 15).map(column => (column(5),
column (11) .toInt))

delayRdd.take (5)

ol delay®dd = sc.textFiled" fuser/zeppelin/flights. cov”) map(x x,5plie (", 7)), fllter(delay (delay(11).t0lnt) > 15).map(column {colemn(5), colum({11).t0lnt))
delayRdd. take(5)

delayfRdd: org.apache.spark.rdd . ROO[(String, Int)) = MapPartiticnsRID(280] at map at <consoles»:3l
res96: Array[(String, Int)] = Array((WN,25), (WN,67), (WN B7), (WN,29), (WN,B2))

For sake or readability, here is another screenshot of the above code with lines wrapped so
that the code can be viewed in a larger font.

val delayRdd = sc.textFile("/user/zeppelin/flights.csv").map(x => x.split(",")).filter(delay => (delay(11).tolnt) > 15
).map(column => (column(5), column(11).tolnt))
delayRdd. take(5)

delayRdd: org.apache.spark.rdd.ROD[(String, Int)] = MapPartitionsRDD[289] at map at <console>:31
res96: Array[(String, Int)] = Array((WN,25), (WN,67), (WN,87), (WN,29), (WN,82))

c. Create an RDD named delayMaxRdd that reduces the elements in delayRdd and
returns only the longest delay per airline. For this exercise, it is not necessary to sort
the values from largest to smallest.

Display five values to confirm successful operation.

' REMINDER:

The reduce operation will need to compare all values for the same key and only keep the
largest value in the final output.

The values in delayRdd were converted to integers in the previous step.

val delayMaxRdd = delayRdd.reduceByKey ((x,y) => math.max(x, Vy))

delayMaxRdd.take (5)

val delayMaxRdd = delayRdd.reduceByKey((x,y) => math.max(x, y))
delayMaxRdd. take(5S)

delayMaxRdd: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[290] at reduceByKey at <console>:31
res98: Array[(String, Int)] = Array((B6,665), (FL,677), (00,767), (AS,691), (UA,1268))

56 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

4 . Remove records than contain incomplete data from a file.

a. The next exercise uses the plane-data.csv. Go back to the terminal window and take a
look at the first few lines of the plane-data.csv file.

head plane-data.csv

[root@sandbox datal# pwd

/home /zeppelin/spark/data

[root@sandbox datal# head plane-data.csv

tailnum, type,manufacturer,issue_date,model,status,aircraft_type,engine_type,year

root@sandbox datal#

In the screenshot above, this file contains the column header names, followed by the column
values. In this case, the first few records only have values for the first column, and the rest of
the values are blank.

To see what complete records should look like, take a look at the last few lines of the file.

tail plane-data.csv

[root@sandbox datal# tail plane-data.csv
N995AT,Corporation,BOEING,11/068/2002,717-200,Valid,Fixed Wing Multi-Engine,Turbg
-Fan, 2002

N995DL ,Corporation,MCDONNELL DOUGLAS AIRCRAFT C0,03/06/1992,MD-88,Valid,Fixed Wi
ng Multi-Engine,Turbo-Fan,1991
N996AT,Corporation,BOEING,07/30/2002,717-200,Valid,Fixed Wing Multi-Engine,Turbg
-Fan, 2002

N996DL ,Corporation,MCDONNELL DOUGLAS AIRCRAFT C0,02/27/1992,MD-88,Valid,Fixed Wi
ng Multi-Engine,Turbo-Fan,1991
N997AT,Corporation,BOEING,01/02/2003,717-200,Valid,Fixed Wing Multi-Engine,Turbg
-Fan,2002

N9970DL ,Corporation,MCDONNELL DOUGLAS AIRCRAFT C0,03/11/1992,MD-88,Valid,Fixed Wi
ng Multi-Engine,Turbo-Fan,1992
N998AT,Corporation,BOEING,01/23/2003,717-200,Valid,Fixed Wing Multi-Engine,Turbg
-Fan,2002

N998DL ,Corporation,MCDONNELL DOUGLAS CORPORATION,04/62/1992,MD-88,Valid,Fixed W
ng Multi-Engine,Turbo-Jet,1992

N999CA,Foreign Corporation,CANADAIR,07/09/2008,CL-600-2B19,Valid,Fixed Wing Mult
i-Engine,Turbo-Jet,1998

N999DN,Corporation,MCDONNELL DOUGLAS CORPORATION,04/02/1992,MD-88,Valid,Fixed W
ng Multi-Engine,Turbo-Jet,1992

[root@sandbox datal# [|

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)

Each column in the file can be interpreted using the guide below. Note that there are nine
possible column values for each record (index 0 through 8).

Field Index | Example

Tailnum 0 N10156

Type 1 Corporation

Manufacturer | 2 EMBRAER

Issue_date 3 02/13/2004

Model 4 EMB-145XR

Status 5 Valid

Aircraft_type | 6 Fixed Wing Multi-Engine
Engine_type | 7 Turbo-Fan

Year 8 2004

b. Use Zeppelin to import the plane-data.csv file into the /user/zeppelin folder in
HDFS.
%sh

hdfs dfs -put /home/zeppelin/spark/data/plane-data.csv /user/zeppelin/plane-
data.csv

%sh
hdfs dfs -put /home/zeppelin/spark/data/plane-data.csv /user/zeppelin/plane-data.csv

c. Create an RDD named planeDataRdd from the plane-data.csv file. Before performing
any transformations, use count () to display the number of lines in the RDD.

val planeDataRdd = sc.textFile (“/user/zeppelin/plane-data.csv”)

planeDataRdd.count ()

val planeDataRdd = sc.textFile("/user/zeppelin/plane-data.csv")
planeDataRdd.count()

planeDataRdd: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[292] at textFile at <console>:29
res100: Long = 5030

58 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 4: Create and Manipulate Pair RDDs (Scala)
d. Create an RDD named cleanedPlaneDataRdd by performing the following
transformations:
1. Start with planeDataRdd from the previous step.

2. Split the lines into an array of individual elements using map () . (Hint: The elements
are comma-separated.)

3.Use filter () to remove any lines that do not have a length of exactly 9 elements.

4. Use count () to display the number of lines in the new RDD and confirm that the
data set contains fewer lines than before.

val cleanedPlaneDataRdd = planeDataRdd.map (x => x.split(“,”)).filter (elements
=> elements.length == 9)

cleanedPlaneDataRdd.count ()

bal cleanedPlaneDataRdd = planeDataRdd.map(x => x.split(",")).filter(elements elements.length 9)
cleanedPlaneDataRdd.count()

cleanedPlaneDataRdd: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[294] at filter at <console>:31

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

59

Lab 4: Create and Manipulate Pair RDDs (Scala)

Bonus Challenge Labs

The lab exercises below are for advanced students only. Instructor support and solutions will *not* be
provided for these exercises. Some of the coding skills required to complete exercise 6 have not been
covered in this class.

Perform the following steps:
1. Extend CHALLENGE LABS exercise 4 by finding the top three most common
airplane models for flights over 1500 miles.

Both flights.csv and plane-data.csv will be used to solve this exercise.

2. Extend CHALLENGE LABS exercises 1 and 3 by returning the names of the
airlines rather than their carrier codes.

To perform this extension, another file in the /home/zeppelin/spark/data directory must
be used: carriers.csv. The data in this file contains two columns, as indicated below:

Field Index | Example
Code 0 WN
Description | 1 Southwest

This data contains additional challenges. The first row of the data contains column headers, just like
plane-data.csv did. However, in addition, in some cases the description of the airline includes a
comma that is not meant to separate values. For example, the airline with code 099 is has a
description of swift Air, LLC. The comma is part of the business name.

Good luck!

60 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 5: Basic Spark Streaming (Scala)

About This Lab

Objective:
Set up basic Spark Streaming operations using the REPL

File Locations:
/root/spark/data/

Successful Outcome:
Stream data from HDFS directories and TCP sockets using Spark Streaming

Lab Steps

Perform the following steps:
1. Use an HDFS directory as a streaming source.

a. Open a terminal window and SSH into sandbox.

ssh sandbox

root@ubuntu:~# ssh sandbox

b. Create an HDFS directory for streaming output.

hdfs dfs -mkdir /user/root/test/stream

c. Start a new REPL specifying the local machine as the master and allocate two cores for

the streaming application.

spark-shell --master local[2]

[root@sandbox ~]# spark-shell --master local[2]

d. Set the log level to ERROR to avoid screen clutter while running the streaming

application.

scala> sc.setLogLevel ("ERROR")

scala> sc.setLogLevel("ERROR")

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

61

Lab 5: Basic Spark Streaming (Scala)

e. Import the streaming library.

scala> import org.apache.spark.streaming.

scala> import org.apache.spark.streaming._

import org.apache.spark.streaming._

f. Create a streaming context with a five-second batch duration

scala> val sscFive =

new StreamingContext (sc, Seconds (5))

scala> val sscFive = new StreamingContext(sc, Seconds(5))
sscFive: org.apache.spark.streaming.StreamingContext

= org.apache.spark.streamin
g.StreamingContext@3e216fcH9

g- Create a DStream using textFileStream () to monitor the local HDFS directory
/user/root/test/.

scala> val hdfsInputDS =

sscFive.textFileStream (" /user/root/test/")

scala> val hdfsInputDS =

sscFive.textFileStream(" /user/root/test/")
hdfsInputDS: org.apache.spark.streaming.dstream.DStream[String]

= org.apache.spa
rk.streaming.dstream.MappedDStream@dcf93f80

h. Use saveAsTextFiles () to save the outputs to /user/root/test/stream.

scala> hdfsInputDS.saveAsTextFiles ("/user/root/test/stream/")

scala> hdfsInputDS.saveAsTextFiles("/user/root/test/stream/")

i. Print out the output to the terminal window.

scala> hdfsInputDS.print ()

scala> hdfsInputDS.print()

j- Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

scala> sscFive.start ()

scala> sscFive.start()

62 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 5: Basic Spark Streaming (Scala)

cala> sscFive.start()

ime: 1464638885000 ms

k. Open a new terminal window, SSH to sandbox, and place the input file selfishgiant.txt
from /root/spark/data into the folder. Observe what happens a few seconds later in
the streaming terminal window.

ssh sandbox

hdfs dfs -put /root/spark/data/selfishgiant.txt /user/root/test/

root@ubuntu:~# ssh sandbox

[root@sandbox ~]# hdfs dfs -put /root/spark/data/selfishgiant.txt /user/root/te
/selfishgiant. txt

andbox:8020/user /root/.Trash/Current

oot@sandbox ~]# hdfs dfs -put /root/spark/data/selfishglant.txt /user/root/tes

selfishglant.txt

oot@sandbox ~1# i
Help
birds sat on the trees and sa
games in order to listen to t
ther.

<. He had been to visit his fr
seven years. After the seven

, for his conversation was lim
2. When he arrived he saw the d

? he cried in a very gruff void

My own garden is ny own garden,? sald the Glant; ?any o
and I will allow nobody to play in it but myself.? So he
ound it, and put up a notice-board.

% NOTE:
P (

You are free to upload additional files to see more streaming take place if you want.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

63

Lab 5: Basic Spark Streaming (Scala)

. Once you observe data being streamed on-screen in the first terminal window, use the
second terminal window to list the contents of the /user/root/test/stream/
directory on HDFS.

#hdfs dfs —-1s /user/root/test/stream/

[root@sandbox ~]# hdfs dfs -1s Juser/root/test/stream

-1464630920000
drwxr-xr-x - 05-30 13:55 /user/root/test/stream/name
-1464630925000
drwxr-xr-x - -05-30 13:55 Juser/root/test/stream/name
-1464630930000
drwxr-xr-x - -05-30 13:55 Juser/root/test/stream/name
-1464630935000
drwxr-xr-x - -05-30 13:55 /user/root/test/stream/name
-1464630940000
drwxr-xr-x - -05-30 13:55 Juser/root/test/stream/name
-1464630945000
drwxr-xr-x - -05-30 13:55 /user/root/test/stream/nam
-1464630950000
drwxr-xr-x - -05-30 13:55 /user/root/test/stream/name
-1464630955000
drwxr-xr-x - -05-30 13:56 /user/root/test/stream/name
-1464630960000
drwxr-xr-x - -05-30 13:56 fuser/root/test/stream/name
-1464630965000
drwxr-xr-x - 13:56 /Juser/root/test/stream/name
-1464630970000
drwxr-xr-x - 13:56 /user/root/test/stream/name
-1464630975000

m. In the first terminal window, stop the stream and exit the REPL. If the stream refreshes
while you are typing, that will not affect the input. Simply continue to type the
command and press enter.

sc.stop ()
exit ()

2. Use a TCP socket as a streaming source.

a. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

spark-shell --master local[2]

[root@sandbox ~]# spark-shell --master local[2]

b. Set the log level to ERROR to avoid screen clutter while running the streaming
application.

scala> sc.setLogLevel ("ERROR")

scala> sc.setLogLevel("ERROR")

64 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 5: Basic Spark Streaming (Scala)

c. Import the streaming library.

scala> import org.apache.spark.streaming.

scala> import org.apache.spark.streaming._

import org.apache.spark.streaming._

d. Create a streaming context with a five-second batch duration.

scala> val sscFive = new StreamingContext (sc, Seconds (5))

scala> val sscFive = new StreamingContext(sc, Seconds(5))

sscFive: org.apache.spark.streaming.StreamingContext = org.apache.spark.streamin
g.StreamingContext@3e216fc9

e. Create a DStream using socketTestStream () to the system named “sandbox” on
port 9999.

scala> val inputDS = sscFive.socketTextStream ("sandbox", 9999)

scala> val inputDS = sscFive.socketTextStream("sandbox",9999)
inputDS: org.apache.spark.streaming.dstream.ReceiverInputDStream[String] = org.a

pache.spark.streaming.dstream.SocketInputDStream@dcaeeabs

f. Use saveAsTextFiles () to save the outputs to /user/root/test/stream

scala> inputDS.saveAsTextFiles ("/user/root/test/stream/")

scala> inputDS.saveAsTextFiles("/user/root/test/stream/")

g. Print out the output to the terminal window.

scala> inputDS.print ()

scala> inputDS.print()

h. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

scala> sscFive.start ()

scala> sscFive.start()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 65

Lab 5: Basic Spark Streaming (Scala)

at org.apache.spark.streaming.dstrean.SocketReceiver$Sanon$2.run(Socke
nputDStream.scala:59)

16/65/30 16:20:58 ERROR ReceiverTracker: Deregistered receiver for stream 0: R
tarting receiver with delay 2000ms: Error connecting to sandbox:999 - java.net
onnectException: Connection refused

at java.net.PlainSocketImpl.socketConnect(Native Method)

at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.
va:345)

at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSock
Impl.java:206)

at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.ja
:188)

at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)

at java.net.Socket.connect(Socket. java:589)

at java.net.Socket.connect(Socket.java:538)

at java.net.Socket.<init>(Socket.java:434)

at java.net.Socket.<init>(Socket.java:211)

at org.apache.spark.streaming.dstrean.SocketReceliver.receive(SocketInp
DStream.scala:73)

at org.apache.spark.streaming.dstrean.SocketReceiverS$SanonsS2.run(Socke
nputDStream.scala:59)

IMPORTANT:

An error will appear when the application starts because the application is waiting for an
input connection.

i. Inthe second terminal window use the netcat utility to create a connection to port
9999.

nc -1lkv 9999

[root@sandbox ~]# nc -1lkv 9999
Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted

j- Start typing words separated by space, hit Enter occasionally to submit them. Observe
what happens in the streaming terminal window a few seconds after hitting Enter.

