
HDP Overview:
Apache Hadoop Essentials

Student Guide

Rev 3.0

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved.

The contents of this course and all its lessons and related materials, including handouts to
audience members, are Copyright © 2012 - 2015 Hortonworks, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any
way, including, but not limited to, photocopy, photograph, magnetic, electronic or other record,
without the prior written permission of Hortonworks, Inc.

This instructional program, including all material provided herein, is supplied without any
guarantees from Hortonworks, Inc. Hortonworks, Inc. assumes no liability for damages or legal
action arising from the use or misuse of contents or details contained herein.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

All other trademarks are the property of their respective owners.

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

Become a Hortonworks Certified Professional and establish your credentials:

• HDP Certified Developer: for Hadoop developers using frameworks like Pig, Hive, Sqoop and
Flume.

• HDP Certified Administrator: for Hadoop administrators who deploy and manage Hadoop
clusters.

• HDP Certified Developer: Java: for Hadoop developers who design, develop and architect
Hadoop-based solutions written in the Java programming language.

• HDP Certified Developer: Spark: for Hadoop developers who write and deploy applications for
the Spark framework.

How to Register: Visit www.examslocal.com and search for “Hortonworks” to register for an
exam. The cost of each exam is $250 USD, and you can take the exam anytime, anywhere
using your own computer. For more details, including a list of exam objectives and instructions
on how to attempt our practice exams, visit http://hortonworks.com/training/certification/

Earn Digital Badges: Hortonworks Certified Professionals receive a digital badge for each
certification earned. Display your badges proudly on your résumé, LinkedIn profile, email
signature, etc.

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

Self Paced Learning Library

On Demand Learning

Hortonworks University Self-Paced Learning Library is an on-demand dynamic repository
of content that is accessed using a Hortonworks University account. Learners can view
lessons anywhere, at any time, and complete lessons at their own pace. Lessons can be
stopped and started, as needed, and completion is tracked via the Hortonworks University
Learning Management System.

Hortonworks University courses are designed and developed by Hadoop experts and
provide an immersive and valuable real world experience. In our scenario-based training
courses, we offer unmatched depth and expertise. We prepare you to be an expert with
highly valued, practical skills and prepare you to successfully complete Hortonworks
Technical Certifications.

Target Audience: Hortonworks University Self-Paced Learning Library is designed for
those new to Hadoop, as well as architects, developers, analysts, data scientists, and IT
decision makers. It is essentially for anyone who desires to learn more about Apache
Hadoop and the Hortonworks Data Platform.

Duration: Access to the Hortonworks University Self-Paced Learning Library is provided
for a 12-month period per individual named user. The subscription includes access to over
400 hours of learning lessons.

The online library accelerates time to Hadoop competency. In addition, the content is
constantly being expanded with new material, on an ongoing basis.

Visit: http://hortonworks.com/training/class/hortonworks-university-self-paced-learning-
library/

Copyright Hortonworks Inc. 2012 – 2016. All Rights Reserved

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. i

Table of Contents

The Case for Hadoop ... 1
Lesson Objectives ... 1
Big Data Trends .. 1

3 Big Data Vs Drive Apache Hadoop .. 1
What Makes Big Data Big ... 2
Volume ... 2
Velocity ... 3
Variety .. 3
The Information Explosion .. 4
Threats ... 4
Opportunities ... 4
What is Apache Hadoop ... 5
Hadoop Core = Storage + Compute ... 6
Hortonworks Data Platform .. 6
Open Enterprise Hadoop .. 7

Hadoop Use Cases ... 8
Business Outcomes .. 8
Cost Savings .. 9
Customer Journey ... 10
New Analytic Applications for New Types of Data .. 11

Open Enterprise Hadoop .. 12
100% Open .. 12
HDP is Genuinely Open ... 13
Centrally Architected ... 14
Interoperable with Existing Technology ... 16
Enterprise Ready ... 20

Why Hortonworks? .. 24
Only Hortonworks Delivers Open Enterprise Hadoop ... 24
Hortonworks Data Flow ... 25

Summary ... 26
The Hadoop Ecosystem ... 27

Lesson Objectives ... 27
Hadoop Ecosystem Frameworks ... 27

Data Management Frameworks .. 28
Operations Frameworks .. 28
Data Access Frameworks ... 29
Governance and Integration Frameworks .. 30
Security Frameworks ... 31
Ecosystem Component Versions .. 32

Hadoop Scalability in the Datacenter .. 32
Distinct Masters and Scale-Out Workers ... 32
Worker Nodes Scale to the Thousands .. 33
Connected Data Platforms .. 34
Hadoop as a +1 Architecture .. 35

Summary ... 36
The HDFS Architecture ... 37

Lesson Objectives ... 37
HDFS Overview ... 37

Key HDFS Concepts .. 38
HDFS Looks Like a File System .. 38
HDFS Acts like a File System .. 39

HDFS Components and Interactions ... 39
HDFS Components .. 39
HDFS Architecture ... 40
Resolving Missing or Corrupted Blocks ... 40
NameNode and DataNodes Interaction ... 41
Replication and Block Placement ... 42

Additional Important HDFS Interactions .. 42
NameNode High Availability .. 42
HDFS Multi-Tenant Controls ... 43

Summary ... 44
Ingesting Data ... 45

Lesson Objectives ... 45
Data Ingestion ... 45

Multiple Ingestion Workflows .. 46
Real-Time vs. Batch Ingestion .. 47

Batch and Bulk Ingestion Options ... 47
The Hadoop Client ... 48

WebHDFS .. 49
NFS Gateway ... 49
Sqoop ... 50

Streaming Framework Frameworks ... 51
Flume ... 51
Storm .. 52
Storm Abstractions .. 53
Spark Streaming .. 55
HDF .. 56

Summary ... 58
Parallel Processing with MapReduce .. 59

Lesson Objectives ... 59
MapReduce Framework ... 59

Simple MapReduce Algorithm Example ... 60
Word Count Process ... 61
MapReduce Word Count Example ... 62

Summary ... 63
Apache Hive Overview ... 65

Lesson Objectives ... 65
Hive Overview .. 65

Hive Alignment with SQL ... 66
Hive Query Process ... 66
Query Submission Tools ... 67

Performing Queries in Hive ... 69
Defining a Hive-Managed Table ... 69
Defining an External Table .. 70
Defining a Table LOCATION ... 70
Loading Data into Hive .. 71
Performing a Query ... 72
Ambari Hive Views ... 72

Performance Improvements ... 74
Singer.next ... 74
Tez .. 75

Summary ... 76
Apache Pig Overview ... 77

Lesson Objectives ... 77
Apache Pig .. 77

Pig Latin ... 78
Why Use Pig .. 78
The Grunt Shell .. 79
Ambari Pig View ... 79
Pig Latin Commands ... 80
DataFu Library ... 80
HCatalog .. 81

Summary ... 82
Apache Spark Overview ... 83

Lesson Objectives ... 83
Apache Spark Overview ... 83

What is Spark? ... 83
Apache Spark .. 83
Cluster with Two RDDs ... 84
Spark Focus ... 85
Spark Shell vs. Spark Applications ... 85

Performance Considerations .. 86
Spark RDD Persist Options ... 86
Spark vs. MapReduce ... 87

Spark Modules .. 88
Spark SQL Overview ... 88
Spark Streaming Overview .. 89
MLlib Overview .. 91
Apache Zeppelin .. 91
Hortonworks' Commitment to Spark .. 92

Summary ... 93
YARN Overview ... 95

Lesson Objectives ... 95
Introduction to YARN .. 95

Enabling Multiple Workloads .. 95
YARN Architectural Components ... 96

YARN Components and Interactions ... 96
YARN Resource Management .. 96

YARN – The Big Picture View .. 98
YARN Multi-Node Resource Allocation Example ... 99

YARN Features .. 99
Resource Manager High Availability ... 100
Multi-Tenancy with Capacity Scheduler ... 100
Managing Queue Limits with Ambari .. 101
Policy-Based Use of Computing Resources .. 103

Summary ... 104
Hadoop Security ... 105

Lesson Objectives ... 105
Hadoop Security Overview ... 105

Security Built In to the Platform .. 106
Hortonworks' Commitment to Security .. 106

Administration .. 107
Authentication and Perimeter Security ... 107
Authorization .. 108
Audit ... 109
Data Protection .. 109
A Typical Data Flow ... 110

Apache Ranger .. 112
Central Security Administration .. 113
Setting Up Authorization Policies ... 114
Monitoring Through Auditing .. 114
Authorization and Auditing with Ranger ... 115

Summary ... 116

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 1

The Case for Hadoop

Lesson Objectives
After completing this lesson, students should be able to:

ü Describe data trends of volume, velocity & variety

ü List popular use cases for Hadoop

ü Discuss the importance of Open Enterprise Hadoop

ü Give an overview of Connected Data Platforms powered by Hadoop

Big Data Trends
This lesson discusses the factors driving the exposion of Big Data; what makes data "big"; and how
this explosion drives technology and opportunities in today's Enterprise.

3 Big Data Vs Drive Apache Hadoop

Companies like Hortonworks are not driving the case for Hadoop; data Volume, Velocity, and
Variety are driving the need for Hadoop. Hadoop is the industry recognized backplane for Connected
Data Platforms.

Next up? 1000 Exabytes = 1 Zettabyte

REFERENCE:

In 2012, International Data Corporation estimated that the total size of data in the world
would be 2.7 zettabytes. This was an increase of 48% from 2011.

One expert estimated in 2013 that total would grow to 4 zettabytes.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 2

What Makes Big Data Big

3	Vs	of	Big	Data	

Hadoop does not just work on data; it was specifically designed to work on Big Data.

What what makes data big? Where did the phrase Big Data come from and what does it mean?

The term Big Data came from the computational sciences. Specifically, it is used to describe
scenarios where the volume and variety of data types overwhelm the existing tools to store and
process it.

In 2001, the industry analyst Doug Laney described Big Data using the three V’s of volume, velocity,
and variety.

NOTE:

Instead of “unstructured”, currently we tend towards talking in terms of “schema on
read”.

Volume
Volume refers to the amount of data being generated. Think in terms of gigabytes, terabytes, and
petabytes. Many systems and applications are just not able to store, let alone ingest or process, that
much data.

Many factors contribute to the increase in data volume including: transaction-based data stored for
years, unstructured data streaming in from social media, and the ever-increasing amounts of sensor
and machine data being produced and collected.

Volume issues include:

• Storage cost

• Filtering and finding relevant and valuable information in large quantities of data that often
contains much information that is not valuable

• The ability to analyze data quickly enough in order to maximize business value today and not
just next quarter or next year

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 3

Velocity
Velocity refers to the rate at which new data is created. Think in terms of megabytes per second and
gigabytes per second.

Data is streaming in at unprecedented speed and must be dealt with in a timely manner in order to
extract maximum value from the data. Sources of this data include logs, social media, RFID tags,
sensors, and smart metering.

Velocity issues include:

• Not reacting quickly enough to benefit from the data
For example, data could be used to create a dashboard that could warn of imminent failure or a
security breach - failure to react in time could lead to service outages

• Data flows tend to be highly inconsistent with daily, seasonal, or event-triggered changes in
peak loads
For example, a change in political leadership could cause an a peak in social media

Variety
Variety refers to the number of types of data being generated. Data can be gathered from databases,
XML or JSON files, text documents, email, video, audio, stock ticker data, and financial transactions.

Varieties of data include:

• Structured

• Semi-structured

• Unstructured (schema on read)

Variety issues include:

• How to gather, link, match, cleanse, and transform data across systems

• How to connect and correlate data relationships and hierarchies in order to extract business
value from the data

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 4

The Information Explosion

The world’s data used to double every century, now it doubles every two years. This explosion is
driven by the Internet of Things(IoT), by mobile devices, and by our ability to generate more digital
content than ever before.

The digital universe will grow from 4 zettabytes of data in 2013 to 44 zetabytes in 2020. 1

Threats
Existing data architectures make data inaccessible, incomplete, irrelevant, and expensive.

This is the largest business innovation cycle in history, and these changes threaten existing data
strategies. Many companies have big plans for big data, but existing data architectures make our data
inaccessible, incomplete, irrelevant, and expensive. As data streams in at accelerating rates, the cost
to store, reformat, and retrieve it grows more quickly than the value it may provide.

We know that big data holds big value, but we also know that we are at risk of being left behind if our
competitors capture that value before we do.

Opportunities
Apache™ Hadoop® transforms business, making Big Data easily accessible for advanced analytic
applications.

Companies of every size are using new big data opportunities to transform their businesses and the
lives of their customers.

Hadoop can help: help . It can help . It can help a And it can help .

1 Source: http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 5

• Pharmaceutical manufacturers make better vaccines that save lives

• Doctors prescribe treatments based on data from all previous patients

• Car insurance companies keep drivers safe

• Mobile providers reduce call center wait times

There isn't a single organization that couldn not benefit from better insight into their data, but most are
unable to store or even make use of all the data they have.

What is Apache Hadoop

Apache	Hadoop	

So what is Apache Hadoop?

It is a scalable, fault tolerant, open source framework for the distributed storing and processing of
large sets of data on commodity hardware.

But what does all that mean? 2

Scalabil ity

Hadoop clusters can range from as few as one machine to literally thousands of machines.

