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Connection before Content

Lester Martin — Hortonworks Training & Consulting
Imartin@hortonworks.com
http://lester.website

(links to blog, twitter,
github, LI, FB, etc)
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Course Agenda

The following topics will be covered during this course on developing with Apache Spark:

¢ Monday
— HDP and Spark Overviews
— RDD and PairRDD Programming

® Tuesday
— Spark Streaming
— Spark SQL (DataFrames)
— Visualization with Zeppelin

¢ Wednesday
— Monitoring and Performance Considerations
— Stand-alone Applications
— Introduction to MLlib
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Introductions

@ Your name and physical location

@ Your job role and responsibilities

® Your Big Data / Hadoop and Apache Spark experience, if any

@ Your expectations for this course

e A favorite hobby

5 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Logistics

® Mon-Fri from 10:30am-5pmEST — Instructor will stay on WebEx for a while and join early

® Breaks and lunch
— Generally, let's take breaks with labs

e BUT... chime-up if we could benefit from one at any time!
— Lunch: 1:30pmEST
— Any team meetings to work around?
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Courseware & Lab Environments

¢ Downloaded PDFs
— Student Guide
— Lab Guide

* PLUS one called AdditionalLabs.pdf | will distribute

¢ AWS hosted VMs
— IP's handed out at first lab
— Destroyed after class is over
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HDP Overview for
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Objectives

After completing this lesson, students should be able to:
Describe the characteristics and types of Big Data

Define HDP and how it fits into overall data lifecycle management strategies

Describe and use HDFS

Explain the purpose and function of YARN

9 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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S ¢ Defining Big Data

- Objectives
) o
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What Makes Data "Big" Data?

¢ The term Big Data comes from the computational sciences

® It is used to describe scenarios where the volume, rate of creation, and types of data
threaten to overwhelm the tools used to store and process it

Petabytes and more, spurred by exponential growth in

VO LU M E computers, sensors, social media, and regulatory

requirements.

Gigabytes per *second,* and faster, plus new data and

-
velo c,ty new ways to create data are generated an an increasing

rate.

Structured, semi-structured, unstructured. Databases,

Va rl Ety XML, JSON, text, photo, video, audio, etc.
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Common Types of Data in Hadoop

® There are six types of data commonly found in Hadoop.
— Sentiment data: how customers react

Clickstream data: website visitor behavior

Sensor or machine data: data from remote devices

Geographic data: location-based data

Server log data: failure and security logs

Text: email, web pages, documents, etc.

12 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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@ Defining Big Data
-> ¢ HDP Introduction

Objectives
: s

N 2.

UNIVERSITY
=
13 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

What is Hadoop?

¢ Hadoop:

— Is a collection of open source software frameworks for the distributed storing and processing of
large sets of data

— Is scalable and fault tolerant
— Works with commodity hardware
— Processes all types of Big Data

¢ Hadoop design goals:
— Use inexpensive, enterprise-grade hardware to create very large clusters
— Achieve massive scalability through distributed storage and processing

@ HDP is an enterprise-ready collection of these frameworks
— Supported by Hortonworks for business clients

14 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Hortonworks Data Platform

GOVERNANCE
GRATION ooLs
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YARN: Data Operating System

HDFS Hadoop Distributed File System
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HDP Introduction
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HDP 24
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Ongoing Innovation in Apache
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Data Management and Operations Frameworks

Hadoop Distributed File
System (HDFS)

A Java-based, distributed file system that provides scalable, reliable, high-throughput access to
application data stored across commodity servers

Yet Another Resource
Negotiator (YARN)

A framework for cluster resource management and job scheduling

Ambari A Web-based framework for provisioning, managing, and monitoring Hadoop clusters
ZooKeeper A high-performance coordination service for distributed applications

Cloudbreak A tool for provisioning and managing Hadoop clusters in the cloud

Oozie A server-based workflow engine used to execute Hadoop jobs

17 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

These brief descriptions are provided for quick

convenience. More detailed descriptions are available
. . ”

online or in other lessons and courses. RN
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Data Access Frameworks
[Framework [Descripion |
Pig A high-level platform for extracting, transforming, or analyzing large datasets
Hive A data warehouse infrastructure that supports ad hoc SQL queries
HCatalog A table information, schema, and metadata management layer supporting Hive, Pig,
MapReduce, and Tez processing
Cascading An application development framework for building data applications, abstracting the details
of complex MapReduce programming
HBase A scalable, distributed NoSQL database that supports structured data storage for large tables
Phoenix A client-side SQL layer over HBase that provides low-latency access to HBase data
Accumulo A low-latency, large table data storage and retrieval system with cell-level security
Storm A distributed computation system for processing continuous streams of real-time data
Solr A distributed search platform capable of indexing petabytes of data
Spark A fast, general purpose processing engine use to build and run sophisticated SQL, streaming,
machine learning, or graphics applications.
um(\:E’Lsnv
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Governance and Integration Frameworks