Connection from 172.17.0.1 port 9999 [tcp/distinct) accepted
welcone to spark streaning

Help
s<init>(Socket. jova:211)
<.streaming.dstrean.SocketRecelver.recelve(Socketinput

<.streaming.dstrean.SocketRecelvers$Sanons2. run{Socketl

Time: 1464640255000 ns

welcone to spark streaning

66 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 5: Basic Spark Streaming (Scala)

k. Once you observe data being streamed on-screen in the first terminal window, use Ctrl
+ C (or Cmd + C if using a Mac) to exit netcat in the second terminal window.

[root@sandbox datal]# nc -1lkv 9999
Hello world
This is an example of streaming data

Random words random words
AC
[root@sandbox datal# I

. Use the second terminal window to list the contents of the
/user/root/test/stream/ directory on HDFS. Note the time stamps on the files.

#hdfs dfs —-1ls /user/root/test/stream/

[root@sandbox ~]# hdfs dfs -ls Juser/root/test/stream

-1464630920000
drwxr-xr-x - -05- H Juser/root/test/stream/name
-1464630925000
drwxr-xr-x - -05- H Juser /root/test/stream/name
-1464630930000
drwxr-xr-x - -05- : Juser /root/test/stream/name
-1464630935000
drwxr-xr-x - -05- H Juser /root/test/stream/name
-1464630940000
drwxr-xr-x - -05- H Juser /root/test/stream/name
-1464630945000
drwxr-xr-x - -05- : Juser /root/test/stream/nam
-14646309560000
drwxr-xr-x - -05- : Juser /root/test/stream/name
-1464630955000
drwxr-xr-x - -05- : Juser /root/test/stream/name
-1464630960000
drwxr-xr-x - -05- :56 Juser/root/test/stream/name
-1464630965000
drwxr-xr-x - -05- - Juser /root/test/stream/name
-1464630970000
drwxr-xr-x - -05- = Juser /root/test/stream/name
-1464630975000

m. In the first terminal window, stop the stream and exit the REPL. If the stream refreshes
while you are typing, that will not affect the input. Simply continue to type the
command and press Enter.

sc.stop ()
exit ()

Result

You have created data streams from HDFS and TCP socket sources, observed the stream in real-time,
and observed text files created from those streams for long-term storage and future use.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 6: Basic Spark Streaming Transformations (Scala)

About This Lab

Objective:
Learn to use basic Spark Streaming transformations on data streams

File Locations:
/root/spark/data/

Successful Outcome:
Perform several basic transformations on streaming data

Lab Steps

Perform the following steps:
1. Perform a Spark Streaming transformations using flatmap().

a. Open a terminal, connect to the sandbox cluster using SSH, and start a new instance of
the REPL that is configured to use two CPU cores.

ssh sandbox
spark-shell --master local[2]

[root@sandbox ~]# spark-shell --master local[2]

b. Create a data stream the performs the following operations:
1. Sets the log level to “ERROR"”
2. Imports the StreamingContext class
3. Creates an instance of that class named sscFive with a five-second time window

4. Creates a socket text DStream named inputDsS that listens to “sandbox” on port
9999

5. Saves the DStream to text files in the /user/root/test/stream/ directory.

6. Creates a DStream named f1atMapDS that uses flatMap () to break lines into
individual elements separated by spaces

7. Prints the contents of f1atMapDs to the screen

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 69

Lab 6: Basic Spark Streaming Transformations (Scala)

8. Starts the application

scala> sc.setLogLevel ("ERROR")

scala> sc.setLogLevel("ERROR")

scala> import org.apache.spark.streaming.

scala> import org.apache.spark.streaming._
import org.apache.spark.streaming._

scala> val sscFive = new StreamingContext (sc, Seconds (5))

scala> val sscFive = new StreamingContext(sc, Seconds(5))
sscFive: org.apache.spark.streaming.StreamingContext = org.apache.spark.streamin
g.StreamingContext@3e216fc9

scala> val inputDS = sscFive.socketTextStream ("sandbox", 9999)

cala> val inputDS = sscFive.socketTextStream("sandbox" ,9999)
nputDS: org.apache.spark.streaming.dstream.ReceiverInputDStream[String] = org.a
pache.spark.streaming.dstream.SocketInputDStream@1fbsbgse

scala> inputDS.saveAsTextFiles ("/user/root/test/stream/")

scala> inputDS.saveAsTextFiles("/user/root/test/stream/")

scala> val flatMapDS = inputDS.flatMap(.split (™ “))

scala> val flatMapDS = inputDS.flatMap(_.split(" "))
flatMapDS: org.apache.spark.streaming.dstream.DStream[String] = org.apache.spark

.streaming.dstream.FlatMappedDStream@2cdb1581

scala> flatMapDS.print ()

scala> flatMapDS.print()

scala> sscFive.start ()

scala> sscFive.start()

70 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 6: Basic Spark Streaming Transformations (Scala)

tarting receiver with delay 2000ms: Error connecting to sandbox:9999 java.net.
ConnectException: Connection refused

PlainSocketImpl.socketConnect(Native Method)
AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl. ja

at java.net,
at java.net.

ERELLY)

at java.net.

Impl.java:206)

java.net.

1188)

t java.net.
t java.net.
t java.net.
java.net.
java.net.

AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocket
AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl. java

socksSocketImpl.connect(SocksSocketImpl. java:392)
Socket.connect(Socket.java:589)
Socket.connect(Socket. java:538)
Socket.<init>(Socket.java:434)
socket.<init>(Socket.java:211)

at org.apache.spark.streaming.dstream.SocketRecelver.recelve(SocketInput

DStream.scala:73)

at org.apache.spark.streaming.dstream.SocketReceiver$Sanon$2.run(Socketl
nputDStream.scala:59)

'\ NOTE:
» You will see an error when it starts because it is waiting for an input connection.

c. Open a new terminal window, connect to the sandbox cluster, and connect to port

9999 using the netcat utility. Make sure both terminal windows are visible on-screen.

ssh sandbox

root@ubuntu:~# ssh sandbox

d. Inthe netcat terminal, start typing words separated by spaces. Hit the Enter key
occasionally to submit them to the stream. Observe how the words appear in the
streaming window.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

71

Lab 6: Basic Spark Streaming Transformations (Scala)

File Edit View Search Terminal Help

root@ubuntu: ~

streaning

i File Edit View Search Terminal Help
transformation .
[root@sandbox ~]8 nc -lkv 9999

Connection from 172.17.06.1 port 9999 [tcp/distinct] accepted
spark streaming transformation

this should appear as a list

e. Inthe streaming window, stop the stream and exit the REPL.

sc.stop ()
exit ()

f. In the netcat window, exit the socket by entering Ctrl + C (or CMD + C if using a Mac)
on your keyboard.

o E

[root@sandbox ~]#

2. Perform a Spark Streaming word count transformations using reduceByKey().

a. In the streaming window, start a new instance of the REPL that is configured to use two
CPU cores.

spark-shell --master local[2]

[root@sandbox ~]# spark-shell --master local[2]

b. Create a data stream the performs the following operations:
1. Sets the log level to “ERROR"”
2. Imports the StreamingContext class
3. Creates an instance of that class named sscFive with a five-second time window

4. Creates a socket text DStream named inputDs that listens to “sandbox” on port
9999

72 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 6: Basic Spark Streaming Transformations (Scala)

5. Saves the DStream to text files in the /user/root/test/stream/ directory.

6. Creates a DStream named wc that uses flatMap (), map (), and reduceByKey () to
count the number of times a word appears in a stream

7. Prints the contents of wc to the screen

8. Starts the application

scala> sc.setLogLevel ("ERROR")

scala> sc.setLogLevel("ERROR")

scala> import org.apache.spark.streaming.

scala> import org.apache.spark.streaming._

import org.apache.spark.streaming._

scala> val sscFive = new StreamingContext (sc, Seconds (5))

scala> val sscFive = new StreamingContext(sc, Seconds(5))
sscFive: org.apache.spark.streaming.StreamingContext = org.apache.spark.streamin
g.StreamingContext@3e216fc9

scala> val inputDS = sscFive.socketTextStream ("sandbox", 9999)

scala> val inputDS = sscFive.socketTextStream("sandbox",9999)
inputDS: org.apache.spark.streaming.dstream.ReceiverInputDStream[String] = org.a
pache.spark.streaming.dstream.SocketInputDStream@dcaeeab6

scala> inputDS.saveAsTextFiles ("/user/root/test/stream/")

scala> inputDS.saveAsTextFiles("/user/root/test/stream/")

scala> val wc = inputDS.flatMap(.split (™ %)) .map(word => (word,
1)) .reduceByKey ((a,b) =>a+b)

scala> val wc = inputDS.flatMap(_.split("” ")).map(word => (word, 1)).reduceByKey
((a,b) => a+b)

wc: org.apache.spark.streaming.dstream.DStream[(String, Int)] = org.apache.spark
.streaming.dstream.ShuffledDStream@33e31972

scala> wc.print ()

scala> wc.print()

scala> sscFive.start ()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 73

tarting receiver with delay 2000ms: Error
ConnectException: Connection refused
PlainSocketImpl.socketConnect(Native Method)
AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.ja

at

at
VERELLY)

at

Lab 6: Basic Spark Streaming Transformations (Scala)

java.
java.

java.

Impl.java:206)

at
:188)
at
at
at
at
at
at

java.

java.
java.
java.
java.
java.

net.
net.

net

net.

net.
net.
net.
net.
net.

DStream.scala:73)

at org.apache.spark.streaming.dstream.

scala> sscFive.start()

connecting to sandbox:9999 java.net.

.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocket

AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl. java

socksSocketImpl.connect(SocksSocketImpl. java:392)
Socket.connect(Socket.java:589)
Socket.connect(Socket. java:538)

Socket.<init>(Socket. java:
socket.<init>(Socket.java:
org.apache.spark.streaming.dstream.

nputDStream.scala:59)

Time: 2016-05-31 ©

NOTE:

\J
, You will see an error when it starts because it is waiting for an input connection.

c. Inthe netcat window from the previous lab section, reconnect to port 9999 using the

434)
211)
SocketRecelver.recelve(SocketInput

SocketReceivers$Sanon$2.run(Socketl

netcat utility. Make sure both terminal windows are visible on-screen.

nc -1lkv 9999

[root@sandbox ~]# nc -1lkv 9999
Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted

In the netcat terminal, start typing words separated by spaces, making sure to repeat
some of the words as you type. Hit the Enter key occasionally to submit them to the

stream. Observe how the words appear in the streaming window.

o

root@ubuntu: ~

File Edit View Search Terminal Help

[rootgsandbox ~]# nc -lkv 9999
Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted
Helcome to Spark Streaning

74 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 6: Basic Spark Streaming Transformations (Scala)

e. Inthe streaming window, stop the stream and exit the REPL.

sc.stop ()
exit ()

f. In the netcat window, exit the socket by entering Ctrl + C (or CMD + C if using a Mac)
on your keyboard.

o E

[root@sandbox ~]#

3. Perform a Spark Streaming transformations using union().

a. In the streaming window, create two copies of the /root/spark/data/data.txt file named
stream1.txt and stream2.txt and confirm the operation was successful.

cp /root/spark/data/data.txt /root/spark/data/streaml.txt
cp /root/spark/data/data.txt /root/spark/data/stream2.txt

1s /root/spark/data/stream*

[root@sandbox ~]# cp /root/spark/data/data.txt /root/spark/data/streaml.txt
[root@sandbox ~]# cp /root/spark/data/data.txt /root/spark/data/stream2.txt

[root@sandbox ~]# 1s /root/spark/data/stream*
/root/spark/data/streaml.txt /root/spark/data/stream2.txt

You can view the contents of the file if you want. As a reminder, these files contain a single line
of text: “This is a test file”

b. Inthe streaming window, start a new instance of the REPL that is once again
configured to use two CPU cores.

spark-shell --master local[2]

[root@sandbox ~]# spark-shell --master local[2]

c. Create a data stream the performs the following operations:
1. Sets the log level to “ERROR"”
2. Imports the StreamingContext class
3. Creates an instance of that class nhamed sscFive with a five-second time window

4. Creates two text file DStream named inputDS1 and inputDS2 that both listen to
the /user/root/test/ directory on HDFS.

5. Creates a DStream named combined that uses union () to combine the two
streams into a single DStream

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 75

Lab 6: Basic Spark Streaming Transformations (Scala)

6. Prints the contents of combined to the screen

7. Starts the application

scala> sc.setLogLevel ("ERROR")

scala> sc.setLogLevel("ERROR")

scala> import org.apache.spark.streaming.

scala> import org.apache.spark.streaming._

import org.apache.spark.streaming._

scala> val sscFive = new StreamingContext (sc, Seconds (5))

scala> val sscFive = new StreamingContext(sc, Seconds(5))
sscFilve: org.apache.spark.streaning.StreamingContext = org.apache.spark.streamin
g.StreamingContext@3e216fc9

scala> val inputDS1 = sscFive.textFileStream(“/user/root/test/”)

scala> val inputDS1 = sscFive.textFileStream("/user/root/test/")

16/06/07 19:00:01 INFO FilelInputDStream: Duration for remembering RDDs set to 60
000 ms for org.apache.spark.streaming.dstream.FileInputDStream@70edffdb
inputDS1: org.apache.spark.streaming.dstream.DStream[String] = org.apache.spark.
streaming.dstream.MappedDStream@7802fc4e

scala> val inputDS2 = sscFive.textFileStream (“/user/root/test/”)

scala> val inputDS2 = sscFive.textFileStream("/user/root/test/")

16/66/067 19:00:53 INFO FileInputDStream: Duration for remembering RDDs set to 66
000 ms for org.apache.spark.streaming.dstream.FileInputDStream@46e05384
inputDS2: org.apache.spark.streaming.dstream.DStream[String] = org.apache.spark.
streaming.dstream.MappedDStream@27ae8ce3

scala> val combined = inputDSl.union (inputDS2)

scala> val combined = inputDSi1.union(inputDS2)
combined: org.apache.spark.streaming.dstream.DStream[String] = org.apache.spark.

streaming.dstream.UnionDStream@765d2d4d

scala> combined.print ()

scala> combined.print()

scala> sscFive.start ()

76 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

d.