Fault Tolerance

Hadoop services become fault tolerant through redundancy. For example, the Hadoop Distributed File
System, called HDFS, automatically replicates data blocks to three separate machines, assuming that
your cluster has at least three machines in it. Many other Hadoop services are replicated, too, in order
to avoid any single points of failure.

Open Source

Hadoop development is a community effort governed under the licensing of the Apache Software
Foundation. Anyone can help to improve Hadoop by adding features, fixing software bugs, or
improving performance and scalability.

Distributed Storage and Processing

Large datasets are automatically split into smaller chunks, called blocks, and distributed across the
cluster machines. Not only that, but each machine processes its local block of data. This means that
processing is distributed too, potentially across hundreds of CPUs and hundreds of gigabytes of
memory.

Commodity Hardware

All of this occurs on commodity hardware which reduces not only the original purchase price, but also
potentially reduces support costs as well.

2 Source: http://hadoop.apache.org

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 6

Hadoop Core = Storage + Compute

Hadoop	=	Storage	Plus	Compute	

At the most granular level, Hadoop is an engine who provides storage via HDFS and compute via
YARN capabilities.

Hortonworks Data Platform

The	Hortonworks	Data	Platform	

Hortonworks Data Platform (bottom to top):

• Deployment options:

• On-premises, in the cloud or in a hybrid architecture; on Linux or Windows.

• It ingests and stores data in its raw form, regardless of its source or format.

• This schema-on-read architecture is far more flexible than your familiar schema-on-
write databases.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 7

• ELT, not ETL allows ingestion of not only existing tabular data from your RDBMS, but
newer types of less structured data, such as web clickstream, machine and sensors,
social media, mobile, geo-location, or server log data.

• You can also import your existing structured, tabular data into HDP and enrich it with
those newer forms of data.

• The architecture of Hortonworks Data Platform holds YARN at its center.

• YARN supports multiple, heterogeneous data access engines that analyze one shared
big data set with batch processing, interactive query, search, analysis of streaming
data or iterative machine learning approaches. All of these can run simultaneously,
centrally managed by YARN.

• YARN also coordinates cluster resources for enterprise-ready services for cluster
operations, data governance and security.

Open Enterprise Hadoop

Open	Enterprise	Hadoop	

Hortonworks leads the emerging category known as Open Enterprise Hadoop. HDP is the Hadoop
distribution created and supported by Hortonworks.

Open Enterprise Hadoop is a new paradigm that scales with the demands of big data applications. It is
supported by a rich and growing partner ecosystem that enables enterprises to meet the unique
demands of their industries. By making governance, security and operations an integral part of the the
platform Open Enterprise Hadoop opens the door for integration with existing enterprise architectures.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 8

All of this is possible because Open Enterprise Hadoop maximizes community innovation by
collaborating with developers in open source and within an open community environment. 3

Hadoop Use Cases
Big Data drives a need for new and better analytic applications for new types of data. As businesses
embark on a new customer journey to take advantage of these new opportunities, they consider
business outcomes and cost savings.

Business Outcomes

Hadoop	Use	Case:	Business	Outcomes	

Many turn to Hadoop because they want to pursue business outcomes to transform their businesses.
But many feel unsure about how to begin that journey. You can start anywhere you want – no linear
path, and it varies from one company to the next.

Data Discovery

Many companies begin their path to Hadoop with data discovery – by exploring data that has never
been available to them at scale. With far more data from new sources, accessible via SQL query and
other familiar methods, Hortonworks customers quickly uncover new insights.

Single View

Other companies already have more data than they can organize or analyze. These companies use
Hadoop to unify all the data and paint a single view of their business. They use Open Enterprise
Hadoop to create a single view of the customer; a single view of the patient; a single view of the
telecom network; a single view of the supply chain; a single view of the product, or a single view of
anything else that the business cares about.

Predictive Analytics

3 Source: https://www.youtube.com/watch?v=AdOBnCb8Xbg

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 9

The most sophisticated business outcome possible with Open Enterprise Hadoop is predictive
analytics. With far more data about what’s happened in the past, and advanced machine learning
algorithms, companies can to predict future outcomes with far more certainty. They use this capability
to: do proactive repairs to equipment, recommend the next product to buy, stock the appropriate
amount of inventory, design their stores, or model risk

Cost Savings

Hadoop	Use	Case:	Cost	Savings	

Others begin their journey with a goal of cost savings, most commonly by optimizing their IT
architectures.

Active Archive

They move cold data that they hardly ever access into a Hadoop active archive. This helps them save
money by lowering their data storage costs, without losing easy access to that data.

ETL Offload

They offload costly and complicated ETL jobs by storing data in its raw form in Hadoop. Hadoop has a
schema-on-read architecture, which means you can store data in its native form and then retrieve
whatever data you need to analyze, regardless of its source, format or data structure. Since the typical
EDW consumes 60% of its cycles just preparing data for a particular schema, ETL offload allows them
to use their important EDW resource for what it was intended.

Data Enrichment

The most advanced costs savings use cases are to enrich existing data with newly available data. With
these data enrichment capabilities, companies can:

• Incorporate publicly available datasets from sources like Data.gov

• Offer new products for data as a service

• Prevent fraud by finding new data correlations that point to bad behavior

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 10

Customer Journey

Hadoop	Use	Case:	Customer	Journey	

Everyone’s Journey to Open Enterprise Hadoop wil l be Different.

Your journey can start anywhere you want. You can pursue both business outcomes and cost savings.
You can start at the most sophisticated use cases if your team is experienced, or you can build your
expertise by beginning with less complex use cases that bring quick results. As you build your team’s
expertise and comfort with Hadoop, you can then tackle more challenging aspects of your road map.

Hortonworks' customers leverage our technology to transform their businesses, either by achieving
new business objectives or by reducing costs. The journay typically involves both of those goals in
combination across many use cases.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 11

New Analytic Applications for New Types of Data

AS the image above shows, Big Data has driven the creation and implementation of new analytical
approaches and applications. For example:4

• Analytics in the cloud
Unlimited scalability, ease of use

• Schema on read
Data is applied to a plan (schema) as it is pulled out of a stored location, rather than as it goes
in

• More predictive analytics
Traditional analysis depended on samples; now we have the power to process very large
amounts of data

• Faster, better SQL on Hadoop
Speed supports iterative analytics - where an analyst asks a question; receives an answer;
asks another question based on that answer; and so

• Deep learning
Enables computers to recognize interesting content in huge amounts of unstructured data and
deduce relationhips within that data without needing models on which to build instruction

• In-memory analytics
In-memory databases can speed up analytic processessing for some applications

4 8 Big Trends in Big Data Analytics
http://www.computerworld.com/article/2690856/big-data/8-big-trends-in-big-data-analytics.html

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 12

Open Enterprise Hadoop
Hadoop's characteristics of Open, Central, Interoperable, and Ready makes Hadoop the number one
choice for big data solutions.

	

Hortonworks leads the emerging category known as Open Enterprise Hadoop, with solutions that are:

• 100% Open Source

• Centrally architected with YARN at its core

• Interoperable with existing technology and skills

• Enterprise-ready, with data services for operations, governance and security

100% Open
The “open” in Open Enterprise Hadoop means that all innovation happens within the open-source
processes governed by the Apache Software Foundation.

A 100% open source process is important because:

• It eliminates a customer’s risk of becoming locked in to one vendor relationship

• It fosters the fastest, most stable platform innovation

• It allows Hadoop users to influence the Hadoop roadmap

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 13

HDP is Genuinely Open

HDP	is	Open	Source	

Hortonworks has always followed a 100-percent open approach to Hadoop and Hortonworks Data
Platform is the only genuinely open Hadoop distribution. Our open approach:

• Eliminates risk of becoming locked in with one proprietary vendors

• It maximizes innovation by tapping into the ingenuity of the largest number of talented
developers with the broadest perspective of the capabilities and areas for improvement

• It integrates seamlessly with other datacenter technologies. Like our customers, our
technology partners also want to avoid getting locked in to a proprietary approach.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 14

Fastest Path to Innovation

HDP	=	Fastest	Path	to	Innovation	

This open approach is the fastest path to innovation.

Here you can see the pace of platform innovation represented by the release cadence across all of the
Apache Software Foundation projects that go into HDP.

And remember: these development efforts are broad-based and collaborative with engineers
participating from the world’s largest, most influential technology companies: Microsoft, Yahoo,
Facebook, LinkedIn, Twitter, HP, SAP, SAS and also the mainstream enterprises that use HDP. These
include Schlumberger, Target, Merck and Aetna.

Centrally Architected
Apache Hadoop YARN is the central Big Data operating system for Open Enterprise Hadoop.

• Many moving parts need to work together for you to make the most of your data.

• YARN orchestrates those moving parts.

Unlike earlier approaches to Hadoop in the enterprise, Open Enterprise Hadoop with YARN at its
center:

• Manages your cluster resources with optimal efficiently and

• Provides integrated services for operations, security and data governance that allow you to
confidently extend your Big Data assets to the maximum number of users in your company.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 15

Centralized Platform

Centralized	Platform	with	YARN-Based	Architecture	

YARN is the architectural center of Open Enterprise Hadoop. It:

• Coordinates cluster-wide service for operations, data governance and security.

• It allocates resource amongst diverse applications that process the data

• It maximizes your data ingest, by helping ingest all types of data

• And it allows you to confidently extend your big data assets to the largest possible audience
within your organization

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 16

YARN Architecture Benefits

Benefits	of	the	YARN-Based	Architecture	

Above is a side-by-side comparison of the architectural advantages of Open Enterprise Hadoop as
compared to earlier, proprietary approaches to Hadoop in the enterprise

You can see how Open Enterprise Hadoop provides:

• Consistent services for governance, security and operations versus fragmented policies that
increase risk and harm efficiency

• Superior resource efficiency, versus duplicative hardware costs and inefficient data movement

• And ease of expansion as you deploy and grow HDP clusters to meet your business needs.

Interoperable with Existing Technology
Open Enterprise Hadoop is interoperable. It:

• Is flexible to handle any data, for any application, from anywhere

• It evolves in sync with common industry standards for Hadoop

• It integrates seamlessly with preferred data platform technologies, processing engines and BI
tools already used by the world’s leading businesses.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 17

Offers the Most Flexibil ity

Flexibility	for	the	Customer	Journey	

On the first day of your Hadoop journey, you can’t know exactly what the future will hold. So you need
flexibility.

Platform interoperability and flexibility free you to:

• Capture any data and store it for as long as you need it

• Analyze data for any application you already use, or others that you might create in the future

• Explore your data with any combination of batch, interactive, search, streaming analytics and
machine learning – all at once

• Deploy these capabilities however you like, and change those deployments whenever it suits
your needs

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 18

Synchronized with Industry Standards

Enterprise	Hadoop	is	Synchronized	with	Industry	Standards	

Open Enterprise Hadoop protects that flexibility while you’re on your journey, by adhering to core
standards defined by the Open Data Platform initiative.

The ODP:

• Improves ecosystem interoperability so that you can pick and choose components from across
the ecosystem.

• This unlocks choice and lets you run Pivotal Hawq or IBM BigInsights with Hortonworks Data
Platform.

• It also means that your architects don’t have to implement difficult integrations across multiple
system versions.

Open Data Platform (ODP) Init iative

Open Enterprise Hadoop is synchronized with industry standards through the Open Data Platform
(ODP) initiative.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 19

• Why this matters to our customers: The ODP standardizes multiple Hadoop deployments

on the same core versions of Apache Hadoop and Apache Ambari. This helps the enterprise
pick and choose the components that work best in combination.

• Proof point: For example Pivotal Hawq can run on HDP and IBM BigInsights can run on HDP.
This allows each player to focus on developing the components for which it has the best
expertise, which speeds ecosystem innovation. | Source: http://pivotal.io/big-data/press-
release/pivotal-hawq-now-certified-on-hortonworks-data-platform | Source:
http://www.prnewswire.co.uk/news-releases/hortonworks-ibm-and-pivotal-harmonize-on-
open-data-platform-vision-to-accelerate-big-data-solutions-499672871.html

• IBM Citation: “IBM is a long time open source leader and community participant. The Open
Data Platform continues this heritage by ensuring a strong foundation for the future of Hadoop.
As a founding member, IBM is taking a central role to ensure a high degree of compatibility
with its portfolio of products including SPSS, Cognos, and BigInsights as well as an expanding
ecosystem of Hadoop partners. IBM Open Platform 4.0 is part of the next generation
heterogeneous computing platform to make in-time analytics pervasive across the business.” -
- Anjul Bhambhri, Vice President of IBM Analytics Platform, IBM

• Pivotal Citation: “To move forward, Pivotal believes that the big data market requires a
standard, predictable, and mature Hadoop-based core platform for modern management
solutions. The quick momentum we have around the Open Data Platform is already taking the
guesswork out of fragmented and duplicative processes of what works and what doesn’t. This
will enable enterprises and ecosystem vendors to focus on integrating and building business
driven applications and use cases that drive innovation.” -- Leo Spiegel, Senior Vice President
of Corporate Development and Strategy, Pivotal

REFERENCE

The open ecosystem of big data was created to complement the Apache Software
Foundation and help companies use Apache Hadoop more effectively. See:
https://www.odpi.org/

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 20

Enterprise Ready
Open Enterprise Hadoop is enterprise-ready with enterprise-grade services for operations, data
governance and security.