Falcon A data governance tool providing workflow orchestration, data lifecycle management, and
data replication services.
WebHDFS A REST API that uses the standard HTTP verbs to access, operate, and manage HDFS

HDFS NFS Gateway | A gateway that enables access to HDFS as an NFS mounted file system

Flume A distributed, reliable, and highly-available service that efficiently collects, aggregates, and
moves streaming data

Sqoop A set of tools for importing and exporting data between Hadoop and RDBM systems

Kafka A fast, scalable, durable, and fault-tolerant publish-subscribe messaging system

Atlas A scalable and extensible set of core governance services enabling enterprises to meet

compliance and data integration requirements

19 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Security Frameworks

HDFS A storage management service providing file and directory permissions, even more granular file
and directory access control lists, and transparent data encryption

YARN A resource management service with access control lists controlling access to compute
resources and YARN administrative functions

Hive A data warehouse infrastructure service providing granular access controls to table columns and
rows

Falcon A data governance tool providing access control lists that limit who may submit Hadoop jobs

Knox A gateway providing perimeter security to a Hadoop cluster

Ranger A centralized security framework offering fine-grained policy controls for HDFS, Hive, HBase,
Knox, Storm, Kafka, and Solr

20 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Pre-Lab: Setting Up the
Lab Environment

...\ ]
| HORTONWORKS' ;:‘“‘

UNIVERSITY
>

e Defining Big Data
¢ HDP Introduction
- @ HDFS Overview

[ ol |

| wRERARS |

UNIVERSITY
=

11



12/12/16

HDFS and YARN are the Core of HDP

———————— |

Batch Script

Map Pig Hive HBase Storm Solr Spark ISV
Reduce Accumulo Engines
Phoenix
===
 Slider J"I Slider S /1]

SQL NosQL Stream Search In-Mem  Others...

YARN: Data Operating System

HDFS Hadoop Distributed File System

umz;n/snv
HDFS — The HDP File System
¢ Hadoop stores files using the Hadoop distributed file system (HDFS).
e HDFS is the basis for Hadoop’s storage scalability and availability. HDFS:
— Splits large data files into smaller chunks called blocks
— Spreads those blocks across different slave/worker nodes
— Tracks data block location
— Automatically replicates data for high availability
® Scaling storage is easy — simply add more nodes!
“nglrv
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HDFS Command Line Interaction

25

hdfs dfs —command [args

—cat: display file content (uncompressed)
—-text: just like —cat but works on compressed files
-mkdir: create a directory in HDFS

-put, —get, —mv: copies files between local file system and HDFS, as well as move
within HDFS.

-1s, -rm: list and remove files/directories (add —R to make commands recursive)
-chgrp, —chmod, —chown: changes file permissions

—-stat: statistical info for a given file

Y
3
3
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HDFS Commands and Permissions

® hdfs dfs -mkdir mydata

® hdfs dfs -put numbers.txt mydata/

¢ hdfs dfs -1s mydata

¢ HDFS implements a POSIX-style permissions model

26

— User, group, and other rwx permissions for files and directories
— Files: r =read, w = write or append
— Directories: r = list contents, w = create or delete files or subdirectories, x = access a child object
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Lab: Using HDFS Commands
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Hadoop Applications Without YARN

Hive Cluster

Streaming Cluster

Worker 1

NodeManager
DataNode

Worker 3

NodeManager

Worker 2

NodeManager
DataNode.

Worker 4

NodeManager
DataNode

NameNode
Resource
Manager
ZooKeeper
History

DataNode
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Worker 1

NodeManager
DataNode

NameNode
Resource
Manager

ZooKeeper

History.