Lab 6: Basic Spark Streaming Transformations (Scala)

scala> sscFive.start()

Go to the netcat terminal window (which we’ll refer to now as the input1 window) from
the previous lab section and type the command to upload the small_blocks.txt file from
the local /root/spark/data/ directory to the /user/root/test/ directory on
HDFS, but DO NOT PRESS THE ENTER KEY.

hdfs dfs -put /root/spark/data/streaml.txt /user/root/test/

[root@sandbox ~]# hdfs dfs -put /root/spark/data/streamil.txt /user/root/test/l

Open a third terminal window (we’ll refer to this as the input2 window), connect to the
sandbox cluster, and type the same command as in the step above, but once again DO
NOT PRESS THE ENTER KEY. Make sure both terminal windows are visible on-
screen.

ssh sandbox

root@ubuntu:~# ssh sandbox

hdfs dfs -put /root/spark/data/stream2.txt /user/root/test/

[root@sandbox ~]# hdfs dfs -put /root/spark/data/stream2.txt Juser/root/test]]

f.

Wait for a screen refresh in the streaming window, then immediately go to the inputi
and input2 windows and press the Enter key.

Assuming you perform both actions within a 5-second collection window, the
streaming window should display the contents of files as a combined data stream, as
displayed in the screenshot below. The content of the text files (which in our case
should be the same line of text) should each print multiple times because both streams
were monitoring the same HDFS directory.

File Edit View Search Terminal uWaln

Time:

: 2016-06-07 18:0¢.¢

2016-06-07 17:5¢S
File Edit View Search Terminal Help
root@ubuntu:~# nc -lkv 9999

No command 'hdfs' found, did you mean:
p T RTIP — f AT TEET A

¢ Q€ root@ubuntu: ~

Mroot@ubuntu:~# ssh sandbox
LéLast login: Tue Jun 7 17:24:24 2016 from ip-172-17-42-1.ec2.internal
['[root@sandbox ~]# hdfs dfs -put /root/spark/data/data.txt /user/root/test
Fcput: “Juser/root/test/data.txt': File exists
“M[root@sandbox ~]# cp /root/spark/data/data.txt /root/spark/data/streamil.txt
dr[root@sandbox ~]# cp /root/spark/data/data.txt /root/spark/data/stream2.txt
N[root@sandbox ~]# ls /root/spark/data/stream*
l/root/spark/data/streami.txt /root/spark/data/stream2.txt
1f[root@sandbox ~]# cat /root/spark/data/data.txt
tThis is a test file
Md[root@sandbox ~]# hdfs dfs -put /root/spark/data/stream2.txt /user/root/test
[root@sandbox ~]#

test file
test file
test file
test file

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

77

Lab 6: Basic Spark Streaming Transformations (Scala)

If your timing is off the first time, simply try again with a couple of additional copies that have
unique file names like streaming3.txt and streaming4. txt.

g. Inthe streaming window, stop the stream and exit the REPL.

sc.stop ()
exit ()

Result

You have successfully used several basic transformations on DStreams.

78 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 7: Spark Streaming Window Transformations
(Scala)

About This Lab

Objective:
Use Spark Streaming Window Transformations

File Locations:
NA

Successful Outcome:
Perform several Spark Streaming Window Transformations

Lab Steps

Perform the following steps:
1. Create a streaming window using a TCP socket.

a. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

spark-shell --master local[2]

[root@sandbox ~]# spark-shell --master local[2]

b. Set the log level to ERROR to avoid screen clutter while running the streaming
application.

scala> sc.setLogLevel ("ERROR")

scala> sc.setlLogLevel("ERROR")

c. Import the streaming library.
scala> import org.apache.spark.streaming.

scala> import org.apache.spark.streaming. _

import org.apache.spark.streaming._

d. Create a streaming context with a five-second batch duration.

scala> val sscFive = new StreamingContext (sc, Seconds (5))

scala> val sscFive = new StreamingContext(sc, Seconds(5))

sscFive: org.apache.spark.streaming.StreamingContext = org.apache.spark.streamin
g.StreamingContext@3e216fc9

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 79

Lab 7: Spark Streaming Window Transformations (Scala)

e. Set the checkpoint directory.

scala> sscFive.checkpoint (“/user/root/test/checkpoint/”)

scala> sscFive.checkpoint("/user/root/test/checkpoint/")

f. Create a DStream using socketTestStream () to the system named “sandbox” on
port 9999 and set it up as a window function with a 15-second collection period
(window length) and a 5-second collection interval.

scala> val inputDS =
sscFive.socketTextStream ("sandbox", 9999) .window (Seconds (15), Seconds (5))

scala> val inputDS = sscFive.socketTextStream("sandbox"”, 9999).window(Seconds(15
), Seconds(5))

inputDS: org.apache.spark.streaming.dstream.DStream[String] = org.apache.spark.s
treaming.dstream.WindowedDStream@6f53e863

g. Print out the output to the terminal window.

scala> inputDS.print ()

scala> inputDS.print()

h. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

scala> sscFive.start ()

scala> sscFive.start()

80 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

& NOTE:
, An error will appear when the application starts because the application is waiting for

Lab 7: Spark Streaming Window Transformations (Scala)

an input connection.

at org.apache.spark.streaming.dstrean.SocketReceiver$Sanon$2.run(Socke
nputDStream.scala:59)

16/65/30 16:20:58 ERROR ReceiverTracker: Deregistered receiver for stream 0: R
tarting receiver with delay 2000ms: Error connecting to sandbox:999 - java.net
Connection refused

.PlainSocketImpl.socketConnect(Native Method)
AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.

onnectException:
java.
java.

at

at
va:345)

at

java.

Impl.java:206)

at
:188)
at
at
at
at
at
at

i. Inthe second terminal window (connected to sandbox via SSH) use the netcat utility to

java.

java.
java.
java.
java.
java.

net

net.

net
net
net

net
net

.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSock
.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl. ja

.SocksSocketImpl.connect(SocksSocketImpl.java:392)
.Socket.connect(Socket. java:589)
.Socket.connect(Socket.java:538)
net.
net.

Socket.<init>(Socket. java:434)
Socket.<init>(Socket.java:211)

org.apache.spark.streaming.dstream.SocketReceiver.receive(SocketInp
DStream.scala:73)

at org.apache.spark.streaming.dstrean.SocketReceiverS$SanonS2.run(Socke
nputDStream.scala:59)

create a connection to port 9999.

nc -1lkv 9999

[root@sandbox ~]# nc -1lkv 9999

Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted

j- Start typing words separated by space, hit Enter occasionally to submit them.
Observe what happens in the streaming terminal window a few seconds after hitting
Enter.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

81

Lab 7: Spark Streaming Window Transformations (Scala)

File Edit View Search Terminal Help

OS5 root@ubuntu: ~

2016-06-07 2 File Edit View Search Terminal Help
drwxr-xr-x - root hdfs 0 2016-04-01 15:03 Juser/rog
s will print [root@sandbox ~]# hdfs dfs -rm Juser/root/test/data.txt

a new line 16/66/067 17:48:57 INFO fs.TrashPolicyDefault: Namenode trash

every five seconds tion interval = 360 minutes, Emptier interval = @ minutes.
Moved: 'hdfs://sandbox:8020/user/root/test/data.txt’ to trash
:8020/user /root/.Trash/Current
[root@sandbox ~]# hdfs dfs -put /root/spark/data/streami.txt /|
[root@sandbox ~]# hdfs dfs -put /root/spark/data/strean3.txt /
[root@sandbox ~]# nc -1lkv 9999
Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted
Welcome to Spark Streaming
The quick
and easy
way to show
how to do the fun stuff
G
[root@sandbox ~]% nc -lkv 9999
Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted
This will print
a new line
every five seconds
but the last line
drops off

k. Once you observe data being streamed on-screen in the first terminal window, use Ctri
+ C (orCmd + C if using a Mac) to exit netcat in the second terminal window.

o

[root@sandbox datal# I

I. In the first terminal window, stop the stream and exit the REPL. If the stream refreshes
while you are typing, that will not affect the input. Simply continue to type the
command and press Enter.

sc.stop ()
exit ()

2. Create a streaming window that counts words in a DStream using a TCP socket.

a. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

spark-shell --master local[2]

[root@sandbox ~]# spark-shell --master local[2]

82 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 7: Spark Streaming Window Transformations (Scala)

b. Set the log level to ERROR to avoid screen clutter while running the streaming
application.

scala> sc.setLogLevel ("ERROR")
scala> sc.setLogLevel("ERROR")
c. Import the streaming library.

scala> import org.apache.spark.streaming.

scala> import org.apache.spark.streaming._

import org.apache.spark.streaming. _

d. Create a streaming context with a five-second batch duration.
scala> val sscFive = new StreamingContext (sc, Seconds (5))

scala> val sscFive = new StreamingContext(sc, Seconds(5))

sscFive: org.apache.spark.streaming.StreamingContext = org.apache.spark.streamin
g.StreamingContext@3e216fc9

e. Set the checkpoint directory.

scala> sscFive.checkpoint (“/user/root/test/checkpoint/”)

scala> sscFive.checkpoint("/user/root/test/checkpoint/")

f. Create a DStream using socketTestStream () to the system named “sandbox” on
port 9999. Convert the lines of text it will accept into individual elements using
flatMap (). Then use countByWindow () with a 15-second collection period (window
length) and a 5-second collection interval to count the number of words typed over the
last 15 seconds as a running total.

scala> val inputDS = sscFive.socketTextStream ("sandbox",9999).flatMap(x =>
x.split (Y V)) .countByWindow (Seconds (15), Seconds(5))

scala> val inputDS = sscFive.socketTextStream("sandbox", 9999).flatMap(x => x.sp
1it(" ")).countByWindow(Seconds(15), Seconds(5))

inputDS: org.apache.spark.streaming.dstream.DStream[Long] = org.apache.spark.str
eaming.dstream.MappedDStream@3a19b933

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

83

Lab 7: Spark Streaming Window Transformations (Scala)

9 QUESTION:

| What do you think would happen if the f1atMap function were removed from the line of
code above?

g. Print out the output to the terminal window.

scala> inputDS.print ()

scala> inputDS.print()

h. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

scala> sscFive.start ()

scala> sscFive.start()
% NOTE:
P 4

An error will appear when the application starts because the application is waiting for an
input connection.

at org.apache.spark.streaming.dstrean.SocketReceiver$Sanon$2.run(Socke
nputDStream.scala:59)

16/65/30 16:20:58 ERROR ReceiverTracker: Deregistered receiver for stream 0: R
tarting receiver with delay 2000ms: Error connecting to sandbox:999 - java.net
onnectException: Connection refused

at java.net.PlainSocketImpl.socketConnect(Native Method)

at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.
va:345)

at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSock
Impl.java:206)

at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.ja
:188)

at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)

at java.net.Socket.connect(Socket. java:589)

at java.net.Socket.connect(Socket.java:538)

at java.net.Socket.<init>(Socket.java:434)

at java.net.Socket.<init>(Socket.java:211)

at org.apache.spark.streaming.dstrean.SocketReceiver.receive(SocketInp
DStream.scala:73)

at org.apache.spark.streaming.dstrean.SocketReceiverS$SanonS2.run(Socke
nputDStream.scala:59)

84 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 7: Spark Streaming Window Transformations (Scala)

i. Inthe second terminal window use the netcat utility to create a connection to port
9999.

nc -1lkv 9999

[root@sandbox ~]# nc -1lkv 9999

Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted

j- Start typing words separated by space, hit Enter occasionally to submit them.
Observe what happens in the streaming terminal window a few seconds after hitting
Enter.

OS5 ® root@ubuntu: ~

File Edit View Search Terminal Help

[root@sandbox ~]# nc -1lkv 9999

Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted
This program counts

the words

instead of trying

to display

k. Once you observe data being streamed on-screen in the first terminal window, use Ctrl
+ C (orCmd + C if using a Mac) to exit netcat in the second terminal window.

AC
[root@sandbox datal# I

I. In the first terminal window, stop the stream and exit the REPL. If the stream refreshes
while you are typing, that will not affect the input. Simply continue to type the
command and press Enter.

sc.stop ()
exit ()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

85

Lab 7: Spark Streaming Window Transformations (Scala)

3. Create a streaming window that counts instances of words in a DStream using a TCP socket.

a. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

spark-shell --master local[2]

[root@sandbox ~]# spark-shell --master local[2]

b. Set the log level to ERROR to avoid screen clutter while running the streaming
application.

scala> sc.setLogLevel ("ERROR")

scala> sc.setLogLevel("ERROR")

c. Import the streaming library.

scala> import org.apache.spark.streaming.

scala> import org.apache.spark.streaming.
import org.apache.spark.streaming. _

d. Create a streaming context with a five-second batch duration.

scala> val sscFive = new StreamingContext (sc, Seconds (5))

scala> val sscFive = new StreamingContext(sc, Seconds(5))
sscFive: org.apache.spark.streaning.StreamingContext = org.apache.spark.streamin
g.StreamingContext@3e216fc9

e. Set the checkpoint directory.

scala> sscFive.checkpoint (“/user/root/test/checkpoint/”)

scala> sscFive.checkpoint("/user/root/test/checkpoint/")

86 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 7: Spark Streaming Window Transformations (Scala)

f. Create a DStream using socketTestStream () to the system named “sandbox” on
port 9999. Convert the lines of text it will accept into individual elements using
flatMap (). Then use map () to create key-value pairs out of the individual elements.
Finally, use reduceByKeyAndWindow () with a 15-second collection period (window
length) and a 5-second collection interval to count the number of times a word has
been typed over the last 15 seconds as a running total.

scala> val inputDS = sscFive.socketTextStream ("sandbox",9999).flatMap (x =>
x.split (Y V)) .map(x => (x, 1)) .reduceByKeyAndWindow ((x,y) => xty, (xX,y) => x-Yy,
Seconds (15), Seconds(5))

scala> val inputDS = sscFive.socketTextStream("sandbox", 9999).flatMap(x
it(" ")).map(x => (x, 1)).reduceByKeyAndWindow((x,y) => x+y, (x,y) => x-
nds(15), Seconds(5))

inputDS: org.apache.spark.streaming.dstream.DStream[(String, Int)] = org.apache.
spark.streaming.dstream.ReducedWindowedDStream@93370cS

g. Print out the output to the terminal window.

scala> inputDS.print ()

scala> inputDS.print()

h. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

scala> sscFive.start ()

scala> sscFive.start()

NOTE:

N
l An error will appear when the application starts because the application is waiting for
an input connection.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 7: Spark Streaming Window Transformations (Scala)

at org.apache.spark.streaming.dstrean.SocketReceiver$Sanon$2.run(Socke
nputDStream.scala:59)

16/65/30 16:20:58 ERROR ReceiverTracker: Deregistered receiver for stream 0: R
tarting receiver with delay 2000ms: Error connecting to sandbox:999 - java.net
onnectException: Connection refused

at java.net.PlainSocketImpl.socketConnect(Native Method)

at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.

va:345)

at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSock
Impl.java:206)

at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.ja
:188)

at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)

at java.net.Socket.connect(Socket. java:589)

at java.net.Socket.connect(Socket.java:538)

at java.net.Socket.<init>(Socket.java:434)

at java.net.Socket.<init>(Socket.java:211)

at org.apache.spark.streaming.dstrean.SocketReceliver.receive(SocketInp
DStream.scala:73)

at org.apache.spark.streaming.dstrean.SocketReceiverS$SanonsS2.run(Socke
nputDStream.scala:59)

i. Inthe second terminal window use the netcat utility to create a connection to port
9999.

nc -1lkv 9999

[root@sandbox ~]# nc -1lkv 9999
Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted

j- Start typing words separated by space, hit Enter occasionally to submit them.
Observe what happens in the streaming terminal window a few seconds after hitting
Enter.

