
12/12/16	

1	

HDP	Developer:	
Enterprise	Apache	Spark	

2	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Copyright	©	2012	-	2016	Hortonworks,	Inc.	All	rights	reserved.	
	
The	contents	of	this	course	and	all	its	lessons	and	related	materials,	including	handouts	to	
audience	members,	are	Copyright	©	2012	–	2016	Hortonworks,	Inc.	
	
No	part	of	this	publicaLon	may	be	stored	in	a	retrieval	system,	transmiMed,	altered	or	reproduced	in	any	
way,	including,	but	not	limited	to,	ediLng,	photocopy,	photograph,	magneLc,	electronic	or	other	record,	
without	the	prior	wriMen	permission	of	Hortonworks,	Inc.	
	
This	instrucLonal	program,	including	all	material	provided	herein,	is	supplied	without	any	
guarantees	from	Hortonworks,	Inc.	Hortonworks,	Inc.	assumes	no	liability	for	damages	or	legal	
acLon	arising	from	the	use	or	misuse	of	contents	or	details	contained	herein.	
	
Linux®	is	the	registered	trademark	of	Linus	Torvalds	in	the	United	States	and	other	countries.	
Java®	is	a	registered	trademark	of	Oracle	and/or	its	affiliates.	
	
All	other	trademarks	are	the	property	of	their	respecLve	owners.	

12/12/16	

2	

3	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Connection before Content
Lester Martin – Hortonworks Training & Consulting

lmartin@hortonworks.com

http://lester.website
 (links to blog, twitter,

 github, LI, FB, etc)

4	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Course	Agenda	

Ã  Monday	
–  HDP	and	Spark	Overviews	
–  RDD	and	PairRDD	Programming	

Ã  Tuesday	
–  Spark	Streaming	
–  Spark	SQL	(DataFrames)	
–  VisualizaQon	with	Zeppelin	

Ã  Wednesday	
–  Monitoring	and	Performance	ConsideraQons	
–  Stand-alone	ApplicaQons	
–  IntroducQon	to	MLlib	

The	following	topics	will	be	covered	during	this	course	on	developing	with	Apache	Spark:	

12/12/16	

3	

5	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

IntroducLons	

Ã  Your	name	and	physical	locaQon	
	

Ã  Your	job	role	and	responsibiliQes	
	

Ã  Your	Big	Data	/	Hadoop	and	Apache	Spark	experience,	if	any	
	

Ã  Your	expectaQons	for	this	course	

Ã  A	favorite	hobby	

6	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

LogisLcs	

Ã  Mon-Fri	from	10:30am-5pmEST	–	Instructor	will	stay	on	WebEx	for	a	while	and	join	early	

Ã  Breaks	and	lunch		
–  Generally,	let's	take	breaks	with	labs	

•  BUT…	chime-up	if	we	could	benefit	from	one	at	any	Lme!	
–  Lunch:	1:30pmEST	
–  Any	team	meeQngs	to	work	around?	

12/12/16	

4	

7	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Courseware	&	Lab	Environments	

Ã  Downloaded	PDFs	
–  Student	Guide	
–  Lab	Guide	

•  PLUS	one	called	AddiLonalLabs.pdf	I	will	distribute	
Ã  AWS	hosted	VMs	

–  IP's	handed	out	at	first	lab	
–  Destroyed	ager	class	is	over	

8	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

HDP	Overview	for	
Developers	

12/12/16	

5	

9	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Describe	the	characterisQcs	and	types	of	Big	Data	

Ã  Define	HDP	and	how	it	fits	into	overall	data	lifecycle	management	strategies	

Ã  Describe	and	use	HDFS	

Ã  Explain	the	purpose	and	funcQon	of	YARN	

AZer	compleLng	this	lesson,	students	should	be	able	to:	

10	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Defining	Big	Data	

12/12/16	

6	

11	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

What	Makes	Data	"Big"	Data?	
Ã  The	term	Big	Data	comes	from	the	computaQonal	sciences	

Ã  It	is	used	to	describe	scenarios	where	the	volume,	rate	of	creaQon,	and	types	of	data	
threaten	to	overwhelm	the	tools	used	to	store	and	process	it	

Three	V’s	 DescripLon	

VOLUME
Petabytes	and	more,	spurred	by	exponenQal	growth	in	
computers,	sensors,	social	media,	and	regulatory	
requirements.	

Velocity
Gigabytes	per	*second,*	and	faster,	plus	new	data	and	
new	ways	to	create	data	are	generated	an	an	increasing	
rate.	

Variety	 Structured,	semi-structured,	unstructured.	Databases,	
XML,	JSON,	text,	photo,	video,	audio,	etc.	

12	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Common	Types	of	Data	in	Hadoop	

Ã  There	are	six	types	of	data	commonly	found	in	Hadoop.	
–  SenQment	data:	how	customers	react	
–  Clickstream	data:	website	visitor	behavior	
–  Sensor	or	machine	data:	data	from	remote	devices	
–  Geographic	data:	locaQon-based	data	
–  Server	log	data:	failure	and	security	logs	
–  Text:	email,	web	pages,	documents,	etc.	

12/12/16	

7	

13	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Defining	Big	Data	
Ã  HDP	IntroducQon	

14	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

What	is	Hadoop?	

Ã  Hadoop:	
–  Is	a	collecQon	of	open	source	sogware	frameworks	for	the	distributed	storing	and	processing	of	

large	sets	of	data	
–  Is	scalable	and	fault	tolerant	
–  Works	with	commodity	hardware	
–  Processes	all	types	of	Big	Data	

Ã  Hadoop	design	goals:	
–  Use	inexpensive,	enterprise-grade	hardware	to	create	very	large	clusters	
–  Achieve	massive	scalability	through	distributed	storage	and	processing	

Ã  HDP	is	an	enterprise-ready	collecQon	of	these	frameworks	
–  Supported	by	Hortonworks	for	business	clients	

12/12/16	

8	

15	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Hortonworks	Data	Plaborm	

16	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

HDP	IntroducLon	

12/12/16	

9	

17	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Data	Management	and	OperaLons	Frameworks	

Framework	 DescripLon	
Hadoop	Distributed	File	
System	(HDFS)	

A	Java-based,	distributed	file	system	that	provides	scalable,	reliable,	high-throughput	access	to	
applicaQon	data	stored	across	commodity	servers	

Yet	Another	Resource	
NegoQator	(YARN)	

A	framework	for	cluster	resource	management	and	job	scheduling	

Framework	 DescripLon	
Ambari	 A	Web-based	framework	for	provisioning,	managing,	and	monitoring	Hadoop	clusters	

ZooKeeper	 A	high-performance	coordinaQon	service	for	distributed	applicaQons	

Cloudbreak	 A	tool	for	provisioning	and	managing	Hadoop	clusters	in	the	cloud	

Oozie	 A	server-based	workflow	engine	used	to	execute	Hadoop	jobs	

These	brief	descripQons	are	provided	for	quick	
convenience.	More	detailed	descripQons	are	available	
online	or	in	other	lessons	and	courses.	

18	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Data	Access	Frameworks	

Framework	 DescripLon	
Pig	 A	high-level	plaqorm	for	extracQng,	transforming,	or	analyzing	large	datasets	

Hive	 A	data	warehouse	infrastructure	that	supports	ad	hoc	SQL	queries	

HCatalog	 A	table	informaQon,	schema,	and	metadata	management	layer	supporQng	Hive,	Pig,	
MapReduce,	and	Tez	processing	

Cascading	 An	applicaQon	development	framework	for	building	data	applicaQons,	abstracQng	the	details	
of	complex	MapReduce	programming	

HBase	 A	scalable,	distributed	NoSQL	database	that	supports	structured	data	storage	for	large	tables	

Phoenix	 A	client-side	SQL	layer	over	HBase	that	provides	low-latency	access	to	HBase	data	

Accumulo	 A	low-latency,	large	table	data	storage	and	retrieval	system	with	cell-level	security	

Storm	 A	distributed	computaQon	system	for	processing	conQnuous	streams	of	real-Qme	data	

Solr	 A	distributed	search	plaqorm	capable	of	indexing	petabytes	of	data	

Spark	 A	fast,	general	purpose	processing	engine	use	to	build	and	run	sophisQcated	SQL,	streaming,	
machine	learning,	or	graphics	applicaQons.	

12/12/16	

10	

19	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Governance	and	IntegraLon	Frameworks	

Framework	 DescripLon	
Falcon	 A	data	governance	tool	providing	workflow	orchestraQon,	data	lifecycle	management,	and	

data	replicaQon	services.	

WebHDFS	 A	REST	API	that	uses	the	standard	HTTP	verbs	to	access,	operate,	and	manage	HDFS	

HDFS	NFS	Gateway	 A	gateway	that	enables	access	to	HDFS	as	an	NFS	mounted	file	system	

Flume	 A	distributed,	reliable,	and	highly-available	service	that	efficiently	collects,	aggregates,	and	
moves	streaming	data	

Sqoop	 A	set	of	tools	for	imporQng	and	exporQng	data	between	Hadoop	and	RDBM	systems	

Kasa	 A	fast,	scalable,	durable,	and	fault-tolerant	publish-subscribe	messaging	system	

Atlas	 A	scalable	and	extensible	set	of	core	governance	services	enabling	enterprises	to	meet	
compliance	and	data	integraQon	requirements	

20	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Security	Frameworks	

Framework	 DescripLon	
HDFS	 A	storage	management	service	providing	file	and	directory	permissions,	even	more	granular	file	

and	directory	access	control	lists,	and	transparent	data	encrypQon	

YARN	 A	resource	management	service	with	access	control	lists	controlling	access	to	compute	
resources	and	YARN	administraQve	funcQons	

Hive	 A	data	warehouse	infrastructure	service	providing	granular	access	controls	to	table	columns	and	
rows	

Falcon	 A	data	governance	tool	providing	access	control	lists	that	limit	who	may	submit	Hadoop	jobs	

Knox	 A	gateway	providing	perimeter	security	to	a	Hadoop	cluster	

Ranger	 A	centralized	security	framework	offering	fine-grained	policy	controls	for	HDFS,	Hive,	HBase,	
Knox,	Storm,	Kasa,	and	Solr	

12/12/16	

11	

Pre-Lab:	Seeng	Up	the	
Lab	Environment	

22	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Defining	Big	Data	
Ã  HDP	IntroducQon	
Ã  HDFS	Overview	

12/12/16	

12	

23	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

HDFS	and	YARN	are	the	Core	of	HDP	

24	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

HDFS	–	The	HDP	File	System	

Ã  Hadoop	stores	files	using	the	Hadoop	distributed	file	system	(HDFS).		

Ã  HDFS	is	the	basis	for	Hadoop’s	storage	scalability	and	availability.	HDFS:		
–  Splits	large	data	files	into	smaller	chunks	called	blocks		
–  Spreads	those	blocks	across	different	slave/worker	nodes	
–  Tracks	data	block	locaQon	
–  AutomaQcally	replicates	data	for	high	availability		

Ã  Scaling	storage	is	easy	–	simply	add	more	nodes!	

12/12/16	

13	

25	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

HDFS	Command	Line	InteracLon	

Ã  -cat:	display	file	content	(uncompressed)	

Ã  -text:	just	like	-cat	but	works	on	compressed	files	

Ã  -mkdir:	create	a	directory	in	HDFS	

Ã  -put, -get, -mv:	copies	files	between	local	file	system	and	HDFS,	as	well	as	move	
within	HDFS.		

Ã  -ls, -rm:	list	and	remove	files/directories	(add	-R to	make	commands recursive)	

Ã  -chgrp, -chmod, -chown:	changes	file	permissions	

Ã  -stat:	staQsQcal	info	for	a	given	file	

 hdfs dfs –command [args]

26	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

HDFS	Commands	and	Permissions	

Ã  hdfs dfs -mkdir mydata

Ã  hdfs dfs -put numbers.txt mydata/

Ã  hdfs dfs -ls mydata

Ã  HDFS	implements	a	POSIX-style	permissions	model	
–  User,	group,	and	other	rwx	permissions	for	files	and	directories	
–  Files:	r	=	read,	w	=	write	or	append	
–  Directories:	r	=	list	contents,	w	=	create	or	delete	files	or	subdirectories,	x	=	access	a	child	object	

12/12/16	

14	

Lab:	Using	HDFS	Commands	

28	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Defining	Big	Data	
Ã  HDP	IntroducQon	
Ã  HDFS	Overview	
Ã  YARN	Overview	

12/12/16	

15	

29	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Hadoop Applications Without YARN

Hive	Cluster	 Streaming	Cluster	 Spark	Cluster	

HDFS	1	 HDFS	2	 HDFS	3	
Data	A	Data	A	 Data	A	

30	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

YARN	–	the	HDP	OperaLng	System	

Ã  Apache	Hadoop	YARN	is	the	data	operaQng	system	for	Hadoop	2.	

Ã  YARN	is:	
–  Responsible	for	scheduling		

tasks	and	managing	CPU		
and	memory	resources			

–  Designed	to	enable	mulQple		
distributed	applicaQons	to	uQlize			
cluster	resources	in	a	shared,			
secure,	and	mulQ-tenant	manner	

12/12/16	

16	

31	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

YARN	Resource	Containers	

Ã  Is	the	abstracQon	used	to	represent	a	discreet	amount	of	CPU	and	memory	resources	on	a	machine	
–  Hadoop	applicaQons	run	inside	containers.		

Ã  Is	managed	and	scheduled	by	YARN	

Ã  Is	logically	isolated	from	other	containers	running	on	the	same	machine	
–  IsolaQon	supports	applicaQon	mulQ-tenancy.	

Ã  Is	allocated	in	different	sizes	based	on	applicaQon-defined	resource	requests		

A	resource	container:	

Knowledge	Check	

12/12/16	

17	

33	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Questions

1.  Name the three V’s of big data.
2.  Name four of the six types of data commonly found in Hadoop.
3.  Why is HDP comprised of so many different frameworks?
4.  What two frameworks make up the core of HDP?
5.  What is the base command-line interface command for manipulating files and

directories in HDFS?
6.  YARN allocates resources to applications via _____________________.

Summary	

12/12/16	

18	

35	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  Data	is	made	"Big"	Data	by	ever-increasing	Volume,	Velocity,	and	Variety	

Ã  Hadoop	is	ogen	used	to	handle	senQment,	clickstream,	sensor/machine,	server,	
geographic,	and	text	data	

Ã  HDP	is	comprised	of	an	enterprise-ready	and	supported	collecQon	of	open	source	
Hadoop	frameworks	designed	to	allow	for	end-to-end	data	lifecycle	management	

Ã  The	core	frameworks	in	HDP	are	HDFS	and	YARN	

Ã  HDFS	serves	as	the	distributed	file	system	for	HDP	

Ã  The	hdfs dfs	command	can	be	used	to	create	and	manipulate	files	and	directories	

Ã  YARN	serves	as	the	operaQng	system	and	architectural	center	of	HDP,	allocaQng	
resources	to	a	wide	variety	of	applicaQons	via	containers	

36	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Overview	of	Zeppelin		
and	Spark	

12/12/16	

19	

37	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Use	Apache	Zeppelin	to	work	with	Spark	

Ã  Describe	the	purpose	and	benefits	of	Spark	

Ã  Define	Spark	REPLs	and	applicaQon	architecture	

38	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Zeppelin	Overview	

12/12/16	

20	

39	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Introducing	Zeppelin		

Ã  Apache	Zeppelin	is	a	web-based	notebook	that	enables	interacQve	data	analyQcs	on	top	
of	Spark	
–  In	second	Tech	Preview	as	of	HDP	2.4	

Ã  MulQ-language	support	
–  Python,	Scala,	Hive,	SparkSQL,	shell,	markdown,	etc.	

Ã  Allows	for	data	visualizaQon,	report	generaQon,	and	collaboraQon	

40	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Zeppelin	Major	FuncLons	

Ã  Data	IngesQon	

Ã  Data	Discovery	

Ã  Data	AnalyQcs	

Ã  Data	VisualizaQon	and	CollaboraQon	

12/12/16	

21	

41	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Data	VisualizaLon	

Ã  Several	built-in	ways	to	interacQvely	view	/	visualize	data	
–  Table	
–  Column	
–  Pie		
–  Area	
–  Line	
–  Scayer	

42	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

What	Does	"Tech	Preview"	Mean?	

Ã  Tech	Preview	status	means	a	technology	is	not	yet	fully	recommended	for	use	in	
producQon	environments	

Ã  Why	Zeppelin	is	used	in	this	course:	
–  The	issues	that	keep	it	in	tech	preview	do	not	affect	learning	-	*nearly*	all	labs	could	be	run	in	

either	command	line	or	Zeppelin	with	idenQcal	steps	
–  Zeppelin	for	data	visualizaQon	and	collaboraQon	is	currently	the	best	soluQon	in	HDP	-	even	in	tech	

preview	-	for	mulQ-language	support	(Python,	Scala,	etc.)	
–  When	Zeppelin	comes	out	of	tech	preview	(may	already	be	true	by	the	Qme	you	take	this	course),	

you	will	already	have	significant	hands-on	experience	

12/12/16	

22	

43	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Zeppelin	Overview	
Ã  Spark	Overview	

44	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	IntroducLon	

Ã  Large-scale,	cluster-based,	in-memory	data	processing	plaqorm	

Ã  Development	APIs	for	Scala,	Java,	Python,	and	R	

Ã  Supports	SQL-like	operaQons,	streaming,	and	machine	learning	

Ã  Runs	on	YARN,	providing	access	to	shared	datasets	across	various	HDP	applicaQons	

12/12/16	

23	

45	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	RDDs	–	Scalability	and	Performance	

Ã  Leverages	HDP's	horizontal	scalability	

Ã  Fault-tolerant	collecQon	of	data	elements.	

Ã  Enables	parallel	processing	across	the	cluster	

	RAM	

	RAM	

	RAM	

	RAM	

on-disk	RDD	 in-memory	RDD	

46	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	High-Level	Tools	

Ã  The	Spark	Core	Engine	supports	four		
high-level	tools	to	build	applicaQons	
that	are	part	of	the	Spark	project:	
–  Spark	SQL	
–  Spark	Streaming	
–  MLlib	
–  GraphX	

Ã  Spark	also	integrates	with	other	HDP		
plaqorms	to	extend	and	enhance	its		
capabiliQes	-	for	example:	
–  Hive	
–  Zeppelin	

12/12/16	

24	

47	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	and	HDP	

Ã  HDP	2.4.0	–	Spark	1.6.0	

Ã  HDP	2.3.4	–	Spark	1.5.2	

Ã  HDP	2.3.2	–	Spark	1.4.1	

Ã  HDP	2.2.8	–	Spark	1.3.1	

Ã  HDP	2.2.4	–	Spark	1.2.1	

Ã  For	this	class	we	will	use	Spark	1.6	on	HDP	2.4.		