Provides Consistent Operations

YARN	Provides	Consistent	Operations	

Open Enterprise Hadoop provides consistent operations, with:

• Centralized management and monitoring of clusters through a single pane of glass

• Automated provisioning, either on-premises or in the cloud with the Cloudbreak API. You
can mange one huge data lake, or spin up and spin down multiple clusters as needed. You
choose. And also,

• Managed services to make sure that your cluster is highly available.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 21

Enables Trusted Governance

YARN	Enables	Trusted	Governance	

Open Enterprise Hadoop enables trusted governance, with:

• Data l ifecycle management along the entire lifecycle

• Modeling with metadata, and

• Interoperable solutions that can access a common metadata store.

Trusted Governance

• Why this matters to our customers: As data accumulates in an HDP cluster, the enterprise
needs governance policies to control how that data is ingested, transformed and eventually
retired. This keeps those Big Data assets from turning into big liabilities that you can’t control.

•

• Proof point: HDP includes 100% open source Apache Atlas and Apache Falcon for centralized
data governance coordinated by YARN. These data governance engines provide those mature
data management and metadata modeling capabilities, and they are constantly strengthened
by members of the Data Governance Initiative. The Data Governance Initiative (DGI) is working
to develop an extensible foundation that addresses enterprise requirements for comprehensive
data governance. The DGI coalition includes Hortonworks partner SAS and customers Merck,
Target, Aetna and Schlumberger. Together, we assure that Hadoop:

- Snaps into existing frameworks to openly exchange metadata
- Addresses enterprise data governance requirements within its own stack of

technologies

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 22

REFERENCE:

“As customers are moving Hadoop into corporate data and processing environments,
metadata and data governance are much needed capabilities. SAS participation in this
initiative strengthens the integration of SAS data management, analytics and
visualization into the HDP environment and more broadly it helps advance the Apache
Hadoop project. This additional integration will give customers better ability to manage
big data governance within the Hadoop framework.”

SAS Vice President of Product Management Randy Guard.

http://hortonworks.com/press-releases/hortonworks-establishes-data-governance-
initiative/

Ensures Comprehensive Security

YARN	Ensures	Comprehensive	Security	

Enterprise-readiness means comprehensive security through a platform approach.

This includes:

• Encryption of data at rest and in motion

• Centralized administration of polices for authentication, and

• Fine-grained authorization to control data access.

These are the four pillars of the emerging solution category known as Open Enterprise Hadoop.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 23

Agile Analytics with Enterprise Spark at Scale

Agile	Analytics	with	Spark	

Enterprise Spark powers agile analytics via data science notebooks and automation for most common
analytics (including geospatial and entity resolution) and seamless data access across as many data
types as possible.

It also provides unmatched economics, combining in-memory processing speed with HDP’s cost
efficiencies at scale. It is ready for the Enterprise with robust security, governance and operations
coordinated centrally by Apache Hadoop and YARN.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 24

Fast SQL with Apache Hive

Achieve	Fast	SQL	with	Apache	Hive	

While Spark at Scale is new and hot, SQL is still the lingua franca of data analysis and is critical to the
"Enterprise Ready" message.

Spark is a Pluggable Architecture that supports Apache Hive, Pivotal HAWQ and other leading SQL
engines which provide familiar SQL Query Semantics and enable transactions and SQL:2011 Analytics
for rich reporting.

All this at unprecedented speed at extreme scale that returns query results in interactive time, even as
data sets grow to petabytes.

Why Hortonworks?
All of these features and technologies add up to why Hortonworks is your best choice for Open
Enterprise operations.

Only Hortonworks Delivers Open Enterprise Hadoop
Hortonworks uniquely delivers Open Enterprise Hadoop because Hortonworks Data Platform is:

• 100% Open

• Centrally Architected around YARN

• Interoperable with top technologies and prevailing skills, and

• It is ready for broad deployment in the enterprise.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 25

Hortonworks Data Flow

Hortonworks	Data	Flow	(HDF)	

Hortonworks DataFlow and Hortonworks Data Platform – referred to as Connected Data Platforms by
Hortonworks – deliver the industry’s most complete solution for Big Data management.

The Case for Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 26

Summary
• The 3V’s of Big Data are driving the adoption of Apache Hadoop (44 ZB by 2020)

• Existing data architectures make data inaccessible, incomplete, irrelevant, and expensive

• Hadoop is a scalable, fault tolerant, open source framework for the distributed storing and
processing of large sets of data on commodity hardware

• Six common use case families have emerged

- Data Discovery
- Single View
- Predictive Analytics
- Active Archive
- ETL Offload
- Data Enrichment

• YARN-centralized HDP = Open Enterprise Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 27

The Hadoop Ecosystem

Lesson Objectives
After completing this lesson, students should be able to:

ü Describe the Hadoop ecosystem frameworks

ü Deploy Hadoop scalability in a datacenter

Hadoop Ecosystem Frameworks

Hadoop	Frameworks	

Hadoop is not a monolithic piece of software. It is a collection of architectural pillars that contain
software frameworks. Most of the frameworks are part of the Apache software ecosystem. The picture
illustrates the Apache frameworks that are part of the Hortonworks Hadoop distribution.

So why does Hadoop have so many frameworks and tools? The reason is that each tool is designed
for a specific purpose. The functionality of some tools overlap but typically one tool is going to be
better than others when performing certain tasks.

For example, both Apache Storm and Apache Flume ingest data and perform real-time analysis. But
Storm has more functionality and is more powerful for real-time data analysis.

The Hadoop Ecosystem

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 28

Data Management Frameworks

Hadoop	Data	Management	Frameworks	

There are two data management frameworks: HDFS and YARN.

HDFS is a Java-based distributed file system that provides scalable, reliable, high-throughput access
to application data stored across commodity servers. HDFS is similar to many conventional file
systems. For example, it shares many similarities to the Linux file system. HDFS supports operations
to read, write, and delete files. It supports operations to create, list, and delete directories.

YARN is a framework for cluster resource management and job scheduling. YARN is the architectural
center of Hadoop and enables multiple data processing engines such as interactive SQL, real-time
streaming, data science, and batch processing to co-exist on a single cluster.

Operations Frameworks

Hadoop	Operations	Frameworks	

The four operations frameworks are Apache Ambari, Apache ZooKeeper, Cloudbreak, and Apache
Oozie.

Ambari is a completely open operational framework for provisioning, managing, and
monitoring Hadoop clusters. It includes an intuitive collection of operator tools and a set of RESTful
APIs that mask the complexity of Hadoop, simplifying the operation of clusters. The most visible
Ambari component is the Ambari Web UI, a Web-based interface used to provision, manage, and
monitor Hadoop clusters. The Ambari Web UI is the “face” of Hadoop management.

ZooKeeper is a coordination service for distributed applications and services. Coordination services
are hard to build correctly, and are especially prone to errors such as race conditions and deadlock. In
addition, a distributed system must be able to conduct coordinated operations while dealing with such
things as scalability concerns, security concerns, consistency issues, network outages, bandwidth
limitations, and synchronization issues. ZooKeeper is designed to help with these issues.

Cloudbreak is a cloud agnostic tool for provisioning, managing, and monitoring of on-demand
clusters. It automates the launching of elastic Hadoop clusters with policy-based autoscaling on the
major cloud infrastructure platforms including Microsoft Azure, Amazon Web Services, Google Cloud
Platform, OpenStack, and Docker containers.

The Hadoop Ecosystem

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 29

Oozie is a server-based workflow engine used to execute Hadoop jobs. Oozie enables Hadoop users
to build and schedule complex data transformations by combining MapReduce, Apache Hive, Apache
Pig, and Apache Sqoop jobs into a single, logical unit of work. Oozie can also perform Java, Linux
shell, distcp, SSH, email, and other operations.

Data Access Frameworks

Hadoop	Data	Access	Frameworks	

Apache Pig is a high-level platform for extracting, transforming, or analyzing large datasets. Pig
includes a scripted, procedural-based language that excels at building data pipelines to aggregate and
add structure to data. Pig also provides data analysts with tools to analyze data.

Apache Hive is a data warehouse infrastructure built on top of Hadoop. It was designed to enable
users with database experience to analyze data using familiar SQL-based statements. Hive includes
support for SQL:2011 analytics. Hive and its SQL-based language enable an enterprise to utilize
existing SQL skillsets to quickly derive value from a Hadoop deployment.

Apache HCatalog is a table information, schema, and metadata management system for Hive, Pig,
MapReduce, and Tez. HCatalog is actually a module in Hive that enables non-Hive tools to access Hive
metadata tables. It includes a REST API, named WebHCat, to make table information and metadata
available to other vendors’ tools.

Cascading is an application development framework for building data applications. Acting as an
abstraction layer, Cascading converts applications built on Cascading into MapReduce jobs that run
on top of Hadoop.

Apache HBase is a non-relational, or NoSQL, database. HBase was created to host very large tables
with billions of rows and millions of columns. HBase provides random, real-time access to data. It adds
some transactional capabilities to Hadoop, allowing users to conduct table inserts, updates, scans,
and deletions.

Apache Phoenix is a client-side SQL skin over HBase that provides direct, low-latency access to
HBase. Entirely written in Java, Phoenix enables querying and managing HBase tables using SQL
commands.

Apache Accumulo is a low-latency, large table data storage and retrieval system with cell-level
security. Accumulo is based on Google’s Bigtable but it runs on YARN.

The Hadoop Ecosystem

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 30

Apache Storm is a distributed computation system for processing continuous streams of real-time
data. Storm augments the batch processing capabilities provided by MapReduce and Tez by adding
reliable, real-time data processing capabilities to a Hadoop cluster.

Apache Solr is a distributed search platform capable of indexing petabytes of data. Solr provides
user-friendly, interactive search to help businesses find data patterns, relationships, and correlations
across petabytes of data. Solr ensures that all employees in an organization, not just the technical
ones, can take advantage of the insights that Big Data can provide.

Apache Spark is an open source, general purpose processing engine that allows data scientists to
build and run fast, sophisticated applications on Hadoop. Spark provides a set of simple and easy-to-
understand programming APIs that are used to build applications at a rapid pace in Scala. The Spark
Engine supports a set of high-level tools that support SQL-like queries, streaming data applications,
complex analytics such as machine learning, and graph algorithms.

Governance and Integration Frameworks

Hadoop	Governance	and	Integration	Frameworks	

Apache Falcon is a data governance tool. It provides a workflow orchestration framework designed
for data motion, coordination of data pipelines, lifecycle management, and data discovery. Falcon
enables data stewards and Hadoop administrators to quickly onboard data and configure its
associated processing and management on Hadoop clusters.

WebHDFS uses the standard HTTP verbs GET, PUT, POST, and DELETE to access, operate, and
manage HDFS. Using WebHDFS, a user can create, list, and delete directories as well as create, read,
append, and delete files. A user can also manage file and directory ownership and permissions.

The HDFS NFS Gateway allows access to HDFS as though it were part of an NFS client’s local file
system. The NFS client mounts the root directory of the HDFS cluster as a volume and then uses local
command-line commands, scripts, or file explorer applications to manipulate HDFS files and
directories.

The Hadoop Ecosystem

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 31

Apache Flume is a distributed, reliable, and available service that efficiently collects, aggregates, and
moves streaming data. It is a distributed service because it can can be deployed across many
systems. The benefits of a distributed system include increased scalability and redundancy. It is
reliable because its architecture and components are designed to prevent data loss. It is highly-
available because it uses redundancy to limit downtime.

Apache Sqoop is a collection of related tools. The primary tools are the import and export tools.
Writing your own scripts or MapReduce program to move data between Hadoop and a database or an
enterprise data warehouse is an error prone and non-trivial task. Sqoop import and export tools are
designed to reliably transfer data between Hadoop and relational databases or enterprise data
warehouse systems.

Apache Kafka is a fast, scalable, durable, and fault-tolerant publish-subscribe messaging system.
Kafka is often used in place of traditional message brokers like Java Messaging Service (JMS) or
Advance Message Queuing Protocol (AMQP) because of its higher throughput, reliability, and
replication.

Apache Atlas is a scalable and extensible set of core foundational governance services that enable
and enterprise to meet their compliance requirements within Hadoop and enables integration with the
complete enterprise data ecosystem.

Security Frameworks

Hadoop	Security	Frameworks	

HDFS also contributes security features to Hadoop. HDFS includes file and directory permissions,
access control lists, and transparent data encryption. Access to data and services often depends on
having the correct HDFS permissions and encryption keys.

YARN also contributes security features to Hadoop. YARN includes access control lists that control
access to cluster memory and CPU resources, along with access to YARN administrative capabilities.

Apache Hive can be configured to control access to table columns and rows.

Apache Falcon is a data governance tool that also includes access controls that limit who may
submit automated workflow jobs on a Hadoop cluster.

Apache Knox is a perimeter gateway protecting a Hadoop cluster. It provides a single point of
authentication into a Hadoop cluster.

The Hadoop Ecosystem

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 32

Apache Ranger is a centralized security framework offering fine-grained policy controls for HDFS,
Hive, HBase, Knox, Storm, Kafka, and Solr. Using the Ranger Console, security administrators can
easily manage policies for access to files, directories, databases, tables, and columns. These policies
can be set for individual users or groups and then enforced within Hadoop.