OO ® root@ubuntu: ~

File Edit View Search Terminal Help
[root@sandbox ~]# nc -lkv 9999
Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted
This program counts
the words
instead of trying
2016-66- : to display

: 2016-06-

88 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 7: Spark Streaming Window Transformations (Scala)

k. Once you observe data being streamed on-screen in the first terminal window, use Ctri
+ C (orCmd + C if using a Mac) to exit netcat in the second terminal window.

AC
[root@sandbox datal# I

I. In the first terminal window, stop the stream and exit the REPL. If the stream refreshes
while you are typing, that will not affect the input. Simply continue to type the
command and press enter.

sc.stop ()
exit ()

Result

You have successfully performed various spark Streaming Window Transformations

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

89

Lab 8: Create and Save DataFrames & Tables (Scala)

About This Lab

Objective:
Create and save DataFrames and tables

Files Locations:
NA

Successful Outcome:
Use various methods to create and save DataFrames and tables

Lab Steps
Perform the following steps:
1. Create and save DataFrames and tables.

a. Open the Firefox browser and enter the following URL to view the Zeppelin Ul.
http://sandbox:9995/

4 sandbox v | B~ 3l Qo8 $ & =

.Zeppelin Notebook » Interpreter Configuration

Welcome to Zeppelm' (0.6.0-incubating-SNAPSHOT)

Zeppein is web-based notebook that enables interactive data anaytics.
Yeou can make beautul data-ceiven, nteracive, colaborative decumaent with SQL. code and even meoree!

Notebook & Help
L Irgort note Gat startod with Zeppaln doc
b . Cammunity
Q Firet Please feel free 10 help us to Improve Zeppeiin

Ay contributon are welcome!

w
& bssues tracking

O

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 8: Create and Save DataFrames & Tables (Scala)

b. Click Create new note. Name this note Create and Save DataFrames.

Create new note

Note Name

Create and Save DataFrames =

Create Note

'\ NOTE:
» Make sure to set the interpreter to spark-yarn-client.

c. At the top right click on the gear icon to change interpreter binding.

Q) @ﬂ default v

92 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 8: Create and Save DataFrames & Tables (Scala)

Drag the spark-yarn-client to the top and click save.

Introduction to Zeppelin o a ab

The first interpreter on the list becomes default.

d. Create a class named DataSample with the following attributes:
code: String, value: Long

Then create an RDD named rddwithSchema that utilizes this class to create a sequence of
instances organized so that each element has a schema value.

The first entry in each instance should be a two-letter code (22 and BB). The second entry in
each instance should be numeric values of 150,000 and 80,000 respectively that are assigned a
schema value of value.

View the RDD to confirm success.

case class DataSample (code: String, value: Long)

val rddWithSchema = sc.parallelize (Seqg(DataSample (“AA”, 150000),
DataSample (“BB”, 80000)))

rddWithSchema.collect ()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

93

Lab 8: Create and Save DataFrames & Tables (Scala)

case class DataSample(code: String, value: Long)
val rddWithSchema = sc.parallelize(Seq(DataSample("AA", 150000), DataSample(“B8", 808060)))
rddwithSchema.collect()

defined class DataSample

rddWithSchema: org.apache.spark.rdd.RDD[DataSample] = ParallelCollectionRDD[783] at parallelize at <console>:92
res96: Array[DataSample] = Array(DataSample(AA,150000), DataSample(BB,86000))

e. Use toDF () to convert this RDD to a new DataFrame named dataframe?2. View the

DataFrame to confirm success.

Note: The name dataframe? in this instruction is to keep the lab in sync with the

Python version. In the Python version of the lab, an additional DataFrame named
dataframel is created prior to the equivalent of this step.

val dataframe?2 = rddWithSchema.toDF ()

dataframe?2.show ()

val dataframe2 = rddWithSchema.toDF()
dataframe2.show()|

dataframe2: org.apache.spark.sql.DataFrame = [code: string, value: bigint]

| AA|150000|
| BB| 86000]|

f. Register dataframe?2 as a temporary table named tableltemp. Then issue a SQL

command using the DataFrames API to show the tables visible to the context.

dataframe2.registerTempTable (“tableltemp”)

sglContext.sqgl ("SHOW TABLES”) .show ()

dataframe2.registerTempTable("tableltemp")
sqlContext.sql("SHOW TABLES").show()|

R R +

| tableName|isTemporary|

R R +

| tableitemp| true|

94 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 8: Create and Save DataFrames & Tables (Scala)

d. Inthe next paragraph, issue a Spark SQL command to SHOW TABLES. Does
tableltemp show up? If so, why? If not, why not?

& NOTE:
, Your output may also contain tables created if you ran demos in previous labs.

%sqgl

SHOW TABLES

sql
SHOW TABLES

H W ¢ M 2

tableName isTemporary

h. Issue a HiveQL CREATE TABLE command from within the DataFrames API and create a
permanent version of tableltemp named tablelhive. Use SHOW TABLES both from
the DataFrames API, and then in a new paragraph from Spark SQL, to confirm this table
is visible across contexts.

sglContext.sqgl ("CREATE TABLE tablelhive AS SELECT * FROM tableltemp")

sglContext.sqgl ("SHOW TABLES") .show ()

%sqgl

SHOW TABLES

sqlContext.sql("CREATE TABLE tablelhive as SELECT * FROM tableltemp")
sqlContext.sql("SHOW TABLES").show()

| tableltemp| true|
| tablelhive| false|

$ocmmmemmeean $ocemmeemea +

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

95

Lab 8: Create and Save DataFrames & Tables (Scala)

sql
SHOW TABLES

B @ M w2

tableName isTemporary
table1hive false
i. Use Spark SQL to view the contents of table1hive.
%sqgl
SELECT * FROM tablelhive
%sql
SELECT * FROM tablelhive
B e € M V[
code value
AA 150,000
BB 80,000

j- Convert this Hive table into a DataFrame named dataframe3.

View the new DataFrame
to confirm success.

val dataframe3 = sglContext.table (“tablelhive”)

dataframe3.show ()

bal dataframe3 = sqlContext.table("table1lhive")
dataframe3.show()

dataframe3: org.apache.spark.sql.DataFrame =
et T +

|code| value|
$ecccdenccnn +
| AA|150000]|
| BB| 8606000|

N L +

[code: string, value: bigint]

96 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 8: Create and Save DataFrames & Tables (Scala)

k. Save dataframe3 to HDFS in JSON format to a folder named df JSON1. In a new
paragraph, list all contents of your HDFS home directory to confirm the DataFrame was
successfully written.

dataframe3.write.format (“json”) .save ("dfJSON1")

$sh

hdfs dfs -1s dfJSON*

dataframe3.write.format("json").save("dfISON1")

%xsh
hdfs dfs -1s dfISon*

Found 4 itens

«rw-r--r-- 3 zeppelin zeppelin 0 2016-06-12 14:24 dfISON1/_SUCCESS

“rW-r--r-- 3 zeppelin zeppelin 29 2016-06-12 14:24 dfISON1/part-r-00000-96366¢86-733€-49a3-b519-dbfbc21b13a7
MW=l 3 zeppelin zeppelin 0 2016-06-12 14:24 dfISON1/part-r-00001-96366¢86-733e-49a3-b519-dbfbc21b13a7
“rw-r--r-- 3 zeppelin zeppelin 28 2016-06-12 14:24 dfISON1/part-r-00002-96366¢86-733€-4923-b519-dbfbc21b13a7

& NOTE:

, The JSON file is stored in several part-* files in the folder name you specified. If you
wanted to copy this file to your local file system for distribution outside the cluster, you
could use hdfs dfs -getmerge to combine it as a single file on your local file
system.

. View the combined contents of the files in the dfJsoN1 folder on HDFS.

$sh

hdfs dfs -cat dfJSON1/*

%sh
hdfs dfs -cat dfJSON1/*

{"code":"AA","value":150000}
{"code":"BB","value":80000}

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

97

Lab 8: Create and Save DataFrames & Tables (Scala)

& NOTE:
, The JSON format is not what you might typically see when looking at JSON files. For
DataFrame creation, each row of information must be self-contained, and thus the
formatting you see here is a requirement for converting JSON files to DataFrames. This

same content coded in more typical JSON fashion would error out upon attempting to
read it as a DataFrame.

m. Create a new DataFrame named dataframe4 from the contents of this folder on HDFS.
View the new DataFrame to confirm success.

val dataframed4 = sglContext.read.format (“json”) .load (“dfJSON1/*")

dataframed.show ()

bal dataframe4 = sqlContext.read.format("json").load("dfISON1/*")
dataframed.show()

dataframed: org.apache.spark.sql.DataFrame = [code: string, value: bigint]

|code| valuel

e +

| AA|156000|

| BB| 86600

et S -
Result

You have used several methods to create and save DataFrames and tables.

98 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 9: Working with DataFrames (Scala)

About This Lab

Objective:
Learn to use the DataFrames API.

File Locations:
NA

Successful Outcome:
Manipulate DataFrames using the DataFrames API

Lab Steps

Perform the following steps:

1. Manipulate DataFrames using the DataFrames API

% NOTE:
Py

This lab intentionally makes use of one or more functions not discussed in the student
book. The new functions are very similar in nature to functions already discussed in Core
RDD programming and should make sense to the student. In addition, some functions
are used in ways not discussed in the student book as well. This is to encourage
exploration and experimentation, in addition to learning new ways to do things.

a. Open the Firefox browser and enter the following URL to view the Zeppelin Ul.
http://sandbox:9995/

$ sandbox v B Qo8 $ & =

‘Zeppeﬁn Notebook ~ Interpreter Configuration

Welcome to Zeppelin! (0.6 0-incubating-SNAPSHOT)

Zeppein is web-based notebook that enables interactive data analytics.
You can make beausiul data-ceiven, nleractive, colaborative document with SQL. code and even more!

Notebook & Help
R4 f . Gat startod with 2
Community

Please feel free 10 help us 10 Improve Zeppein
Aty COnrbuton are walkcoma!

2 5] §

o ’

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

99

100

Lab 9: Working with DataFrames (Scala)

b. Click on Notebook and select Create new note on the drop down. Name this note Work
with DataFrames.

a Zeppelin Notebook ~ Interpreter Configuration
Lab -I 01 . |n'|II'O t + Create new note r

Create new note

Note Name

Work with DataFrames

Create Note

c. At the top right click on the gear icon to change interpreter binding.

©) @B default v

Introduction to Zeppelin s 2ald 0 0a ~ea-

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 9: Working with DataFrames (Scala)

Drag the spark-yarn-client to the top and click save.

Introduction to Zeppelin o a ab

The first interpreter on the list becomes default.

d. Create two DataFrames named dataframeA and dataframeB from the Hive table
named tablelhive created in the previous lab. Then use unionall () to combine the
rows of these two tables into a new DataFrame named dataframeC. Then show the
contents of dataframeC to confirm success.

val dataframeA sglContext.table (“tablelhive”)
val dataframeB = sglContext.table (“tablelhive”)

val dataframeC = dataframeA.unionAll (dataframeB)

dataframeC.show ()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 101

Lab 9: Working with DataFrames (Scala)

val dataframeA = sqlContext.table("tableilhive")
val dataframeB = sqlContext.table("tableilhive")
val dataframeC = dataframeA.unionAll(dataframeB)
dataframeC.show()

dataframeA: org.apache.spark.sql.DataFrame
dataframeB: org.apache.spark.sql.DataFrame
dataframeC: org.apache.spark.sql.DataFrame
R TR +

[code: string, value: bigint]
[code: string, value: bigint]
[code: string, value: bigint]

|code| value|

R T +
| AA|156000|
| BB| 86060
| AA|150000|
| BB| 86000
R T +

e. Create a DataFrame named dataframeD that adds a column named quarterly that
contains the contents of the value column multiplied by three. View the new
DataFrame to confirm success.

val dataframeD = dataframeC.withColumn (“quarterly”, dataframeC (“value”) * 3)

dataframeD.show ()

val dataframeD = dataframeC.withColumn("quarterly”, dataframeC("value”) * 3)
dataframeD.show()

dataframeD: org.apache.spark.sql.DataFrame = [code: string, value: bigint, quarterly: bigint]
$eoccepoccces $eoccccccee +
|code| value|quarterly]|
R $rrmmmmenn +
AA| 150000 450000|
BB| 80600| 246000|
AA|150000| 450000|
BB| 80000 240000

D et $oceanaann +

102 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 9: Working with DataFrames (Scala)

f. Create a DataFrame named dataframeE that renames the value column to monthly.

View the new DataFrame to confirm success.

val dataframeE = dataframeD.withColumnRenamed (“value”, “monthly”)

dataframeE.show ()

val dptaframeE - dataframeD.withColumnRenamed("value”, "monthly")
dataframeE.show()

dataframeE: org.apache.spark.sql.DataFrame = [code: string, monthly: bigint, quarterly: bigint]
R Frmeemme- +

|code |monthly|quarterly|
it Formmmmmme +
AA	156000	450000
BB	86000	240000)
AA	156000	450000
BB	80000	240000

R EEET TR $reecnnnan +

dg. Create a DataFrame named dataframeF that contains only those rows from

dataframeE where the quarterly value is greater than 300,000. View the new
DataFrame to confirm success.

val dataframeF = dataframeE.filter (dataframeE (“quarterly”) > 300000)

dataframeF.show ()

val dataframeF = dataframet.filter(dataframeE("quarterly”) > 300000)
dataframeF.show()

dataframeF: org.apache.spark.sql.DataFrame = [code: string, monthly: bigint, quarterly: bigint]
$reccdrccnnnn $remmcnnan +

|code|monthly|quarterly|
$ecccecccccs $ecccccnecs +
| AA| 156000| 450000
| AA| 150000 450000|

et T $ommmmmaae +

h. Create a new DataFrame named dataframeG that adds the rows of dataframekE to

dataframeF so that there are six rows total. View the new DataFrame to confirm
success.

val dataframeG = dataframeE.unionAll (dataframeF)

dataframeG.show ()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

103

Lab 9: Working with DataFrames (Scala)

val dataframeG = dataframeE.unionAll(dataframeF)
dataframeG.show()

dataframeG: org.apache.spark.sql.DataFrame = [code: string, monthly: bigint, quarterly: bigint]
L $ecccccnns +
|code|monthly|quarterly|
e e +
AA| 150000| 450000
BB| 80000| 240000|
AA| 150000| 450000|
BB| 80000| 240000|
AA| 150000] 450000|
AA| 150000| 450000|

R TR $remmmennn +

i. Usedescribe () on dataframeG without supplying a column name and show the
results.