48	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Zeppelin	Overview	
Ã  Spark	Overview	
Ã  Spark	REPLs	and	ApplicaQon	Architecture	

12/12/16	

25	

49	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

REPL	Spark	Shells	

Ã  The	Spark	Shell	provides	an	interacQve	way	to	learn	Spark,	explore	data,	and	debug	
applicaQons	

Ã  Available	for	Python	and	Scala	
$ pyspark
$ spark-shell

Ã  REPL	
–  Read	Evaluate	Print	Loop	

50	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Enterprise	Spark	ApplicaLon	Components	in	HDP	

Ã  Driver	

Ã  SparkContext

Ã  YARN		

Ã  HDFS	

Ã  Executors	

HDP	Cluster	

HDFS	Storage	

YARN	
Resource	
Manager	

Client Machine
or HDP Container

Driver

SparkContext

Executor

Executor

Executor

Executor Executor

Executor

12/12/16	

26	

51	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	Driver	

Ã  Contains	the	main() funcQon		
–  Spark	REPLs	are	Spark	driver	programs	

Ã  Creates	SparkContext	and	uses	it	to	access	Spark

Ã  Manages	wriQng	and	displaying	log	files

Ã  Single	point	of	failure	when	running	YARN	client	(as	opposed	to	cluster)	applicaQons	

Driver

52	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

SparkContext	

Ã  Manages	the	connecQon	to	Spark	

Ã  Contacts	YARN	ResourceManager	to	launch	Spark	executors	

Ã  Schedules	tasks	for	Spark	executors	

Ã  AutomaQcally	created	as	sc	by	a	REPL	at	startup

 from pyspark import SparkContext, SparkConf
 conf = SparkConf()
 sc = SparkContext(conf=conf)

Driver

SparkContext

12/12/16	

27	

53	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	Executors	

Ã  Responsible	for	all	applicaQon	workload	processing	
–  The	"workers"	of	a	Spark	applicaQon,	with	SparkContext	serving	as	the	"master"	

Ã  Exist	for	the	life	of	the	applicaQon	

Ã  Interchangeable	workspaces	
–  Tasks	assigned	to	a	lost	executor	will	be	reassigned	
–  Data	lost	will	be	recomputed	on	another	executor	

Ã  Behavior	and	performance	can	be	controlled	
programmaQcally	

HDP	Cluster	

Executor

Executor

Executor

Executor Executor

Executor

Lab:	IntroducLon	to	Spark	
REPLs	and	Zeppelin	

12/12/16	

28	

Knowledge	Check	

56	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Questions

1.  Name the tool in HDP that allows for interactive data analytics, data
visualization, and collaboration with Spark.

2.  What programming languages does Spark currently support?
3.  What is the primary benefit of running Spark on YARN?
4.  Name the five components of an enterprise Spark application running in HDP.
5.  Which component of a Spark application is responsible for application workload

processing?

12/12/16	

29	

Summary	

58	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  Zeppelin	is	a	web-based	notebook	that	supports	mulQple	programming	languages	and	
allows	for	data	engineering,	analyQcs,	visualizaQon,	and	collaboraQon	using	Spark	

Ã  Spark	is	a	large-scale,	cluster-based,	in-memory	data	processing	plaqorm	that	supports	
parallelized	operaQons	on	enterprise-scale	datasets	

Ã  Spark	provides	REPLs	for	rapid,	interacQve	applicaQon	development	and	tesQng	

Ã  The	five	components	of	an	enterprise	Spark	applicaQon	running	on	HDP	are:	
–  Driver	
–  SparkContext	
–  YARN	
–  HDFS	
–  Executors	

12/12/16	

30	

59	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Working	with	RDDs	

60	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Explain	the	purpose	and	funcQon	of	RDDs	

Ã  Explain	Spark	programming	basics	

Ã  Define	and	use	basic	Spark	transformaQons	

Ã  Define	and	use	basic	Spark	acQons	

Ã  Invoke	funcQons	for	mulQple	RDDs,	create	named	funcQons,	and	use	numeric	
operaQons	

12/12/16	

31	

61	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  IntroducQon	to	RDDs	

62	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Resilient	Distributed	Datasets	(RDDs)	

Ã  Distributed	collecQon	of	immutable	elements	(typically	stored	in-memory)		

Ã  Dataset	divided	into	parQQons,	which	allows	for	parallel	operaQon	
–  Node	selecQon	for	RDD	parQQons	is	aligned	with	HDFS	blocks	to	maximize	parallelism	and	HDP	

infrastructure	benefits	

Ã  If	individual	parQQon	is	lost,	will	be	recreated	on	another	node	

12/12/16	

32	

63	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Create	RDDs	ProgrammaLcally	-	Simple	Lists	

Ã  Use	sc.parallelize() to	create	an	RDD,	assigned	to	a	local	variable	name,	
composed	of	lists	of	numbers	and	verify	with	collect()

rddNumList = sc.parallelize([5, 7, 11, 14])
rddNumList.collect()
[5, 7, 11, 14]

rddTextList = sc.parallelize(["car", "house", "garage"])
rddTextList.collect()
['car', 'house', 'garage']

64	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Create	RDDs	ProgrammaLcally	-	Variables	as	Input	

Ã  RDDs	can	also	take	variable	values	as	input:	

 maryFile = ("Mary had a little lamb")
 rddMary = sc.parallelize([maryFile])
 rddMary.collect()
 ['Mary had a little lamb']

textList = ["car", "house", "garage"]
rddTextList = sc.parallelize(textList)
rddTextList.collect()
['car', 'house', 'garage']

12/12/16	

33	

65	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Create	Simple	RDDs	From	Text	Files	

Ã  An	RDD	can	also	be	created	from	a	text	file	on	local,	HDFS,	or	other	locaQons	(such	as	
network	or	cloud	storage)	using	sc.textFile()

rddLocal = sc.textFile("file:/localPathToFile/filename.txt")
rddHDFS = sc.textFile("/HDFSpath/filename.txt")

Ã  MulQple	files	can	be	combined	as	part	of	a	single	RDD	using	a	comma-separated	list	or	a	
wildcard	character	

rddComma = sc.textFile("fileLocation/file1.txt,fileLocation/file2.txt")
rddWild = sc.textFile("fileLocation/*.txt")

66	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

From	Data	Files	to	HDFS	to	RDD	

Node 1 Node 2 Node 3 Node 4 Node 5

HDFS	

DF1.1	
	

DF2.1	
	

DF3.1	
	

DF2.2	
	

DF3.2	
	

Example
assumes

blocks are
replicated to

other nodes in
the cluster, not

shown here

Spark	ApplicaQon	 RDD1	=		
DF2	+	DF1		

RDD	1.1	 RDD	1.2	

Processing occurs
on these three nodes

RDD	1.3	

data	file	1	
	

data	file	2	
	

data	file	3	
	

12/12/16	

34	

67	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

MulLple	RDDs	in	a	Cluster	

Node1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

RDD	1.1	 RDD	1.2	RDD	1.3	 RDD	1.4	

RDD	2.3	 RDD	2.2	 RDD	2.1	

RDD1	=		
4	ParLLons	

RDD2	=		
3	ParLLons	

68	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

RDD	CharacterisLcs	

Ã  Can	contain	any	type	of	serializable	element,	meaning	those	that	can	be	converted	to	
and	from	a	byte	stream	
–  Examples:	int,	float,	bool,	and	sequences/iteraQves	like	arrays,	lists,	tuples,	and	strings	

Ã  Element	types	can	be	mixed	-	for	example,	an	array	of	strings	and	int	values.		

	

Ã  Non-serializable	elements	(for	example:	objects	created	with	certain	third-party	JAR	
files	or	other	external	resource)	cannot	be	made	into	RDDs	

12/12/16	

35	

69	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

RDD	OperaLons	

Ã  Two	operaQons	can	be	performed	on	an	RDD	
–  TransformaQons:	apply	a	funcQon	and	create	new	RDD	parQQons	based	on	the	output	

–  AcQons:	return	a	result	of	a	funcQon	as	output	to	a	screen,	file,	etc.		

RDD1A	
Transformation

RDD1B	

Returned
ResultRDD	 Action

70	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  IntroducQon	to	RDDs	
Ã  Spark	Programming	Basics	

12/12/16	

36	

71	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

FuncLonal	Programming	ImplicaLons	in	Spark	

Ã  Immutable	data:	RDD1A	can	be	transformed	into	RDD1B,	but	an	individual	element	
within	RDD1A	cannot	be	independently	modified	

Ã  No	state	or	side	effects:	No	interacQon	with	or	modificaQon	of	any	values	or	properQes	
outside	of	the	funcQon	

Ã  Behavioral	consistency:	If	you	pass	the	same	value	into	a	funcQon	mulQple	Qmes,	you	
will	always	get	the	same	result	-	changing	order	of	evaluaQon	does	not	change	results	

Ã  FuncLons	as	arguments:	funcQon	results	(including	anonymous	funcQons)	can	be	
passed	as	input/arguments	to	other	funcQons	

Ã  Lazy	evaluaLon:	funcQon	arguments	are	not	evaluated	/	executed	unQl	required	

72	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Anonymous	(a.k.a.	Lambda)	FuncLons	

Ã  Passed	as	an	argument	to	another	funcQon,	called	using	the	lambda	keyword	

Ã  Element	variable	is	defined	to	the	leg	of	a	colon,	funcQon	body	defined	to	the	right	
–  Example	using	z	as	the	anonymous	funcQon	variable	and	z	+	1	as	the	funcQon	body:	

	
rddNumList = sc.parallelize([5, 7, 11, 14])

rddAnon = rddNumList.map(lambda z: z + 1)

rddAnon.collect()
[6, 8, 12, 15]

Spark Function Anonymous
Function Call

Anonymous
Function Body /

Definition

12/12/16	

37	

73	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  IntroducQon	to	RDDs	
Ã  Spark	Programming	Basics	
Ã  Basic	Spark	TransformaQons	

74	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

map()	

Ã  Applies	a	funcQon	supplied	as	its	argument	to	each	element	of	the	RDD	

	rddNumList = sc.parallelize([5, 7, 11, 14])
 rddNumList.map(lambda z: z + 1).collect()
 [6, 8, 12, 15]

 rddMary = sc.textFile("fileLocation/mary.txt")

 rddLineSplit = rddMary.map(lambda line: line.split(" "))

Mary	had	a	liyle	lamb	
Its	fleece	was	white	as	snow	
And	everywhere	that	Mary	went	
The	lamb	was	sure	to	go	

Array(And,	everywhere,	that,	Mary,	went)	

Array(Mary,	had,	a,	liyle,	lamb)	

Array(The,	lamb,	was,	sure,	to,	go)	

Array(Its,	fleece,	was,	white,	as,	snow)	

12/12/16	

38	

75	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

flatMap()	

Ã  Similar	to	map(),	but	ager	a	map	funcQon	has	been	performed,	takes	an	addiQonal	step	
and	flayens	the	file	
	
rddLineSplit = rddMary.map(lambda line: line.split(" "))

rddFlat = rddMary.flatmap(lambda line: line.split(" "))	

Array(And,	everywhere,	that,	Mary,	went)	

Array(Mary,	had,	a,	liyle,	lamb)	

Array(The,	lamb,	was,	sure,	to,	go)	

Array(Its,	fleece,	was,	white,	as,	snow)	
a	

Mary	

liyle	

had	

to	

go	

sure	

76	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

filter()

Ã  Keeps	elements	that	meet	a	defined	criteria		
–  If	the	element	meets	that	criteria,	it	is	passed	on	to	the	new	RDD	
–  If	not,	the	element	is	discarded	

 rddNumList = sc.parallelize([5, 7, 11, 14])

	rddNumList.filter(lambda number: number <= 10).collect()

 [5, 7]

 months = ["January", "March", "May", "July", "September"]

 rddMonths = sc.parallelize(months)

 rddMonths.filter(lambda name: len(name) > 5).collect()

 ['January', 'September']

12/12/16	

39	

77	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

distinct()

rddBigList = sc.parallelize([5, 7, 11, 14, 2, 4, 5, 14, 21])
rddBigList.collect()
[5, 7, 11, 14, 2, 4, 5, 14, 21]

rddDistinct = rddBigList.distinct()
rddDistinct.collect()
[4, 5, 21, 2, 14, 11, 7]
	

78	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  IntroducQon	to	RDDs	
Ã  Spark	Programming	Basics	
Ã  Basic	Spark	TransformaQons	
Ã  Basic	Spark	AcQons	

12/12/16	

40	

79	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

collect(), first(),	and	take()

Ã  collect()	returns	an	enQre	RDD	

Ã  first()	returns	only	the	first	element	in	an	RDD	

Ã  take()	returns	a	specified	number	of	elements	in	an	RDD	

rddNumList = sc.parallelize([5, 7, 11, 14])

rddNumList.collect()
[5, 7, 11, 14]

rddNumList.first()
5

rddNumList.take(2)
[5, 7]

80	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

count()

Ã  Returns	the	number	of	elements	in	an	RDD	
	
rddNumList = sc.parallelize([5, 7, 11, 14])

rddNumList.count()
4

rddMary = sc.textFile("mary.txt")

rddMary.count()
4

Mary	had	a	liyle	lamb	
Its	fleece	was	white	as	snow	
And	everywhere	that	Mary	went	
The	lamb	was	sure	to	go	

12/12/16	

41	

81	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

saveAsTextFile()	

Ã  Writes	the	contents	of	RDD	parQQons	as	a	set	of	text	files	to	a	specified	locaQon	
(hdfs://,	file:/,	etc.)	and	directory	

rddBigList.saveAsTextFile("/desiredLocation/foldername")

Ã  In	this	example,	can	verify	the	file	was	successfully	wriyen		from	the	command	line	

$ hdfs dfs -ls desiredLocation/foldername

82	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

TransformaLons	vs.	AcLons:	Lazy	EvaluaLon	

Ã  TransformaQons	are	lazy	-	they	do	not	compute	unQl	an	acQon	is	performed	

rddMary = sc.textFile("mary.txt")
rddFlat = rddMary.flatmap()
rddFilter = rddFlat.filter(lambda words: len(words) > 4)

rddFilter.count()	 Action triggers execution

of the series of transformations

Series of transformations is
built and tracked by the

Spark driver

12/12/16	

42	

83	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Lazy	EvaluaLon	Visualized	

Execute an action
and data goes through
the transformations

Mary	had	a	liyle	lamb	
Its	fleece	was	white	as	snow	
And	everywhere	that	Mary	went	
The	lamb	was	sure	to	go	

flatMap()	

Mary	had	a	liyle	lamb	
Its	fleece	was	white	as	snow	
And	everywhere	that	Mary	went	
The	lamb	was	sure	to	go	

a	

Mary	

liyle	

had	

lamb	

The	

Mary	

lamb	

went	

to	

was	

go	

sure	

count	=	4	

filter()	

white
	

liyle
	

everywhere	

fleece
	

84	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  IntroducQon	to	RDDs	
Ã  Spark	Programming	Basics	
Ã  Basic	Spark	TransformaQons	
Ã  Basic	Spark	AcQons	
Ã  RDD	Special	Topics	

–  MulQple	RDDs	
–  Named	FuncQons	
–  Numeric	OperaQons	

12/12/16	

43	

85	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

MulLple	RDDs:	union() and intersection()	

rddNumList = sc.parallelize([5, 7, 11, 14])

rddNumList2 = sc.parallelize([2, 4, 5, 14, 21])

rddCombined = rddNumList.union(rddNumList2)

rddCombined.collect()

[5, 7, 11, 14, 2, 4, 5, 14, 21]

rddInter = rddNumList.intersection(rddNumList2)

rddInter.collect()

[5, 14]

86	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Named	FuncLons	

Ã  FuncQons	used	mulQple	Qmes	or	those	that	require	more	than	a	single	line	of	code	
should	be	explicitly	defined	and	named

 def gradeAorNot(percentage):

 if percentage > 89:

 return "A"

 else:

 return "Not an A"

 rddGrades = sc.parallelize([87, 94, 41, 90])

 rddGrades.map(gradeAorNot).collect()

 ['Not an A', 'A', 'Not an A', 'A']

12/12/16	

44	

87	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Numeric	OperaLons	

Ã  Math	and	staQsQcal	funcQons	can	be	performed	on	RDDs	
–  mean,	count,	stDev,	sum,	stats,	max,	min,	etc.	
	

 rddNumList = sc.parallelize([5, 7, 11, 14])

 rddNumList.stats()

 (count: 4, mean: 9.25, stdev: 3.49…, max: 14, min: 5)

 rddNumList.min()

 5

88	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

More	FuncLons:	Spark	DocumentaLon	

Ã  http://spark.apache.org/docs/<version>/api/

Ã  Version	opQons	
–  Official	version	number,	such	as	"1.4.0"	or	"1.6.1"	
–  "latest"	for	the	newest	release	

12/12/16	

45	

Lab:	Create	and	Manipulate	
RDDs	

Knowledge	Check	

12/12/16	

46	

91	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Questions

1.  What does RDD stand for?
2.  What two functions were covered in this lesson that create RDDs?
3.  True or False: Transformations apply a function to an RDD, modifying its values
4.  What operation does the lambda function perform?
5.  Which transformation will take take all of the words in a text object and break

each of them down into a separate element in an RDD?
6.  True or False: The count action returns the number of lines in a text document,

not the number of words it contains.
7.  What is it called when transformations are not actually executed until an action

is performed?
8.  True or False: The distinct function allows you to compare two RDDs and return

only those values that exist in both of them
9.  True or False: Lazy evaluation makes it possible to run code that "performs"

hundreds of transformations without actually executing any of them

Summary	

12/12/16	

47	

93	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  Resilient	Distributed	Datasets	(RDDs)	are	immutable	collecQon	of	elements	that	can	be	
operated	on	in	parallel	

Ã  Once	an	RDD	is	created,	there	are	two	things	that	can	be	done	to	it:	transformaQons	
and	acQons	

Ã  Spark	makes	heavy	use	of	funcQonal	programming	pracQces,	including	the	use	of	
anonymous	funcQons	

Ã  Common	transformaQons	include	map(),	flatmap(),	filter(),	distinct(),	
union(),	and	intersection()	

Ã  Common	acQons	include	collect(),	first(),	take(),	count(),	
saveAsTextFile(),	and	certain	mathemaQc	and	staQsQcal	funcQons	

94	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Pair	RDDs	

12/12/16	

48	

95	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Learning Objectives

Ã Define	and	create	Pair	RDDs	
Ã Perform	common	operaQons	on	Pair	RDDs	

96	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Pair	RDD	IntroducQon	

12/12/16	

49	

97	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Pair	RDD	IntroducLon	

Ã  A	Pair	RDD	has	elements	comprised	of	a	key-value	pairs	

Ã  Allows	for	addiQonal	key-value	based	funcQons	and	operaQons	
–  Direct	RDD	interacQons	that	can	be	used	as	an	alternaQve	to	SQL-like	APIs	

98	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Create	Pair	RDDs:	map()