Ecosystem Component Versions

For someone evaluating Hadoop, the considerably large list of components in the Hadoop ecosystem
can be overwhelming. Above is a reference table with keywords you may have heard in discussions
concerning Hadoop as well as a brief description.

Hadoop Scalabil ity in the Datacenter
Hadoop integrates easily with Datacenters, providing effective workload management, great
scalability, monitoring, data integration, and security.

Distinct Masters and Scale-Out Workers

Masters	and	Workers	

The Hadoop Ecosystem

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 33

Here is an example cluster with three master nodes, 12 worker nodes, and two utility nodes. The
cluster is running various services, like YARN and HDFS. Services can be implemented by one or more
service components.

• The three master nodes are running service master components.

• The 12 worker nodes are running service worker components, sometimes called slave
components.

• The two utility nodes are running service components that provide access, security, and
management services for the cluster.

This illustration does not illustrate all services, service master, or service worker
components.

Worker Nodes Scale to the Thousands

Worker	Nodes	Scale	to	the	Thousands	

Hadoop clusters keep scaling out into the thousands of nodes. With all this hardware, failures will
occur and Hadoop is designed to account for them and self-heal.

The Hadoop Ecosystem

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 34

Connected Data Platforms

Connected	Data	Platforms	

With the continued growth in scope and scale of analytics applications using Hadoop and other data
sources, the vision of an enterprise data lakeData Lakecan become a reality.

In a practical sense, a data lake is characterized by three key attributes:

• Collect everything
A data lake contains all data, both raw sources over extended periods of time as well as any
processed data.

• Dive in anywhere
A data lake enables users across multiple business units to refine, explore and enrich data on
their terms.

• Flexible access
A data lake enables multiple data access patterns across a shared infrastructure: batch,
interactive, online, search, in-memory and other processing engines.

The result is a repository that delivers maximum scale and insight with the lowest possible friction and
cost.

As data continues to grow exponentially, then Enterprise Hadoop and EDW investments can provide a
strategy for both efficiency in connected data platforms, and opportunity in an enterprise data lake.

The Hadoop Ecosystem

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 35

Hadoop as a +1 Architecture

Hadoop	as	a	+1	Architecture	

Apache Hadoop is integrated with existing data systems.

Even if it could technologically displace all other data systems, the deep embedded nature built up
over years would make it cost prohibitive to completely decommission most enterprises’ utilization of
existing data systems.

The Hadoop Ecosystem

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 36

Summary
• Hadoop ecosystem frameworks fall into the following five categories:

- Data Management
- Data Access
- Governance & Integration
- Security
- Operations

• Primary server stereotypes are:

- Master nodes
- Worker nodes

• Hadoop complements existing systems and is the foundation of Connected Data Platforms

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 37

The HDFS Architecture

Lesson Objectives
After completing this lesson, students should be able to:

ü Present an overview of the Hadoop Distributed File System (HDFS)

ü Detail the major architectural components and their interactions

ü Discuss important additional features and interactions

HDFS Overview

HDFS	

HDFS is a Java-based file system that provides scalable and reliable data storage, and it was designed
to span large clusters of commodity servers. HDFS has demonstrated production scalability of up to
200 PB of storage and a single cluster of 4500 servers, supporting close to a billion files and blocks.
When that quantity and quality of enterprise data is available in HDFS, and YARN enables multiple data
access applications to process it, Hadoop users can confidently answer questions that eluded
previous data platforms.

HDFS is a scalable, fault-tolerant, distributed storage system that works closely with a wide variety of
concurrent data access applications, coordinated by YARN. HDFS will “just work” under a variety of
physical and systemic circumstances. By distributing storage and computation across many servers,
the combined storage resource can grow linearly with demand while remaining economical at every
amount of storage.

The HDFS Architecture

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 38

Key HDFS Concepts

Key	HDFS	Concepts	

Key concepts of HDFS include:

• Write Once, Read Many times (WORM)

• Divide files into big blocks and distribute across the cluster

• Store multiple replicas of each block for reliability

• Programs can ask "where do the pieces of my file live?” in order to find replicas for each block
and try to gain data locality

HDFS Looks Like a File System

HDFS	as	a	File	System	

Common tools such as a web-based file system browser and basic CLI represent the basic
expectations of a file system.

The HDFS Architecture

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 39

However, the differences between HDFS and other distributed file systems are significant:

• HDFS is highly fault-tolerant

• It is designed to be deployed on low-cost hardware

• It provides high throughput access to application data and is suitable for applications that have
large data sets

• HDFS allows streaming access to file system data

HDFS Acts l ike a File System

HDFS	as	a	File	System	

Concerted effort has been made to move from “hadoop fs” to “hdfs dfs”.

TIP:

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
common/FileSystemShell.html states that “hdfs dfs” is a synonym for “hadoop fs”
when HDFS is being used (i.e. the “hadoop fs” command can interact with other file
systems that Hadoop supports such as local FS, HFTP FS, S3 FS, and “others”) which
makes sense with HDP.

HDFS Components and Interactions
The HDFS NameNode and DataNodes form the basis of the HDFS architecture and interact to disribute
and replicate data across the cluster.

HDFS Components
NameNode

The NameNode is the master service of HDFS. It determines and maintains how the chunks of data are
distributed across the DataNodes. A Namenode represents a single namespace. Data never reside on
a NameNode.

DataNode

DataNodes store the chunks of data, and are responsible for replicating the chunks across other
DataNodes. The Default block size in HDP 128MB. The default replication factor is 3.

The HDFS Architecture

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 40

HDFS Architecture

HDFS	Architecture	

NameNode and DataNodes are components of the HDFS service. The NameNode is an HDFS master
component while a DataNode is an HDFS worker component. The NameNode and DataNode are
implemented as daemons running inside a Java virtual machine.

The NameNode maintains critical HDFS information. To enhance HDFS performance, it maintains and
serves this information from memory. The memory-based information includes:

• Namespace information

• Metadata information

• Journaling information

• Block map information

Because the NameNode maintains all file system state information in memory, it is critical to ensure
that the NameNode has sufficient memory.

Resolving Missing or Corrupted Blocks

NameNode	is	Responsible	for	Resolving	Missing	or	Corrupted	Blocks	

The HDFS Architecture

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 41

DataNodes periodically send a Heartbeat message to the NameNode. If a DataNode loses connectivity
with the NameNOde, the NameNode detects this condition by the absence of the Heartbeat. The
NameNode then marks silent DataNode as dead and will not forward any new IO requests to it. Data
registered to a dead DataNode will no longer be available to HDFS.

It is the NameNode's job to track which blocks need to be replicated and initiate replication. A need for
re-replication may occur for several reasons:

• A DataNode may become unavailable

• A replica could become corrupted

• A hard disk on a DataNode may fail

• The Replication factor of a file may be increased

NameNode and DataNodes Interaction

NameNode	and	DataNodes	Interaction	

HDFS is a master/slave architecture.

An HDFS cluster has a single NameNode that manages the namespace and regulates access to files
by clients. There are a number of DataNodes, usually one per node in the cluster, which manage
storage.

HDFS allows user data to be stored in files. DataNodes are responsible for serving read and write
requests from the file system’s clients. The DataNodes also perform block creation, deletion, and
replication upon instruction from the NameNode.

The HDFS Architecture

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 42

Replication and Block Placement

HDFS	Replication	and	Block	Placement	

HDFS is designed to assume that disk, system, and network failures will occur. As a result, HDFS is
also designed to automatically and transparently handle disk failures. It does this by automatically
replicating data across different DataNodes.

HDFS stores a file as a sequence of blocks; all blocks in a file except the last block are the same size.
Block size and replication factor are configurable per file and an application can specify the number of
replicas of a file.

Additional Important HDFS Interactions
High availability and multi-tenancy are two additional, but important, features of HDFS,

NameNode High Availabil ity
In Hadoop prior to version 2.0, the NameNode was a single point of failure. The entire cluster would
become unavailable if the NameNode failed or became unreachable. Even maintenance events such as
software or hardware upgrades on the NameNode machine would result in periods of cluster
downtime.

The HDFS NameNode High Availability (HA) feature eliminates the NameNode as a single point of
failure. It enables a cluster to run redundant NameNodes in an Active/Standby configuration.

NameNode HA enables fast failover to the Standby NameNode in response to a failure, or a graceful
administrator-initiated failover for planned maintenance.

There are two ways of configuring NameNode HA. Using the Ambari Web UI is the easiest way.
Manually editing the configuration files and starting or restarting the necessary daemons is also
possible. However, manual configuration of NameNode HA is not compatible with Ambari
administration. Any manual edits to the hdfs-site.xml file would be overwritten by information in the
Ambari database when the HDFS service is restarted.

The HDFS Architecture

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 43

HDFS Multi-Tenant Controls
Security

• Classic POSIX permissioning (ex: -rwxr-xr--)

• Extended Access Control Lists (ACL) for richer scenarios

• Centralized authorization policies and audit available via Ranger plug-in

Quotas

• Easy to understand data size quotas

• Additional option for controlling the number of files

The HDFS Architecture

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 44

Summary
• HDFS breaks files into blocks and replicates them for reliability and processing data locality

• The primary components are the master NameNode service and the worker DataNode service

• The NameNode is a memory-based service

• The NameNode automatically takes care of recovery missing and corrupted blocks

• Clients interact with the NameNode to get a list, for each block, of DataNodes to write data to

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 45

Ingesting Data

Lesson Objectives
After completing this lesson, students should be able to:

ü Describe data ingestion

ü Describe batch and bulk data ingestion options

ü List streaming framework alternatives

Data Ingestion

Many	Ways	of	Ingesting	Data	into	HDFS	

There are many different data sources with different formats that need to be input into HDFS. Just as
there are many vendors that your organization may have, there are many different mechanisms to get
your data loaded into HDFS. There are many tools for assisting in the ease of getting the data into the
correct structure to suit your specific goals.

Call out Vendor Connectors and HDFS APIs which are available for Java and C. As you see in this slide
the list of vendors is growing quickly just as corporate needs change.

Best Practice:

Keep your big data in its raw format and worry about applying structure and schema to
it later when you transform and analyze the data.

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 46

Multiple Ingestion Workflows

Lambda	Arhictecture	

LAMBDA Architecture is a data-processing architecture designed to handle massive quantities of data
by taking advantge of both batch and stream-based architecture methods. The approach balances
uses batch processing to provide comprehensive and accurate views of batch data while real-time
stream processing to provide views of online data. The inception of the lambda architecture has
paralleled the growth of big data, real-time analytics, and the drive to mitigate the latencies of map-
reduce. (Schuster, Werner. "Nathan Marz on Storm, Immutability in the Lambda Architecture, Clojure".
www.infoq.com. Interview with Nathan Marz, 6 April 2014)

Streaming in Hadoop helps capture new business opportunities with low-latency dashboards, security
alerts, and operational enhancements integrated with other applications running in a Hadoop cluster.

To realize these benefits, an enterprise should integrate real-time processing with normal Hadoop
batch processing. Data derived from batch processing can be used to inform real-time processing
dashboards and applications.

For example, data derived from batch processing is commonly used to create the event models used
by the real-time system. These event models define the schemas of incoming event data, such as
records of calls into the customer contact center, copies of customer order transactions, or external
market data that might affect any action taken.

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 47

Real-Time vs. Batch Ingestion

Differences	Between	Real-Time	and	Batch	Ingestion	

Batch and real-time data processing are very different. The differences include the characteristics of
the data, the requirements for processing the data, and the clients who use or consume the data.

One of the primary differences between batch and real-time processing is that real-time systems are
always running and therefore typically require automated applications or dashboards to consume the
data. These applications or dashboards are used to effect current operations while batch processing
is commonly used for historical data analysis.

Batch and Bulk Ingestion Options

Ambari	Files	View	Menu	Selection	

The Ambari Files View is an Ambari Web UI plug-in providing a graphical user interface to HDFS files
and directories.

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 48

Ambari	Files	View	Functions	

The Files View can create a directory, rename a directory, browse to and list a directory, download a
zipped directory, and delete a directory. It can also upload a file, list files, open files, download files,
and delete a file.

The Hadoop Client
Hadoop Client machines are neither Master nor Slave. Their role is to load data into the cluster, submit
jobs describing how that data should be processed, and then retrieve or view the results of the job
when its finished.

They:

• Use the put command to upload data to HDFS

• Are perfect for inputting local files into HDFS

• Are useful in batch scripts

Usage:
hdfs dfs –put mylocalfile /some/hdfs/path

Typically, local files are loaded into the HDFS environment by writing or creating scripts In the
language of choice.

In the above usage example:

• The file system is hdfs

• The type of file system is dfs (distributed file system)

• The command being used to load data is –put which loads data

• The name of the file is mylocalfile

• An absolute file path name is then given

– The the leading "/" denotes an absolute versus current directory where file can be
found /some hdfs/path

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 49

WebHDFS
WebHDFS provides an external client that does not necessarily run on the Hadoop cluster itself a
standard method of executing Hadoop filesystem operations.

Using WebHDFS provides a method to identify the host that must be connected to in the cluster. It is
based on based on HTTP operations such as:

• GET

• PUT

• POST

• DELETE

Operations such as OPEN, GETFILESTATUS, LISTSTATUS use HTTP GET; other operations such as
CREATE, MKDIRS, RENAME, SETPERMISSIONS use HTTP PUT. APPEND operations are based on
HTTP POST.