9 QUESTION:

- What happens?

dataframeG.describe () .show ()

HataframeG.describe().show()

$occcces $eoccccccccccccscccns $eccccccccnccsccscccss +
| summary | monthly| quarterly|
$occcces $eocccccccnccccsnccns $ccccccccnccsccscncss +
count	6	6
mean	126666.66666666667	380000.0
stddev	36147.84456460256	108443.53369380768
min	80000	240000
max	1560000	450000
$------- e e -
9 ANSWER:

o All columns with numeric values have statistics displayed.

104 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 9: Working with DataFrames (Scala)

j- Show only unique rows from DataFrameG.

dataframeG.distinct () .show ()

dataframeG.distinct().show()

| AA| 150000| 450000
| BB| 80000| 240000

k. Use drop () to create a new DataFrame named dataframeH that contains only the
code and quarterly columns. View the new DataFrame to confirm success.

9 QUESTION:

. What other function described in the student book, could you have used to accomplish

the same task? What would the code have been?

val dataframeH = dataframeG.drop (“monthly”)

dataframeH.show ()

val dataframeH = dataframeG.drop("monthly")
dataframeH.show()

dataframeH: org.apache.spark.sql.DataFrame = [code: string, quarterly: bigint]
R +

|code|quarterly|

AR EEL LEEXEEEE R R +
AA	450000
BB	246000
AA	450000
BB	2460000
AA	450000
AA	456000
$ecccdeccccccas +

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

105

Lab 9: Working with DataFrames (Scala)

9 ANSWER:

|

The same thing could have been accomplished using the following code:

val dataframeH = dataframeG.select (“code”, “quarterly”)
val dataframeH_Alt = dataframeG.select("code”, "quarterly”)
dataframeH_Alt.show()

dataframeH_Alt: org.apache.spark.sql.DatafFrame = [code: string, quarterly: bigint]
$ecccpecccccccs +

|code|quarterly|

R R +

| AA| 450000]|

| BB| 240000]|

| AA| 450000]|

| BB| 240000]|

| AA| 450000]

| AA| 450000]|

e +

. Create a new DataFrame named dataframeI that contains each unique element in the

code column and a count of the number of times each code appears dataframeH.
View the new DataFrame to confirm success.
val dataframel = dataframeH.groupBy (“code”) .count ()

dataframeI.show ()

val dataframel = dataframeH.groupBy("code").count()
dataframel.show()|

dataframel: org.apache.spark.sql.DataFrame = [code: string, count: bigint]

|code|count|

R T 4

| AA| 4|

| B8] 2|

LT TR +
Result

You have successfully used the DataFrames API to manipulate DataFrames.

106

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 10: Data Visualization, Reporting and
Collaboration using Zeppelin (Scala)

About This Lab

Objective:
Learn to use Zeppelin to perform data visualizations, collaborate, and integrate visualizations into
reports.

Files Locations:
NA

Successful Outcome:
Use Zeppelin to perform data visualization, collaboration, and reporting tasks.

Lab Steps

Perform the following steps:
1. Create data visualizations from a file of banking data.

a. Open the Firefox browser and enter the following URL to view the Zeppelin Ul.
http://sandbox:9995/

€ @sandbox:9995/# v ¢|[B~ Google Qwse $§ A =
i o Zeppelin Notebook ~ Interpreter ~ Configuration Search in your notebooks Q
Welcome to Zeppelin! (0.6.0-incubating-SNAPSHOT)
Zeppelin is web-based that enables data analytics.
You can make beautiful data-driven, interactive, collaborative document with SQL, code and even more!
Notebook & Help
& Import note Get started with Zeppelin documentation
{1 Create new note Community

Please feel free to help us to improve Zeppelin,
Any contribution are welcome!

& Mailing list

racking

B Untitled Note 1
M Famnabin Todacial

'\ NOTE:
» Zepplin’s current main backend processing engine is Apache Spark.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 107

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

b. Create a new note named Data Visualization.

Create new note

Note Name

Data Visualization

Create Note
c. Set the interpreter for this note to spark-yarn-client.
@ £ @ default~
Data Visualization ¢ :ws222 o o ® 0@ detan~

Settings

Interpreter binding

Bind interpreter for this note. Click to Bind/Unbind interpeeter. Drag and drop to reorder intespeeters.
The first interpreter on the list becomes default. To create/remove interpreters, go to Interpreter menu.

ﬂﬂmaﬂgai
i
%

|

ey

spark-yarn-client sspark, Sspark pyspark, Sspark sql, Sspark dep

Cancel

108 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

Data Visualization c:xwes228 o o ® 0@ et~

Settings
Interpreter binding
Bind interpreter for this note. Click to Bind/Unbind interpreter. Drag and drop to receder interpreters.

The first interpreter on the list becomnes default. To create/remove interpreters, go o Interpreter menu

SPArk-yarn-clien? Sspark (defaut). Soyspark, Ssql %dep

HHEHHHE L
EEIEEEEIEEHEE
i

E

-

d. Upload the bankdata3.orc file from the /home/zeppelin/spark/data directory on

your local file system to your HDFS home directory. Confirm the file was uploaded
successfully.

$sh

hdfs dfs -put /home/zeppelin/spark/data/bankdata3.orc bankdata3.orc

hdfs dfs -1s bankdata*

%sh

hdfs dfs -put /home/zeppelin/spark/data/bankdata3.orc bankdata3.orc
hdfs dfs -1s bankdata*

-rw-r--r-- 3 zeppelin zeppelin 1822 2016-06-06 12:07 bankdata3.orc

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 109

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

'\ NOTE:
» This data is a cleaned subset of a publicly available machine learning dataset. The
original dataset can be found at the following link:

http://archive.ics.uci.edu/ml/machine-learning-databases/00222/

Use the bankdata3.orc file to create a DataFrame named bankdata, a temporary table
named banktemp, and a Hive table named bankdataperm.

e.
val bankdata = sglContext.read.format (Yorc”).load(“bankdata3.orc”)
bankdata.registerTempTable (“banktemp”)

sglContext.sqgl (“create table bankdataperm as select * from banktemp”)

val bankdata = sqlContext.read.format("orc").load("bankdata3.orc™)

bankdata.registerTempTable("banktemp")
sqlContext.sql("create table bankdataperm as select * from banktenp")|

f. Use SQL to show the tables available and confirm that bankdataperm is available.

%sqgl

show tables

5;2}4 tables|

B o ¢ M

tableName isTemporary
health_table true
false
tahlathiua falea

g- Use SQL to select and display all rows and columns from bankdataperm.
%sqgl

select * from bankdataperm

110 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

%sql

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

select * from bankdataperm

: |
&8

age
58

47

usql
select ¢

T

20,000

10,000

bl @ e

balance marital
2,143 married
29 single
2 married
1,506 married
1 sinale

h. Quickly browse through the five data visualizations available by default in Zeppelin. For
most of this lab, we will work with the bar chart view.

B e ¢ M 2

from bankdatepern

¢ ™ I~ E sollingsw

@Grouped QO Stacked @ balance

______ -—-—.--I.II|I.Ill I...II-III-I..--
3 36 41 46 51 56 61

26

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

111

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

xsql FINISHED [> 3% |
select * from bankdataperm

B M G e 2 & sellings~v

o2 023 oA 25 @2 021 @28 929 @30 O3l @32 933 034 35 @36 037 ®38 39 @40 a4
@42 043 @4 045 @46 047 @48 049 @50 Gl @52 @53 e 55 @56 57 @58 59 @60 61

wsql FINISHED D> X EE
select * from bankdatapern

oM @ M ¥ 1 sellingsv

@Stacked OSteam O Expanded @ balance

50,980.00

22
40,000.00

®m balance 0.00
30,000.00
20,000.00
10,000.00

000
22 25 30 35 40 a5 50 55 60 61

ssql FINISHED (> 2% [

select * from bankdataperm

M M € M W & settingsw

@ balance
50,980

112 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

wsql
select * from bankdatapern

ol @ M R sellings v

@ (age, balance)

20000

- L]
10000 -

e RN R R RN AR AR NN R RS R RN R ERNARES

!
€0 61

i. Go back to the bar chart view. Then, edit your SQL query so that it only shows data for
individuals over the age of 30. Run the query and note the change in the chart.

%sqgl
select * from bankdataperm where age > 30

xsql NISHED [
select * from bankdataperm where age > 3¢
o @ M 2 ¥ sellingsv

@ Grouped QO Stacked @ balance
50,980

10,000
33 37 41 45 49 53 57 61

j- Click on the settings link and notice that Zeppelin has selected the age column as the
key column and is showing the sum of the balances for all individuals in each age
bracket. Display the average balance instead of the sum of balances.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

113

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

vayr Gezups Vales
@ Gowed O Sacked @ talarce

10000
3 3% ») 45 P 51 4 57)

Values

balance SUM x

sum
count
avg
min
max

Values

balance AVG %

Karys Growps Vues
O 0owed O Sused @ balance
138148

2500

2000

1500
1,000

500!
33 36 £l 42 &5 43 51 54 7 &0

114 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

k. Click and drag the available marital field into the Groups category to modify the

visualization so that data is shown not only by age, but also grouped by marital status.

When you are finished, click the settings link again to close the pivot chart options.

Al fields
age balance marila
Keys Groups Values
All fields:
age balance marital
Groups
Al Sakis
o* tatance Y
Keys Groups Vakes
@ Guoupes O Suacked @ mames singie @ anorced
24,508
20000
15,000
10,000

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

115

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

. It appears that we have what appears to be a single outlier that is skewing the data
fairly significantly. We can easily see that the vast majority of average balances are well
below $5,000. Add a dynamic form to the SQL query that allows you to filter out data
where the maximum balance for any individual exceeds a certain threshold, but set the
default to 1,000,000 so that it doesn’t immediately modify the chart. Rerun the query
with this new code, then use this dynamic form to adjust the maximum balance to
$10,000 and $5,000 and note the effects on the visualization.

%sqgl

select * from bankdataperm where age > 30 and balance <= ${Maximum
Balance=1000000}

sql

select * from bankdataperm where age > 30 and balance <= ${Maximum Balance=10600000}

e [an [| -

gl
0 Dankdatapern where 3« 33 and Dalance STRanimen 3alance-1000004)

Maximum Dalance

LN I R

@ rmamed snge @drores

O Grouped O Sacked
2459
20,000
15.000
10,000
5000
2l - - P P S - e o -
n 1] bV a2 45 & 51 &~ 57 &
Maximem Balance
LR B I R
O Ciouped O Sucine @ marmed drgh @
2553
2000
1500
1,000
Ju Blwan_u il =l Libonua . 1:1 5.1 I I -
284
n % » a2 a5 48 51 4 sr &

116 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

1l
elect * from Dasdatapers where age » M and balance Smaninn Balance- 1}

Maximum Balance

E M e = 2 |

@ Gouped O Sacked @ mamed ngle @ dvorced
255

2000
1500
1000

500
olm Ilgan_» I | ™ I i I I T ls I I I I I I
; " £ a2 5

a5 43

||I|||||.
54 57 0

33 1 L

9 QUESTIONS:
Why do you think changing the maximum balance from $10,000 to $5,000 had so little
effect on the chart?

What group (married, single, or divorced) had the most change based on changing the
maximum balance?

m. Create a URL that allows you to share this chart with others without giving them access
to the code or the Zeppelin note. Use the linked page to change the maximum balance
to $2,500, then return to your note and observe the effects the change had at the
source.

20160610-100407_2118344478

—Width [12 =

@ Move Up
+) Move Down
na @lnsertNew
A Show title
{= Show line numbers
> Disable run

[} Link this paragraph

~ Clear oulpu

x Remove

m n -
A i

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

117

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

& sandbox e B Qoo $ &# O =
laximum Balnce
Qouped O Sk [B wngh @ dweeced
2% '
2000
1500
1,000/ | .

500

dme Bl wan_u |Irl_.::l~‘l Lalanu . “lﬁlj I~Ill_lv| baan bl !
a5 (R' 51 2] s w

244
B £ I 2

Maximum Balance

2500|

@Grouped O Stacked

1,500
1,000

500

0llllllll

-244

Ekl R

Maximum Balance

2500

B | e W |~ ¥ seftings~

@Grouped Q Stacked
1,640
1,500

1,000

500

olllllll

An ae

118 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

xsql

n.

olllll—.ll‘l

-244

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

In the paragraph below this one, run the SQL command to read all data from

bankdataperm. Then adjust the width of the two paragraphs so that they both appear

on the same line.

33 36 39

select] * from bankdatapern

WoN e w2

age
58
44
33

A7

balance
2,143
29

2

1 BNK

20160610-101920

—Width |12 2

1
@ Move L 2
® Move C i
@ InsertN5
- 8
= Show |i
= 9
[> Disabl¢ 10

11
[} Link thil 12

¥ Clear output

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

42 45

468564635

pers

aph

48

. -

marital
married
single

married

marriad

119

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

el

Maxrrun Salance sclect * from beskdetepers

B N ¢ &~

B W e & W = SeTINgs v age balance marital
@Gouped OSuckee Omaried @singe @aNoId 58 2,143 married

e & 23 srgle
33 2 marned

1000 & 1,506 marrned
33 1 single

%0 M 35 23 marned
T Y

o bl Ibbetl | ERERRR S Rkl g A0 0ALLE Ruls o . s
e 13 az a “ &0 58 121 mamed

o. We are now ready to prepare this note for sharing. Create a clone copy of this note
named Data Visualization Clone. Also export a copy of the note.

- (&)@ E

Clone note

Note Name

Data Visualization Clone

Clone Note

™ Opening Data Visualization.json

ol You have chosen to open:
M Data Visualization.json

L which is: JSON file (92.7 KB)
from: data:

What should Firefox do with this file?

! Openwith | Browse...
@ SaveFile

Do this automatically For Files like this from now on.

Cancel OK J

120 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

¢ 8- Q & 8 ¥

Data Visualization.json

[|

ala resource —

Show All Downloads

p- On the Data Visualization note we are going to share, hide the code for all paragraphs.
Then hide the output for every paragraph except for the two that are on the same line.