Ã  Pair	RDDs	can	be	created	from	regular	RDDs	by	using	the	map()	transformaQon:	

 rddMary = sc.textFile("filelocation/mary.txt")
 rddFlat = rddMary.flatMap(lambda line: line.split(' '))
 kvRdd = rddFlat.map(lambda word: (word,1))
 kvRdd.collect()

a	

Mary	

liyle	

had	

to	

go	

sure	

(a,	1)	

(Mary,	1)	

(liyle,	1)	

(had,	1)	

(to,	1)	

(go,	1)	

(sure,	1)	

map(x	=>(x,	1))	

12/12/16	

50	

99	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Create	Pair	RDDs:	keyBy()

Ã  Creates	key-value	pairs	by	applying	a	funcQon	on	each	data	element	
–  FuncQon	result	becomes	the	key,	data	element	becomes	the	value	in	the	pair	

	

 rddTwoNumList = sc.parallelize([(1,2,3),(7,8)])

 keyByRdd = rddTwoNumList.keyBy(len)

 keyByRdd.collect()

 [(3, (1, 2, 3)), (2, (7, 8))]
	

100	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Create	Pair	RDDs:	zipWithIndex()

Ã  Creates	key-value	pairs	by	making	element	index	(posiQon)	the	value	
–  Element	becomes	the	key	

	

 rddThreeWords = sc.parallelize(["cat","A","spoon"])

 zipWIRdd = rddThreeWords.zipWithIndex()

 zipWIRdd.collect()

 [('cat', 0), ('A', 1), ('spoon', 2)]
	

12/12/16	

51	

101	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Create	Pair	RDDs:	zip()

Ã  Creates	key-value	pairs	by	taking	elements	from	one	RDD	as	the	key	and	elements	of	
another	RDD	as	the	value	
–  Syntax:	keyRDD.zip(valueRDD)	
–  Assumes	the	two	RDDs	have	the	same	number	of	parQQons	and	elements	

	

 rddThreeWords = sc.parallelize(["cat", "A", "spoon"])

 rddThreeNums = sc.parallelize([11, 241, 37])

 zipRdd = rddThreeWords.zip(rddThreeNums)

 zipRdd.collect()

 [('cat', 11), ('A', 241), ('spoon', 37)]
	

102	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Pair	RDD	IntroducQon	
Ã  Pair	RDD	OperaQons	

12/12/16	

52	

103	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

mapValues()

Ã  Performs	a	funcQon	on	Pair	RDD	values,	leaving	keys	unchanged	

	

 zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)])

 rddMapVals = zipWIRdd.mapValues(lambda val: val + 1)

 rddMapVals.collect()

 [('cat', 1), ('A', 2), ('spoon', 3)]

104	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

keys(), values(), and sortByKey()	

Ã  keys() -	returns	a	list	of	just	the	keys		

 rddMapVals.keys().collect()
 ['cat', 'A', 'spoon']

Ã  values() -	returns	a	list	of	just	the	values		
	

	 	rddMapVals.values().collect()
 [1, 2, 3]

Ã  sortByKey(ascending=True/False)
–  "ascending=False"	sorts	from	largest	to	smallest;	default	is	"ascending=True"	
	

	 	rddMapVals.sortByKey().collect()
 [('A', 2), ('cat', 1), ('spoon', 3)]

12/12/16	

53	

105	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Reorder	Key-Value	Pairs	using	map()

Ã  Use	payern	matching	to	reorder	placement	of	key-value	pair	elements	in	an	RDD	
	

 zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)])

 rddReorder = zipWIRdd.map(lambda (key, value): (value, key))

 rddReorder.collect()

 [(0, 'cat'), (1, 'A'), (2, 'spoon')]

106	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

lookup(), countByKey(), and collectAsMap()	

Ã  lookup(key) -	returns	a	list	containing	all	values	for	a	given	key	
	

	 	keyByRdd.lookup(2)
 [(7, 8)]

Ã  countByKey() -	counts	the	number	Qmes	a	key	appears	
	

	 	keyByRdd.countByKey()
 defaultdict(<type 'int'>,{2: 1, 3: 1})

Ã  collectAsMap() -	collects	the	result	as	a	map	
–  If	mulQple	values	exist	for	the	same	key	only	one	will	be	returned
	

	 	keyByRdd.collectAsMap()
 {2: (7, 8), 3: (1, 2, 3)}

12/12/16	

54	

107	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

reduceByKey()

Ã  Performs	a	reduce	operaQon	on	elements	of	a	Pair	RDD	and	runs	a	funcQon	on	any	
elements	that	share	a	key	

	

 kvReduced = kvRdd.reduceByKey(lambda a,b: a+b)

 kvReduced.collect()

(a,	1)	

(Mary,	1)	

(liyle,	1)	

(had,	1)	

(lamb,	1)	

(The,	1)	

(Mary,	1)	

(lamb,	1)	

(went,	1)	

(to,	1)	

(was,	1)	

(go,	1)	

(sure,	1)	

(Mary,	2)	

(lamb,	2)	

108	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

groupByKey()

Ã  Returns	an	RDD	with	a	grouping	of	values	by	key	
–  Grouped	values	are	returned	as	a	single	iterable	object	
–  Can	be	viewed	by	mapping	the	elements	of	the	iterable	object	into	a	defined	list	

 kvGroupByKey = kvRdd.groupByKey().map(lambda x : (x[0], list(x[1])))

 kvGroupByKey.collect()

 [(u'a', [1]), (u'lamb', [1, 1]), (u'little', [1]),…(u'Mary',[1, 1])]

When desired output can be obtained by reduceByKey(), use that instead

12/12/16	

55	

109	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

subtractByKey()

Ã  Returns	key-value	pairs	containing	keys	in	the	source	RDD	not	found	in	another	RDD	

zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)])
rddSong = sc.parallelize([("cat", 7), ("cradle", 9), ("spoon", 4)])

rddSong.subtractByKey(zipWIRdd).collect()
[('cradle', 9)]

	

('A', 1) is not returned because it does not exist in the source RDD

110	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Pair	RDD	Joins	

Ã  All	joins	types	are	supported:	inner	("join"),	full	outer,	leg	outer,	right	outer	

zipWIRdd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)])
rddSong = sc.parallelize([("cat", 7), ("cradle", 9), ("spoon", 4)]

 rddSong.leftOuterJoin(ZipWIRdd).collect()

 [('spoon', (4, 2)), ('cradle', (9, none)), ('cat', (7, 0))]

	

12/12/16	

56	

111	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

More	FuncLons:	Spark	DocumentaLon	

Ã  http://spark.apache.org/docs/<version>/api/

Ã  Version	opQons	
–  Official	version	number,	such	as	"1.4.0"	or	"1.6.1"	
–  "latest"	for	the	newest	release	

Lab:	Create	and	Manipulate	
Pair	RDDs,		Advanced	RDD	
Programming	

12/12/16	

57	

Knowledge	Check	

114	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

QuesLons	

1.  An RDD that contains elements made up of key-value pairs is
sometimes referred to as a _________________.

2.  Name two functions that can be used to create a Pair RDD.
3.  True or False: A key can have a value that is actually a list of

many values.
4.  Since sortByKey() only sorts by key, and there is no

equivalent function to sort by values, how could you go about
getting your Pair RDD sorted alphanumerically by value?

5.  You determine either reduceByKey() or groupByKey()
could be used in your program to get the same results. Which
one should you choose?

6.  How can you use subtractByKey() to determine *all* of the
unique keys across two RDDs?

12/12/16	

58	

Summary	

116	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  Pair	RDDs	contain	elements	made	up	of	key-value	pairs	

Ã  Common	funcQons	used	to	create	Pair	RDDs	include	map(), keyBy(),
zipWithIndex(),	and	zip()

Ã  Common	funcQons	used	with	Pair	RDDs	include	mapValues(), keys(),
values(), sortByKey(), lookup(), countByKey(),
collectAsMap(), reduceByKey(), groupByKey(),
flatMapValues(), subtractByKey(),	and	various	join	types.		

12/12/16	

59	

117	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	Streaming	

118	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Describe Spark Streaming
Ã  Create and view basic data streams
Ã  Perform basic transformations on streaming data
Ã  Utilize window transformations on streaming data

AZer	compleLng	this	lesson,	students	should	be	able	to:	

12/12/16	

60	

119	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Spark	Streaming	Overview	

120	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

What	is	Spark	Streaming?	

Ã  Implements	a	receiver	and	specialized	RDDs	called	DStreams	on	top	of	Spark	

Ã  Enables	micro-batch	processing	of	live	streaming	data	

Ã  Allows	for	addiQonal	ROI	on	Spark	plaqorm	investment	

Receiver	 Spark	Core	

DStream	

DStream	

DStream	

Output	

Spark	Streaming	

Streaming	Data	

12/12/16	

61	

121	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DStreams	

Ã  Batches	of	input	data	created	at	regular	Qme	intervals	
–  Micro-batching	as	opposed	to	true	streaming	

Data	Stream:	A,	B,	C,	D,	E,	F,	G,	
																						H,	I,	J,	K,	L,	M,	N,	O		 Receiver	

DStream	t=5	
A,	B,	C,	D,	E	

DStream	t=10	
F,	G,	H,	I,	J	

DStream	t=15	
K,	L,	M,	N,	O	

122	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DStream	vs.	RDD	

Ã  DStreams	contain	data	and	physically	exist	in	memory	from	moment	of	creaQon	
–  Normal	RDDs	are	just	sets	of	instrucQons	unQl	an	acQon	is	performed	

Ã  By	default,	DStreams	are	deleted	ager	processing	

Ã  Outputs	vs.	AcQons	

12/12/16	

62	

123	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DStream Replication
Ã  Receiver	duplicates	data	to	two	executors	by	default	

	

Executor	2	

Executor	1	

Receiver	 DStream1	

DStream1	

124	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Receiver Availability
Ã  If	an	executor	with	a	receiver	goes	down,	it	will	be	restarted	in	another	executor	

	

Executor	2	

Executor	1	

Receiver	 DStream1	

DStream1	

Executor	3	

Receiver	

DStream1	

12/12/16	

63	

125	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Receiver Reliability

Ã  By default, receivers are "unreliable"
–  No acknowledgment between receiver and source
–  No record of whether data has been successfully written
–  No ability to ask for retransmission for missed data
–  Possibility for data loss if receiver is lost

Ã  To implement a reliable receiver, a custom receiver must be created
–  Scala / Java only as of Spark 1.6.0
–  Not supported by Python APIs

126	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Streaming	Data	Source	Examples	

Ã  Basic	Sources	
–  Text	files	from	an	HDFS	directory	
–  Text	via	TCP	socket	connecQon	
–  Queue	of	RDDs	(for	tesQng	purposes)	

Ã  Advanced	Sources	
–  Kasa	
–  Kinesis	
–  Flume	
–  MQTT	

*Addi<onal	basic	and	advanced	sources	are	available	in	Scala	/	Java	

12/12/16	

64	

127	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Spark	Streaming	Overview	
Ã  Basic	Streaming	

128	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

StreamingContext

Ã  An	extension	of	the	SparkContext

Ã  Entry	point	for	streaming	applicaQons	

Ã  Sets	up	receiver	and	enables	real-Qme	transformaQons	on	Dstreams,	as	well	as	various	
output	types	

Client Machine
or HDP Container

Driver

SparkContext
StreamingContext

12/12/16	

65	

129	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Modify	REPL	CPU	Cores	

Ã  Streaming	requires	having	two	or	more	CPU	cores	available	
–  One	core	for	the	receiver	plus	one	core	for	each	DStream	being	ingested	

Ã  This	can	be	changed	by	modifying	the	MASTER	environment	variable	when	launching	
the	REPL	
–  To	uQlize	two	cores:	pyspark --master local[2]

	
	

130	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Launch	StreamingContext

Ã  Import	the	StreamingContext	API	
–  Example:	from pyspark.streaming import StreamingContext

Ã  Create	an	instance	of	the	StreamingContext	and	supply	the	name	of	the	
SparkContext	(when	using	the	REPL,	sc)	and	an	interval	Qme	for	micro-batching	
–  Example	se}ng	a	one-second	interval:			ssc = StreamingContext(sc, 1)

Ã  Spark	StreamingContext	instances	can	be	defined	with	varying	Qme	intervals	
based	on	needs	
–  Only	one	StreamingContext	is	allowed	per	JVM	

 sscTen = StreamingContext(sc, 10)

	

12/12/16	

66	

131	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Stream	from	HDFS	Directories	and	TCP	Sockets	

Ã  To	create	a	stream	by	monitoring	an	HDFS	directory	and	ingesQng	any	new	files:	

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")

Ã  To	create	a	stream	by	monitoring	TCP	socket	source	(hostname	and	port):	

tcpInputDS = ssc.socketTextStream("someHostname", portNumber)

132	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Output	to	Console	and	to	HDFS	

Ã  Print	output	to	the	console:	
–  Python:	DSvariableName.pprint()
–  Scala/Java:	DSvariableName.print()

Ã  SuggesQon:	set	sc	log	level	to	"ERROR"	when	prinQng	to	console	to	reduce	screen	
cluyer	
–  Example:	sc.setLogLevel("ERROR")

Ã  Save	output	as	a	Qme-stamped	text	file	on	HDFS:	
–  DSVariable.saveAsTextFiles("HDFSlocation/prefix", "optionalSuffix")
–  Directory	permissions	must	be	set	accordingly	

Ã  Can	use	the	same	DStream	to	output	to	both	console	and	HDFS	text	file	

12/12/16	

67	

133	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Start	and	Stop	the	Streaming	ApplicaLon	

Ã  All	operaQons	must	be	defined	before	the	stream	is	started	

Ã  When	ready:		ssc.start()

Ã  When	finished:		ssc.stop()

134	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Simple	Streaming	Program	Example	Using	a	REPL	

pyspark --master local[2]

>>> sc.setLogLevel("ERROR")

>>> from pyspark.streaming import StreamingContext

>>> sscFive = StreamingContext(sc, 5)

>>> hdfsInputDS = sscFive.textFileStream("/user/root/test/")

>>> hdfsInputDS.saveAsTextFiles("/user/root/test/stream/name")

>>> hdfsInputDS.pprint()

>>> sscFive.start()

12/12/16	

68	

Lab:	Basic	Spark	Streaming	using	
HDFS	Directories	and	TCP	Sockets	

136	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Spark	Streaming	Overview	
Ã  Basic	Streaming		
Ã  Basic	Streaming	TransformaQons	

12/12/16	

69	

137	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DStream	TransformaLons	

Ã  Allow	modificaQon	of	DStream	data	similar	to	RDD	transformaQons	

Ã  Familiar	funcQons	
–  map()
–  flatMap()
–  filter()
–  repartition()
–  union()
–  count()
–  reduceByKey()
–  join()
–  Etc.	

138	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

TransformaLon	using	flatMap()

...

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")

flatMapDS = hdfsInputDS.flatMap(lambda line: line.split(" ")

flatMapDS.pprint()

ssc.start()

12/12/16	

70	

139	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Combine	DStreams	using	union()		

Ã  A	simple	example	that	creates	two	DStreams	from	the	same	source	and	combines	them		

. . .

input1 = ssc.textFileStream("/user/root/test/")

input2 = ssc.textFileStream("/user/root/test/")

combined = input1.union(input2)

combined.pprint()

ssc.start()

140	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Create	Key-Value	Pairs	

. . .

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")

kvPairDS = hdfsInputDS.flatMap(lambda line: line.split(" ").map(lambda word: (word, 1))

kvPairDS.pprint()

ssc.start()

12/12/16	

71	

141	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

reduceByKey()

. . .

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")

kvPairDS = hdfsInputDS.flatMap(lambda line: line.split(" ").map(lambda word: (word, 1))

kvReduced = kvPairDS.reduceByKey(lambda a,b: a+b)

kvReduced.pprint()

ssc.start()

	

Lab:	Basic	Spark	Streaming	
TransformaLons	

12/12/16	

72	

143	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Spark	Streaming	Overview	
Ã  Basic	Streaming	
Ã  Streaming	TransformaQons	
Ã  Window	TransformaQons	

144	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Stateful	vs.	Stateless	OperaLons	

Ã  By	default,	DStreams	are	discarded	from	memory	when	the	next	batch	of	data	arrives	
–  Assumes	all	operaQons	performed	are	on	single	DStreams,	not	dependent	on	previous	data	
–  This	is	referred	to	as	working	with	"stateless"	operaQons	/	transformaQons	

Ã  However,	it	is	someQmes	beneficial	to	perform	transformaQons	and	gather	output	using	
overlapping	Qme	slices,	or	across	an	enQre	collected	dataset	
–  Example:	Every	15	seconds	perform	operaQons	over	the	last	45	seconds	worth	of	data	
–  This	is	referred	to	as	working	with	"stateful"	operaQons	/	transformaQons	

12/12/16	

73	

145	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

CheckpoinLng	

Ã  Used	in	stateful	streaming	operaQons	to	maintain	state	in	the	event	of	system	failure	

Ã  To	enable:	

 . . .

 ssc.checkpoint("someHDFSdirectory")

 . . .

146	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Streaming Window Functions

Ã  Window	funcQons	perform	combined	operaQons	on	a	set	of	Dstreams	

Ã  The	window	length	(size,	in	seconds)	and	interval	(how	ogen	it	is	collected)	are	set	
during	creaQon	
–  These	values	must	be	a	mulQple	of	the	StreamingContext	interval	value	

	

Dstream1	 Dstream2	 Dstream3	 Dstream4	 Dstream5	

Window	1	

Window	2	

Window	3	

12/12/16	

74	

147	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Basic	Window	TransformaLons	

Ã  window(windowLength, interval)	-	returns	a	new	DStream	which	is	
computed	based	on	the	length	and	interval	provided	
–  FuncQonally	similar	to	a	union()	transformaQon	
–  Example:	windowDS = streamingDS.window(30,10)

Ã  countByWindow(windowLength, interval)	-	returns	a	count	of	the	number	
of	elements	in	the	stream	
–  Example:	windowCountDS = streamingDS.countByWindow(30,10)
–  Equivalent	output	to	streamingDS.window(30, 10).count(),	but	more	efficient	if	

number	of	elements	is	large	

148	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Sample	Window	ApplicaLon	

pyspark --master local[2]

>>> sc.setLogLevel("ERROR")

>>> from pyspark.streaming import StreamingContext

>>> ssc = StreamingContext(sc, 1)

>>> ssc.checkpoint("/user/root/test/checkpoint/")

>>> tcpInputDS = ssc.socketTextStream("sandbox",9999)

>>> windowDS = tcpInputDS.window(15, 5).
flatMap(lambda line: line.split(" ")).count()

>>> windowDS.pprint()

>>> ssc.start()

12/12/16	

75	

149	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

reduceByKeyAndWindow()

. . .

tcpInDS = ssc.socketTextStream("sandbox",9999)

redPrWinDS = tcpInDS.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).
reduceByKeyAndWindow(lambda a,b: a+b, lambda a,b: a-b, 10, 2)

redPrWinDS.pprint()

ssc.start()

Lab:	Spark	Streaming	Window	
TransformaLons	

12/12/16	

76	

Knowledge	Check	

152	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

QuesLons	

1.  Name the two new components added to Spark Core to create
Spark Streaming.

2.  If an application will ingest three streams of data, how many CPU
cores should it be allocated?

3.  Name the three basic streaming input types supported by both
Python and Scala APIs.

4.  What two arguments does an instance of StreamingContext
require?

5.  What is the additional prerequisite for any stateful operation?
6.  What two parameters are required to create a window?