Spark Cluster

Worker 1

NodeManager
DataNode

Worker 2

NodeManager

NameNode
Resource
Manager
ZooKeeper
History

Worker 4

NodeManager

ataNode

Worker 3

NodeManager
DataNode
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YARN - the HDP Operating System

@ Apache Hadoop YARN is the data operating system for Hadoop 2.

® YARN is:

— Responsible for scheduling
tasks and managing CPU
and memory resources

— Designed to enable multiple
distributed applications to utilize
cluster resources in a shared,
secure, and multi-tenant manner

30 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

Batch Script saL NoSQL  Stream  Search In-Mem Others...
Map Pig Hive HBase Storm Solr Spark ISV
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YARN: Data Operating System

HDFS Hadoop Distributed File System
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YARN Resource Containers

A resource container:

o s the abstraction used to represent a discreet amount of CPU and memory resources on a machine
— Hadoop applications run inside containers.

¢ Is managed and scheduled by YARN
o s logically isolated from other containers running on the same machine
— Isolation supports application multi-tenancy.
¢ Is allocated in different sizes based on application-defined resource requests

NodeManager

Available Capacity 3
(memory, CPU) container o containe.

Job1 Job1
Task1 ApplicationMaster

[ R
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Questions

1. Name the three V’s of big data.

2. Name four of the six types of data commonly found in Hadoop.

3. Why is HDP comprised of so many different frameworks?

4. What two frameworks make up the core of HDP?

5. What is the base command-line interface command for manipulating files and

directories in HDFS?
6.  YARN allocates resources to applications via

33 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Summary
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Summary

35

Data is made "Big" Data by ever-increasing Volume, Velocity, and Variety

Hadoop is often used to handle sentiment, clickstream, sensor/machine, server,
geographic, and text data

HDP is comprised of an enterprise-ready and supported collection of open source
Hadoop frameworks designed to allow for end-to-end data lifecycle management

The core frameworks in HDP are HDFS and YARN
HDFS serves as the distributed file system for HDP
The hdfs dfs command can be used to create and manipulate files and directories

YARN serves as the operating system and architectural center of HDP, allocating
resources to a wide variety of applications via containers

© Hortonworks Inc. 2011 - 2016. All Rights Reserved

12/12/16

Overview of Zeppelin

and Spark

R
HORTONWORKS'

UNIVERSITY
=

18



Objectives

@ Use Apache Zeppelin to work with Spark
@ Describe the purpose and benefits of Spark

¢ Define Spark REPLs and application architecture

37 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Notebook Interpreter

inport sys,process.

val sqlCentext = new 0rg.cPOChE, Spri. Sal . SQUCeAtext(se)
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vol heclth. dotaset = sC.textFile("/Users/nshouc/Downl00ds/heol th 0oto, expenses. Csv"

cotegery: String, fundieg.seet:
P

(o),
*(3).tolnt

)
)-t00F ()
health. registerTempTable( neal th. tesle")

1=p0rt 5y5.process. .

>
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3Q1Context: Geg.cpoche. spork. 5ql. SQLCOMEXE = 0rg.cpache. 5pOrK. 5q1 . SULTOAtextRTePECTD
Loods/mea

Peolth_dateset: oy, opoche. 5p0ek. ndd, RID[SEring) = AUsers/nsh
Gefined cless Health
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xsal

select stote,sun(spending)/1000 SpendinginBillions from heclth toble growp by

state order by Spending(n8illions desc
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Asql

HED xsql

select yeor,sun(spending)/1000 SpendinglaBillions from heclth toble growp by
year order by Spendingir8illions category order by Spendingin8illions desc
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category
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®00
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Meacal services.
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Se1ect cotegory, Sun(spending)/1000 SpeadinginBillions from hesltn_table grovs by
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Zeppelin Major Functions

Data Ingestion

Data Discovery

Data Analytics

40 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

HED D

First, let's load the data into HDFS and make sure we can access it.