Data Visualization v :tos2aa 2 e P
Marmver Salavce = I
e balance rear bl
LR I I Y e | £ . o 1208 e
X L
G oges O Siatken Orened O sge O 0wnoed) 1 nge
f::] ™m arred
v] “r 3o
1.000{ Q2 2 avorced
B m ol
o %93 wngio

o
i o
o bkttt | 1y ELAL A
244
= -~ & - «“

g. Next, convert this from the default view to report view. Now the URL to this note is
ready to share with your stakeholders.

2) & @ | default~
default
simple

report

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

121

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

Data Visualization

Micmen Salarce age bawnce rartal
4 1500 rarmied
@ rmared woke @ dvoed » ! g
:"q‘: 38 =1 franmea
2 w gl
1,008 42 averced
58 RHi) marmied
0 EN) 550 Enghe

-

o ela

‘.Im..ll’l|.1|lll|l|lll|1.”hl||l|||.|“|.|.||1||.l - - o
i » “ m] - “w

r. Import the copy of this note you made earlier and name the new note Data Visualization
Imported. Confirm that the copy contains all original code and formatting.

’a Zeppelin Notebook - Interpreter Configuratio

Welcome to Zeppelin! (0.6.0-incubating

Zeppelin is web-based notebook that enables interactive data analytics.
You can make beautiful data-driven, interactive, collaborative document with SQL, code

Notebook & Help

Get started with Zeppelin docur

il Create new note Community

Q Filter Please feel free to help us to in

g) |
Import new note

Import AS

Data Visualization Imporlec‘

Choose a JSON here Add from URI

122 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

File Upload

4 | ¢ lmiroot “idncslv.top'

Places Name v Size Modified

Q search R firefox.desktop 9.0KB 04/24/15

O Recently Used . gnome-terminal.desktop 586 bytes 04/24/15
@i root
& Desktop
L File System
4] Documents
& Music
{8 Pictures
3 Video

AllFiles =

cancel | [Open.

File Upload

£ | 4| miroot ‘oownloods[

v Size Modified

Nac
| | Data Visualization.json 92.7KB 11:30
arkPython-LabGuide-EarlyReleaseworkshop.pdf 3.8MB 04/01/16

1 = " p

Places

Q search

D Recently Used
& root

& Desktop

1 File System

& Documents
& Music

8 Pictures
Videos

- AllFiles 3

Cancel ~ Open

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

123

Lab 10: Data Visualization, Reporting and Collaboration using Zeppelin (Scala)

® Data Visualization
[Data Visualization Clone

1 Visualization Importe

B Hel

Data Visualization Imported ¢ :wsasa o o

pe—— wue

bankdataparm false

table1hive false

Maximum Balance ! 3::r * from baskdatapern

m ¥ ¢ ™
2 M e m attings v age balance marital

Result

D08 dus

You have successfully created and manipulated Zeppelin visualizations, made them available for

collaboration, and used Zeppelin to create a shareable report.

124 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 11: Job Monitoring (Scala)

About This Lab

Objective:
Monitor Spark jobs using the Spark Application Ul

File Locations:
NA

Successful Outcome:
Monitor Spark jobs.

Lab Steps
Perform the following steps:
1. Monitor a core RDD programming job.

a. Open the Firefox browser and access your Zeppelin notebook.
http://sandbox:9995/

Welcome to Zeppelin! (0.6.0-incubating-SNAPSHOT)

Zec0ain 18 wed 2360 FOLeOOR That rabien Fieractve GIt ana)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 125

126

Lab 11: Job Monitoring (Scala)

b. From the home page, select the Application Monitoring Scala Note. This note has
prebuilt code that we will run to generate Spark job activity.

5 Application Monitoring Scala

aZeppelin Notebook ~ Interpreter ~ Con

Application Monitoring Scala v : @ »

sspark

val months = Array("Jan”, "Feb™, "March”, "April”, "May", "June”, "July")
val rddMonths = sc.parallelize(months)

val zipWIrdd = rddMonths.zipWithIndex()
zipWIrdd.collect()

val quarters = Array(1,1,1,2,2,2,3)

val rddQuarters = sc.parallelize(quarters)

val ZiPrdd = rddMonths.zip(rddQuarters)
ZiPrdd.collect()

val MapValrdd = ZiPrdd.mapValues(mark => (mark, 1));
MapValrdd.collect()

MapValrdd.keys.collect()

MapValrdd.values.collect()
MapValrdd.sortByKey().collect()

c. At the top right click on the gear icon to change interpreter binding. Your administrator
has enabled an interpreter called “spark yarn-client” which is configured for the HDP
cluster you are using. Drag it to the top of the list of interpreters, and click the Save
button.

Q) @ﬂ default v

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 11: Job Monitoring (Scala)

Application MonitoringScala ~ s s2aa o o

Settings

nterpreter Dindng

Bind Interpreter 10f this note. Cliick 10 Bind/Unsbing interpreter. Deag 8nd drop 10 recrder interpreters.

The frst interpreter on the Bst Secomes default To Create/remove Interpreters, 9o 10 Interpreter mery

agaﬂﬁnﬂaangag

kylin

SPACYBINCIONT Nagark. Mapark Syspark. Maoat sal Mgt dep

(-

DO s

Application MonitoringScala » =« ws2aa o o

Settings

nterpeeter ey
Bind interpoeter for this rote. Clck 1o Bind/Unbing interpreter. Orag 8nd drop 10 recrder interpreters.
The fiest Pterpreter 0n the kit Decormes defaull To Create/remove PRerseeters, 90 10 Interpreter meny

SPArk-yarn-Client \apes (detat) \oyspark, \acl, \oep

Nohownis

ﬂiaﬂﬂﬂﬂaaﬂgaﬁ

(- o

NOTE:

The first interpreter on the list is treated as the default interpreter. Scroll down to find the

Save button.

Save Cancel

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

0@ sene

127

Lab 11: Job Monitoring (Scala)

d. Now run the code by hitting Play button “ or by pressing Shift + Enter.

'\ NOTE:
» The below code is for reference purposes and has already been placed in the note.

%spark
val months = Array("Jan", "Feb", "March", "April", "May", "June", "July")
val rddMonths = sc.parallelize (months)

val zipWIrdd = rddMonths.zipWithIndex ()
zipWIrdd.collect ()

val quarters = Array(l,1,1,2,2,2,3)

val rddQuarters = sc.parallelize(quarters)
val ZiPrdd = rddMonths.zip (rddQuarters)
ZiPrdd.collect ()

val MapValrdd = ZiPrdd.mapValues (mark => (mark, 1)):;
MapValrdd.collect ()
MapValrdd.keys.collect ()
MapValrdd.values.collect ()
MapValrdd.sortByKey () .collect ()

Application Monitoring Scala 2 a o4

£

e. Open a new tab on the Firefox browser and enter the following URL to view the Spark
Application Ul:

http://sandbox:4040/

“= sandbox:4040

128 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

 J

Lab 11: Job Monitoring (Scala)

NOTE:
http://sandbox:4040/ will work only once the job is submitted.

& sarddox RS - Qa0 $ & =
Spaik’ .. 5 Zeappelin spphcutix
”
Spark Jobs (7
Total Uptime: 36 5
Scheduling Mode: FAR
Completed Jobs: 9
» Event T
Completed Jobs (9)
Job Id (Job Group) Description Submitted Duration Stages: SucceededTotal Tasks (for all stages): Succeeded Total
8 (zeppeln 20151218-011248_1336183271) Zeppeln 04s S
ppein- 2015121801248 Zeppete : —— S—
6 (zoppeln 20151218-011248_13361K3271) Zappein : [F— S—
§ (zeppein-20151218-011248 1336183271) Zeppeln 20160606 070716 &7 ms e 2 |
4 (2eppein-20151218-011248 1336183271) Zeppeln 201606806 0707:16 92ms [FETRSREIII Nnaee——
3 (zeppeln 201512180 Zeppein 20160606 0707:16 92 ms | - S—
eppe 51218011248 Zeppe 5 TSms | SS— - S——
pge 8-011248_133618 Zoppe - S

NOTE:

the URL http://sandbox:4040/ has been redirected to
http://sandbox:8088/proxy/application_ID. Port 8088 belongs to the job history server for
various applications that run on YARN. Here our application is “Zeppelin application UlI”
as noted in the top-right corner of the window.

Zeppelin application Ul

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

129

Lab 11: Job Monitoring (Scala)

f. SPARK APPLICATION Ul SCAVENGER HUNT!

Look at the various aspects of the jobs that were run as part of the code being executed in the
step above. Try to locate the following screens (the details of your environment may differ from
the details shown):

130

Spark Jobs (7

Total Uptisne: 26 mn
Scheduling Mode 7 AR
Coepleted Jobs: 9

v Event Timelne

Enable rooming

Executors
Added Execvior 1 aoded
@8 Removed Exwcor 2 adsed
Jobs
Succeeded
B Faded
Runrming Zepoetn Jod | o
.
0 3 ¢ [3 8 9 10 1 12 13 4 15 16 1
6 June 07.07
Completed Jobs (9)
Completed Jobs (9)
Job i (Jod Group) Description Submutted Durstion Stages: SucceededTotal Tasks (for all stages): Succeeded Total
8 (2eppein-20151218-011248_1336183271) Zeppeln 20160606 07T07:16 04s 22 [) | [———
colect of .’,"r-). 1
7 (2eppeln 20151218.011248_106183271) Zeppele 2160806070716 015 11 [F— - S—
sorByKey ot <atving>:1
6 (zeppein-20151218-011248_1336183271) Zeppeln 20160606 0707:16 0.1s n e 2 |
sortByiey ot <string> 13
S (zeppeln-20151218-011248_1336183271 Zeppeln 20160606 070716 87 ms n P—— . ———
colloct at <string» 12
4 (zoppein 20151218.011248_106183271) Zeppele 0160606070716 Rms 11 [T S
colect al <strng> 1"
3 (zeppelin-20151218-011248_1336183271 Zeppeln 20160606 0707:16 92 ms n IS ' S
collect at «strng>:10
2 (20ppein-20151218-011248 1336183271) Zeppeln 201606060707:15 TSms 1N | (EEESIIRE F—
collect al cstring» 8
1 (2eppoin-20151218-011248_1336183271 Zeppeln 20160606 0707:15 0.1 ”n | E— . S—
collect at <strng>
0 (zeppein-20151218-011248_1336183271) Zeppeln 20160606 0707:14 25 n e 2 |
rpWihindex at <strng»
Details for Job 8

Status: SUCCEEDED

Job Group: zeppein 20151218011248 1338183271

Completed Stages: 2

» Event Timelne

» DAG Visuakzaton

Sge s Sage ¥
parasesze panasesze PatonBy
»
Completed Stages (2)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 11: Job Monitoring (Scala)

Completed Stages (2)
Stage Pool Tasks Shuftle Shuttle
] Name Description Sub O s dTotal Input Output Read Write
9 dotat Zeppeln 20160606 02s [I— F— 50408
colect at <string>:13 o 07.07:16
8 defact Zeppeln 20160606 o1s [P T— 59408
sortBy¥oy ot aring> 13 » 0707:16

M"C Stages Storage vronment Executors SO Zeppolin appi

Stages for All Jobs
Completed Stages: 10

2 Falr Scheduler Pools

Pool Name Minimum Share Pool Weight Active Stages Runaing Tasks SchedulingMode
0 1 0 0 12 2+
0 1 0 0 FAR
Completed Stages (10)
Stage Pool Tasks Shuttie Shuttle
M Name Description Submitted Oumtion Succeeded Total Input Output Read Write
b delalt Zeppeln 20160606 02s [I— . S— 59408
olect at <string>-13 o 070716
8 Sotalt Zeppeln 20160606 Ot1s [— S— 5408
070716
7 Zegpeln owosos o1 (S
sortByNey at <stving>:13 . 070716
3 Zeppeln 20160606 01s R T—
artACaw o <& 0707:16
S delat Zeppeln 20160606 nes D
! 3t <string» 12 . 070716
4 Solalt Zeppoln 20160606 =

Details for Stage 9 (Attempt 0)

Total Time Across All Tasks: 02 s
Locality Level Summary: Node local: 2
Shuflle Read: 59408/ 4

« DAG Visuakzation

MapPattonMlO 1
mageatton o ’lkooxau:n

I

Py®onROD [14]
comect at « l) {3

When you get to the Show Additional Metrics link, try reading about and selecting additional
metrics and view the information they provide. How might this be useful in troubleshooting
application performance problems?

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 131

Lab 11: Job Monitoring (Scala)

~+ Show Additional Metrics
(De)select All
Scheduler Delay
Task Deserialization Time
Shuffle Read Blocked Time
Shuffle Remote Reads
Result Serialization Time
Getting Result Time
Peak Execution Memory

Summary Metrics for 2 Completed Tasks

Metric Min 25th percentile Median 75th percentile Max

2. Monitor a Spark Streaming job.

a. Open a terminal window and SSH into sandbox.

root@ubuntu:~# ssh sandbox

b. Start a new REPL specifying the local machine as the master and allocate two cores for
the streaming application.

ssh sandbox

spark-shell --master local[2]

[root@sandbox ~]# spark-shell --master local[2]

c. Set the log level to ERROR to avoid screen clutter while running the streaming
application.

scala> sc.setLogLevel ("ERROR")

scala> sc.setlLoglLevel("ERROR")

132 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 11: Job Monitoring (Scala)

d. Import the streaming library.

scala> import org.apache.spark.streaming.

scala> val sscFive = new StreamingContext(sc, Seconds(5))

sscFive: org.apache.spark.streaming.StreamingContext = org.apache.spark.streamin
g.StreamingContext@3e216fc9

e. Create a streaming context with a five-second batch duration.

scala> val sscFive = new StreamingContext (sc, Seconds (5))

scala> val sscFive = new StreamingContext(sc, Seconds(5))

sscFive: org.apache.spark.streaming.StreamingContext = org.apache.spark.streamin
g.StreamingContext@3e216fc9

f. Create a DStream using socketTestStream () to the system named “sandbox” on
port 9999.

scala> val inputDS = sscFive.socketTextStream ("sandbox", 9999)

scala> val inputDS = sscFive.socketTextStream("sandbox",9999)
inputDS: org.apache.spark.streaming.dstream.ReceiverInputDStream[String] = org.a

pache.spark.streaming.dstream.SocketInputDStream@4caeeab6

g. Print out the output to the terminal window.

scala> inputDS.print ()

scala> inputDS.print()

h. Start the streaming application. Note that only new files will be streamed, so any files
that existed at application launch will not be streamed.

scala> sscFive.start ()

scala> sscFive.start()

'\ NOTE:
» An error will appear when the application starts because the application is waiting for an
input connection.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 133

Lab 11: Job Monitoring (Scala)

at org.apache.spark.streaming.dstrean.SocketReceiver$Sanon$2.run(Socke
nputDStream.scala:59)

16/65/30 16:20:58 ERROR ReceiverTracker: Deregistered receiver for stream 0: R
tarting receiver with delay 2000ms: Error connecting to sandbox:999 - java.net
onnectException: Connection refused

at java.net.PlainSocketImpl.socketConnect(Native Method)

at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.
va:345)

at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSock
Impl.java:206)

at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.ja
:188)

at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)

at java.net.Socket.connect(Socket. java:589)

at java.net.Socket.connect(Socket.java:538)

at java.net.Socket.<init>(Socket.java:434)

at java.net.Socket.<init>(Socket.java:211)

at org.apache.spark.streaming.dstrean.SocketReceliver.receive(SocketInp
DStream.scala:73)

at org.apache.spark.streaming.dstrean.SocketReceiverS$SanonsS2.run(Socke
nputDStream.scala:59)

i. In asecond terminal window SSH to sandbox and use the netcat utility to create a
connection to port 9999.

ssh sandbox

[root@sandbox ~]# nc -1lkv 9999
Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted

nc -1lkv 9999

[root@sandbox ~]# nc -1lkv 9999
Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted

j- Start typing words separated by space, hit Enter occasionally to submit them.
Observe what happens in the streaming terminal window a few seconds after hitting
Enter.