Sample Commands
http://host:port/webhdfs/v1/test/mydata.txt?op=OPEN
http://host:port/webhdfs/v1/user/train/data?op=MKDIRS
http://host:port/webhdfs/v1/test/mydata.txt?op=APPEND

The above example shows http://host:port and identifies the server that contains the information for
each one of the files.

• OPEN – request is redirected to a datanode where the file can be read

• MKDIRS – request is redirected to a datanode where the directory can be found

• APPEND – request is redirected to a datanode where the file mydata.txt can is to be be
appended.

NFS Gateway
The NFS Gateway for HDFS allows clients to mount HDFS and interact with it through NFS, as if it were
part of their local file system. The gateway supports NFSv3.

After mounting HDFS, a user can:

• Browse the HDFS file system through their local file system on NFSv3 client-compatible
operating systems.

• Upload and download files between the HDFS file system and their local file system.

• Stream data directly to HDFS through the mount point. (File append is supported, but random
write is not supported.)

Prerequisites

The NFS Gateway machine must be running all components that are necessary for running an HDFS
client, such as a Hadoop core JAR file and a HADOOP_CONF directory.

The NFS Gateway can be installed on any DataNode, NameNode, or HDP client machine. Start the NFS
server on that machine.

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 50

NFS	Gateway	Supports	all	HDFS	Commands	

As the diagram above shows files are written by an application user to the NFS Client. The NFS v3
protocol is used as the mechanism to contact the NFS gateway. On the the right side of the diagram
the DFS (Distributive File System) Client is used as traffic cop to send/receive data to the:

• Domain name via the data transfer protocol

• Node Name via the Client protocol

Sqoop

Database	Import	and	Export	using	Sqoop	

Apache Sqoop efficiently transfers bulk data between Apache Hadoop and structured datastores such
as relational databases. Sqoop helps offload certain tasks (such as ETL processing) from the EDW to
Hadoop for efficient execution at a much lower cost. Sqoop can also be used to extract data from
Hadoop and export it into external structured datastores. Sqoop works with relational databases such
as Teradata, Netezza, Oracle, MySQL, Postgres, and HSQLDB

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 51

Apache Sqoop does the following to integrate bulk data movement between Hadoop and structured
datastores:

• Import sequential datasets from mainframe Satisfies the growing need to move data
from mainframe to HDFS

• Import direct to ORCFiles Improved compression and light-weight indexing for improved
query performance

• Data imports Moves certain data from external stores and EDWs into Hadoop to optimize
cost-effectiveness of combined data storage and processing

• Parallel data transfer For faster performance and optimal system utilization

• Fast data copies From external systems into Hadoop

• Efficient data analysis Improves efficiency of data analysis by combining structured data
with unstructured data in a schema-on-read data lake

• Load balancing Mitigates excessive storage and processing loads to other systems YARN
coordinates data ingest from Apache Sqoop and other services that deliver data into the
Enterprise Hadoop cluster.

Streaming Framework Frameworks
Streaming alternatives for ingestion of data include:

• Flume

• Storm

• Spark Streaming

• Hortonworks Data Flow (HDF)

Flume

Data	Streaming	with	Flume	

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 52

Apache Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and
moving large amounts of streaming data into the Hadoop Distributed File System (HDFS). It has a
simple and flexible architecture based on streaming data flows; and is robust and fault tolerant with
tunable reliability mechanisms for failover and recovery.YARN coordinates data ingest from Apache
Flume and other services that deliver raw data into an Enterprise Hadoop cluster.

Flume lets Hadoop users ingest high-volume streaming data into HDFS for storage. Specifically, Flume
allows users to:

• Stream data Ingest streaming data from multiple sources into Hadoop for storage and
analysis

• Insulate systems Buffer storage platform from transient spikes, when the rate of incoming
data exceeds the rate at which data can be written to the destination

• Guarantee data delivery Flume NG uses channel-based transactions to guarantee reliable
message delivery. When a message moves from one agent to another, two transactions are
started, one on the agent that delivers the event and the other on the agent that receives the
event. This ensures guaranteed delivery semantics

• Scale horizontally To ingest new data streams and additional volume as needed Enterprises
use Flume’s powerful streaming capabilities to land data from high-throughput streams in
the Hadoop Distributed File System (HDFS).

Typical sources of these streams are application logs, sensor and machine data, geo-location data and
social media. These different types of data can be landed in Hadoop for future analysis using
interactive queries in Apache Hive. Or they can feed business dashboards served ongoing data by
Apache HBase.

Storm
Apache™ Storm adds reliable real-time data processing capabilities to Enterprise Hadoop. Storm on
YARN is powerful for scenarios requiring real-time analytics, machine learning and continuous
monitoring of operations.

Storm integrates with YARN via Apache Slider, YARN manages Storm while also considering cluster
resources for data governance, security and operations components of a modern data architecture.

Storm is a distributed real-time computation system for processing large volumes of high-velocity
data. Storm is extremely fast, with the ability to process over a million records per second per node on
a cluster of modest size. Enterprises harness this speed and combine it with other data access
applications in Hadoop to prevent undesirable events or to optimize positive outcomes.

Some of specific new business opportunities include: real-time customer service management, data
monetization, operational dashboards, or cyber security analytics and threat detection.

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 53

Storm Abstractions

Storm	Data	Processing	

There are four abstractions in Storm: spouts, bolts, streams, and topologies. Storm data processing
occurs in a topology. A topology consists of spout and bolt components. Spouts and bolts run on the
systems in a Storm cluster. Multiple topologies can co-exist to process different data sets in different
ways.

Streams

The core abstraction in Storm is the "stream". A stream is an unbounded sequence of tuples. Storm
provides the primitives for transforming a stream into a new stream in a distributed and reliable way.
For example, you may transform a stream of tweets into a stream of trending topics.

The basic primitives Storm provides for doing stream transformations are "spouts" and "bolts". Spouts
and bolts have interfaces that you implement to run your application-specific logic.

Spouts

A spout is a source of streams. For example, a spout may read tuples off of a Kestrel queue and emit
them as a stream. Or a spout may connect to the Twitter API and emit a stream of tweets.

Bolts

A bolt consumes any number of input streams, does some processing, and possibly emits new
streams. Complex stream transformations, like computing a stream of trending topics from a stream of
tweets, require multiple steps and thus multiple bolts. Bolts can do anything from run functions, filter
tuples, do streaming aggregations, do streaming joins, talk to databases, and more.

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 54

Topologies

Networks of spouts and bolts are packaged into a "topology" which is the top-level abstraction that
you submit to Storm clusters for execution. A topology is a graph of stream transformations where
each node is a spout or bolt. Edges in the graph indicate which bolts are subscribing to which streams.
When a spout or bolt emits a tuple to a stream, it sends the tuple to every bolt that subscribed to that
stream.

Message Queues

Message	Queues	are	Often	a	Source	of	Real-Time	Data	Processing	

The source of Storm data is often a message queue. For example, an operating system, service, or
application will send log entries, event information, or other messages to a queue. The queue is read
by Storm.

Storm integrates with many queuing systems. Example queue integrations include Kestrel, RabbitMQ,
Advanced Message Queuing Protocol (AMQP), Kafka, Java Message Service (JMS), and Amazon
Kinesis. Storm’s abstractions make it easy to integrate with a new queuing system.

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 55

Spark Streaming

Spark	Streaming	Application	

As a general rule, new frameworks don't introduce very many new concepts. Spark Streaming is an
exception, as the new concepts of a receiver and Dstream are introduced. A streaming application
is composed of a receiver, Core Spark, and a Dstream.

In Spark Streaming:

• Receivers listen to data streams, and create batches of data called Dstreams

• Dstreams are then processed by the Spark Core engine

Once data is ingested, you can use all the Spark frameworks; you are not limited to using only Spark
streaming functionalities.

Micro-Batches

Spark	Streaming	Micro-Batches	

Dstreams are created as batches of data from a streaming source by the receiver at regular time
intervals.

1) When a streaming source begins communicating with the Spark streaming application, the
receiver begins filling up a bucket.

2) At a predetermined time interval, the bucket is shipped off to be processed.
Each of these buckets is a single Dstream. Once the Dstream is created it is conceptually very
similar to an RDD.

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 56

HDF

Hortonworks	Data	Flow	–	A	Complete	Big	Data	Solution	

Hortonworks DataFlow and Hortonworks Data Platform both work independently, but when they work
together they deliver the industry’s most complete Big Data solution.

HDF allows you to identify and then quickly act on perishable insights. For example: It is more helpful
to know about disease outbreaks, trading windows, fraud or equipment failures when they occur – not
days after.

Then HDF can pass the data and metadata from those perishable insights into HDP for historical
storage and analysis. As a result, the deeper analysis in HDP can be pushed back to HDF to improve
data flows by continuously tuning the data coming in and the decisions being made in the perimeter.

Source:	Forrester	-	Internet	Of	Things	Applications	Hunger	For	Hadoop	And	Real-Time	Analytics	In	The	Cloud,	March	2015	

For example: A NiFi instance can do its own analytics to generate perishable data, but for collective
Information and to persist it you may need to feed it to a central application such as Spark Streaming
or Storm – and store in HDFS.

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 57

Coupling HDF with Storm/Spark

HDF	Workflows	and	Storm/Spark	Can	be	Coupled	

HDF is used for perishable insights that can be gained from data-in-motion; Storm and Spark
streaming are used to gather historical insights from data-at-rest. Together they securely and easily
collect, conduct, and curate dynamic Internet of Anything data into actionable insights.

Ingesting Data

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 58

Summary
• There are many different ways to ingest data including customer solutions written via HDFS

APIs as well as vendor connectors

• Streaming and batch workflows can work together in a holistic system to analyze perishable
and historic data

• The NFS Gateway allows clients to mount HDFS and interact with it through NFS as if it were
part of the local file system

• Sqoop transfers bulk data between Hadoop and structured datastores such as relational
databases

• The following are streaming frameworks:

- Flume
- Storm
- Spark Streaming
- Hortonworks Data Flow (HDF)

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 59

Parallel Processing with MapReduce

Lesson Objectives
After completing this lesson, students should be able to:

ü Describe how the MapReduce Framework works

MapReduce Framework

MapReduce	Implements	Two	Processes:	Map	and	Reduce	

MapReduce enables programmers to process huge amounts of data in parallel across distributed
processors. It handles details such as parallelization, fault tolerance, data distribution and load
balancing so programmers do not have to worry about them.

MapReduce provides a clear abstraction for programmers. They only have to use two functions, map
and reduce:

1) Data are fed into the map function as key value pairs to produce intermediate key/value pairs

2) Once the mapping is done, intermediate results from various nodes are reduced to create the
final output

The number of mappers is aligned with the number of blocks that the input data takes up. The number
of reducers is set by the application developer.

Parallel Processing with MapReduce

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 60

Simple MapReduce Algorithm Example

	

In our example, we want to review a stack of quarters and count only the quarters that were minted in
even years. We could easily just count out this stack by hand.

	

But what happens when we have to do the same task at scale?

	

We might want to call on our friends to help process this huge pile. So in this scenario, we give each of
our friends part of the pile and have them count them – then we will reduce those subtotals and
combine them to find the final tally.

Parallel Processing with MapReduce

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 61

Word Count Process

The Mapper

The Mapper reads data in the form of key/value pairs (KVPs). It outputs zero or more KVPs. The
Mapper may use or completely ignore the input key. For example, a standard pattern is to read a line of
a file at a time:

• The key is the byte offset into the file at which the line starts

• The value is the contents of the line itself

• Typically the key is considered irrelevant with this pattern

If the Mapper writes anything out, it must in the form of KVPs. This “intermediate data” is NOT stored in
HDFS (local storage only without replication).

The Reducer

After the Map phase is over, all intermediate values for a given intermediate key are combined together
into a list. This list is given to a single or multiple Reducers.

• All values associated with a particular intermediate key are guaranteed to go to the same
Reducer

• The intermediate keys, and their value lists, are passed in sorted order

The Reducer outputs zero or more KVPs which are written to HDFS. In practice, the Reducer often
emits a single KVP for each input key.

Parallel Processing with MapReduce

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 62

MapReduce Word Count Example
Goal:

To count the number of occurrences of each word in a large amount of data.

	

The Map Phase:

	

Each mapper takes a line as input and breaks it into words. It then outputs a key/value pair of the word
and 1.

The Reduce Phase:

Each reducer sums the counts for each word and outputs a single key/value with the word and sum.

Parallel Processing with MapReduce

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 63

Summary
• MapReduce is the foundational framework for processing data at scale because of its ability to

break a large problem into any smaller ones

• Mappers read data in the form of key/value pairs (KVPs) and each call to a Mapper is for a
single KVP; it can return 0..m KVPs

• The framework shuffles and sorts the Mappers’ outputted KVPs with the guarantee that only
one Reducer will be asked to process a given Key’s data

• Reducers are given a list of Values for a specific Key; they can return 0..m KVPs

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 65

Apache Hive Overview

Lesson Objectives
After completing this lesson, students should be able to:

ü Describe Hive features and functions

ü Explain how to perform classic query operations in Hive

ü List performance improvements using Stinger.next and Tez

Hive Overview

Apache Hive is a data warehouse infrastructure built on top of Apache Hadoop that provides data
summarization, ad-hoc query, and analysis of large datasets. It projects structure onto the data in
Hadoop and queries that data using an SQL-like language called HiveQL (HQL).