%:h FINISHED [>
vhoant

curl -55L -0 "hetps:/ . ropho
unzip {otdeno notebook-data.2ip

hadoop fs -nkir -p Juser /zeppelin/iotdeno
hadoop fs -copyFrontocal -f trainingdata /user zeppelin/iotdeno)
hadoop fs -copyFrontocal -f enrichedEvents /user/zeppelin/iotdeno

hadoop fs -1s./user/zeppelin)iotdeno

zeppelin

Archive: _{otdeno-notebock-data.zip
inflating: tratningbata
inflating: enrichedevents

Found 2 itens

e 1 zeppelin zeppelin

1 zeppelin zeppelin

63570 2015-99-16 09:16 [user zeppelin/Lotdeno/enrichedévents

et 39084 2015-09-16 08116 Juser/zeppelin/Lotdenatrafningdata

Data Visualization and Collaboration

mongh |
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Data Visualization

e Several built-in ways to interactively view / visualize data
— Table - ‘
- CO|umn @ Grouped O Stacked
— Pie |

ocontes |

@stacked OStream O Expanded @ isCertified

12/12/16

— Area

@ isCertified

— Line
— Scatter

| |
Normal 05 Lane Departure 15 Overspeed 25 Unsafe tail distance

@ count

Unsafe following

4
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What Does "Tech Preview" Mean?

@ Tech Preview status means a technology is not yet fully recommended for use in
production environments

@ Why Zeppelin is used in this course:

— The issues that keep it in tech preview do not affect learning - *nearly* all labs could be run in
either command line or Zeppelin with identical steps

— Zeppelin for data visualization and collaboration is currently the best solution in HDP - even in tech
preview - for multi-language support (Python, Scala, etc.)

— When Zeppelin comes out of tech preview (may already be true by the time you take this course),
you will already have significant hands-on experience

IR
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> ® Zeppelin Overview
® Spark Overview

~ Objectives
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Spark Introduction

® large-scale, cluster-based, in-memory data processing platform
@ Development APIs for Scala, Java, Python, and R
® Supports SQL-like operations, streaming, and machine learning

@ Runs on YARN, providing access to shared datasets across various HDP applications

R

HORTONWORKS'

UNIVERSITY
=
44 © Hortonworks Inc. 2011 — 2016. All Rights Reserved

22



12/12/16

Spark RDDs — Scalability and Performance

® Leverages HDP's horizontal scalability
¢ Fault-tolerant collection of data elements.

@ Enables parallel processing across the cluster

on-disk RDD in-memory RDD

RAM

45 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Spark High-Level Tools

® The Spark Core Engine supports four
high-level tools to build applications
that are part of the Spark project:

Spark SQL

Spark Streaming

MLlib

GraphX

® Spark also integrates with other HDP
platforms to extend and enhance its

Applications

Resource Management

Storage and Compute

capabilities - for example:
— Hive
— Zeppelin

46 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Spark and HDP

HDP 2.4.0 — Spark 1.6.0
HDP 2.3.4 —Spark 1.5.2
HDP 2.3.2 —Spark 1.4.1
HDP 2.2.8 —Spark 1.3.1
HDP 2.2.4 —Spark 1.2.1

® For this class we will use Spark 1.6 on HDP 2.4.

UN

4z
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> ® Zeppelin Overview
@ Spark Overview
@ Spark REPLs and Application Architecture

- Objectives
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REPL Spark Shells

@ The Spark Shell provides an interactive way to learn Spark, explore data, and debug
applications

@ Available for Python and Scala
$ pyspark
$ spark-shell

¢ REPL
— Read Evaluate Print Loop

|
HERYONWORKS
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Enterprise Spark Application Components in HDP

. HDP Cluster
® Driver
( )
® S par kContext master node Worker 1 ( Worker 2
YARN NameNode NodeManaaer
Dacource
¢ YARN Resource M- nager
ZooKeeper Sl Datalode
* HDFs Manager History
e Executors (" Workers [ Worker4

Client Machine NoeManager NodeManager
or HDP Container

DataNode DataNode

Executor Executor

HDFS Storage

Driver

SparkContext

UNIVERSITY
>
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Spark Driver

@ Containsthemain () function Driver
— Spark REPLs are Spark driver programs

® Creates SparkContext and uses it to access Spark

@ Manages writing and displaying log files

® Single point of failure when running YARN client (as opposed to cluster) applications

Ul

UN
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SparkContext
¢ Manages the connection to Spark Driver
@ Contacts YARN ResourceManager to launch Spark executors SparkContext

@ Schedules tasks for Spark executors

® Automatically created as sc by a REPL at startup

from pyspark import SparkContext, SparkConf

conf = SparkConf ()
sc = SparkContext (conf=conf)

UNIVERSITY
=
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Spark Executors

® Responsible for all application workload processing

— The "workers" of a Spark application, with SparkContext serving as the "master"