Connection from 172.17.0.1 port 9999 [tcp/distinct] accepted
welcone to spark streaning

Help
L «<intt>(Socket.Jova:211)
<.streaming.dstrean.SocketRecelver. recelve(Socketinput

<.streaming.dstrean.SocketRecelvers$Sanons$2. run{Socketl

Time: 1464640255000 ns

welcone to spark streaning

134 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 11: Job Monitoring (Scala)

k. Once you observe data being streamed on-screen in the first terminal window, use Ctrl
+ C (orCmd + C if using a Mac) to exit netcat in the second terminal window.

[root@sandbox datal]# nc -1lkv 9999
Hello world

This is an example of streaming data

Random words random words
~C
[root@sandbox datal# I

I. Since this is a new SparkContext instance, a new Spark Applications Ul should now be
available. Open a new FireFox tab and browse to the Streaming Application Ul URL
from before, but replace port 4040 with 4041:

Spoﬁ(?) - . Spark shell

Spark Jobs (*

Total Uptime: 5.6 mir
Scheduling Mode: FIFO
A il

Active Jobs (1)

Job id Deseription Submitted Duration Stages: Succesded Total Tasks (for all stages): Succeeded Total
0 Streaming job running receiver 0 20160609 18:26:13 1.1 mn on o1
Completed Jobs (3)
Jobid Description Submitted Duration Stages: Succeeded Total Tasks (lor all stages): Succeoded Tolal
3 Streaming b om [culy slior] 1 5 20160609 18:26 50 18 ms n 22
Streamng b ¥om ip peral ! 82 201606/09 18:26%0 13 ms m 1”1
Streaming job Yo iy atior ! 8264 20160609 18:26 45 39 ms mn 1"

m. SCAVENGER HUNT PART II

Look at the various aspects of the streaming jobs that were run as part of the code being
executed in the steps above. Try to locate the following screens (the details of your
environment may differ from the details shown):

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

135

136

Jobs Stages

Streaming Statistics

Lab 11: Job Monitoring (Scala)

Sworage Environment

Exooutors SQL Streaming

Spark shell appication UI

Running batches of § ds lor 7 38 since 201606/09 18:22:51 (52 completed balches, 4 records)
Te {Last 52 batches, 0 sctive, 52 pleted) Histegrams
events'sec 0 0 2 30 40 50 2baches
080
» Input Rate 0.60 1]
Receivers: 0/ 1 active 0.40 -
Avg: 0.02 events'sec 0.20]
0.00 _—
1826:15 1830:30
ms 0 10 2 2 40 50 Sbasches
50,007 :)
40,00
Scheduling Delay | 30.004
0 20.00
A 0ems 10.00 1
0.00 P _—
182615 1830:30
ms 0 lAO IIS 2]0 2]61 balches
500,00
400,00
Scheduling Delay {7 300.00
:0ms 200.00+
A 100.004
0,00 J
121740 12:19:45
ms 0 10 15 20 25 #balches
i A A A \J
500.00
400.00 ‘
Processing Time (7 300.00
161 ms 200.00
Avg 100.00 4
0.00 = 3
12:17:40 12:19:45
ms 0 lAO ‘.5 2A0 2]5 Fbalches
500,00
400.00
Total Delay ™ 300.00
: 62 ms 200.00+
Avg 100,004
0,00 = = =
121740 12:19:45
Active Batches (0)
Batch Time Input Size Schaduling Delay Processing Time (7 Output Ops: Succeeded Tolal Siaslus
Completed Batches (last 26 out of 26)
Batch Time Input Size Scheduling Delay |7 Processing Time (7 Total Delay Output Ops: Succeeded Total
201606109 12:19:45 0 events 2ms 27ms 2ms | /) I
201606109 12:19:40 0 events oms 17ms 17ms (e — ——————
201600609 12:1938 0 events 1ms 10ms 11ms | /) I—
20160609 12:19:20 0 everts Oms 14ms 14ms | /) [—
20160609 12:1925 Oeverts oms 13ms 13ms e w
20160609 12:1920 Oeverts Ims 3t ms Ums s M —
20160609 12:19:15 0 everts oms 13ms 13ms S— || F—
20160649 12:19:10 Qewers Oms 14ms 14ms —— ———
20160609 121995 Oevers Oms 13ms 13ms [T
2016/06/09 12:19.00 0 events oms 14ms 14ms I 7 [—
20160609 12:1855 0 everts oms 87ms 87Tms R 7, [R—

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Spark ...

Lab 11: Job Monitoring (Scala)

Streaming Spark shell apg

Details of batch at 2016/06/09 18:30:30

Batch Dumntion: 53

Input data size: 0 records
Scheduling delay: O ms

Processing time: 1 ms

Total delay: 1 ms
Output Op Job Stages: Tasks (for all stages):

Id Description Duration Status d Curation Swcceeded/Total Succoeded Total Eror
0 pont at <corsoie>35 1ms Succeoded

v Input Rate

Receivers: 1 /1 active A J

Avg: 0.02 events/sac A -

Status Executor ID / Host Last Error Time Last Error Message

ACTIVE driver / localhost

n. When you have located all of the required sections, go back to the first terminal
window, stop the stream and exit the REPL. If the stream refreshes while you are

typing, that will not affect the input. Simply continue to type the command and press

enter.

sc.stop ()
exit ()

Result

You have successfully monitored Spark core programming and Spark Streaming jobs using the Spark

Application UL.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

137

Lab 12: Performance Tuning (Scala)

About This Lab

Objective:
Practice performance tuning techniques

File Locations:
/home/zeppelin/spark/data/

Successful Outcome:
Code performance tuning techniques from the lesson

Lab Steps
Perform the following steps:
1. Practice using performance tuning techniques.

a. Open the Firefox browser and enter the following URL to view the Zeppelin Ul.
http://sandbox:9995/

@ sandbox v | B~ Google Qo8 $ & =

‘Zeppelin Notebook ~ Interpreter Configuration

Welcome to Zeppelln' (0.6.0-incubating-SNAPSHOT)

Zeppein is web-based notebook that enables interactive data analytics.
Yeou can make beauul data-cieiven, intaractive, colaborative decument with SQL. code and even moee!

Naotebook & Help
2 Ireor 16 Gat startod with Zegpeln o
Community
Q Firet Please feel free 10 help us 1o Improve Zeppein,

Ay Contrbuton are wakome!

N Australian Dataset (SparkSOL example w

Qo

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 139

Lab 12: Performance Tuning (Scala)

b. Click on Create new note. Name this note Performance Tuning.

Create new note

Note Name

Performance Tuning

Create Note

c. At the top right click on the gear icon to change interpreter binding.

©) @ﬂ default v

140 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 12: Performance Tuning (Scala)

Drag the spark-yarn-client to the top and click save.

The first interpreter on the list becomes default.

d. Create an RDD named rdd1 that contains a list of numbers one through nine, then
back down to one again (17 elements total) and set it to eight partitions. Use print to
confirm the RDD was created successfully.

val rddl = sc.parallelize(Segq(1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2,
1), 8)

rddl.collect ()

val rdd1 = sc.parallelize(Seqtl, 2,3,4,5,6,7,8,9,8,7,6,5,4,3,2,1),8)
rdd1.collect()

rddl: org.apache.spark.rdd.ROD[Int] = ParallelCollectionRDD[711] at parallelize at <console>:29
res44: Array[Int] = Array(1, 2, 3, 4, 5,6, 7,8, 9,8,7,6,5,4,3,2,1)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

141

Lab 12: Performance Tuning (Scala)

e. View the default parallelism settings for your environment, and then verify that rdd1
was partitioned with eight partitions instead of the default number.

sc.defaultParallelism

rddl.getNumPartitions

sc.defaultParallelism

rdd1.getNumPartitions]

res53: Int
res54: Int

]
(= <]

. Create an RDD named rdd2 that is a copy of rdd1 but uses only four partitions. Verify
that rdd2 has only four partitions.

val rdd2 = rddl.coalesce (4)

rdd2.getNumPartitions

val rdd2 = rddi.coalesce(4)
rdd2.getNumPartitions|

rdd2: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[712] at coalesce at <console>:31
res56: Int = 4

g. Create an RDD named rdd3 that is a copy of rdd2 but expands the number of
partitions from four to six. Verify that rdd3 has six partitions.

val rdd3 = rdd2.repartition (6)

rdd3.getNumPartitions

val rdd3 = rdd2.repartition(6)
rdd3.getNumPartitions]

rdd3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[716] at repartition at <console>:33
res58: Int = 6

h. Create an RDD named rdd4 that contains a larger set of data by combining rdd3,
rdd2, and rddl. The view this list of 51 numbers.

val rdd4 = rdd3.union (rdd2.union (rddl))

rdd4.collect ()

142 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 12: Performance Tuning (Scala)

val rddé = rdd).enlon{rdd2.unlon(rddl))
fads. collece()

rddd: org.apache,spark,rdd. #00[Int) = UnlonRD0[719] at unlon at <console>:)S
reséd: ArcaylInt] = Array(8, 2,7, 68, 3, 7,1,2,6,3,5,4,4,5,6,9,3,1,2,5,4,5,6,7,86,9,86,7,6,5,4,3,2,1,1,2,3,45,6,7,8,9,8,7,6,5,4,
3,2,1)

i. Create an RDD named rdd5 that turns this list into a Pair RDD using the existing
numbers as keys and assign each key a value of one. View rdd5 to confirm successful
operation.

val rdd5 = rdd4.map(x => (x, 1))

rdd5.collect ()

val rédS « rdsd.map(x < (x, 1))
rdds.collect()|

rogs: org.apache.spark.rad ROO[(Int, Int)] « MapPartitionsiDD[728) at map at «corsoles:37
) (L1), (8,1), (2,1), (&,0)

1), (5,1), (4,2), (3,1), (2,0), (L0),

resa?: Arcay[{int, Ist)
)o (4,1), (5.1), ()
{7.1), (6,1), (5,

v (8,1), (9,1), (8,0), (7.1), (e,
30, 2,0, (L,1)

j- Create an RDD named rdd6 that uses partitionBy () to create eight hashed
partitions from rdd5. View rddé to confirm successful operation.

import org.apache.spark.HashPartitioner
val rdd6 = rdd5.partitionBy (new HashPartitioner (8))

rdd6.collect ()

imgort org.apache, spark, HashPartitioner

val rdds -« rddS.partitionBy(rmew HashPartiticner(8))

rdd6.collect(

rport org.apache.spark. HashPartitioner

rdd6: org.apache, spark, rdd. #00[(Int, Int)] = ShuffledRDO[721) at partitionBy at <console>;:40

restd: Acray[(Int, Int)] = Array((8,1), (B,1), (3,1), (B,1), 1), (8,1), (1,1}, (1,1), (1,1), (9.1), (9,1), (1,1), (1,1), (9,1), (1,1), (2,1), (2.,1), (2,0), (2,1), (21
Y. (2,1), (3,1), (3,1), (3,1), (3, (3.1), (3,3), (4,1), (4,3), (4,1), (4,3), (4,1), (4,3), (5.1), (5,20), (5.1), (5.2), (5.1), (5.1), (6,1), (6,1), (6,2), (6,1), (6,2),

(6,1), (7,1), (7.1), (7,1), (7.0), (7.0), (7.0))

k. Cache rdd6 in memory so that it will be quickly available should we want to use the
hash partitioning in a future operation.

rdd6.cache ()

rddé.cache()

res66: rdd6.type = ShuffledRDD[721] at partitionBy at <console>:40

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 143

Lab 12: Performance Tuning (Scala)

. Create a new RDD named rdd7 that reduces rddé by key. View the results and note
the time it took to complete the operation.

val rdd7 = rddé6.reduceByKey((x,y) => x+y)

rdd7.collect ()
val rdd7 = rdd6.reduceByKey((x,y) => x+y)
rdd7.collect()|

rdd7: org.apache.spark.rdd.ROD[(Int, Int)] = MapPartitionsRDD[722] at reduceByKey at <console>:42
res68: Array[(Int, Int)] = Array((8,6), (1,6), (9,3), (2,6), (3,6), (4,6), (5,6), (6,6), (7,6))

m. Create a directory named checkperf in your HDFS home directory, then configure it
as your checkpoint directory for Spark applications.

$sh

hdfs dfs -mkdir checkperf

sc.setCheckpointDir (“checkperf”)

%sh
hdfs dfs -mkdir checkperf

sc.setCheckpointDir("checkperf")

n. Checkpoint rddé so that future operations can use it as the starting point for lineage-
tracking purposes.

rdd6.checkpoint ()

rdd6.checkpoint()|

144 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 12: Performance Tuning (Scala)

o. Open a terminal window and connect to sandbox using SSH. Switch to the zeppelin
user. Then view the contents of the checkperf directory and confirm that a checkpoint
file exists. Then exit the zeppelin user back to root.

ssh sandbox

su zeppelin

hdfs dfs -1s checkperf
exit

M.

zeppelin@sandbox:/root

File Edit View Search Terminal Help

root@ubuntu:~# ssh sandbox
Last login: Sat Jun 11 13:07:05 2016 from ip-172-17-42-1.ec2.internal
[root@sandbox ~]# su zeppelin

[zeppelin@sandbox root]# hdfs dfs -1s checkperf

Found 1 items

drwxr-xr-x - zeppelin zeppelin 0 2016-06-11 11:29 checkperf/519ce957-
3c6e-4cef-8cOa-d46b738bffa9

[zeppelin@sandbox root]#

p- Use broadcast variables to perform an operation. Code the following:
1. Create a variable named oddNums that contains a list of odd numbers 1-9.
2. Print the contents of rdd1 used at the beginning of the lab.
3. Create a broadcast variable named filterOdd that contains the values in oddNums.