12/12/16	

77	

Summary	

154	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  Spark	Streaming	is	an	extension	of	Spark	Core	that	adds	the	concept	of	a	streaming	data	
receiver	and	a	specialized	type	of	RDD	called	a	DStream.		

Ã  DStreams	are	fault	tolerant,	whereas	receivers	are	highly	available.		
Ã  Spark	Streaming	uQlizes	a	micro-batch	architecture.	
Ã  Spark	Streaming	layers	in	a	StreamingContext	on	top	of	the	Spark	Core	
SparkContext.	

Ã  Many	DStream	transformaQons	are	similar	to	tradiQonal	RDD	transformaQons	
Ã  Window	funcQons	allow	operaQons	across	mulQple	Qme	slices	of	the	same	DStream,	

and	are	thus	stateful	and	require	checkpoinQng	to	be	enabled.		

12/12/16	

78	

155	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	SQL	

156	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Name the various components of Spark SQL and explain their purpose
Ã  Describe the relationship between DataFrames, tables, and contexts
Ã  Use various methods to create and save DataFrames and tables
Ã  Manipulate DataFrames and tables

AZer	compleLng	this	lesson,	students	should	be	able	to:	

12/12/16	

79	

157	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Spark	SQL	Components	Overview	

158	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	SQL	

Ã  A	Spark	module	for	processing	structured	data	

Ã  Automated	performance	improvements	compared	to	Spark	Core	API	programs	

Ã  Allows	leveraging	of	investments	in	Hive	data	and	knowledge-building	while	taking	
advantage	of	Spark's	in-memory	processing	capabiliQes	

12/12/16	

80	

159	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrames	

Ã  Data	organized	into	one	or	more	columns,	similar	to	a	table	
–  Underlying	constructs	=	RDD	

Ã  Can	be	created	from	RDDs,	Hive	tables,	and	outside	data	sources	

Ã  Can	be	used	to	create	SQL	tables	

Ã  Three	primary	methods	available	to	interact	with	DataFrames	and	tables	
–  DataFrames	API	available	for	Java,	Scala,	Python,	and	R	
–  NaQve	Spark	SQL	(subset	of	SQL92)	
–  HiveQL	(with	just	a	few	excepQons)	

160	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Hive	

Ã  Original	data	warehouse	plaqorm	in	Hadoop	
–  Interacts	with	data	using	a	SQL-like	query	language,	HiveQL	

Ã  Represents	unstructured	data	in	HDFS	as	tables	using	a	metadata	overlay	

Ã  Ubiquitous		
–  Every	Hadoop	distribuQon	includes	it		
–  Massive	amounts	of	exisLng	data	managed	by	Hive	

12/12/16	

81	

161	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Hive Data Visually

Col(1)	 Col(2)	 Col(3)	 …	 Col(n)	Represented	logically	as….	

HDFS		
(unstructured	data)	

data	file	1	
	

data	file	2	
	

data	file	3	
	

Hive	(metadata)	

162	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

The DataFrame Visually

Col(1)	 Col(2)	 Col(3)	 …	 Col(n)	

RDD	1.1x	RDD	1.3x	 RDD	1.2x	

Represented	logically	as….	

data	file	
	

Spark	SQL	

Converted	to…	

HDFS		
(unstructured	data)	

Hive	(metadata)	

RDD	

12/12/16	

82	

163	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	SQL	Contexts	

Ã  Two	opQons:	
	
		from pyspark.sql import SQLContext

 sqlContext = SQLContext(sc)

 or	

	
	from pyspark.sql import HiveContext
 sqlContext = HiveContext(sc)

Ã  Zeppelin	uses	HiveContext	named	sqlContext when	running	%sql	code

Ã  REPL	also	creates	a	HiveContext	named	sqlContext	at	launch

164	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

SQLContext	vs.	HiveContext

Ã  SQLContext
–  Provides	a	generic	SQL	parser	

Ã  HiveContext
–  Superset	of	(extends)	SQLContext
–  Enables	numerous	addiQonal	operaQons	using	the	HiveQL	parser	
–  Allows	ability	to	read	data	directly	from	and	write	back	to	Hive	tables	
–  Provides	access	to	Hive	User	Defined	FuncQons	(UDFs)	

Ã  Which	to	use?	
–  SQLContext	has	fewer	dependencies	and	uses	less	resources	if	the	limited	API	meets	your	needs	
–  HiveContext	allows	greater	flexibility	and	capabiliQes	
–  When	in	doubt,	use	HiveContext		

12/12/16	

83	

165	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Catalyst,	the	Spark	SQL	OpLmizer	
Ã  Accelerates	query	performance	via:		

–  Built-in	catalog	of	opQmizaQons	
–  Intelligent,	cost-based	plan	selecQon	and	execuQon	

Ã  Simpler	to	write	a	SQL	statement	than	a	series	of	filter(),	group(),	etc.	calls	
Ã  Performance	matches	or	outperforms	equivalent	core	RDD	programs	

Dataframe	

Spark	SQL	Query	 Cost	
Modeling	
and	Plan	
SelecLon	

Analysis	 Logical	
OpQmizaQon	

Physical	Plan	
CreaQon	

Code	
GeneraQon	RDD	1.1x	RDD	1.3x	 RDD	1.2x	

166	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Spark	SQL	Components	Overview	
Ã  Create	and	Save	DataFrames	and	Tables	

12/12/16	

84	

167	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrames	and	Tables	-	Row	Objects	

Ã  Code	looks	different	in	Scala	
but	the	same	basic	flow		
applies	-	create	formayed	
RDD,	convert	to	DataFrame,	
register	as	a	temporary	table,	
and	save	to	Hive	
	
	
	

168	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Convert	an	RDD	to	a	DataFrame	

Ã  An	RDD	with	elements	that	adhere	to	a	properly	defined	schema	can	be	converted	to	a	
DataFrame	using	one	of	the	following	methods:	

 toDF():		 dataframeX = rddName.toDF()

 createDataFrame():
 dataframeX = sqlContext.createDataFrame("rddName")

Ã  In	Python,	if	an	RDD	is	properly	formayed	but	lacks	a	schema,	createDataFrame()	
can	be	used	to	infer	the	schema	on	DataFrame	creaQon	

 rddName = sc.parallelize([(‘AA’, 150000), (‘BB’, 80000)])

 dataframeX = sqlContext.createDataFrame(rddName, [‘code’, ‘value’])

12/12/16	

85	

169	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Create	DataFrames	From	Text	ProgrammaLcally	

from pyspark.sql import SQLContext, Row
sqlContext = SQLContext(sc)
##Want to create a DataFrame of People
##Attributes will be Name, Age

lines = sc.textFile("examples/src/main/resources/people.txt")
parts = lines.map(lambda l: l.split(","))
people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))

##Create the DataFrame
peopleDF=sqlContext.createDataFrame(people)

170	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

CreaLng	a	DataFrame	from	a	table	in	Hive	

Ã  Load	the	enQre	table	
df = sqlContext.table("patients")
	

Ã  Load	using	a	SQL	Query	
sqlContext.sql("Use people")
df1 = sqlContext.sql("SELECT * from patients WHERE age>50")
df2 = sqlContext.sql("""
 SELECT col1 as timestamp, SUBSTR(date,1,4) as year, event
 FROM events
 WHERE year > 2014""")

170	

12/12/16	

86	

171	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Register	DataFrames	as	Temporary	Tables	

Ã  Use	registerTempTable()	to	make	the	DataFrame	available	to	SQL	within	the	
current	context	

 dataframe1.registerTempTable("table1")

172	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrames	and	Tables	-	Summary	

Ã  Registering	a	temporary	table	makes	that	table	available	for	either	DataFrames	API	or	
SQL	interacQons	while	operaQng	in	that	specific	context,	but	storing	tables	in	Hive	(and	
using	HiveContext)	makes	them	available	across	contexts	

HDFS		
(unstructured	data)	

Hive	(metadata)	

sqlContext1	 sqlContext2	 sqlContext3	tempTable1	 tempTable2	 tempTable3	

HiveTable	

HiveTable	 HiveTable	 HiveTable	

12/12/16	

87	

173	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

sqlContext.sql() and show()

Ã  The	DataFrames	API	enables	a	user	to	run	naQve	SQL	commands	using	the	sql()	
funcQon	prepended	by	the	name	of	the	context	(default	is	usually	sqlContext)	

Ã  When	displaying	DataFrame	contents	or	the	output	from	a	SQL	command	run	from	the	
DataFrames	API,	append	show() to	display	the	contents	on-screen	

 sqlContext.sql("SELECT * FROM permcd").show()

174	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Saving Dataframe to Hive Table

Ã  Use	the	HiveQL	CREATE TABLE funcQon	to	make	a	copy	of	a	DataFrame	as	a	
permanent	Hive	table	

	sqlContext.sql("CREATE TABLE table1hive AS SELECT * FROM table1")

174	

12/12/16	

88	

175	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrameReader / DataFrameWriter API

Ã DataFrameReader
– Interface	used	to	load	a	DataFrame	from	external	storage	
– format(str)	–	supports	“orc”,	“parquet”,	“json”,	etc	
– load(path-to-file)		

Ã DataFrameWriter
– Interface	used	to	store	a	DataFrame	to	external	storage	
– format(str)	–	supports	“orc”,	“parquet”,	“json”,	etc	
– mode(str) -	what	to	do	when	file	exists:	“append”,	“ignore”,	“overwrite”,	“error”	
– save(path-to-file)

176	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Create	DataFrames	from	Files	using	read()

Ã  DataFrames	can	be	created	easily	from	certain	structured	file	types,	including	ORC,	
parquet,	and	if	properly	formayed,	JSON	(as	well	as	others)	

	dataframeJSON = sqlContext.read.format("json").load("dfsamp.json")

	Or,	if	reading	from	a	folder	of	part-*	files	created	using	write():

 dataframeJSON = sqlContext.read.format("json").load("folderName/*")

12/12/16	

89	

177	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Save	DataFrames	as	Files	Using	write()

Ã  DataFrames	can	be	saved	to	HDFS	as	files	of	many	commonly	used	file	formats,	
including	ORC,	JSON,	and	parquet.		
	
	dataframe1.write.format("json").save("dfjson")
 dataframe1.write.format("orc").save("dforc")

 dataframe1.write.format("parquet").save("dfparquet")

178	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Save	Modes	

Ã  Save	modes	control	behavior	during	save	operaQons	
–  ErrorIfExists:	Default	mode,	returns	an	error	if	the	data	already	exists	
–  Append:	Appends	data	to	file	or	table	if	it	already	exists	
–  Overwrite:	Replaces	exisQng	data	if	it	already	exists	
–  Ignore:	Does	nothing	if	the	data	already	exists	

 dataframe1.write.format("orc").save("dforc", mode="overwrite")

12/12/16	

90	

Lab:	Create	and	Save	
DataFrames	

180	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Spark	SQL	Components	Overview	
Ã  Create	and	Save	DataFrames	and	Tables	
Ã  Manipulate	DataFrames	and	Tables	

12/12/16	

91	

181	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Working	with	Dataframes	and	sql()	

Ã  SQL	can	be	run	against	dataframes	with	just	small	modificaQon	
	
val df = sqlContext.table("myHiveTable")

df.registerTempTable("t1")

val df2 = sqlContext.sql("SELECT A, B, C from t1")

df2.registerTempTable("t2")

val df3 = sqlContext.sql("… from t2")

df3.registerTempTable("t3")

181	

182	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Zeppelin	and	the	%sql binding	

Ã  In	Zeppelin	we	have	a	shortcut	for	
	sqlContext.sql()

	
Ã  In	Zeppelin,	we	can	use	the	%SQL	on	tables	registered	to	the	SQL	Context	(temp	and	

hive	tables).	
	
	

182	

12/12/16	

92	

183	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Example	DataFrames	

For	the	next	few	slides,	let's	create	two	data	frames:	

df1 = sc.parallelize(
 [Row(cid='101', name='Alice', age=25, state='ca'), \
 Row(cid='102', name='Bob', age=15, state='ny'), \
 Row(cid='103', name='Bob', age=23, state='nc'), \
 Row(cid='104', name='Ram', age=45, state='fl')]).toDF()

df2 = sc.parallelize(
 [Row(cid='101', date='2015-03-12', product='toaster', price=200), \
 Row(cid='104', date='2015-04-12', product='iron', price=120), \
 Row(cid='102', date='2014-12-31', product='fridge', price=850), \
 Row(cid='102', date='2015-02-03', product='cup', price=5)]).toDF()

	

184	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	InspecLng	Content	(1	of	2)	

Ã  first()	–	return	the	first	row	

Ã  take(n)	–	return	n	rows	

df1.first()
Row(age=23, cid=u'104', name=u'Bob', state=u'nc')

df1.take(2)
[Row(age=45, cid=u'104', name=u'Ram', state=u'fl')
Row(age=15, cid=u'102', name=u'Bob', state=u'ny')]

12/12/16	

93	

185	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	InspecLng	Content	(2	of	2)	

Ã  limit(n): reduce the DataFrame to n rows
–  Result is still a DataFrame, not a Python result list

Ã  show(n): prints the first n rows to the console

df1.show(3)

+---+---+-----+-----+  
|age|cid| name|state|  
+---+---+-----+-----+  
25	101	Alice	ca
15	102	Bob	ny
23	103	Bob	nc
+---+---+-----+-----+

	

df1.limit(2).show()

+---+---+-----+-----+  
|age|cid| name|state|  
+---+---+-----+-----+  
| 15|102| Bob| ny|  
| 45|101|Alice| ca|  
+---+---+-----+-----+

	

186	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	InspecLng	Schema	

df1.columns #Display column names
[u'age', u'cid', u'name', u'state']

df1.dtypes #Display column names and types
[('age', 'bigint'), ('cid', 'string'), ('name', 'string'), ('state',
'string')]

df1.schema #Display detailed schema
StructType(List(StructField(age,LongType,true),
StructField(cid,StringType,true),
StructField(name,StringType,true),
StructField(state,StringType,true)))
	
	

12/12/16	

94	

187	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	CounLng	Rows	

Ã  Count	all	the	rows	in	a	DataFrame	

df1.count()
4
	

188	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	Summary	StaLsLcs		

 df1.describe().show()

+-------+------------------+  
|summary| age|  
+-------+------------------+  
count	4
mean	27.0
stddev	11.045361017187261
min	15
max	45
+-------+------------------+

Describe() shows	staQsQcs	for	all	numeric	columns,	ignoring	others

	

12/12/16	

95	

189	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	Removing	Duplicates	

Ã  Remove	duplicate	rows	

df1.distinct().show()

+---+---+-----+-----+  
|age|cid| name|state|  
+---+---+-----+-----+  
23	103	Bob	nc
15	102	Bob	ny
45	104	Ram	fl
25	101	Alice	ca
+---+---+-----+-----+

	

	

190	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	Removing	Rows	by	Key	

Ã  Removing	duplicate	rows	by	key,	drops	every	row	with	the	same	key	but	the	first	
occurrence	

df1.drop_duplicates(["name"]).show()

+---+---+-----+-----+  
|age|cid| name|state|  
+---+---+-----+-----+  
15	102	Bob	ny
45	104	Ram	fl
25	101	Alice	ca
+---+---+-----+-----+

	

12/12/16	

96	

191	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	SorLng	Rows		

df1.sort(df1["age"].desc()).
show()

+---+---+-----+-----+  
|age|cid| name|state|  
+---+---+-----+-----+  
45	104	Ram	fl
25	101	Alice	ca
23	103	Bob	nc
15	102	Bob	ny
+---+---+-----+-----+

	

df1.sort("age",
ascending=True).show()

	
+---+---+-----+-----+  
|age|cid| name|state|  
+---+---+-----+-----+  
15	102	Bob	ny
23	103	Bob	nc
25	101	Alice	ca
45	104	Ram	fl
+---+---+-----+-----+

	

192	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	Adding	a	Column		

df1.withColumn("age-dog-years", df1["age"]*7).show()

	

+---+---+-----+-----+-------------+  
|age|cid| name|state|age-dog-years|  
+---+---+-----+-----+-------------+  
25	101	Alice	ca	175
15	102	Bob	ny	105
23	103	Bob	nc	161
45	104	Ram	fl	315
+---+---+-----+-----+-------------+

	

12/12/16	

97	

193	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	Renaming	a	Column		

df1.withColumnRenamed("age", "age2").show()

+----+---+-----+-----+  
|age2|cid| name|state|  
+----+---+-----+-----+  
25	101	Alice	ca
15	102	Bob	ny
23	103	Bob	nc
45	104	Ram	fl
+----+---+-----+-----+

194	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	select()	Operator		

df1.select("name", "age").show()

+-----+---+  
| name|age|  
+-----+---+  
Alice	25
Bob	15
Bob	23
Ram	45
+-----+---+

df1.select(df1["name"],
df1["age"]*7).show()

+-----+---------+  
| name|(age * 7)|  
+-----+---------+  
Alice	175
Bob	105
Bob	161
Ram	315
+-----+---------+

•  select(*cols)
–  Cols: list of column names (strings) or list of "Column" expressions

12/12/16	

98	

195	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	selectExpr()	Operator		

Ã  selectExpr(*expr) –	Selects	a	set	of	SQL	expressions.	

df.selectExpr("colA","colB as newName","abs(colC)")	

	

df1.selectExpr("substr(name,1,3)", "age*7").show()

+------------------+---------+  
|SUBSTR(name, 1, 3)|(age * 7)|  
+------------------+---------+  
Ali	175
Bob	105
Bob	161
Ram	315
+------------------+---------+

	

196	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Column	Expression	

Ã  Column	objects	can	be	created	from	a	DataFrame		

Select	a	column:	df1["age"]
OR	
Expression:	df1.age * 2 – 15 	

Ã  OperaQons	on	Column	objects:	

Cast	to	type:	 	 	 	 	df1["age"].cast("string")

Rename	a	column:	 	 	df1["age"].alias("age2")

Sort	a	column:	 	 	 	df1["age"].asc() or df["age"].desc()

Substring:		 	 	 	df1["name"].substr(1,3)

Between:	 	 	 	 	 	df1["age"].between(25, 34)

12/12/16	

99	

197	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	Dropping	Columns		

df1.drop("age").show()

	

+---+-----+-----+  
|cid| name|state|  
+---+-----+-----+  
101	Alice	ca
102	Bob	ny
103	Bob	nc
104	Ram	fl
+---+-----+-----+

	

198	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Data	Frame	OperaLons:	Filtering	Rows		

df1.filter(df1.age>21).show()

OR		

df1.filter(df1["age"]>21).show()