® Exist for the life of the application

@ Interchangeable workspaces

HDP Cluster

— Tasks assigned to a lost executor will be reassigned
— Data lost will be recomputed on another executor

@ Behavior and performance can be controlled
programmatically

53 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

master node

NameNode
Resource
Manager

ZooKeeper
History

( A
Worker 1

NodeManager

g Worker 2

NodeManaaer

NodeManager

Executor

DataNode

Executor

DataNode DataNode
N [ )
(" Worker3 Worker 4

NodeManager

DataNode

Executor
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Lab: Introduction to Spark

REPLs and Zeppelin
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Knowledge Check

R
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Questions

1. Name the tool in HDP that allows for interactive data analytics, data
visualization, and collaboration with Spark.

What programming languages does Spark currently support?
What is the primary benefit of running Spark on YARN?
Name the five components of an enterprise Spark application running in HDP.

Which component of a Spark application is responsible for application workload
processing?

o & 0D
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Summary
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Summary

® Zeppelin is a web-based notebook that supports multiple programming languages and
allows for data engineering, analytics, visualization, and collaboration using Spark

® Sparkis a large-scale, cluster-based, in-memory data processing platform that supports
parallelized operations on enterprise-scale datasets

® Spark provides REPLs for rapid, interactive application development and testing

¢ The five components of an enterprise Spark application running on HDP are:
— Driver
— SparkContext

YARN

HDFS

Executors

58 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Objectives

Explain the purpose and function of RDDs
Explain Spark programming basics
Define and use basic Spark transformations

Define and use basic Spark actions

Invoke functions for multiple RDDs, create named functions, and use numeric
operations

R
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¢ Introduction to RDDs

Objectives
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Resilient Distributed Datasets (RDDs)

o Distributed collection of immutable elements (typically stored in-memory)

e Dataset divided into partitions, which allows for parallel operation

— Node selection for RDD partitions is aligned with HDFS blocks to maximize parallelism and HDP
infrastructure benefits

¢ If individual partition is lost, will be recreated on another node

R
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Create RDDs Programmatically - Simple Lists

® Use sc.parallelize () tocreatean RDD, assigned to a local variable name,

composed of lists of numbers and verify with collect ()

rddNumList = sc.parallelize([5, 7, 11, 141])
rddNumList.collect ()
[5, 7, 11, 14]

rddTextList = sc.parallelize(["car", "house", "garage"])

rddTextList.collect ()
['car', 'house', 'garage']

63 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Create RDDs Programmatically - Variables as Input

@ RDDs can also take variable values as input:

maryFile = ("Mary had a little lamb")
rddMary = sc.parallelize([maryFile])
rddMary.collect ()

['"Mary had a little lamb']

textList = ["car", "house", "garage"]
rddTextList = sc.parallelize (textList)

rddTextList.collect ()
['car', 'house', 'garage']
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Create Simple RDDs From Text Files

@ An RDD can also be created from a text file on local, HDFS, or other locations (such as
network or cloud storage) using sc.textFile ()

rddLocal = sc.textFile("file:/localPathToFile/filename.txt")

rddHDFS = sc.textFile ("/HDFSpath/filename.txt")

¢ Multiple files can be combined as part of a single RDD using a comma-separated list or a
wildcard character

rddComma = sc.textFile("fileLocation/filel.txt,fileLocation/file2.txt")
rddWild = sc.textFile("fileLocation/*.txt")

R
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From Data Files to HDFS to RDD

. RDD1 =
Spark Application

Processing occurs

data file 1 on these three nodes

data file 2

Example
Node 3 Node 4 Node 5 assumes

blocks are

data file 3

replicated to

other nodes in
the cluster, not
shown here

R
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Multiple RDDs in a Cluster

RDD1 =

4 Partitions

Node1 Node 2 Node 3 Node 4 Node 7

RDD2 =

3 Partitions

R
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RDD Characteristics

@ Can contain any type of serializable element, meaning those that can be converted to
and from a byte stream

— Examples: int, float, bool, and sequences/iteratives like arrays, lists, tuples, and strings

¢ Element types can be mixed - for example, an array of strings and int values.