Tables in Hive are similar to tables in a relational database, and data units are organized in a taxonomy
from larger to more granular units. Databases are comprised of tables, which are made up of partitions.
Data can be accessed via a simple query language and Hive supports overwriting or appending data.

Within any particular database, data in the tables is serialized and each table has a corresponding
Hadoop Distributed File System (HDFS) directory. Each table can be sub-divided into partitions that
determine how data is distributed within sub-directories of the table directory. Data within partitions
can be further broken down into buckets.

Hive supports all the common primitive data formats such as BIGINT, BINARY, BOOLEAN, CHAR,
DECIMAL, DOUBLE, FLOAT, INT, SMALLINT, STRING, TIMESTAMP, and TINYINT. In addition, analysts
can combine primitive data types to form complex data types, such as structs, maps and arrays.

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 66

Hive Alignment with SQL

Hive offers semantics similar to RDBMS tools.

Hive Query Process

The	Hive	Query	Process	

The steps called out in the above process are maintained by HiveServer 2, but in reality all data
processing is happening on the worker nodes in the cluster.

Hive SQL is converted to Map/Reduce jobs and run on Hadoop. The SQL is optimized, just as in an
RDBMS, for best performance.

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 67

Query Submission Tools

Use familiar command-line and SQL GUI tools just as with “normal” RDBMS technologies.

Beeline

HiveServer2 (introduced in Hive 0.11) has its own CLI called Beeline. HiveCLI is now deprecated in
favor of Beeline, as it lacks the multi-user, security, and other capabilities of HiveServer2. Beeline is
started with the JDBC URL of the HiveServer2, which depends on the address and port where
HiveServer2 was started. By default, it will be (localhost:10000), so the address will look like
jdbc:hive2://localhost:10000.

GUI Tools

Open source SQL tools used to query Hive include:

• Ambari Hive View
(http://docs.hortonworks.com/HDPDocuments/Ambari-
2.2.0.0/bk_ambari_views_guide/content/)

• Zeppelin
(https://zeppelin.incubator.apache.org/)

• DBVisualizer
(https://www.dbvis.com/download/)

• Dbeaver
(http://dbeaver.jkiss.org/)

• SquirrelSQL
(http://squirrel-sql.sourceforge.net/)

• SQLWorkBench
(http://www.sql-workbench.net/)

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 68

Ambari Hive View

Ambari	Hive	View	

Ambari includes a built-in set of Views that are pre-deployed for you to use with your cluster. The Hive
View is designed to help you author, execute, understand, and debug Hive queries.

From the Ambari Hive View you can:

• Browse databases

• Write and execute queries

• Manage query execution jobs and history

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 69

Performing Queries in Hive

Hive	Remains	MapReduce	"Under	the	Covers"	

Hive still thinks in MaprReduce terms – even with Tez.

Defining a Hive-Managed Table

Defining	a	Hive-Managed	Table	

The main difference between Hive and SQL table creation is the specification of how it is stored, such
as each row's field delimiter. If the table definition is dropped, the underlying data is lost.

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 70

Defining an External Table

Defining	an	External	Hive	Table	

An external data uses existing Hadoop data; it makes existing data look like a relational table. If the
table definition is dropped, the underlying data will remain.

Defining a Table LOCATION

Defining	a	Table	LOCATION	

If a LOCATION is not supplied, the table’s data will reside in
/apps/hive/warehouse/db_name/table_name.

LOCATION is commonly to map EXTERNAL tables, but can be used for other types.

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 71

Loading Data into Hive

Loading	Data	into	Hive	

Data can be loaded into Hive tables from external files or from other tables. The table definition
(FIELDS TERMINATED BY ',') allows proper identification of each column.

The OVERWRITE clause replaces all existing table data instead of appending to it.

The last example shows the population of a table with the results of a SELECT statement using data
from an existing table.

A pair of CREATE TABLE and INSERT statements can be combined into one Create Table As Select
statement.

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 72

Performing a Query

Performing	a	Hive	Query	

HIVE SELECT statements are just like those in SQL.

Ambari Hive Views

Hive	Tables	

A view is a "synthetic" table. It is essentially a predefined SELECT statement that can be referenced as
if it were a table.

Hive views are not "materialized", that is, they are created by running the SELECT action when they are
accessed, so they always have current data.

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 73

Defining a Hive View

Defining	a	Hive	View	

A view is defined using the CREATE VIEW statement.

You can run the DESCRIBE command on a view to see its schema, and also see it in the output of
“show tables;”

Using Views

Using	a	Hive	View	

When you access a view, HIVE will parse, optimize and execute the query just as if a physical table
was accessed, substituting the view's definition into the query plan in place of the table name. Hive will
determine the best way to convert the above command into one or more MapReduce jobs at runtime .

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 74

Performance Improvements
Both Stinger and Tez have increased the performance of Hive queries.

The Stinger Init iative enables Hive to support an even broader range of use cases at truly Big Data
scale: bringing it beyond its Batch roots to support interactive queries – all with a common SQL access
layer.

Tez improves the MapReduce paradigm by dramatically improving its speed, while maintaining
MapReduce’s ability to scale to petabytes of data.

Hive has always been the defacto standard for SQL in Hadoop and these advances will surely
accelerate the production deployment of Hive across a much wider array of scenarios.

Singer.next

The	Stringer	Initative	

Stinger.next is a continuation of the Stinger initiative focused on even further enhancing the speed,
scale and breadth of SQL support to enable truly real-time access in Hive while also bringing support
for transactional capabilities. And just as the original Stinger initiative did, this will be addressed
through a familiar three-phase delivery schedule and developed completely in the open Apache Hive
community.

Stinger.next Goals

• Speed
Deliver sub-second query response times.

• Scale
The only SQL interface to Hadoop designed for queries that scale from Gigabytes, to Terabytes
and Petabytes.

• SQL
Enable transactions and SQL:2011 Analytics for Hive.

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 75

Tez

Apache	Tez	

Apache™ Tez is an extensible framework for building high performance batch and interactive data
processing applications, coordinated by YARN in Apache Hadoop. Important Hadoop ecosystem
projects like Apache Hive and Apache Pig use Apache Tez, as do a growing number of third party data
access applications developed for the broader Hadoop ecosystem.

Apache Tez provides a developer API and framework to write native YARN applications that bridge the
spectrum of interactive and batch workloads. It allows those data access applications to work with
petabytes of data over thousands nodes. The Apache Tez component library allows developers to
create Hadoop applications that integrate natively with Apache Hadoop YARN and perform well within
mixed workload clusters.

Apache Hive Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 76

Summary
• Hive is the data warehouse system for Hadoop and uses the familiar table and SQL metaphors

that are used with classic RDBMS solutions

• Hive can create, populate and query tables

• Views are supported, but are not materialized

• Significant performance improvements have surfaced from the Stinger initiative including the
use of the ORC file format and Tez as the execution engine

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 77

Apache Pig Overview

Lesson Objectives
After completing this lesson, students should be able to:

ü Describe Pig features and functions

Apache Pig

Apache	Pig	

Apache Pig is a scripting platform for processing and analyzing large data sets.

Pig was designed to perform long series of data operations, making it ideal for three categories of Big
Data jobs:

• Extract-transform-load (ETL) data pipelines

• Research on raw data

• Iterative data processing

Pig's design goals can be described as:

• Pigs eat anything
Pig can process any data, structured or unstructured

• Pigs l ive anywhere
Pig can run on any parallel data processing framework, so Pig scripts do not have to run just
on Hadoop

• Pigs are domestic animals
Pig is designed to be easily controlled and modified by its users

• Pigs fly
Pig is designed to process data quickly

Apache Pig Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 78

Pig Latin
The language for the platform is called Pig Latin, which abstracts from the Java MapReduce idiom into
a form similar to SQL. While SQL is designed to query the data, Pig Latin allows you to write a data
flow that describes how your data will be transformed (such as aggregate, join and sort).

Pig executes in a unique fashion:

• During execution, each statement is processed by the Pig interpreter

• If a statement is valid, it gets added to a logical plan built by the interpreter

• The steps in the logical plan do not actually execute until a DUMP or STORE command is used

Since Pig Latin scripts can be graphs (instead of requiring a single output) it is possible to build
complex data flows involving multiple inputs, transforms, and outputs. Users can extend Pig Latin by
writing their own functions, using Java, Python, Ruby, or other scripting languages. Pig Latin is
sometimes extended using UDFs (User Defined Functions), which the user can write in any of those
languages and then call directly from the Pig Latin.

The user can run Pig in two modes, using either the “pig” command or the “java” command:

MapReduce Mode. This is the default mode, which requires access to a Hadoop cluster.

Local Mode. With access to a single machine, all files are installed and run using a local host and file
system.

Why Use Pig
Apache Pig allows Apache Hadoop users to write complex MapReduce transformations using a simple
scripting language called Pig Latin. Pig translates the Pig Latin script into MapReduce so that it can be
executed within YARN for access to a single dataset stored in the Hadoop Distributed File System
(HDFS).

Pig	Simplifies	the	Developer's	Job	

Apache Pig Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 79

The Grunt Shell
Grunt is Pig's interactive shell. Users can enter commands interactively and interact with HDFS. Grunt
provides:

• A command-line history

• Editing

• Tab completion

	

Ambari Pig View

Executing	a	Script	in	Ambari	Pig	View	

The Pig View provides a web-based interface to compose, edit, and submit Pig scripts, download
results, and view logs and the history of job submissions.

Apache Pig Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 80

You can use Pig View to:

• Write Pig scripts

• Execute Pig scripts

• Add user-defined functions (UDFs) to Pig scripts

• View the history of all Pig scripts run by the current user

Pig Latin Commands

Pig	Latin	Commands	

DataFu Library
The DataFu Library is a collection of Pig UDFs for data analysis on Hadoop. Started by LinkedIn it is no
open source under the Apache 2.0 license.

DataFu includes functions for:

• Bag and set operations

• PageRank

• Quantiles

• Variance

• Sessionization

To use the functions in the DataFu library, you need to register the DataFu JAR file, just like you would
with any other Pig UDF library: register datafu-1.2.0.jar;

Apache Pig Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 81

HCatalog

HCatalog	in	the	Hadoop	Ecosystem	

Apache™ HCatalog is a table management layer that exposes Hive metadata to other Hadoop
applications. HCatalog’s table abstraction presents users with a relational view of data in the Hadoop
Distributed File System (HDFS) and ensures that users need not worry about where or in what format
their data is stored. HCatalog displays data from RCFile format, text files, or sequence files in a tabular
view. It also provides REST APIs so that external systems can access these tables’ metadata.

HCatalog:

• Frees the user from having to know where the data is stored, with the table abstraction

• Enables notifications of data availability

• Provides visibility for data cleaning and archiving tools

Apache Pig Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 82

Summary
• Pig is a high-level data-flow scripting language

• Scripts do not execute until an I/O operation like DUMP or STORE are reached

• Can be run via the interactive shell or as a script

• Pig has a comprehensive set of commands available to programmers

• DataFu library is a collection of Pig UDFs for data analysis on Hadoop

• HCatalog provides a consistent data model for the various tools that use Hadoop

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 83

Apache Spark Overview

Lesson Objectives
After completing this lesson, students should be able to:

ü Describe Spark with special focus on

ü Discuss performance considerations

ü Describe modules that layer on top of Spark Core

Apache Spark Overview

What is Spark?
Spark was created to be a general purpose data processing engine, focused on in-memory distributed
computing use cases. Spark took many concepts from MapReduce and implemented them in new
ways. Spark uses API's written in Scala, that can be called with Scala, Python, Java and more recently
R. The core Spark API's focus on using key/value pairs for data manipulation.

In addition to the Core Spark, a few extraction frameworks have been developed on top of the core
API. Most notable is the Spark SQL module. The Spark SQL module allows developers to seamlessly
mix SQL queries within their Spark applications, unlocking more doors to potential data processing
applications.

Spark is build around the concept of an RDD. RDD stands for Resilient Distributed Dataset. Resilient in
the sense that data can be recreated on the fly in the event of a machine failure. Distributed in the
sense that operations can happen in parallel on multiple machines working on blocks of data allowing
Spark to scale very easily as data and machine network size grows.

Apache Spark

Apache	Spark	

Spark is a data access engine for fast, large-scale data processing designed for iterative in-memory
computations and interactive data mining. It provides expressive multi-language APIs for Scala, Java
and Python.

Apache Spark Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 84

Data workers can use built-in libraries to rapidly iterate over data for:

• ETL

• Machine learning

• SQL workloads

• Stream processing

Cluster with Two RDDs

Cluster	with	Two	RDDs	

This diagram shows a hypothetical cluster that has two RDD's. Each RDD is composed of multiple
partitions, and the partitions are distributed across the cluster.

Apache Spark Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 85

Spark Focus

Apache	Spark	Focus	

Spark was able to solve these issues. Spark is able to leverage data in HDP, HBase included. An
Hbase connector exists, which allows the pushing of predicates and pruning of data, that is backed by
Hbase.

Spark is able to leverage Hive tables and the HiveMetastore to use data already stored using Hive. In
addition, Spark can do some data pruning in conjunction with ORC Data format to improve efficiency
even more.

Spark provides a rest API for Spark Job management, allowing a way to kick off jobs remotely.