	

+---+---+-----+-----+  
|age|cid| name|state|  
+---+---+-----+-----+  
25	101	Alice	ca
23	103	Bob	nc
45	104	Ram	fl
+---+---+-----+-----+

	

12/12/16	

100	

199	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Data	Frame	OperaLons:	groupBy()

df1.groupBy("name").count().show()

+-----+-----+  
| name|count|  
+-----+-----+  
Ram	1
Alice	1
Bob	2
+-----+-----+

	

200	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Data	Frame	OperaLons:	groupBy()	and	sum()		

df2.select(df2["date"].substr(1,4).alias("year"),
df2["price"]).groupBy("year").sum().show()

+----+----------+  
|year|SUM(price)|  
+----+----------+  
|2014| 850|  
|2015| 325|  
+----+----------+

	

12/12/16	

101	

201	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Data	Frame	OperaLons:	groupBy()	and	agg()		

Ã  agg(*exprs) is	a	generic	funcQon	for	implemenQng	aggregaQons	ager	groupBy		

Ã  Exprs:	a	dict	mapping	column	names	to	aggregate	funcQon	(min,	max,	count,	
avg,	sum)		

df2.select(df2["date"].substr(1,4).alias("year"),
df2["price"])\
 .groupBy("year"). \
 agg({"price": "avg", "year": "count"}).show()

+----+------------------+-----------+  
|year| AVG(price)|COUNT(year)|  
+----+------------------+-----------+  
|2014| 850.0| 1|  
|2015|108.33333333333333| 3|  
+----+------------------+-----------+

202	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Inner	Join	with	Data	Frames		

df1.join(df2, df1["cid"]==df2["cid"], "inner").show()

+---+---+-----+-----+---+----------+-----+-------+  
|age|cid| name|state|cid| date|price|product|  
+---+---+-----+-----+---+----------+-----+-------+  
25	101	Alice	ca	101	2015-03-12	200	toaster
15	102	Bob	ny	102	2014-12-31	850	fridge
15	102	Bob	ny	102	2015-02-03	5	cup
45	104	Ram	fl	104	2015-04-12	120	iron
+---+---+-----+-----+---+----------+-----+-------+

	

12/12/16	

102	

203	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

More	About	join()		

Ã  df1.join(df2, joinExpr, joinType)	

Ã  joinType	is	one	of:	inner,	outer,	left_outer,	right_outer	and	semijoin		

Ã  joinExpr	can	be	wriyen	in	two	ways	
–  df1.join(df2, "cid", "inner")
–  df1.join(df2, df1["cid"]==df2["cid"], "inner")

204	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

MulLple	CondiLons	in	joinExpr

NoQce	the	special	way	to	join	with	mulQple	condiQons:		

df1.join(df2, (df1["cid"]==df2["cid"] & (df2["price"] > 200),
"inner").show()

+---+---+----+-----+---+----------+-----+-------+  
|age|cid|name|state|cid| date|price|product|  
+---+---+----+-----+---+----------+-----+-------+  
| 15|102| Bob| ny|102|2014-12-31| 850 | fridge|  
+---+---+----+-----+---+----------+-----+-------+

	

12/12/16	

103	

205	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

User	Defined	FuncLons	(UDFs)	

from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType

get_year = udf(lambda x: int(x[:4]), IntegerType())

df2.select(get_year(df2["date"]).alias("year"),
df2["product"]).collect()
	
+----+-------+  
|year|product|  
+----+-------+  
2015	toaster
2015	iron
2014	fridge
2015	cup
+----+-------+

	

206	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

UDFS	with	MulLple	Parameters	

from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType

calc_mins = udf(lambda h,m: int(h*60+m), IntegerType())

df2.select(calc_mins(df2["hour"],
df2["mins"]).alias("my_mins"))

	

12/12/16	

104	

207	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Using	UDFs	in	SQL	Statements		

df2.registerTempTable("my_df")

hc.registerFunction("get_year", lambda x: int(x[:4]))

hc.sql("select get_year(date) as year FROM my_df").show()  
	
+----+  
|year|  
+----+  
|2015|  
|2015|  
|2014|  
|2015|  
+----+

	

	

208	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

explain()

Ã  The	explain()	command	describes	Spark-SQL	execuQon	plan		

df1.join(df2, (df1["cid"]==df2["cid"]) & (df2["price"] > 200),
"inner").show()

ShuffledHashJoin	[cid#140],	[cid#143],	BuildRight		
	Exchange	(HashParQQoning	200)		
	 	PhysicalRDD	[age#139L,cid#140,name#141,state#142],	MapParQQonsRDD[286]	 				

at	applySchemaToPythonRDD	at	NaQveMethodAccessorImpl.java:-2		
	 	Exchange	(HashParQQoning	200)		
	 	 	Filter	(price#145L	>	200)		
	 	 	 	PhysicalRDD	[cid#143,date#144,price#145L,product#146],	

MapParQQonsRDD[295]	at	applySchemaToPythonRDD	at	NaQveMethod	
AccessorImpl.java:-2		

12/12/16	

105	

209	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DataFrame	OperaLons:	Underlying	RDD		

Ã  A	DataFrame	is	implemented	with	an	RDD	of	Row	objects;	it	is	someQmes	useful	to	
access	that	underlying	RDD:		
–  df.rdd:	returns	the	underlying	rdd		

Ã  Several	funcQons	are	shortcuts	to	the	same	funcQon	on	that	underlying	RDD:	
–  df.map() = df.rdd.map()
–  df.flatMap() = df.rdd.flatMap()
–  df.foreach() = df.rdd.foreach()
–  etc		

210	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

More	on	DataFrames	

Ã  We	covered	a	subset	of	data	frames	operaQons		

Ã  Other	areas	not	covered	here:	
–  Data	Frame	windowing	funcQons	(OVER	with	rank,	first_value,	last_value,	etc)		
–  cov,	crosstab,	corr,	rollup
–  fillna() to	deal	with	missing	values		

Ã  The	best	reference	is	the	documentaQon:		
https://spark.apache.org/docs/latest/api/python/
pyspark.sql.html#pyspark.sql.DataFrame		

12/12/16	

106	

Lab:	Work	with	Tables	and	
DataFrames,	Dataframes	
and	UDFs,	Hive	+	Spark	SQL	

Knowledge	Check	

12/12/16	

107	

213	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

QuesLons	

1.  While core RDD programming is used with [structured/unstructured/both]
data Spark SQL is used with [structured/unstructured/both] data.

2.  True or False: Spark SQL is an extra layer of translation over RDDs.
Therefore while it may be easier to use, core RDD programs will generally
see better performance.

3.  True or False: A HiveContext can do everything that a SQLContext can
do, but provides more functionality and flexibility.

4.  True or False: Once a DataFrame is registered as a temporary table, it is
available to any running sqlContext in the cluster.

5.  Hive tables are stored [in memory/on disk].
6.  Name two functions that can convert an RDD to a DataFrame.
7.  Name two file formats that Spark SQL can use without modification to

create DataFrames.

Summary	

12/12/16	

108	

215	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  Spark	SQL	gives	developers	the	ability	to	uQlize	Spark's	in-memory	processing	
capabiliQes	on	structured	data	

Ã  Spark	SQL	integrates	with	Hive	via	the	HiveContext,	which	broadens	SQL	capabiliQes	
and	allows	Spark	to	use	Hive	HCatalog	for	table	management	

Ã  DataFrames	are	RDDs	that	are	represented	as	table	objects	which	can	used	to	create	
tables	for	SQL	interacQons	

Ã  DataFrames	can	be	created	from	and	saved	as	files	such	as	ORC,	JSON,	and	parquet	
Ã  Because	of	Catalyst	opQmizaQons	of	SQL	queries,	SQL	programming	operaQons	will	

generally	outperform	core	RDD	programming	operaQons	

216	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Data	VisualizaLon	in	
Zeppelin	

12/12/16	

109	

217	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Explain the purpose and benefits of data visualization
Ã  Perform interactive data exploration using visualization in Zeppelin
Ã  Collaborate with other developers and stakeholders using Zeppelin

AZer	compleLng	this	lesson,	students	should	be	able	to:	

218	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Data	VisualizaQon	Overview	

12/12/16	

110	

219	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Data	VisualizaLon	IntroducLon	

Ã  Table-based	data	is	great	for	calculaQon	and	organizaQon,	but	hard	to	use	for	decision	
making	when	working	with	large	sets	of	data	

Ã  Data	visualizaQons	enable	humans	to	make	inferences	and	draw	conclusions	about	large	
sets	of	data	based	on	visual	input	alone	

219	

220	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Data	VisualizaLon	and	Spark	

Ã  The	Spark	project	contains	a	module	called	GraphX	for	visualizaQons	

–  Scala	only	

–  ProgrammaQc	(difficult	for	non-coders	to	interact	with)	

Ã  Zeppelin	can	be	used	for	data	visualizaQon	as	well	

–  Lots	of	built-in,	easy	to	use	visualizaQons	

–  Virtually	any	visualizaQon	library	from	any	supported	language	can	be	used	

–  Easy	collaboraQon	with	other	developers	and	non-technical	business	owners	

220	

12/12/16	

111	

221	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Data	VisualizaQon	Overview	
Ã  Data	ExploraQon	

222	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

VisualizaLons	on	Tables	(%sql default)	

222	

12/12/16	

112	

223	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

VisualizaLons	on	DataFrames	

Ã  z.show(DataFrameName)

223	

224	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

VisualizaLons	on	Other	FormaMed	Data	

Ã  Use	%table	as	part	of	the	print	instrucQon	and,	if	formayed	correctly,	the	data	will	be	
presented	with	visualizaQons	enabled	

 println("%table code\tvalue\nAA\t150000\nBB\t80000\n")

224	

12/12/16	

113	

225	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

InteracLve	VisualizaLon	-	ProgrammaLc	

Ã  VisualizaQon	displays	change	any	Qme	a	new	query	(or	other	command)	is	executed	

225	

226	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

InteracLve	VisualizaLon	-	Pivot	Charts	

Ã  In	addiQon,	Zeppelin	provides	a	Pivot	Chart	capability	under	Se}ngs	in	which	addiQonal	
data	manipulaQons	can	be	performed	without	changing	the	original	query	or	command	

226	

12/12/16	

114	

227	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Pivot	Chart	-	Value	OpLons	

Ã  Click	on	the	box	under	"Values"	and	a	drop-down	menu	appears	

Ã  Use	it	to	change	the	default	value	acQon	
–  Switch	between	SUM,	AVG,	COUNT,	MIN,	and	MAX	

227	

228	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Pivot	Chart	-	Change	Values	or	Keys		

Ã  Click	on	the	"x"	to	the	right	of	a	box	to	remove	that	from	the	appropriate	column,	then	
drag	and	drop	from	the	column	opQons	to	display	something	new	

228	

12/12/16	

115	

229	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Pivot	Chart	-	Add	Groups	

Ã  Drag	and	drop	the	appropriate	grouping	category	from	the	list	of	opQons	to	see	the	
data	further	broken	down	

229	

230	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Ã  SomeQmes	Pivot	Charts	don't	provide	the	flexibility	needed	when	interacQng	with	data	

Ã  In	these	instances,	Dynamic	Forms	can	be	implemented	in	the	query	/	command	to	
provide	parameters	for	WHERE	clauses	

 SELECT * FROM table WHERE colName [mathOp] ${LabelName=DefValue}

Dynamic	Forms	

230	

12/12/16	

116	

231	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Dynamic	Forms	-	MulLples	

Ã  MulQple	variables	can	be	included	as	Dynamic	Forms	

231	

232	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Ã  Select	forms	(drop-down	menus)	can	be	created	as	Dynamic	Forms	as	well.	

 ... WHERE colName = "${LabelName=defaultLabel,opt1|opt2|opt3|…}"

Dynamic	Forms	-	Select	

232	

12/12/16	

117	

233	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Data	VisualizaQon	Overview	
Ã  Data	ExploraQon	
Ã  CollaboraQon	and	Sharing	

234	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Clone	and	Export	a	Note	

Ã  Before	sharing	a	note	with	others,	it	may	be	a	good	idea	to	make	a	copy	of	it	

Ã  Two	ways	to	do	this:	

–  Clone:	make	a	copy	of	the	note	in	Zeppelin	

–  Export:	save	a	copy	of	the	note	in	JSON	format				

234	

12/12/16	

118	

235	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Import	a	Note	

Ã  Exported	notes	can	be	shared	with	and	imported	by	another	developer	

235	

236	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Note	Cleanup	

Ã  In-process	notes	can	be	messy	and	contain	
unnecessary	duplicate	code	or	alternaQves	

Ã  Individual	paragraphs	that	are	no	longer	needed		
can	be	deleted	from	the	note	

Ã  Paragraphs	can	also	be	reordered	and	new		
paragraphs	can	be	inserted	
–  For	example,	to	add	Markdown	comments	

236	

12/12/16	

119	

237	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

InteracLve	Note	Sharing	

Ã  Note	URLs	can	be	shared	
–  All	connecQons	using	this	URL	are	live,	real-Qme	connecQons	to	the	same	note	

237	

238	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Note	Access	Control	

Ã  By	default,	anyone	with	the	note	link	can	completely	control	the	note	

Ã  To	control	access,	click	the	Note	Permissions	(padlock)	icon	at	the	top-right	corner	of	
the	note	and	set	permissions	accordingly	

238	

12/12/16	

120	

239	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Note	Formaeng	

Ã  Note	owners	can	control	all	paragraphs	at	the	note	level,	including:	

–  Hide/Show	all	code	

–  Hide/Show	all	output	

–  Clear	all	output	

Ã  There	are	also	two	addiQonal	note	views	

–  Simple:	Removes	note-level	controls	

–  Report:	Removes	note-level	controls	and	all	code	

239	

240	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Automate	Note	Updates	

Ã  EnQre	notes	can	be	played,	paragraph	by	paragraph,	at	regular	intervals	

240	

12/12/16	

121	

241	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Paragraph	Formaeng	

Ã  Paragraphs	also	contain	forma}ng	se}ngs,	including:	

–  Hide/Show	paragraph	code	

–  Hide/Show	paragraph	output	

–  Clear	paragraph	output	is	available		
in	the	se}ngs	menu	(gear	icon)	

241	

242	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Paragraph	Enhancement	-	Width	

Ã  Width:	Controls	width	of	the	paragraph	in		
the	note,	allowing	mulQple	paragraphs	to	be		
displayed	in	a	row	

242	

12/12/16	

122	

243	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Paragraph	Enhancement	-	Show	Title	

Ã  Paragraph	Qtles	can	be	added	for	clarity	

243	

244	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Paragraph	Enhancement	-	Line	Numbers	

Ã  Line	numbers	can	be	added	to	paragraph	code	

244	

12/12/16	

123	

245	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Paragraph	Sharing	

Ã  Individual	paragraphs	can	be	shared	via	links	
which	can	be	sent	to	users	or	embedded	in		
reports	generated	by	other	tools	

Ã  If	Dynamic	Forms	have	been	implemented	in	
the	paragraph,	users	will	be	able	to	interact	with	
the	data,	even	though	they	do	not	have	access	
to	the	code	

245	

246	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Disable	Paragraph	Output	Changes	

Ã  Disable	the	paragraph	run	feature	to	lock	the	
output	of	a	paragraph	

Ã  Changes	to	Dynamic	Forms	or	code	will	not	
be	reflected	in	the	paragraph	

246	

12/12/16	

124	

Lab:	Data	VisualizaLon	in	
Zeppelin	

Knowledge	Check	

12/12/16	

125	

249	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

QuesLons	

1.  What is the value of data visualization?
2.  How many chart views does Zeppelin provide by default?
3.  How do you share a copy of your note (non-collaborative) with another

developer?
4.  How do you share your note collaboratively with another developer?
5.  Which note view provides only paragraph outputs?
6.  Which paragraph feature provides the ability for an outside person to see a

paragraph's output without having access to the note?
7.  What paragraph feature allows you to give outside users the ability to modify

parameters and update the displayed output without using code?

Summary	

12/12/16	

126	

251	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  Data	visualizaQons	are	important	when	humans	need	to	draw	conclusions	about	large	
sets	of	data	

Ã  Zeppelin	provides	support	for	a	number	of	built-in	data	visualizaQons,	and	these	can	be	
extended	via	visualizaQon	libraries	and	other	tools	like	HTML	and	JavaScript	

Ã  Zeppelin	visualizaQons	can	be	used	for	interacQve	data	exploraQon	by	modifying	
queries,	as	well	as	the	use	of	pivot	charts	and	implementaQon	of	dynamic	forms	

Ã  Zeppelin	notes	can	be	shared	via	export	to	a	JSON	file	or	by	sharing	the	note	URL	
Ã  Zeppelin	provides	numerous	tools	for	controlling	the	appearance	of	notes	and	

paragraphs	which	can	assist	in	communicaQng	important	informaQon	
Ã  Paragraphs	can	be	shared	via	a	URL	link	
Ã  Paragraphs	can	be	modified	to	control	their	appearance	and	assist	in	communicaQng	

important	informaQon	

252	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Job	Monitoring	

12/12/16	

127	

253	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Describe	the	components	of	a	Spark	job		

Ã  Explain	default	parallel	execuQon	for	stages,	tasks,	across	CPU	cores	

Ã  Monitor	Spark	jobs	via	the	Spark	ApplicaQon	UI	

AZer	compleLng	this	lesson,	students	should	be	able	to:	

254	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Job	Anatomy	

12/12/16	

128	

255	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark Task/Stage/Job/ DAG Schedule

Ã Task	is	a	unit	of	work	(pipeline	of	operaQons	that	do	not	require	a	shuffle)	
Ã Stage	is	a	group	of	tasks	separated	by	a	operaQon	that	requires	a	shuffle	
Ã A	job	is	a	grouping	of	stages	

Ã The	DAG	scheduler	tells	Spark	which	stages	to	execute	when	
– The	next	stage	cannot	start	before	all	the	tasks	in	the	previous	stage	have	finished	
	

256	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Wide and Narrow Operations

Ã Wide	operaQons	require	a	shuffling	of	data	(many	to	1	relaQonship)	
– reduceByKey	
– groupByKey	
– reparQQon	
– join	

Ã Narrow	operaQons	can	be	executed	locally	(1	to	many	relaQonship)	
– map	
– filter	
– flatMap	

12/12/16	

129	

257	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

RDD Graph

sc.textFile("/path/to/data")	
	.flatMap(lambda	line:	line.split("	"))	
	.map(lambda	word:	(word,1)))	
	.reduceByKey(lambda	a,b:	a+b,	numParQQons	=	3)	
	.collect()	

	
	

258	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

DAG Scheduler

map	flatMap	 reduceByKey	 collect	textFile	

map	

Stage	2	Stage	1	

flatMap	 reduceByKey	 collect	textFile	

Task	2	

Task	1	

Task	4	

Task	3	

Task	2	

Task	1	

Task	4	

Task	3	

12/12/16	

130	

259	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Job	Anatomy	
Ã  Parallel	ExecuQon	