4. Print the results of a filter operation where only numbers that appear in the filterOdd
broadcast variable show up in the output.

val oddNums = (Array(l, 3, 5, 7, 9))
rddl.collect ()
val filterOdd = sc.broadcast (oddNums)

rddl.filter (x => filterOdd.value contains x).collect ()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

145

Lab 12: Performance Tuning (Scala)

val oddNums = (Array(1, 3, 5, 7, 9))

rddi.collect()

val filter0Odd = sc.broadcast(oddNums)

rdd1.filter(x => filterOdd.value contains xJ).collect()
oddNums: Array[Int] = Array(1, 3, 5, 7, 9)
res91: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9,8, 7,6,5, 4, 3, 2,1)
filterOdd: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(295)
res92: Array[Int] = Array(1, 3, 5, 7,9, 7,5, 3, 1)

Result

You have used several of the performance tuning tools and practices discussed in the lesson.

146 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab13: Build and Submit Applications to YARN (Scala)

About This Lab

Objective:
Apply programming knowledge into stand-alone applications submitted to a YARN cluster

File Locations:
NA

Successful Outcome:
Build and submit a cluster-mode application to YARN

Lab Steps

Perform the following steps:
1. Build and Submit a Spark RDD application

a. Open aterminal and use SSH to connect to sandbox:

ssh sandbox

root@ubuntu:~# ssh sandbox

b. OPTIONAL:
If you have a favorite Linux text editor already, you may use it for the rest of the lab. If
you are not already familiar with a Linux text editor, we recommend that you download
and install nano — a small, simple to use editor that will be used for the commands and
screenshots in this lab.

yum -y install nano

[root@sandbox ~]# yum -y install nano

c. Navigate to

/root/spark/applications/scala/SparkRDD/src/main/scala/stub/ and
view the SparkRDD.scala file.

cd /root/spark/applications/scala/SparkRDD/src/main/scala/stub/

[root@sandbox ~1# cd /root/spark/applications/scala/SparkRDD/src/main/scala/stub

/

nano SparkRDD.scala

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

147

Lab13: Build and Submit Applications to YARN (Scala)

(Again, vi or another editor can also be used based on your preference.)

[root@sandbox stub]# nano SparkRDD.scala

GNU nano 2.0.9 File: SparkRDD.scala Modified

package stub
//ToDo
//Import the correct libraries

object SparkRDD{
def main(args: Array[String]) {

//Create the SparkConf

//Set the App name to SparkRDD
//Set the serializer to Kryo
//Set Spark Speculation to True

//Create the SparkContext from the conf file
//Set LogLevel to WARN

//Read in Juser/root/selfishglants.txt on HDFS
//Perform wordcount
//Print the top 10 most used words

a¥ Get Help @ WriteOut QN Read File @4 Prev Page @i Cut Text @& Cur Pos
g} Where Is Next Page WV UnCut Textigl To Spell

The objective is to build an application based on this template and the comments posted on this
template. You may try to do this on your own, or use the solution steps below:

148 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab13: Build and Submit Applications to YARN (Scala)

//package stub

package soluticn
//%9Dg.
//Import the correct libraries

imporxt org.apache.spark.SparkContext

import org.apache.spark.SparkContext.

impoxt org.apache.spark.SparkConf

cbject SparkRDD{

def main(axgs: Array([String)) |{
//Create the SparkConf
//8et the App name to SparkRDD

¥al conf = new SparkConf () .setAppName ("SpaxkRDD")

o= e

//Set the gerializer to Xryo

cenf.set("spark.gerializer","org.apache.spark.serializer KryoSerialize

z")

//Set Spark Speculation to True

sonf.set("spark.gepeculation", "true")

//Create the SparkContext from the ggnf file

¥al sg = new SparkContext(gonf)

/Set LogLevel to WARN

sc.seiloglevel ("WARN")

//Read in /user/root/selfishgiants.txt on HDFS

//Perform wordcount

¥al input = gg.textFile("/user/root/selfishgiants.txt")

¥al wg = input.flatMap(line => line.split(" ")).
map(line => (line,l)).xeduceByKey((a,b) => atb).
map{case (a,b) => (b,a)}.sextByKev(false)

//Print the top 10 most used words

Rziptln("You submitted the Sclution")

we.take (10) .foreach (println)

//Stop the SparkContex:
sg.step ()

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

149

Lab13: Build and Submit Applications to YARN (Scala)

The solution file is also available at:

/root/spark/applications/scala/SparkRDD/src/main/scala/solutions/

SolutionFileName: SparkRDD.scala (vi editor can also be used)

[root@sandbox ~]# cd /root/spark/applications/scala/SparkRDD/src/main/scala/solu

tion/

GNU nano 2.0.9 File: SparkRDD.scala
package solution

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object SparkRDD{
def main(args: Array[String]) {

val conf = new SparkConf().setAppName("SparkRDD")
conf.set("spark.serializer"”,"org.apache.spark.serializer.KryoSerializer$
conf.set("spark.sepeculation”,"true")

val sc = new SparkContext(conf)
sc.setLogLevel("WARN")

val input = sc.textFile("/user/root/selfishgiants.txt"”)
val wc = input.flatMap(line => line.split(" ")).
map(line => (line,1)).reduceByKey((a,b) => a+b).
Read 26 lines

g Get Help @& WriteOut @ Read File @4 Prev Page @4 Cut Text @& Cur Pos
& Exit @l Justify @Y Where Is Next Page ¥ UnCut Texti@] To Spell

d. Exit the text editor and save your changes (in nano, press Ctrl + X to exit and press
Y to save your changes.

e. Now to run the application first we have to package it with maven and make sure the
pom.xml file has all the appropriate dependencies

cd /root/spark/applications/scala/SparkRDD/

[root@sandbox ~]# cd /root/spark/applications/scala/SparkRDD/

nano pom.xml

[root@sandbox SparkRDD]# nano pom.xml

150 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab13: Build and Submit Applications to YARN (Scala)

GNU nano 2.0.9 File: pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg$
<modelversion>4.0.0</modelversion>
<groupId>com.hortonworks.SparkRDD</groupld>
<artifactId>SparkRDD</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<build>
<plugins>
<plugin>
<grouplId>org.scala-tools</groupld>
<artifactld>maven-scala-plugin</artifactid>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>

Get Help WriteoOut Read File Prev Page Cut Text Cur Pos
& Exit & Justify @l Where Is Next Page @8 UnCut Textig] To Spell

Build the package:

mvn package

A successful build will produce the following output:

[INFO] Building jar: /root/spark/applications/scala/SparkRDD/target/SparkRDD-1.0
-SNAPSHOT. jar

[INFO]
[INFO] BUILD SUCCESS

f. Run the application from the terminal. Please see the tip below before running your
command, as the correct command is slightly different from what is shown below.

spark-submit --class solution.SparkRDD --master yarn-cluster --num-executors 2
--executor-memory lg target/SparkRDD-1.0-SNAPSHOT.jar

[root@sandbox SparkRDD]# spark-submit --class solution.SparkRDD --master yarn-cl

uster --num-executors 2 --executor-memory 1g target/SparkRDD-1.0-SNAPSHOT.jar

TIP:
--class packagename.objectname.
=

In your case this would be stub. SparkRDD. This would change if you ran the job from
the solution file solution.SparkRDD.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 151

Lab13: Build and Submit Applications to YARN (Scala)

% NOTE:
P (

This application will now use YARN as the resource manager with number of executors
as 2 and 1g of memory.

ate: FINISHED)

16/06/16 10:28:09 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: 172.17.6.2
ApplicationMaster RPC port: ©
queue: default

start time: 1466087268180

final status: SUCCEEDED

tracking URL: http://sandbox:8088/proxy/application_1465503909288_0004/

user: root
16/06/16 10:28:09 INFO Utils: Shutdown hook called
16/06/16 10:28:09 INFO Utils: Deleting directory /tmp/spark-7eff83df-d8ca-424e-83b7-99ef
adeab46d

Copy the application ID at the end when the application stops.
The output of the program can be seen using the following command:

yarn logs —applicationId <id>

[root@sandbox SparkRDD]# yarn logs -applicationId application 1465503909288 004

Scroll up to see the output

LogType:stdout

Log Upload Time:Thu Jun 16 10:28:10 -0400 2016
LogLength:110

Log Contents:

You submitted the Solution

(148,the)

End of LogType:stdout

152 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab13: Build and Submit Applications to YARN (Scala)

d- Monitor the submitted Job. Open a new tab on the Firefox browser and browse to
http://sandbox:4040/

sandbox:4040

IMPORTANT:

The Ul below will only be available while the job is running. If you are unable to see the
Ul, run the application again and quickly switch to the provided link.

Spark’

Spark Jobs (7

Result

You have successfully built and submitted a Spark application to a YARN cluster.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

153

Lab 14: Machine Learning Walkthrough

About This Lab

Objective:
Observe and run code examples that demonstrate machine learning processes.

File Locations:
NA

Successful Outcome:

Import a preconfigured note that contains machine learning code samples, read through the note, and
run those examples.

Lab Steps

Perform the following steps:
1. Import the note, read through it, and run code examples.

a. Open the Firefox browser and enter the following URL to view the Zeppelin Ul.
http://sandbox:9995/

€ @sandbox:999 vc| B~ e Qwvsa & & =

i ‘o Zeppelin | Notebook ~ Interpreter Configuration Search in your notebooks Q

Welcome to Zeppelin! (0.6.0-incubating-SNAPSHOT)

Zeppelin is web-based notebook that enables interactive data analytics.

You can make beautiful data-driven, interactive, collaborative document with SQL, code and even more!
Notebook & Help

& Import note Get started with Zeppelin documentation

] Create new note

Community

Q Filter Please feel free to help us to improve Zeppelin,
® AON Demo Any contribution are welcome!

i Mailing list
¥ Issues tracking

Q) Github

% NOTE:
Py

Zepplin’s current main backend processing engine is Apache Spark.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

155

Lab 14: Machine Learning Walkthrough

b. Import a copy of the note at the following URL:

https://raw.githubusercontent.com/hortonworks-gallery/zeppelin-
notebooks/master/2BNDT63TY/note.json

Name this note Machine Learning Lab. It should appear in the list of available notes on the
Zeppelin home page.

,a Zeppelin Notebook ~ Interpreter Configuratio

Welcome to Zeppelin! (0.6.0-incubating

Zeppelin is web-based notebook that enables interactive data analytics.
You can make beautiful data-driven, interactive, collaborative document with SQL, code¢

Notebook & Help
Get started with Zeppelin docur
tJ Create new note Community
Q Filter Please feel free to help us to in

Import new note

Import AS

Note name

Choose a JSON here Add from URI

156 Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 14: Machine Learning Walkthrough

Import new note

Import AS

Machine Learning Lab

URL

’ ousercontent.com/hortonworks-gallery/zeppelin-notebooks/master/2BNDT63TY/note.json

'\ NOTE:
» If for some reason the URL is not working, your instructor should know the location of a
JSON copy of this note that can be imported instead of importing it from an Internet link.

c. Open the new note and set the interpreter to spark-yarn-client.

’ Zeppelin Notebook ~ Interpreter Configuration Search in your notebooks

Machine LearningLab c:xmsas2 o o

Introduction to Machine Learning with Apache Spark

) £ @ default~

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 157

158

Lab 14: Machine Learning Walkthrough

Data Visualization ¢ :wesase o o

@O a defanv

Settings
Interpreter binding
Bind interpreter for this note. Click to Bind/Unbind interpeeter. Drag and drop to reorder intespreters.
The first on the list default. To nove 5, GO to menu.

SPark xeperk (defaut), Xpyspark, %aql, %dep

spark-yarn-client uspar, Sspark pyspark, %spark sql %spark dep
e

Data Visualization ©:w~s2s02 o o ®oa e

Bind interpreter for this note. Click to Bind/Unbind interpreter. Drag and drop to receder interpreters.

The first interpreter on the list default. To QO %0 Interpreter menu.

SPArk-yarmn-client Sspark (defau). Soyspark. Ssql, Sdep

BRBgagg
|
E
%

|

ey

!
§

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

Lab 14: Machine Learning Walkthrough

d. Read through the note. A fair number of paragraphs are there for context and

instructions. When you come to the first paragraph that displays code, run the code in
that paragraph and view the results.

KMeans is implemented as an Estimator and generates a KMeansMode! as the base model

Note that the data points for the training are hardcodad in the example below. Baefore you run the K-Means sample coda, try to guess what the two cluster centers
should be based on the training data

ot org.apache. spark.al.clustering. Means
et org.apache. spark,. allib. linalg. Vectors

rport org.apache, spark, sql. {Datafrane, SQLContext)
val sqlContext = new SQLContext(sc)

LAtk rame

val dataset: Dataframe

sqllontext.createlatafrane(Seal
(1, Vectors,dense(0.0, 0.0, 0.0)),
(2, Vectors.dense(6.1, 8.1, 6.1)),
(3, Vectors,dense(0.2, 0.2, 0.2)),
(4, Vectors.dense(3.6, 1.8, 3.8)),
(5, Vectors,dense(3.1, 3.1, 3.1)),
3.2, 3.2))

/1 Trains & k-neans model
11l kmoane . now KMsamel)

e. Continue down the note, reading the descriptions and explanations and running the
code as instructed, until you reach the end of the note.

The End

This concludas our lab, Hopafully you've got a taste of how easy it i5 1o run very sophisticated dustering and classification modeals with Apache Spark!

Resources: Hortonworks Community Connection

Make sure to checkout Hortorworks Community Connex 1CC) o you have Apache Spark and/or Data Science / Analytics related questions or you would like
1o conlribute back to the communily with your own answers/examples/articles/repos.

All best,
The HCC Team!

ASEDn

Result

You have walked through a preconfigured Zeppelin note that contained multiple examples of machine
learning code.

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

159

At PR\

HORTONWORKS'

UNIVERSITY

Learn from the company focused solely on Hadoop.

What Makes Us Different?

1. Our courses are designed by the leaders and
committers of Hadoop

2. We provide an immersive experience in real-

world scenarios

3. We prepare you to be an expert with highly
valued, fresh skills

4. Our courses are available near you, or
accessible online

Hortonworks University courses are designed by the leaders and committers of Apache Hadoop.
We provide immersive, real-world experience in scenario-based training. Courses offer
unmatched depth and expertise available in both the classroom or online from anywhere in the
world. We prepare you to be an expert with highly valued skills and for Certification.

	HWU-FrontMatter-Template-03-2016
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	HDPDeveloper-EnterpriseSpark1-ScalaLabGuide-Rev1
	HWU-BackMatter-Template-02-2016
	Blank Page
	Blank Page