Spark has been focusing on Security and can leverage the security enhancement in the Spark Thrift
Server

Spark is getting better at playing nicely when working on a multi tenant cluster. Spark can be
submitted using YARN, and recently dynamic executor allocation. This allows for Spark applications to
utilize cluster resources more efficiently.

Spark Shell vs. Spark Applications
The difference between a Spark Application and running a job in the Spark is minimal. This is another
example of Spark being extremely friendly. We can move from ad-hoc data analysis to production-
scheduled applications with only minimal differences.

Spark Shell allows interactive manipulation/exploration of data for use in data discovery and building
pipelines interactively.

Spark Applications run as independent programs that can be scheduled. They are commonly used
for ETL processing, streaming and model building.

Apache Spark Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 86

Performance Considerations

Spark	Motivations	

The initial motivation for Spark was that iterative applications didn't work well with MapReduce.
Iterative applications in MapReduce require intermediate data to be written to the HDFS and then read
again for every iteration. Spark's goal was to keep more data in memory, to minimize the expensive
read/writes that plague developers. Reading from memory is measured in nanoseconds, while reading
from disk is measured in milliseconds.

Spark RDD Persist Options

Spark	RDD	Persist	Options	

Hortonworks recommends using the persist API when building an application The reason being is that
it forces the developer to be conscious of what level of storage they're using and remain aware of what
is going on as well. There are many different types of options for persisting, called Storage Levels, and
these can alter the performance of the application. There are a combination of ways data can be
stored, which come down to three main parts: serialized vs. un-serialized, memory, and disk. All the
persistence levels are made up of combinations of these.

Apache Spark Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 87

MEMORY : Data that is persisted will be persisted in RAM

DISK : Data that is persisted will be persisted to local disk

SER: Data will be serialized before writing.

So in the case of MEMORY_AND_DISK_SER, the data will be serialized before being persisted. The
data will then be stored in RAM until the application runs out of RAM when the rest of the persisted
data will be spilled to local disk.

There is one other StorageLevel that hasn’t been discussed and that is OFF_HEAP. This is an
experimental API that takes advantage of OFF_HEAP storage and has potential to allow developers to
persist quite a bit more data. It is, however, not ready for use in a production environment.

Spark vs. MapReduce

Spark	vs.	MapReduce:	WordCount	

Pictured above are a WordCount implementation in Spark using Python API and Java MapReduce. We
can see immediately how much plumbing is removed when we implement a simple word count. Spark
can perform wordcount in ~3 lines of code, where as MapReduce requires over 50.

Also, as the diagram shows, when taking advantage of in-memory storage, Spark performs over 100x
faster then tradition MapReduce for some use cases.

Why is Spark Faster?

Spark is faster than MapReduce for several reasons.

First and foremost, Spark can cache data into memory.

In addition to the gains of reading data from disk vs memory, task scheduling in Spark has greatly
decreased from MapReduce. Spark has dedicated resources, so task scheduling doesn’t require a
resource request. Because of this, scheduling has gone from 15-20s to 15-20ms. In Spark, you can
have multiple reduces and maps in a row. You do not need a map phase for every reduce phase;
skipping this extra map saves reading and writing data to disk.

Apache Spark Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 88

Stil l Based on MapReduce Principles

Spark	is	Based	on	MapReduce	

The code on the left of this picture should look familiar: it is the wordcount application that has been
referenced many times. On the bottom is an example of what is going on with the partitions of data. In
the first line of code, a file is read in. The number of partitions defaults to the number of blocks the file
takes up on the HDFS. Here, the file takes up 4 blocks on the HDFS, as represented by the 4 green
rectangles above the textFile syntax.

Spark Modules
Various modules are layered on top of the Spark Core. These include Spark SQL, Spark Streaming, and
Spark MLlib. Sparl also integrates with Apache Zeppelin, a web-based notebook server that supports
Data Science.

Spark SQL Overview
Spark SQL is a module that is built on top of Spark Core for structured data processing. Spark SQL
provides another level of abstraction for declarative programming on top of Spark.

In Spark SQL, data is described as a DataFrame with rows, columns and a schema. Data manipulation
in Spark SQL is available via SQL queries, the DataFrames API, and the Datasets APUI.

Spark SQL is being used more and more at the enterprise level. Spark SQL allows the developer to
focus even more on the business logic and even less on the plumbing, and even some of the
optimizations.

Apache Spark Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 89

DataFrames

The	Spark	DataFrame	Visually	

The image above shows what a data frame looks like visually. Much like Hive, a DataFrame is a set of
metadata that sits on top of an RDD. The RDD can be created from many file types. A DataFrame is
conceptually equivalent to a table in traditional data warehousing.

Datasets

Datasets are new experimental interfaces added in Spark 1.6 for the purpose of providing the benefits
of RDDs (strong typing, ability to use powerful lambda functions) with the benefits of Spark SQL’s
optimized execution engine. A Dataset can be constructed from JVM objects and then manipulated
using functional transformations (map, flatMap, filter, etc.).

The unified Dataset API can be used both in Scala and Java. Python does not yet have support for the
Dataset API, but due to its dynamic nature many of the benefits are already available (i.e. you can
access the field of a row by name naturally row.columnName). Full python support will be added in a
future release.

REFERENCE:

See the "Spark SQL, DataFrames and Datasets Guide" at
http://spark.apache.org/docs/latest/sql-programming-guide.html#overview

Spark Streaming Overview
Spark Streaming is a library built on top of the Spark Core framework that enables scalable, high
throughput, fault-tolerant stream processing. Spark Streaming is able to reuse many of the same API's
that Spark Core uses. Spark Streaming utilizes a micro-batch architecture, allowing it to process data
with as low as 1-2s of latency.

Spark introduces a new abstraction of data called Discretized Streams (Dstreams). Dstreams are
batches of data that share very little physically with RDD's, but are used very similarly to RDD's.

Apache Spark Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 90

Input Dstreams and Receivers

Spark	Architecture	

Spark usually does not introduce many new concepts with new modules. Spark Streaming is the
closest to an exception, as the new concepts of a receiver and Dstream are introduced. They are
introduced because streaming is a bit different than batch processing. A streaming application is
composed of a receiver, Core Spark, and this concept of a Dstream.

Input Dstreams represent the stream of input data received from streaming sources. There are two
types of input Dstreams: Basic sources that are directly available in the SgtreamingContext API and
Advanced sources that are available through extra utility classes.

Receivers listen to data streams, and create batches of data called Dstreams that are then processed
by the Spark Core engine. There are two types of receivers: rel iable receivers which send
acknowledgment when data has been received and unreliable receivers that do not send
ackowledgements.

Once the data is ingested, we have the liberty to use all Spark frameworks - we are not limited to using
only Spark streaming functionalities.

REFERENCE:

See "Spark Streaming Programming Guide"
http://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-
streams-dstreams

Apache Spark Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 91

MLlib Overview
MLlib provides Spark a library of common machine learning algorithms and utilities. This includes:

• Classification

• Regression

• Clustering

• Collaborative filtering

• Dimensionality reduction

MLlib is composed of algorithms that scale well and perform well in a parallel processing world. MLlib
allows data scientist the ability to easily scale machine learning algorithms on a Hadoop cluster.

Apache Zeppelin

Interactive Zeppelin browser-based notebooks enable data engineers, data analysts and data
scientists to be more productive by developing, organizing, executing, and sharing data code and
visualizing results without referring to the command line or needing the cluster details. Notebooks
allow these users not only allow to execute but to interactively work with long workflows.

Apache	Zeppelin	

Apache Spark Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 92

Hortonworks' Commitment to Spark

Hortonworks'	Commitment	to	Spark	

Hortonworks has made a large investment in Spark to ensure enterprise readiness for mission critical
applications.

Apache Spark Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 93

Summary
• Spark houses data in an RDD structure and allows re-parallelization as needed

• The “sweet spot” is iterative in-memory computations and interactive data modeling

• Python, Scala, Java and R are supported languages

• Provides data processing, ETL, machine learning, stream processing, SQL querying

• In-memory caching is not a default setting and there are many options to choose from

• Maintains dedicated resources and its task scheduler is lightning fast

• Spark SQL has a DataFrame API In addition to classical SQL querying

• Spark Streaming uses micro-batches that are much like RDDs loaded from disk

• MLlib allows data scientists the ability to easily scale machine learning algorithms

• Apache Zeppelin is considered the “Modern Data Science Studio”

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 95

YARN Overview

Lesson Objectives
After completing this lesson, students should be able to:

ü Describe the purpose and components of YARN

ü List YARN Components and Interactions

ü Describe additional YARN Features

Introduction to YARN
YARN is the prerequisite for Enterprise Hadoop, providing resource management and a central
platform to deliver consistent operations, security, and data governance tools across Hadoop clusters.

YARN also extends the power of Hadoop to incumbent and new technologies found within the data
center so that they can take advantage of cost effective, linear-scale storage and processing. It
provides ISVs and developers a consistent framework for writing data access applications that run IN
Hadoop.

Enabling Multiple Workloads

YARN	Enables	Multiple	Workloads	

Hadoop 1.0 was mainly used for MapReduce jobs in more of a project level adoption of Hadoop for big
data analysis.

Hadopp 2.0 with YARN as its architectural center makes a mixed load data lake a reality by enabling
the running of mixed workloads in the same Hadoop cluster. This makes it easy to build a data lake.

Different workloads interact with data in different ways, simultaneously and seamlessly.

YARN Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 96

YARN Architectural Components

YARN	Achitecture	

The MapReduce framework was decomposed to generalize resource management from a single
workload type. The ApplicationMaster allows clusters to scale beyond the 2000-4000 node range due
to the decentralization of tracking independent jobs

YARN Components and Interactions
As the architectural center of Hadoop, YARN enhances a Hadoop compute cluster through multi-
tenancy, dyanmic utilization, scalability and compatibility with MapReduce applications developed for
Hadoop 1.x.

YARN Resource Management

YARN	

YARN (unofficially “Yet Another Resource Negotiator”) is the computing framework for Hadoop. If you
think about HDFS as the cluster file system for Hadoop, YARN would be the cluster operating system.
It is the architectural center of Hadoop.

YARN Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 97

YARN	as	an	Operating	System	

A computer operating system, such as Windows or Linux, manages access to resources, such as CPU,
memory, and disk, for installed applications. In similar fashion, YARN provides a managed framework
that allows for multiple types of applications – batch, interactive, online, streaming, and so on – to
execute on data across your entire cluster.

Just like a computer operating system manages both resource allocation (which application gets
access to CPU, memory, and disk now, and which one has to wait if contention exists) and security
(does the current user have permission to perform the requested action), YARN manages resource
allocation for the various types of data processing workloads, prioritizes and schedules jobs, and
enables authentication and multi-tenancy.

Multi-Tenancy

Software multi-tenancy is achieved when a single instance of an application serves multiple groups
of users, or “tenants.” Each tenant shares common access to an application, hardware, and underlying
resources (including data), but with specific and potentially unique privileges granted by the
application based on their identification. A typical example of a multi-tenant application architecture
would be SaaS cloud computing, where multiple users and even multiple companies are accessing the
same instance of an application at the same time (for example, Salesforce CRM).

This is in contrast with multi- instance architectures, where each user gets a unique instance of an
application, and the application then competes for resources on behalf of its tenant. A typical example
of a multi-instance architecture would be applications running in virtualized or IaaS environments (for
example, applications running in KVM virtual machines).

NOTE: In prior versions of Hadoop, resource management was part of the MapReduce process. In this
scenario, you had a single application handling both job scheduling and running data processing jobs
at the same time. Starting with Hadoop 2.0, MapReduce is simply another data processing application
running on top of the YARN framework.

YARN Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 98

YARN – The Big Picture View

YARN	Master	and	Utility	Nodes	

The YARN Master node component centrally manages cluster resources for all YARN applications.

YARN	Master,	Utility,	and	Worker	Nodes	

The YARN Worker node component manages local resources at the direction of the ResourceManager.

YARN Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 99

YARN Multi-Node Resource Allocation Example
The following graphic illustrates how containers, ApplicationMasters, and job tasks might be spread
across a 3-node cluster.

YARN	Multi-Node	Resource	Allocation	Scenario	

In this example, the Job1 ApplicationMaster was started on NodeManager 2. The first task for Job1
was started and NodeManager 1, and the second Job1 task was started on NodeManager 2. This
completed all the tasks required for Job1.

The Job2 ApplicationMaster was launched on NodeManager 3. The first two Job2 tasks were launched
on NodeManager 1, Job2 tasks 3 through 6 were launched on NodeManager 3, and the final Job2 task
was launched back on NodeManager 1.

The main point to this is to illustrate that the ApplicationMaster can initiate the creation of containers
on any appropriate NodeManager in the cluster. The default behavior is for all jobs to be collocated
where data blocks already exist, even if more processing power is available on a node without those
data blocks whenever possible.

YARN Features
YARN’s original purpose was to split up the two major responsibilities of the JobTracker/TaskTracker
into separate entities:

• A global ResourceManager

• A per-application ApplicationMaster

• A per-node slave NodeManager

• A per-application Container running on a NodeManager

YARN Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 100

Resource Manager High Availabil ity
In HDP prior to version 2.1, the ResourceManager was a single point of failure. The entire cluster would
become unavailable if the ResourceManager failed or became unreachable. Even maintenance events
such as software or hardware upgrades on the ResourceManager machine would result in periods of
cluster downtime.