260	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Task	Steps	
Ã  A	task	consists	of	three	steps	

–  Fetch	input	data	
–  Execute	the	operaQon	
–  Produce	output	

Ã  Parallel	execuQon	minimizes	task	compleQon	Qmes	

Task	

Task	

Stage	

Task	

Fetch	Input	

Execute	Task	

Write	Output	

All three steps can be
working at the same time

Task	
Start	

Task	
End	

12/12/16	

131	

261	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Tasks and CPU Cores

Worker 1

CPU1	 CPU2	

Worker 2

CPU1	 CPU2	

Fetch	Input	

Execute	Task	

Write	Output	

Worker	1	
Core	1	

Fetch	Input	

Execute	Task	

Write	Output	

Fetch	Input	

Execute	Task	

Write	Output	

Fetch	Input	

Execute	Task	

Write	Output	

Fetch	Input	

Execute	Task	

Write	Output	

Worker	1	
Core	2	

Fetch	Input	

Execute	Task	

Write	Output	

Worker	2	
Core	1	

Fetch	Input	

Execute	Task	

Write	Output	

Fetch	Input	

Execute	Task	

Write	Output	

Fetch	Input	

Execute	Task	

Write	Output	

Each CPU core
on each node can

process tasks
independently

262	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Inherent	Parallelism	–	parallelize()

Ã  parallelize()	bases	default	parQQoning	on	the	number	of	cores	across	all	
executors	it	is	assigned	

–  Minimum	of	two	parQQons	
–  Default	behavior	can	be	overridden	
–  Intent	is	to	maximize	parallel	operaQons	

	

Ã  Can	be	overridden	at	RDD	creaQon	Qme:	
	
rdd1 = sc.parallelize([1,2,3,4,5,6],8)
	

12/12/16	

132	

263	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Inherent	Parallelism	–	textFile()	

Ã  textFile()	parQQons	based	on	the	number	of	HDFS	blocks	the	file	uses	
–  A	single-block	file	(default	128	MB	or	less)	will	get	the	minimum	of	two	parQQons	
–  RDD	parQQon	number	can	be	larger,	but	not	smaller,	than	number	of	HDFS	blocks	
–  Goal	is	to	avoid	moving	data	between	nodes	

Ã  Can	be	overridden	at	RDD	creaQon	Qme:		
	
rdd2 = sc.textFile("statePopulations.csv",numPartitions=8)	

264	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Tune Data Parallelism

Ã Spark	works	with	parQQons	as	the	mechanism	for	data	processing	parallelizaQon	
Ã Use	repartition()	or	coalesce()	to	control	parallelism	when	needed	

– Use	coalesce	when	reducing	parQQons,	reparQQon	to	increase	
 rdd.repartition(500)

 rdd.coalesce(20)

Ã Many	operaQons	include	numPartitions	as	parameter	that	does	this	automaQcally	
	 rdd.reduceByKey(lambda ab: a+b, numPartitions=10)	

Ã In	the	REPL,	users	can	check	the	number	of	parQQons	by	execuQng	the	following:	
	 	rdd.getNumPartitions()

12/12/16	

133	

265	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Changing the Level of Parallelism

266	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Job	Anatomy	
Ã  Parallel	ExecuQon	
Ã  Spark	ApplicaQon	UI	

12/12/16	

134	

267	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	ApplicaLon	UI	

Ã  Generated	by	and	available	for	the	life	of	a	SparkContext	

–  When	the	SparkContext	is	exited,	no	longer	available	

Ã  Accessed	via	<drivernode>:4040	

–  In	our	environment:	sandbox:4040	

Ã  If	mulQple	SparkContext	instances	are	launched,	mulQple	Spark	ApplicaQon	UIs	will	exist	

–  Each	new	one	incremented	port	number	by	one	-	for	example:	sandbox:4041,	sandbox:4042	
–  For	example:	running	Zeppelin,	open	a	PySpark	REPL	

268	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark UI: Jobs View

12/12/16	

135	

269	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark UI: Single Job View

270	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark UI: Single Job DAG Visualization

12/12/16	

136	

271	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark UI: Inside a Stage

272	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark UI: Inside a Stage, cont.

12/12/16	

137	

273	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark UI: Environment

274	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Executor	View	

12/12/16	

138	

275	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

SQL	View	

276	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

SQL	Query	Details	-	Visual	

12/12/16	

139	

277	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

SQL	Query	Details	-	Text	

278	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Streaming	Tab	

12/12/16	

140	

279	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Streaming	View	

280	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Streaming	AddiLonal	Charts	

12/12/16	

141	

281	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Streaming	Batches	

282	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Batch	Detail	

12/12/16	

142	

Lab:	Job	Monitoring	

Knowledge	Check	

12/12/16	

143	

285	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

QuesLons	

1.  Spark jobs are divided into _____________, which are logical
collections of _______________.

2.  A job is defined as a set of tasks that culminates in a
________________.

3.  What Spark component organizes stages into logical groupings
that allow for parallel execution?

4.  What is the default port used for the Spark Application UI?
5.  If two SparkContext instances are running, what is the port used

for the Spark Application UI of the second one?
6.  As discussed in this lesson, what tabs in the Spark Application UI

only appear if certain types of jobs are run?

Summary	

12/12/16	

144	

287	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  Spark	applicaQons	consist	of	Spark	jobs,	which	are	collecQons	of	tasks	that	culminate	in	
an	acQon.	

Ã  Spark	jobs	are	divided	into	stages,	which	separate	lists	of	tasks	based	on	shuffle	
boundaries	and	are	organized	for	opQmized	parallel	execuQon	via	the	DAG	Scheduler.	

Ã  The	Spark	ApplicaQon	UI	provides	a	view	into	all	jobs	run	or	running	for	a	given	
SparkContext	instance,	including	detailed	informaQon	and	staQsQcs	appropriate	for	the	
applicaQon	and	tasks	being	performed.		

288	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Caching	and	PersisLng	
Data,	CheckpoinLng	

12/12/16	

145	

289	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Understand	the	caching,	persisQng,	and	the	different	storage	levels	

Ã  Describe	and	implement	checkpoinQng	

AZer	compleLng	this	lesson,	students	should	be	able	to:	

290	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Caching	and	PersisQng	Data	

12/12/16	

146	

291	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Caching	and	PersisLng	Data	

Ã  Spark	data	is	not	maintained	in	memory	by	default	

Ã  Spark	allows	the	developer	to	persist	data	in	memory	

–  Beneficial	when	an	RDD	is	going	to	be	used	more	than	once	-	for	example:	an	applicaQon	where	a	
"clean"	file,	reject	file,	and	summary	file	are	each	created	by	processing	the	same	original	file	
	

–  Very	useful	(and	incredibly	fast)	for	iteraQve	applicaQons	

292	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Memory	RepresentaLons	&	LimitaLons	

Ã  Caching	occurs	at	the	parQQon	level	

Ã  Cached	datasets	can	be	stored	three	ways	
–  Serialized:	objects	are	turned	into	compact	byte	streams	-	reduces	memory	usage,	but	require	

more	processing	resources	to	deserialize	when	needed	
–  Raw:	fastest	to	process,	but	can	easily	take	up	2-10x	more	memory	than	serialized	datasets	
–  Off-heap:	UQlize	off	heap	memory	to	avoid	GC's.		Slower	to	access	off	heap	memory	(all	data	must	

be	serialized,	primaQve	classes	have	encoders)	

Ã  Executor	memory	is	a	finite	resource	
–  Least	Recently	Used	(LRU)	algorithm	determines	which	dataset(s)	to	evict	when	needed	
–  If	an	operaQon	tries	to	use	cache	that	no	longer	exists,	data	will	be	recomputed	and	recached	

•  Will	discuss	in	more	detail	later	

12/12/16	

147	

293	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Caching	Syntax	

Ã  persist()	-	developer	can	control	caching	storage	level	
–  	persist(StorageLevel.Selection)

Ã  cache()	-	simple	operaQon	
–  cache() == persist(StorageLevel.MEMORY_ONLY)

Ã  unpersist()-	remove	data	from	cache	

Ã  Must	import	library	to	use	it:	
scala -> import org.apache.spark.storage.storageLevel._
python -> from pyspark import StorageLevel

Ã  In	pyspark:	objects	are	always	stored	with	the	Pickle	library	
–  So	MEMORY_ONLY	and	MEMORY_ONLY_SER	are	the	same	

Spark	SQL:	
	

sqlContext.cacheTable()	
sqlContext.uncacheTable()	

294	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Physical	OpLons	for	Caching	

Storage	Level	 Memory	 Disk	 Serialized	 Replicas	
MEMORY_ONLY	(default)	 Yes	 Never	 No	 No	
MEMORY_AND_DISK	 Yes	 Spills	 No	 No	
MEMORY_ONLY_SER	 Yes	 No	 Yes	 No	
MEMORY_AND_DISK_SER	 Yes	 Spills	 Yes	 No	
MEMORY_ONLY_2	 Yes	 No	 No	 Yes	
MEMORY_AND_DISK_2	 Yes	 Spills	 No	 Yes	
DISK_ONLY	 No	 Yes	 No	 No	

12/12/16	

148	

295	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Example	

from pyspark import StorageLevel

rdd = sc.textFiles("/user/root/logs/*")
rdd.persist(StorageLevel.MEMORY_ONLY_SER)
rdd.map(…).saveAsTextFile("/user/root/cleanLogs.txt")
rdd.filter(…).saveAsTextFile("/user/root/filteredLogs.txt")
rdd.unpersist()

296	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Which	Storage	Level	to	Choose?	

Ã  If	the	RDD	fits	in	memory,	use	the	default	MEMORY_ONLY	

Ã  If	RDDs	are	too	big,	try	MEMORY_ONLY_SER	with	a	fast	serializaQon	library	(Scala	only)	

Ã  If	the	RDDs	are	sQll	too	big:	
–  Consider	the	Qme	to	compute	this	RDD	from	parent	RDD	vs	the	Qme	to	load	it	from	disk	
–  Re-compuQng	an	RDD	may	someQmes	be	faster	than	reading	it	from	disk	

Ã  Replicated	storage	is	good	for	fast	fault	recovery,	but…	
–  Usually	this	is	overkill,	and	not	a	good	idea	if	you're	using	a	lot	of	data	relaQve	to	total	memory	

Ã  For	DataFrames,	use	cache()	instead	of	persist(StorageLevel)

12/12/16	

149	

297	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

SerializaLon	OpLons	

Ã  For	Scala,	Spark	provides	two	serializaQon	libraries:		
–  Java	serializaQon	(default)		
– Kryo	serializaQon	

Ã  Kryo	is	much	faster	&	more	compact	(ogen	as	much	as	10x)	
– Used	to	require	registraQon	of	custom	classes,	but	this	has	since	been	
addressed	
	

Ã  Python	uses	Pickle	for	RDD	serializaQon	
–  DataFrames	generate	Java	byte	code,	so	DataFrames	should	leverage	Kryo	

298	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Kyro	SerializaLon	

Ã Using	Kryo	SerializaQon	(always	use	it)	

 conf = SparkConf()

 conf.set('spark.serializer',

 'org.apache.spark.serializer.KryoSerializer')

 sc=SparkContext(conf=conf)

12/12/16	

150	

Lab:	Caching	and	PersisLng	
Data	

300	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Caching	and	PersisQng	Data
Ã  CheckpoinQng	

12/12/16	

151	

301	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

RecomputaLon	Problem	

Ã  As	Spark	transformaQons	are	processed	they	create	a	lineage	
–  This	lineage	provides	resilience,	but	can	also	cause	problems	as	number	of	transformaQons	grows	

Ã  If	data	is	lost	on	an	executor,	re-compuQng	that	data	can	take	a	very	long	Qme	
–  The	data	can	potenQally	have	to	be	reprocessed	through	hundreds/thousands	of	operaQons	

302	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

CheckpoinLng		

Ã  Helps	miQgate	the	recomputaQon	problem	

Ã  Enabling	checkpoinQng	does	the	following	
–  Data	checkpoinQng	that	saves	intermediate	data	to	reliable	storage	(HDFS)	
–  Metadata	checkpoinQng,	which	stores	file	names	and	other	configuraQon	data	

Ã  Lineage	is	"reset"	to	the	point	of	the	last	checkpoint	

Ã  ConsideraQons:	
–  Performed	at	the	RDD,	not	the	applicaQon,	level	
–  No	current	DataFrame	support	
–  There	is	an	expense	to	persist	to	HDFS,	but	this	is	usually	overshadowed	by	the	benefits	
–  No	automaQc	cleanup	of	HDFS	files	

12/12/16	

152	

303	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Node Loss Without Checkpointing

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

RDD	1.1x	 RDD	1.2x	RDD	1.3x	

All processing must be repeated, potentially
hundreds or thousands of transformations

HDFS	

304	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Node Loss With Checkpointing

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

CP1.3x	
	

CP1.1x	
	

CP1.2x	
	

RDD	1.1x	 RDD	1.2x	RDD	1.3x	

HDFS	

RDD	1.2x	

Only processing since last
checkpoint must be repeated

Trade performance while
processing in exchange

for faster recovery in
case of node loss

12/12/16	

153	

305	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

CheckpoinLng	vs	Caching	

Ã  Checkpoint	
–  Saves	a	permanent	copy	of	the	intermediate	data	
–  Lineage	is	then	rebuilt	from	the	intermediate	data	
–  If	data	is	lost,	recomputes	the	data	from	intermediate	data	

Ã  Caching	
–  Data	is	stored	somewhere	temporarily	
–  Lineage	is	preserved	
–  If	data	is	lost,	recomputes	from	base	data	

306	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

When	to	Use	CheckpoinLng	

Ã  Window	and	other	stateful	streaming	applicaQon	transformaQons	require	it	

Ã  IteraQve	applicaQons	that	may	loop	through	data	hundreds,	or	thousands	of	Qmes	
–  Machine	learning	algorithms	typically	do	this	

12/12/16	

154	

307	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ImplemenLng	CheckpoinLng	

Ã  Set	a	checkpoint	directory,	and	checkpoint	the	rdd:	
	

sc.setCheckpointDir("somedir/")

rdd = sc.textFile("/path/to/file.txt")

while x in range(<large number>)

 rdd.map(…)

 if x % 5 == 0

 rdd.checkpoint()

rdd.saveAsTextFile("/path/to/output.txt")

308	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Understand RDD lineage with toDebugString()

Ã Example:	
 rdd.toDebugString

(2)	PythonRDD[29]	at	RDD	at	PythonRDD.scala:43	[]		

	|		MapParQQonsRDD[28]	at	mapParQQons	at	PythonRDD.scala:346	[]		
	|		ShuffledRDD[27]	at	parQQonBy	at	NaQveMethodAccessorImpl.java:-2	[]	

+-(2)	PairwiseRDD[26]	at	reduceByKey	at	<ipython-input-8-1817f0de03c6>:2	[]		
	 	|	PythonRDD[25]	at	reduceByKey	at	<ipython-input-8-1817f0de03c6>:2	[]	 		 	 		|	

MapParQQonsRDD[24]	at	textFile	at	NaQveMethodAccessorImpl.java:-2	[]		
	 	|	some-text-file	HadoopRDD[23]	at	textFile	at	NaQveMethodAccessorImpl.java:-2	[]		

	

12/12/16	

155	

Lab:	CheckpoinLng	and	RDD	
Lineage	

310	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	Shared	Variables	

12/12/16	

156	

311	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Use	accumulators	

Ã  Use	broadcast	variables	

AZer	compleLng	this	lesson,	students	should	be	able	to:	

312	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Accumulators	

12/12/16	

157	

313	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Accumulators

counter = sc.accumulator(0)

rdd.foreach(...
 counter += 1

)

counter.value()

Executor 1

3 Counter += 1

Executor 2

8 Counter += 1

Executor 3

5 Counter += 1

Driver

16 counter.value

314	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Accumulators

Ã Accumulator = A variable that is only “added” to through an associated operation, and
can therefore be efficiently supported in parallel.

Ã Accumulators can be used to implement counters (as in MapReduce) or sums.
Ã Only the driver can access the value.

– Updates are sent to the driver, will get an exception if you use the .value on executors
Ã Spark natively supports accumulators of numeric types, and developers can add

support for new types.
– Doubles
– Floats
– Ints

Ã Most common uses
– Count events that occur, like invalid records

12/12/16	

158	

315	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Accumulators and Fault Tolerance

Ã Spark automatically deals with failed or slow machines by re-executing failed or slow
tasks.

Ã Accumulators are returned at the end of successful tasks
Ã For accumulators used in actions, Spark applies each task’s update to each

accumulator only once
– If a reliable counter is required, they must be used in an action, like foreach()

Ã For accumulators used in transformations, the guarantee does not exist
– Transformations can happen more than once in an action, if there are slow or failed tasks
– Accumulators in transformations should only be used for debugging

316	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Accumulator in Transformation Example

rdd=sc.textFile(myfile.txt)
blanklines = sc.accumulator(0) ## Create an Accumulator[Int]
initialized to 0

rddNotBlank = rdd.map(lambda line: \
 if not line:

 blanklines += 1
 else:

 line).map(lambda line: line.split(',')

rddNotBlank.saveAsTextFile("myfile.txt")

12/12/16	

159	

317	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Accumulator in Action Example

val rdd=sc.textFile(myfile.txt)

//Create Accumulator[Int] initialized to 0
val blanklines = sc.accumulator(0)

val rddNotBlank = rdd.filter(line => !line.isEmpty)
rdd.foreach(line =>
 if (line.isEmpty){
 blanklines +=1

})

rdd.join(otherrdd).saveAsTextFile()
blanklines.value

rddNotBlank.saveAsTextFile("myfile.txt")

Lab:	Using	Accumulators	to	
Check	Data	Quality	

12/12/16	

160	

319	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Using	Accumulators
Ã  Using	Broadcast	variables	

320	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

How do Broadcast Variables Work?

Ã Without broadcast variables, reference
data gets sent to every task on the
executor, even though multiple tasks
reuse the same variables.

Ã Using broadcast variables, Spark sends
a copy to the node once, then the data
is stored in memory. Each task will
reference the local copy of the data.

Executor
Driver

Reference	
Data	

Task	

Task	

Task	

RefD	

RefD	

RefD	

Executor Driver

Reference	
Data	

Task	

Task	

Task	

RefD	

12/12/16	

161	

321	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Broadcast Variables

Ã  Spark feature for sharing a variable throughout the application cluster
–  The broadcast variable must fit within an executor's memory
–  Not intended for RDDs or DataFrames
–  Immutable

Ã  Give every node a copy of an input dataset in an efficient manner

–  Uses P2P torrenting concepts to efficiently distribute
–  Lazy - the first read of a broadcast variable will retrieve and store the data
–  Sent to each executor once

322	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Why Use Broadcast Variables?

Ã  Minimize network traffic by passing referenced variables to an executor only
one time
–  Especially beneficial when local variables are 20kb or larger

Ã  Complements Spark's task launching behavior for RDD programming, which is
optimized for small tasks
–  Not used with Spark SQL

12/12/16	

162	

323	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Implementing Broadcast Variables

rdd = sc.textFile(input.txt).map(….)…
toBroadcast = //some dictonary
lkp_bc = sc.broadcast(toBroadCast)

lookuprdd = rdd.map(lambda (key, value):
 (key, lkp_bc.value[value])))
	

Lab:	Using	Broadcast	
Variables	

12/12/16	

163	

325	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Performance	Tuning	

326	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Control	behavior	and	performance	of	Spark	applicaQons	via:	
–  mapPartitions() vs.	map()
–  Modifying	RDD	parallelism	/	parQQoning	
–  Caching	and	persisQng		
–  CheckpoinQng	
–  Using	broadcast	variables	
–  ImplemenQng	joining	strategies	
–  OpQmizing	executors	

AZer	compleLng	this	lesson,	students	should	be	able	to:	

12/12/16	

164	

327	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  mapPartitions()	vs.	map()

328	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Improve	Performance:	mapPartitions() vs. map()

Ã  mapPartitions()	is	a	special	kind	of	map	transformaQon		
–  Requires	both	input	and	output	to	be	iterable	
–  Operates	at	the	RDD	parQQon	level,	as	opposed	to	the	element	level	like	map()

Ã  Ex:	IniQalize	a	database	with	2,000,000	elements	spread	across	four	RDD	parQQons	
–  map()	iniQalizes	each	element	individually,	thus	2,000,000	iniQalizaQons	
–  mapPartitions() iniQalizes	each	parQQon	(four	iniQalizaQons	total)	and	then	can	iterate	

through	the	elements	in	each	parQQon	
–  Can	result	in	significant	performance	improvements	

 rdd1 = sc.parallelize((1,2,3,4,5,6,7,8),2)

 rdd1.mapPartitions(lambda x: [sum(x)]).collect()

 [(10, 26)]

12/12/16	

165	

329	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

map vs mapPartitions example cont.

Ã Lets	fix	this,	and	use	a	beyer	parser	->	ConverQng	string	to	Array[String]	
rdd = ##someRdd
rdd.mapPartitions(lambda lines: {
 myObject = simulateExpensiveOjectCreation()
 lines.map(lambda line: {
 myObject.map(lambda line: …
 })
 }).take(5).foreach(println)

Ã In	this	example	we	created	a	single	instance	of	a	an	obect	per	parQQon,	instead	of	per	record.		

def simulateExpensiveObjectCreation() {
 Thread sleep 10
}

330	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  mapPartitions()	vs.	map()
Ã  ParQQon	OpQmizaQon	

12/12/16	

166	

331	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

PairRDD Parallelism – Hashed Partitions

Ã  By default, files read into Spark are not necessarily organized so that matching
keys are written to the same partition
–  Also, when map() is used to create a PairRDD, partitions are not reorganized

Ã  PairRDDs can be partitioned so that matching keys are in the same partition
–  Can result in performance improvements, particularly when implementing joins

Ã  Some operations create hashed partitions by design
– partitionBy(), cogroup(), join(), groupByKey(), reduceByKey(), sort()
– The default HashPartitioner guarantees identical keys go to same partition

332	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Preserving Hashed Partitions

Ã  Some Spark transformations maintain partitioning after hashing
–  No need to recreate hashed partitions after the first run
–  No new keys are created and partition placement is maintained

Ã  Examples of operations that preserve hashed partitioning:
– mapValues(), flatMapValues(), filter(), reduceByKey(), groupByKey(),

and join()

12/12/16	

167	

333	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Partitioning Optimization	
Ã  Generally	speaking,	too	many	parQQons	is	beyer	than	too	few	

–  Increase	parQQons	by	numbers	by	50%	unQl	performance	stops	improving	
–  Tasks	will	usually	take	at	least	200ms	
–  Scheduling	tasks	takes	~10ms-20ms	regardless	of	the	amount	of	data	being	processed	

Ã  Number	of	parQQons	should	be	a	slightly	less	than	a	mulQple	of	the	number	of	executor	
cores	
–  Ten	executors	with	two	cores	each	=	RDDs	with	39,	58,	or	78	parQQons	
–  Reasons	for	a	liyle	less	is	to	leave	a	couple	cores	open	for	speculaQve	execuQon	

Ã  Spark	SQL	
–  uses	"spark.sql.shuffleParQQons"	by	default	is	200	
–  Best	to	have	number	parQQons	=	output	datasize	/	block	size	

334	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  mapPartitions()	vs.	map()
Ã  ParQQon	OpQmizaQon	
Ã  Joining	Strategies	

12/12/16	

168	

335	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ParQQon	1	

Spark Joins at the Partition Level

Ã  To improve performance, joins technically occur at the partition, not the
complete dataset, level
–  Framework ensures that join key placement in partitions aligns with all datasets
–  The collective results represent the comprehensive join request

Ã  Leverages hash partitions and requires equal number of partitions for datasets
to be joined

Orders	
ID=1	
ID=3	
ID=5	
	
…	

Order	Items	
O_ID=1	
O_ID=1	
O_ID=3	
O_ID=5	

…	

ParQQon	2	

Orders	
ID=2	
ID=4	
ID=6	
	
…	

Order	Items	
O_ID=2	
O_ID=4	
O_ID=4	
O_ID=6	

…	

336	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

No	Common	Hash	ParLLoning	(Worst	Case)	

Ã  Neither	dataset	is	parQQoned	by	the	
join	key	

Ã  Both	have	to	perform	a	
partitionBy()	transformaQon	
–  Incurs	a	shuffle	for	each	

Ã  NOTE:	The	newly	created	hashed	
parQQoned	datasets	use	the	number	of	
parQQons	from	the	largest	original	

Orders	
ID=1	
ID=2	
ID=3	
ID=4	

ID=5	
ID=6	
ID=7	
ID=8	

Order	Items	
O_ID=1	
O_ID=1	
O_ID=1	
O_ID=2	

O_ID=2	
O_ID=3	
O_ID=3	
O_ID=4	

O_ID=5	
O_ID=6	
O_ID=7	

O_ID=8	
O_ID=8	
O_ID=8	

JOIN	
ID=1	

O_ID=1	
O_ID=1	
O_ID=1	

ID=5	
O_ID=5	

ID=2	
O_ID=2	
O_ID=2	

ID=6	
O_ID=6	

ID=3	
O_ID=3	
O_ID=3	

ID=7	
O_ID=7	

ID=4	
O_ID=4	

ID=8	
O_ID=8	
O_ID=8	
O_ID=8	

12/12/16	

169	

337	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

One	Dataset	Hashed	ParLLoned	(Be4er)	

Ã  The	larger	dataset	is	hashed	parQQoned	
by	the	join	key	

Ã  The	smaller	one	performs	a	
partitionBy()	transformaQon	
–  Only	one	shuffle	is	required	

Orders	
ID=1	
ID=2	
ID=3	
ID=4	

ID=5	
ID=6	
ID=7	
ID=8	

Order	Items	
O_ID=1	
O_ID=1	
O_ID=1	
O_ID=5	

O_ID=2	
O_ID=2	
O_ID=6	

O_ID=3	
O_ID=3	
O_ID=7	

O_ID=8	
O_ID=8	
O_ID=8	
O_ID=8	

JOIN	
ID=1	

O_ID=1	
O_ID=1	
O_ID=1	

ID=5	
O_ID=5	

ID=2	
O_ID=2	
O_ID=2	

ID=6	
O_ID=6	

ID=3	
O_ID=3	
O_ID=3	

ID=7	
O_ID=7	

ID=4	
O_ID=4	

ID=8	
O_ID=8	
O_ID=8	
O_ID=8	

338	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Co-ParLLoned	(Best	Case)	

Ã  Both	datasets	are	hashed	parQQoned	
by	the	join	key	with	the	same	number	
of	parQQons	
–  Referred	to	as	co-parQQoned	join	

Ã  No	shuffles	are	required		
–  This	is	a	narrow	operaQon!	
–  Significant	performance	gains	

Orders	
ID=1	
ID=5	

ID=2	
ID=6	

ID=3	
ID=7	

ID=4	
ID=8	

Order	Items	
O_ID=1	
O_ID=1	
O_ID=1	
O_ID=5	

O_ID=2	
O_ID=2	
O_ID=6	

O_ID=3	
O_ID=3	
O_ID=7	

O_ID=8	
O_ID=8	
O_ID=8	
O_ID=8	

JOIN	
ID=1	

O_ID=1	
O_ID=1	
O_ID=1	

ID=5	
O_ID=5	

ID=2	
O_ID=2	
O_ID=2	

ID=6	
O_ID=6	

ID=3	
O_ID=3	
O_ID=3	

ID=7	
O_ID=7	

ID=4	
O_ID=4	

ID=8	
O_ID=8	
O_ID=8	
O_ID=8	

12/12/16	

170	

339	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Consideration and Guidelines

Ã  RDD developers needs to consider order of operations
–  DataFrames benefit from Catalyst interventions, so not as critical here

Ã  If possible, filter out irrelevant data from large datasets before joining to a

smaller one
–  Will require less shuffling to occur during the join

Ã  Cache any hash partitioned datasets that will be used in a subsequent join
–  Prevents the need to rebuild the intermediary dataset for each join

340	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  mapPartitions()	vs.	map()
Ã  ParQQon	OpQmizaQon	
Ã  Joining	Strategies	
Ã  Executor	OpQmizaQon	and	Memory	Management	and	

YARN	

12/12/16	

171	

341	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Memory Management Overview

Ã Memory	usage	in	Spark	falls	under	one	of	two	categories	
– ExecuQon	

-  Memory	used	for	computaQons	in	shuffles,	joins,	sorts	and	aggregaQons	

– Storage	
-  Memory	used	for	caching	across	the	cluster	

Ã New	in	Spark	1.6	is	a	unified	memory	region.		Memory	can	be	shared	between	the	execuQon	
and	storage.		Storage	takes	a	lower	precedence,	that	is	objects	stored	in	storage	can	be	evicted	
when	memory	is	required	by	the	execuQon	side	of	things.		We	can	set	minimums	(like	YARN	fair	
scheduler)	on	the	amount	of	memory	storage	must	have	available.	

342	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Executor Optimization (Legacy)

Ã  Executors are made up of three regions:
–  Overhead (384MB by default)
–  Space reserved for caching (60%)
–  Space reserved for java objects (40%)

Ã  Data that will be cached is stored in the area for caching

–  The remaining will be used for creating objects

Ã  Three main configurations to make up executor
--executor-memory

--executor-cores

--num-executors

Executor	Overhead	(384	MB)	

Caching	60%	
Java	

Objects	
40%	

12/12/16	

172	

343	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Memory Management in Spark 1.6+

Ã Configs	depreciated	in	Spark	1.6	
 spark.shuffle.memoryFraction
 spark.storage.memoryFraction
 spark.storage.unrollFraction

 spark.memory.useLegacyMode (false, can be set to true to use
old ways)

Ã Spark	moved	from	a	rigid	memory	structure	to	a	more	fluid,	and	(can	leverage)	off-heap	
managed	memory	

Ã Pros:	
– Less	garbage	collecQon	
– Less	wasted	resources	

Ã 	Cons:	
– Data	stored	off-heap	is	slower	to	access	than	on-heap	(sQll	MUCH	faster	than	disk)	
– Everything	must	be	serialized/deserialized	(encoders	are	available	for	primaQves/java	beans	currently)	
– More	knobs	to	tune	

344	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Using off-heap Memory

Ã Important	new	configs:	
– spark.memory.offHeap.enabled (false by default)

-  If	true,	Spark	will	ayempt	to	use	off-heap	memory	for	certain	operaQons.	If	off-heap	memory	use	is	enabled,	
then	spark.memory.offHeap.size	must	be	posiQve.	

– spark.memory.offHeap.size (0 by default)
– spark.memory.fraction (0.6 by default)
– spark.memory.storageFraction

12/12/16	

173	

345	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Configuring Executors

Ã  executor-memory
– Should be between 8GB and 64GB

Ã  executor-cores
– At least 2, max 4

Ã  num-executors
– This is the most flexible
– If caching data, desirable to have datasize * 2 as the total application memory

Ã  EXAMPLE: YARN nodes with 128GB and 16 cores available would support a
relatively common 16GB-memory / 2-core executor size
–  If caching a 100GB dataset, 13 executors could be ideal

346	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark on YARN and Resource Request Implications

Ã Spark	ApplicaQons	generally	have	a	higher	resource	usage	footprint.	
– More	RAM	
– More	CPU's	per	worker	
– Larger	JVM's	

Ã General	recommendaQon	on	resource	requesQng:	
– Fewer,	larger	executors	are	generally	beyer	than	many	smaller	ones	

-  Minimize	shuffle	

-  More	data	available	locally	to	the	worker	

-  Less	overhead	

12/12/16	

174	

347	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark on YARN and Resource Request Implications cont.

Ã Every	machine	has	a	finite	amount	of	memory	and	CPU's	available	to	it	
Ã The	larger	the	requested	container,	the	harder	it	is	to	find	a	spot	to	allocate	
Ex.		Request	4	–	40gb	RAM	executors	on	a	10	node,	100gb	RAM/machine	cluster,	no	load	
Easily	to	find	resources	for	the	applicaQon	to	run	

Executor	
1	

Executor	
2	

Executor	
3	

Executor	
4	

348	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark on YARN and Resource Request Implications cont.

Ã Every	machine	has	a	finite	amount	of	memory	and	CPU's	available	to	it	
Ã The	larger	the	requested	container,	the	harder	it	is	to	find	a	spot	to	allocate	
Ex.		Request	4	–	40gb	RAM	executors	on	a	10	node,	100gb	RAM/machine	cluster,	50%	load	
Becomes	less	obvious	where	to	run	

Executor	
1	

Executor	
2	

Executor	
3	

Executor	
4	

12/12/16	

175	

Knowledge	Check	

350	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

QuesLons	

1.  Why can mapPartitions be faster than map?
2.  Why does preserving partition potentially make down stream

operation faster?
3.  Whats better, too many or to few partitions?
4.  Is a lot of small executor, or fewer big ones ideal?

12/12/16	

176	

Summary	

352	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  mapParQQons()	is	similar	to	map()	but	operates	at	the	parQQon	instead	of	element	level	

Ã  Controlling	RDD	parallelism	before	performing	complex	operaQons	can	result	in	
significant	performance	improvements	

Ã  Caching	uses	memory	to	store	data	that	is	frequently	used	

Ã  CheckpoinQng	writes	data	to	disk	every	so	ogen,	resulQng	in	faster	recovery	should	a	
system	failure	occur	

Ã  Broadcast	variables	allow	tasks	running	in	an	executor	to	share	a	single,	centralized	
copy	of	a	data	variable	to	reduce	network	traffic	and	improve	performance	

Ã  Join	operaQons	can	be	significantly	enhanced	by	pre-shuffling	and	pre-filtering	data	

Ã  Executors	are	highly	customizable,	including	number,	memory,	and	CPU	resources	

Ã  Spark	SQL	makes	a	lot	of	manual	opQmizaQon	unnecessary	due	to	Catalyst	

12/12/16	

177	

353	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Build	and	Submit	Spark	
ApplicaLons	

354	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Create an application to submit to the cluster
Ã  Describe client vs. cluster submission with YARN
Ã  Submit an application to the cluster
Ã  List and set important configuration items

AZer	compleLng	this	lesson,	students	should	be	able	to:	

12/12/16	

178	

355	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  CreaQng	an	ApplicaQon	to	Submit	to	a	Cluster	

356	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Zeppelin / REPLs vs. Spark Applications

Ã  Zeppelin and REPLs allow for interactive manipulation, exploration, and testing

Ã  Spark applications run as independent programs for production applications
–  Can be integrated into workflows managed by Falcon/Oozie

Ã  The differences between them are minimal, making code reuse easy

12/12/16	

179	

357	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Writing an Application to Submit to YARN

Ã  Zeppelin and the REPLs take care of a few things automatically
– Import the SparkContext and SparkConf libraries
– Set up the main program
– Create a Spark configuration object
– Create and initialize a SparkContext instance

Ã  For production applications, this must be coded by the developer
–  Can be accomplished in about five lines of code

358	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Importing Libraries

Ã  The	user	must	code	the	import	all	the	libraries	used	by	the	applicaQon	

Ã  All	applicaQons	will	need	the	SparkContext	and	SparkConf	libraries	in	addiQon	to	
basic	libraries	such	as	sys	and	os

 import os

 import sys

 from pyspark import SparkContext, SparkConf

	

Ã  To	import	other	Spark	libraries,	its	the	same	as	any	other	applicaQon	

 from pyspark.sql import SQLContext

 from pyspark.sql.types import Row, IntegerType

12/12/16	

180	

359	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Creating a "main" Program

Ã  The	developer	must	set	up	the	main	program	for	the	applicaQon	

 import os

 import sys

 from pyspark import SparkContext, SparkConf, SQLContext

 if __name__ == "__main__":

 #Spark Programming

360	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Creating a Spark Configuration

Ã  The	SparkConf	configuraQon	object	is	used	by	the	context	
–  It	idenQfies	the	app	name,	resource	manager,	resources	to	request,	etc.	

Ã  The	developer	must	add	the	creaQon	of	the	configuraQon	to	the	applicaQon	

Ã  SparkConf	supports	pipelining	as	well	as	“se}ng”	configuraQon	properQes	

 conf = SparkConf().setAppName("appName").setMaster("yarnMode")
 conf.set('spark.executor.instances', '5')

 conf.set('configuration', 'value’)

12/12/16	

181	

361	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Creating the SparkContext

Ã  The	SparkContext	is	used	for	the	applicaQon	to	communicate	to	the	cluster,	request	
resources,	and	schedule	tasks	to	be	run	

Ã  The	developer	creates	the	context	using	the	configuraQon	object	

 sc = SparkContext(conf=conf)	

Ã  SparkContext	has	configuraQons	that	can	be	set	ager	its	been	created	

 sc.setLogLevel("ERROR")

Ã  Always	stop	the	context	at	the	end	of	the	applicaQon	
–  Ensures	resources	are	properly	released	

 sc.stop()

362	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

A Complete Application (Python)

import os

import sys

from pyspark import SparkContext, SparkConf

if __name__ == "__main__":

 conf = SparkConf() .setAppName("appName").setMaster("yarnMode")

 sc = SparkContext(conf=conf)

 sc.textFile("dataFile.txt”)

 ## Spark Programming

 sc.stop()

12/12/16	

182	

363	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  CreaQng	an	ApplicaQon	to	Submit	to	a	Cluster	
Ã  YARN	Client	vs.	YARN	Cluster	

364	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark Deployment Modes

yarn-client	

yarn-cluster	

Client Machine

Driver

Client Machine

YARN	

Container	 AppMaster	

YARN	

Container	 AppMaster	 Driver

12/12/16	

183	

365	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark Deployment Modes

yarn-client	

yarn-cluster	

Client Machine

Driver

Client Machine

YARN	

Container	 AppMaster	

YARN	

Container	 AppMaster	 Driver

366	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

YARN Application Submission

Ã  Spark YARN mode options:
–  yarn-client
–  yarn-cluster

Ã  yarn-client
– Developing applications
– Testing of applications
– REPLs and Zeppelin

Ã  yarn-cluster
–  Running production applications

12/12/16	

184	

367	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

YARN Client Submission Process

Client Machine Worker 1 Worker 2

YARN ResourceManager

1)	Driver	Kickoff	

IniQate	Spark	Program	

Spark	Context	

Create	Context	

DAGScheduler	

Run	Job	

TASKScheduler	

Run	Job	

SchedulerBackend	

Launch	Task	

2)
	Su

bm
it	
YA
RN
	A
pp
	

Container	

3)	Allocate	container	and…	

…launch		
ExecutorLauncher	
ApplicaQonMaster	

AppMaster	
	

ExecutorLauncher	

4)
	N
eg
oQ
at
e	R

es
ou
rc
es
	

Container	

	
Executor	and		

ExecutorBackend	

5)	Allocate	containers	
				and	launch	program	

368	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

YARN Cluster Submission Process

Client Machine Worker 1 Worker 2

YARN ResourceManager

Spark	Submit	

Spark	Client	

Create	

2)
	Su

bm
it	
YA
RN
	A
pp
	

Container	

3)	Allocate	container	and…	

…launch		
Spark	Driver	
ApplicaQonMaster	
(which	iniQates	
	Spark	context,		
	schedulers,	etc.)	