The YARN ResourceManager High Availability (HA) feature eliminates the ResourceManager as a single
point of failure. It enables a cluster to run one or more ResourceManagers in an Active/Standby
configuration.

ResourceManager HA enables fast failover to the Standby ResourceManager in response to a failure,
or a graceful administrator-initiated failover for planned maintenance.

There are two ways of configuring ResourceManager HA. Using Ambari is the easiest way. Manually
editing the configuration files and starting or restarting the necessary daemons is also possible.
However, manual configuration of ResourceManager HA is not compatible with Ambari administration.
Any manual edits to the yarn-site.xml file would be overwritten by information in the Ambari database
when the YARN service is restarted.

Multi-Tenancy with Capacity Scheduler

YARN	Capacity	Scheduler	

Traditionally, organizations have had their own compute resources with sufficient capacity to meet
SLAs under peak or near peak conditions. This often results in poor average utilization and the
increased overhead of managing multiple independent clusters.

While the concept of sharing clusters is logically a cost-effective manner of running large Hadoop
installations, individual organizations may have concerns about sharing a cluster, fearing other
organizations may use resources critical to their SLAs.

YARN Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 101

The CapacityScheduler is designed to enable sharing of compute resources in a large cluster while
guaranteeing each organization a minimum capacity. Available resources in the cluster are partitioned
between multiple organizations based on computing needs. In addition, any organization can access
excess capacity at any given point in time. This provides cost-effective elasticity.

Implementation of the CapacityScheduler is based on the concept of queues which are set up by
administrators to reflect organizational economics of the shared cluster.

Resource Isolation

Resource isolation in provided on Linux by Control Groups (CGroups) and on Windows through Job
Control.

CGroups

Cgroups enable an administrator to allocate resources among processes running on a system.
Administrators can:

• Monitor cgroups

• Deny cgroups access to certain resources

• Reconfigure cgroups dynamically on a running system

Cgroups can be made persistent across reboots by configuring the cgconfig service to run at boot
time to reestablish cgroups.

Windows Job Control

Isolation controls similar to Linux CGroups have been implemented on Windows to perform default job
control actions. Job control messages can only be processed by customized applications.

Managing Queue Limits with Ambari

Ambari	Queue	Limits	

YARN Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 102

Ambari is the Apache project that allows single pane of glass administration of clusters (including
multiple clusters). Ambari provides a standard set of tools, APIs and processes to be leveraged across
Hadoop instances.

To configure a queue in Ambari, click on the queue name. From here you can set queue parameters:

• Capacity

- Capacity
The percentage of cluster resources available to the queue. For a sub-queue, the
percentage of parent queue resources.

- Max Capacity
The maximum percentage of cluster resources available to the queue. Setting this value
tends to restrict elasticity, as the queue will be unable to utilize idle cluster resources
beyond this setting.

- Enable Node Labels
Select this check box to enable node labels for the queue.

• Access Control and Status

- State
Running is the default state. Setting this to Stopped lets you gracefully drain the queue
of jobs (for example, before deleting a queue).

- Administer Queue
Clicking Custom will restrict administration of the queue to specific users and groups.

- Submit Applications
Clicking Custom will restrict the ability to run applications in the queue to specific users
and groups.

• Resources

- User Limit Factor
A measure of the maximum any user can occupy in a queue. Setting this variable to "1"
results in a maximum equal to the queue's configured capacity. The setting is used to
prevent any one user from monopolizing resources across all queues in a cluster.

- Minimum User Limit
A measure of the minimum percentage of resources allocated to each queue user. For
example, to enable equal sharing of the queue capacity among four users, you would
set this property to 25%.

- Maximum Applications
Enables the administrator to override the Scheduler Maximum Applications setting.

- Maximum AM Resource
Enables an administrator to override the Scheduler Maximum AM Resource setting

- Ordering Policy
Enables setting FIFO (First In, First Out) or fair (Fair Scheduler where applications get a
fair share of capacity regardless of the order in which they were submitted).

YARN Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 103

Policy-Based Use of Computing Resources

Policy-Based	Computer	Resources	Use	

The use of queues limits access to resources. Sub-queues are possible allowing capacity to be shared
within a tenant. Each queue has ACLs associated with users and groups. Capacity guarantees can be
set to provide minimum resource allocations and soft and hard limits can be placed on queues.

YARN Overview

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 104

Summary
• YARN enables multiple workloads to execute simultaneously in the cluster

• The ResourceManager is the master process responsible for fulfilling resource requests and
the NodeManager resides on the worker nodes along with the actual Containers that fulfill job
functions

• The ApplicationMaster resides within a Container and is the process responsible for running a
job (batch or long-lived service) and making appropriate resource requests

• The Capacity Scheduler allows for resource sharing that enables SLA-enabled multi-tenancy

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 105

Hadoop Security

Lesson Objectives
After completing this lesson, students should be able to:

ü Describe how Hadoop addresses enterprise security concerns

ü Describe Hortonworks' commitment to enterprise-ready security

ü Describe the high-level architecture of Apache Ranger

Hadoop Security Overview

Five	Pillars	of	Enterprise	Security	

Effective Hadoop security depends on a holistic approach. The Hortonworks framework for
comprehensive security revolves around five pillars: administration, authentication, authorization, audit
and data protection.

Enterprise infrastructures must provide enterprise-grade coverage across each of these pillars
because if any are weak, they introduce thread vectors into the entire data lake.

Security in HDP is the most comprehensive and complete available for Hadoop.

HDP:

• Ensures comprehensive enforcement of security policy across the entire Hadoop stack

• Provides functionality across the complete set of security requirements

• Is the only solution to provide a single simple interface for security policy definition and
maintenance

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 106

Security Built In to the Platform

Enforcing	Security	Across	the	Hadoop	Stack	

Security must be an integral part of the platform on which an enterprise’s Data Lake is built. The
combination of bottom-up and top down approach makes it possible to manage and enforce security
across the stack through a central point of administration that prevents gaps and inconsistencies. This
approach is especially effective for Hadoop implementations where a dynamic scenario can quickly
exacerbate vulnerabilities.

By implementing security at the platform level, Hortonworks ensures that security is consistently
administered to any application built on top of the data platform, and makes it easier to build or retire
data applications without impacting security.

Hortonworks' Commitment to Security

Hortonworks'	Commitment	to	Enterprise-Ready	Security	

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 107

Enterprise-ready security must include:

• Central administration

• Authentication

• Authorization

• Audit

• Data protection

Administration

Centralized	Security	through	Ranger	

Hadoop administrators need a centralized user interface to deliver security administration and
management that can be used to define, administer and manage security policies consistently across
all components of the Hadoop stack.

Ranger enhances the productivity of security administrators and reduces potential errors by
empowering them to define security policy once and apply it to all the applicable components across
the Hadoop stack from a central location.

Authentication and Perimeter Security
Authentication with Kerberos

Using strong authentication to establish user identity is the basis for secure access in Hadoop. Once a
user is identified that identity is propagated throughout the Hadoop cluster and used to access
resources (i.e.: files and directories) and to perform tasks such as running jobs. Hortonworks uses
Kerberos, an industry standard, to authenticate users and resources within a Hadoop cluster.
Hortonworks has also simplified Kerberos setup, configuration and maintenance through Ambari 2.0.

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 108

Perimeter Security with Knox

Perimeter	Security	with	Knox	

With Knox, enterprises can confidently extend the Hadoop REST API to new users without Kerberos
complexities, while also maintaining compliance with enterprise security policies. Knox provides a
central gateway for Hadoop REST APIs that have varying degrees of authorization, authentication, SSL
and SSO capabilities to enable a single access point for Hadoop

Authorization
Ranger defines centralized security policies for the following components:

• Apache Hadoop HDFS

• Apache Hadoop YARN

• Apache Hive

• Apache Hbase

• Apache Storm

• Apache Knox

• Apache Solr

• Apache Kafka

Ranger manages fine-grained access control through a rich user interface that ensures consistent
policy administration across Hadoop data access components. Security administrators have the
flexibility to define security policies for a database, table and column or a file, and administer
permissions for specific LDAP based groups or individual users. Rules based on dynamic conditions
such as time or geography can also be added to an existing policy rule. The Ranger authorization
model is highly pluggable and can be easily extended to any data source using a service-based
definition.

Ranger works with standard authorization APIs in each Hadoop component and is able to enforce
centrally administered policies for any method of accessing the data lake.

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 109

Audit

Apache	Atlas	and	Apache	Ranger	

The new open source project: Apache Atlas, is a set of core foundational governance services that
enable enterprises to meet their compliance requirements within Hadoop and allow integration with the
complete enterprise data ecosystem. These services include:

• Search and lineage for datasets

• Metadata-driven data access control

• Indexed and searchable centralized auditing operational events

• Data lifecycle management from ingestion to disposition

• Metadata interchange with other tools

Ranger provides a centralized framework for collecting access audit history and easily reporting on this
data, including the ability to filter data based on various parameters. Working together, Ranger and
Atlas make it possible to gain a comprehensive view of data lineage and access audit, with an ability to
query and filter audit based on data classification, users or groups, and other filters.

Data Protection
Protection for:

• Data in motion

- Encrypts network traffic
- Data is unreadable over the network
- Over RPC, HTTP, Data Transfer Protocol (DTP) and JDBC

• Data at rest

- Encrypts files stored in Hadoop
- Includes an open source Hadoop key management store (KMS)

Hortonworks is working with its encryption partners to integrate HDFS encryption with enterprise grade
key management frameworks. Encryption in HDFS, combined with KMS access policies maintained by
Ranger, prevents rogue Linux or Hadoop administrators from accessing data.

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 110

A Typical Data Flow

A	Typical	Data	Flow	

To illustrate security for a typical data flow, we will focus on a common use case: Hive access via an
xDBC connection to HiveServer 2.

1) The first layer is AUTHENTICATION, provided through Kerberos.

Kerberos establishes a Service Ticket (ST) that the client provides when connecting to
HiveServer 2.

This strongly associates the client request with a specific user ID.

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 111

2) Next, we introduce centralized AUTHORIZATION with Ranger.

Once the user ID is established, each request must be checked against what this user is
allowed to do. This Authorization is performed by Apache Ranger.

Ranger synchronizes with the user/group repository (Microsoft Windows Active Directory is
shown in the above example), which contains detailed policies by data type (hive table, hdfs
files, etc.).

HiveServer 2 then passes the user ID and request to Ranger’s policy server to determine if the
request Authorization can be honored.

3) The next layer is a strong perimeter technology, Knox, which provides a gateway that all clients
to pass through to get to the cluster.

This creates a centralized AUTHENTICATION point.

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 112

To simplify client access, all clients connect to Apache Knox, which then contacts Kerberos for
authentication. Individual clients do not need to worry about interfacing to Kerberos, as Knox
does this for them. This also provides a central audit point. Clients (such as this HiveServer 2
example) connect to Knox using a standard userid/password combination and let Knox create
the necessary Kerberos ST based on those credentials.

4) Finally, we can introduce encryption for data in-motion (in the network) and/or at-rest (on disk).

Hadoop’s included encryption at-rest is called “Transparent Encryption”

REFERENCE:

“Solving Hadoop Security – A Holistic Approach to a Secure Data Lake”

http://hortonworks.com/wp-content/uploads/2015/07/Security_White_Paper.pdf

Apache Ranger
Apache Ranger:

• Delivers a ‘single pane of glass’ for the security administrator

• Centralizes administration of security policy

• Ensures consistent coverage across the entire Hadoop stack

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 113

Central Security Administration

Apache	Ranger	Central	Security	Administration	

Ranger provides:

Authorization flexibil ity

Fine-grained access control for:

• HDFS – Folder, File

• Hive – Database, Table, Column

• HBase – Table, Column Family, Column

• Storm, Knox and more

Audit control and access

Extensive user access auditing in HDFS, Hive and Hbase for:

• IP Address

• Resource type/ resource

• Timestamp

• Access granted or denied

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 114

Setting Up Authorization Policies

Authorization	Policies	Define	Access	

Ranger can set up Authorization policies, descriptions of which users may access what data, and how
that data can be accessed.

Monitoring Through Auditing

Auditing	Access	through	Ranger	

Ranger auditing shows the requests made to access Hadoop resources, and whether or not access
was granted.

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 115

Authorization and Auditing with Ranger

Ranger	Connects	with	Hadoop	Services	and	Components	

Ranger connects into various Hadoop services and components.

Hadoop Security

Copyright © 2012 - 2016 Hortonworks, Inc. All rights reserved. 116

Summary
• HDP ensures comprehensive enforcement of security requirements across the entire Hadoop

stack.

• Kerberos is the key to strong authentication.

• Ranger provides a single simple interface for security policy definition and maintenance.

• Encryption options available for data at-rest and in-motion.

Hortonworks University courses are designed by the leaders and committers of Apache Hadoop.
We provide immersive, real-world experience in scenario-based training. Courses offer
unmatched depth and expertise available in both the classroom or online from anywhere in the
world. We prepare you to be an expert with highly valued skills and for Certification.

	HWU-FrontMatter-Template-04-2016
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	HDPOverview-Essentials-StudentGuide-Rev3
	HWU-BackMatter-Template-02-2016
	Blank Page
	Blank Page