AppMaster	
	 4)

	N
eg
oQ
at
e	R

es
ou
rc
es
	

Container	

	
Executor	and		

ExecutorBackend	

5)	Allocate	containers	
				and	launch	program	

1)	Create	Spark	Client	

Spark Driver
Spark Context

12/12/16	

185	

369	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  CreaQng	an	ApplicaQon	to	Submit	to	a	Cluster	
Ã  YARN	Client	vs.	YARN	Cluster	
Ã  Submi}ng	an	ApplicaQon	to	YARN	

370	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Submitting an Application to YARN

Ã  Spark	uses	the	spark-submit	command	from	the	command	line	

 spark-submit /path/to/sparkDemo.py	

Ã  Between	spark-submit	and	the	applicaQon	file,	the	developer	can	add	runQme	
configuraQons	

 --num-executors 2

 --executor-memory 1g

 --master yarn-cluster

 --conf spark.executor.cores=2

Ã  Arguments	can	be	added	ager	the	file	name

12/12/16	

186	

371	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Using Different Versions of Python

Ã  There	are	someQmes	issue	with	the	version	of	python	you	are	using	and	what	is	
configured	on	the	cluster.	

Ã  Specifying	the	PYSPARK_PYTHON	variable	while	submi}ng	your	applicaQon	can	fix	
this	issue	

 PYSPARK_PYTHON=/usr/bin/python spark-submit \

 --master yarn-cluster sparkDemo.py

372	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Application Submission Example

Ã  Example	of	a	spark-submit command:	

 spark-submit --master yarn-cluster --num-executors 4 \

 --executor-memory 8g /user/username/sparkDemo.py \

 /home/username/input.json /home/username/output.orc

12/12/16	

187	

373	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  CreaQng	an	ApplicaQon	to	Submit	to	a	Cluster	
Ã  YARN	Client	vs.	YARN	Cluster	
Ã  Submi}ng	an	ApplicaQon	to	YARN	
Ã  Se}ng	Important	ConfiguraQons	Items	

374	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark Configuration Hierarchy

Ã  Can	set	the	same	configuraQon	in	mulQple	places	
–  Where	they	are	set	will	define	which	takes	priority	

Highest	to	least	priority	
1.  Set	inside	the	applicaQon	
2.  Set	at	runQme	
3.  Set	in	a	configuraQon	file	passed	to	the	applicaQon	
4.  Spark	installaQon	defaults	located	at		

/etc/spark/conf/spark-defaults.conf

Ã  Documented	at	spark.apache.org	

12/12/16	

188	

375	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Setting Important Configuration Items at Runtime

--num-executors 20
--executor-mem 8g
--executor-cores 2
--master yarn-client
--driver-memory 1g

	

spark.shuffle.memoryFraction
spark.storage.memoryFraction

spark.default.parallelism

spark.speculation

	

ConfiguraLons	with	keywords	 ConfiguraLon	set	using	--conf key=value

376	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Setting Important Configuration Items in Application

Ã  These	se}ngs	should	always	be	set	in	the	applicaQon	
–  Don’t	forget	to	register	any	custom	classes	with	Kryo	for	non-Python	applicaQons	

	

 conf = SparkConf()

 conf.set('spark.serializer',

 'org.apache.spark.serializer.KryoSerializer')

 conf.set('spark.speculation','true')

	

12/12/16	

189	

Lab:	Build	and	Submit	YARN	
ApplicaLons	

Knowledge	Check	

12/12/16	

190	

379	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

QuesLons	

1.  What components does the developer need to recreate when
creating a Spark Application as opposed to using Zeppelin or a
REPL?

2.  What are the two YARN submission options the developer has?
3.  What is the difference between the two YARN submission

options?
4.  When making a configuration setting, which location has the

highest priority if the event of a conflict?
5.  True or False: You should set your Python Spark SQL application

to use Kryo serialization

Summary	

12/12/16	

191	

381	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  A developer must reproduce some of the back-end environment creation that
Zeppelin and the REPLs handle automatically.

Ã  The main differences between a yarn-client and yarn-cluster
application submission is the location the Spark driver and SparkContext.

Ã  Use spark-submit, with appropriate configurations, the application file, and
necessary arguments, to submit an application to YARN.

382	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

IntroducLon	to	
Machine	Learning	with	
Spark	

12/12/16	

192	

383	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Describe	the	purpose	of	machine	learning	and	some	common	algorithms	used	in	it	

Ã  Describe	the	machine	learning	packages	available	in	Spark	

Ã  Examine	and	run	sample	machine	learning	applicaQons	

AZer	compleLng	this	lesson,	students	should	be	able	to:	

384	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Disclaimer	

Ã  This	is	not	a	Data	Science	class	

Ã  Fully	uQlizing	the	packages	this	lesson	will	discuss	requires	fundamental	understandings	
of	topics	that	go	well	beyond	what	will	be	covered	

Ã  Labs	and	suggested	exercises	will	consist	of	pre-built	scripts	/	applicaQons	that	will	
demonstrate	some	of	these	topics	in	pracQce	

12/12/16	

193	

385	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Machine	Learning	Basics	

386	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Machine	Learning	Basics	

Ã  Machine	learning	ayempts	to	find	acQonable	payerns	within	data	

Ã  Creates	a	model,	which	is	used	to	make	predicQons	

Ã  Two	basic	types	of	Machine	Learning	

–  Supervised	

–  Unsupervised	

12/12/16	

194	

387	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Supervised	Learning	

Ã  Most	common	type	of	machine	learning	

Ã  A	model	is	created	that	uses	one	or	more	variables	to	make	a	predicQon,	and	then	that	
predicQon	can	be	immediately	tested	to	determine	accuracy	

Ã  Two	common	types	of	predicQons:	
–  ClassificaQon:		Yes	or	no,	approve	or	reject,	spam	or	safe,	etc.	-	Will	the	flight	depart	on	Qme?	
–  Regression:	What	will	the	value	be?	-	What	Qme	is	the	flight	likely	to	depart?	

Ã  Breaks	a	dataset	into	two	parts:	
–  Training	data:	used	to	create	the	model	
–  TesQng	data:	used	to	determine	model	accuracy	

388	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Supervised	Learning	Example	Dataset	

Carrier	 Airplane	 Age	 Airport	 Time	 Weather	 StaffPerc	 Sched	 Actual	
A	 B	 11	 SFO	 EarlyMorn	 Clear	 90	 05:31	 05:31	
C	 D	 2	 ORD	 Morn	 Windy	 84	 08:14	 09:35	
A	 D	 7	 ATL	 EarlyAg	 Cloudy	 100	 12:05	 12:05	
D	 D	 14	 ORD	 Ag	 Rain	 100	 15:21	 15:45	
B	 A	 4	 JFK	 EarlyEve	 Stormy	 94	 17:00	 19:20	
C	 B	 6	 BWI	 Eve	 Warnings	 80	 20:42	 CANCEL	
A	 D	 2	 HDP	 LateEve	 Clear	 100	 22:00	 22:00	
E	 D	 10	 STL	 RedEye	 Stormy	 93	 23:45	 CANCEL	
C	 B	 8	 DAL	 Ag	 Rain	 99	 14:10	 14:10	
C	 E	 8	 SJC	 Morn	 Clear	 98	 09:34	 10:15	

Thousands	upon	thousands	of	data	points	
collected	and	available	every	day	-		
massive	historical	data	to	work	from	

12/12/16	

195	

389	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Terminology	

Ã  Each	row	in	the	dataset	is	called	an	"observaQon"	

Ã  Each	column	in	the	dataset	is	called	a	"feature"	

Ã  Columns	selected	for	inclusion	in	the	model	are	called	"target	variables"	

390	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Supervised	Learning	Example	Workflow	

Ã  Randomly	break	data	into	two	parts	for	training	vs.	test	data	
–  In	Spark,	extremely	large	datasets	can	be	used	due	to	availability	of	cluster	resources	

Ã  Pick	one	or	more	variables	to	use	to	build	model	
–  For	example:	airplane	age,	weather,	and	airport	
–  Pick	too	few	and	the	model	may	not	be	accurate	enough	
–  Pick	too	many	and	the	model	is	only	accurate	for	the	training	data	

Ã  Run	machine	learning	algorithm	to	build	model	based	on	those	variables	

Ã  Run	the	model	against	the	test	data	and	see	how	accurately	it	predicts	results	
–  Then	go	back	and	alter	variables,	build	new	model,	and	test	again	unQl	saQsfied	

12/12/16	

196	

391	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Supervised	Learning	-	Examining	Results	

Ã  For	classificaQon	results,	predicQon	is	either	correct	or	incorrect	
–  Will	the	flight	depart	on	Qme?		
–  Percentage	accuracy	against	tesQng	data	determines	strength	of	the	model	

Ã  For	regression	results,	predicQon	will	ogen	be	inexact,	but	beyer	models	produce	closer	
predicQons	when	compared	to	actual	results	on	test	data	
–  What	Qme	will	the	flight	leave?	How	far	off	is	the	predicQon?	
–  Minimal	"sum	of	means	squared	error"	determines	strength	of	the	model	

392	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Sum	of	Means	Squared	Error	

Ã  Simple	example:	four	observaQons,	two	models	with	an	average	(mean)	variance	of	2	
–  Model	A	variance	by	observaQon:	0,	4,	0,	4	
–  Model	B	variance	by	observaQon:	1,	3,	2,	2	

Ã  IntuiQvely,	even	though	Model	A	gets	it	exactly	right	more	ogen,	it	also	gets	it	more	
wrong	consistently	as	well	

Ã  Sum	of	means	squared	takes	each	value	and	squares	it,	then	adds	them	together	
–  Larger	variance	values	get	an	exponenQal	penalty	
–  Model	A	sum	of	means	squared	=	0	+	16	+	0	+	16	=	32	
–  Model	B	sum	of	means	squared	=	1	+	9	+	4	+	4	=	18	

Ã  Thus,	Model	B	is	determined	to	be	a	beyer	fit	

12/12/16	

197	

393	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Decision	Tree	Algorithm	

Ã  Popular,	mulQ-stage	classificaQon	algorithm	that	classifies	based	on	one	variable,	then	
drills	deeper	by	adding	another	variable,	and	repeats	process	for	addiQonal	variables	

Airport:	ORD	
On	Qme:	65%	
Delayed:	35%	

Carrier	A:	
On	Qme:	80%	
Delayed	20%	

Weather:	Clear	
On	Qme:	95%	
Delayed:	5%	

Weather:	Rainy	
On	Qme:	70%	
Delayed:	30%	

Carrier	B:	
On	Qme:	50%	
Delayed	50%	

Weather:	Clear	
On	Qme:	70%	
Delayed	30%	

Weather:	Rainy	
On	Qme:	10%	
Delayed:	90%	

394	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ClassificaLon	Algorithms	

Ã  Draw	a	line	ayempQng	to	define	the	boundary	between	the	two	possible	opQons	

12/12/16	

198	

395	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Linear	Regression	Algorithm	

Ã  Draw	a	line	that	has	the	best	fit	to	the	data	

396	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Unsupervised	Learning	

Ã  Supervised	learning	is	great	as	long	as	data	is	labeled,	but	what	about	data	where	the	
label	is	unknown?	

Ã  Example:	Product	reviews	on	social	media	and	web	sites	
–  No	explicit	posiQve	or	negaQve	label	
–  How	can	we	group	them	to	determine	whether	general	consensus	is	posiQve	or	negaQve?	

Ã  Goal	is	to	find	payerns	in	data	that	allow	it	to	be	labeled	
–  Example:	Group	1	=	when	review	contains	phrase	X,	it	will	also	usually	contain	phrase	Y	
–  Upon	evaluaQon,	group	that	contains	phrase	Y	are	posiQve	reviews	

	

Ã  Most	common	type	is	clustering	

12/12/16	

199	

397	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Unsupervised	Learning	Example	Dataset	

Phrase1	 Phrase2	 Phrase3	
did	not	like	 had	a	nice	 it	was	ok	
i	loved	this	 awesome	place	to	 will	be	back	

would	not	recommend	 will	not	return	 did	not	like	
would	definitely	recommend	 i	loved	this	 service	was	good	

could	not	stand	 would	not	recommend	 had	a	nice	
service	was	excellent	 food	was	cold	 not	sure	if	
service	was	good	 will	be	back	 hard	to	find	

was	a	dump	 food	was	outstanding	 might	try	again	
food	was	cold	 did	not	like	 will	not	return	

server	was	friendly	 was	not	able	 hard	to	find	

Data	is	cleaned	of	extraneous	phrases	-		
search	for	paMerns	so	that	reviews	can	be	

grouped	without	knowing	outcome	

398	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

K-Means	Algorithm	

Ã  IdenQfy	groupings	that	likely	share	the	same	label	

12/12/16	

200	

399	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Other	Popular	Algorithms	

Ã  ClassificaQon	
–  Support	Vector	Machine	(SVM)	
–  LogisQc	Regression	
–  Naïve	Bayes		

Ã  Clustering	
–  K-Nearest	Neighbors	

Ã  Dimensionality	ReducQon		/	DecomposiQon	
–  Help	determine	target	variables	when	dataset	contains	large	number	of	features	
–  Principal	Component	Analysis	(PCA)	
–  Singular	Value	DecomposiQon	(SVD)	

Ã  CollaboraQve	Filtering	/	RecommendaQon	
–  Used	to	predict	results	based	on	collaboraQve	data	
–  AlternaQng	Least	Squares	

400	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Machine	Learning	Basics	
Ã  Spark	Machine	Learning	Libraries	

12/12/16	

201	

401	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	Machine	Learning	Overview	

Ã  Spark	implementaQons	of	common	learning	algorithms	and	uQliQes	
–  Allows	tradiQonal	data	science	work	to	be	performed	on	cluster-scale	data	

Ã  Two	packages	available	
–  spark.mllib:	operates	on	RDDs	
–  spark.ml:	operates	on	DataFrames	

Ã  Both	contain	modules	with	various	funcQons	and	sub-funcQons	which	provide	powerful	
machine	learning	capabiliQes	

402	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

mllib	Modules	

Ã  classificaQon	

Ã  clustering	

Ã  evaluaQon	

Ã  feature	

Ã  fpm	

Ã  linalg*	

Ã  opQmizaQon	

Ã  pmml	

Ã  random	

Ã  recommendaQon	

Ã  regression	

Ã  stat*	

Ã  tree*	

Ã  uQl	

12/12/16	

202	

403	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ml	Modules	

Ã  ayribute	

Ã  classificaQon	

Ã  clustering	

Ã  evaluaQon	

Ã  feature	

Ã  param	

Ã  recommendaQon	

Ã  regression	

Ã  source.libsvm	

Ã  tree*	

Ã  tuning	

Ã  uQl	

404	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Spark	Machine	Learning	Advantages	

Ã  Cluster-level	data	processing	capabiliQes	
–  Datasets	not	limited	to	what	can	fit	into	local	memory	
–  Built-in	parallel	processing	over	many	machines	at	one	Qme	

Ã  In-memory	processing	
–  Improved	performance	vs.	older	Hadoop	machine	learning	libraries	

Ã  ml	advantages	over	mllib
–  ml	operates	on	DataFrames	
–  Greater	flexibility	
–  AutomaQc	performance	enhancements	via	Catalyst	
–  Create	reusable	machine	learning	pipelines	

12/12/16	

203	

405	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ObjecLves	

Ã  Machine	Learning	Basics	
Ã  Spark	Machine	Learning	Libraries	
Ã  Machine	Learning	Sample	ApplicaQons	

406	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Machine	Learning	Sample	ApplicaLons	

Ã  Installed	automaQcally	when	Spark	is	installed	
–  /usr/hdp/current/spark-client/examples/src/main/<language>/<mllib | ml>/

12/12/16	

204	

407	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Machine	Learning	Sample	ApplicaLon	Files	

408	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

mllib	Decision	Tree	ClassificaLon	Example	

12/12/16	

205	

409	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

ml	LogisLc	Regression	Example	

410	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

K-Means	Clustering	Examples	

12/12/16	

206	

411	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Zeppelin	Machine	Learning	Lab	Note	

Lab:	Machine	Learning	
Walkthrough	

12/12/16	

207	

Knowledge	Check	

414	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

QuesLons	

1.  What are two types of machine learning?
2.  What are two types of supervised learning?
3.  What do you call columns that are selected as variables to build a

machine learning model?
4.  What is a row of data called in machine learning?
5.  What is the goal of unsupervised learning?
6.  Name the two Spark machine learning packages.
7.  Which machine learning package is designed to take advantage

of flexibility and performance benefits of DataFrames?
8.  Name two reasons to prefer Spark machine learning over other

alternatives

12/12/16	

208	

Summary	

416	 ©	Hortonworks	Inc.	2011	–	2016.	All	Rights	Reserved	

Summary	

Ã  Spark	supports	machine	learning	algorithms	running	in	a	highly	parallelized	fashion	
using	cluster-level	resources	and	performing	in-memory	processing	

Ã  Supervised	machine	learning	builds	a	model	based	on	known	data	and	uses	it	to	predict	
outcomes	for	unknown	data	

Ã  Unsupervised	machine	learning	ayempts	to	find	grouping	payerns	within	datasets	

Ã  Spark	has	two	machine	learning	packages	available	
–  mllib	operates	on	RDDs	
–  ml	operates	on	DataFrames	

Ã  Spark	installs	with	a	collecQon	of	sample	machine	learning	applicaQons	

12/12/16	

209	

Thank	You	