¢ Non-serializable elements (for example: objects created with certain third-party JAR
files or other external resource) cannot be made into RDDs

R
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RDD Operations

@ Two operations can be performed on an RDD
— Transformations: apply a function and create new RDD partitions based on the output

RDD1B @

— Actions: return a result of a function as output to a screen, file, etc.
Returned
Result

69 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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® Introduction to RDDs
® Spark Programming Basics
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Functional Programming Implications in Spark

¢ Immutable data: RDD1A can be transformed into RDD1B, but an individual element
within RDD1A cannot be independently modified

@ No state or side effects: No interaction with or modification of any values or properties
outside of the function

@ Behavioral consistency: If you pass the same value into a function multiple times, you
will always get the same result - changing order of evaluation does not change results

@ Functions as arguments: function results (including anonymous functions) can be
passed as input/arguments to other functions

® Lazy evaluation: function arguments are not evaluated / executed until required

71 © Hortonworks Inc. 2011 - 2016. All Rights Reserved v

Anonymous (a.k.a. Lambda) Functions

® Passed as an argument to another function, called using the 1ambda keyword

¢ Element variable is defined to the left of a colon, function body defined to the right
— Example using z as the anonymous function variable and z + 1 as the function body:

rddNumList = sc.parallelize([5, 7, 11, 14])

rddAnon = rddNumList.map(lambda z: z + 1)

e

rddAnon.collect ()
[6, 8, 12, 15]

72 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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@ Introduction to RDDs
® Spark Programming Basics
® Basic Spark Transformations

|
HERYONWORKS
UNIVERSITY
—

73 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

map ()

@ Applies a function supplied as its argument to each element of the RDD

sc.parallelize([5, 7, 11, 141])
z + 1) .collect ()

rddNumList
rddNumList.map (lambda z:
[6, 8, 12, 15]

Mary had a little lamb

Its fleece was white as snow
And everywhere that Mary went
The lamb was sure to go

UNIVERSITY
>

74 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

37



flatMap ()

@ Similar to map(), but after a map function has been performed, takes an additional step
and flattens the file

rddLineSplit = rddMary.map (lambda line: line.split("™ ™))

rddFlat = rddMary.flatmap (lambda line: line.split(" "))

R
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filter()

¢ Keeps elements that meet a defined criteria

— If the element meets that criteria, it is passed on to the new RDD
— If not, the element is discarded

rddNumList = sc.parallelize([5, 7, 11, 141])

rddNumList.filter (lambda number:
[5, 7]

number <= 10) .collect ()

months = ["January", "March",

"Mayll, "July",
rddMonths =

"September"]
sc.parallelize (months)

rddMonths.filter (lambda name: len(name) > 5).collect ()

["January', 'September']

© Hortonworks Inc. 2011 - 2016. All Rights Reserved
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distinct ()

rddBigList = sc.parallelize([5, 7, 11, 14, 2, 4, 5, 14, 211])
rddBigList.collect ()
(5, 7, 11, 14, 2, 4, 5, 14, 21]

rddDistinct = rddBigList.distinct ()
rddDistinct.collect ()
(4, 5, 21, 2, 14, 11, 7]
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® Introduction to RDDs

i @ Spark Programming Basics
® Basic Spark Transformations
® Basic Spark Actions
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collect (), first (), and take ()

® collect () returns an entire RDD
® first () returnsonly the first elementin an RDD

® take () returns a specified number of elements in an RDD
rddNumList = sc.parallelize([5, 7, 11, 141])

rddNumList.collect ()
[5, 7, 11, 14]

rddNumList.first ()
5

rddNumList.take (2)
B WTA NS
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count ()

@ Returns the number of elements in an RDD
rddNumList = sc.parallelize([5, 7, 11, 141)

rddNumList.count ()
4

rddMary = sc.textFile("mary.txt") Mary had a little lamb

Its fleece was white as snow
rddMary.count () And everywhere that Mary went
4 The lamb was sure to go

80 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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saveAsTextFile ()

@ Writes the contents of RDD partitions as a set of text files to a specified location
(hdfs://, file:/, etc.) and directory

rddBigList

.saveAsTextFile ("/desiredLocation/foldername")

¢ In this example, can verify the file was successfully written from the command line

$ hdfs dfs

Found 5 items
~TW-F=--F~~
~-fW-F=--F~-~

-rW-r--T-
-rW-r--r--

-1s desiredLocation/foldername

2016-04- : numList.txt/_SUCCESS
2016-04- : numList.txt/part-00000
2016-04- : numList.txt/part-00001
2016-04- - numList.txt/part-00002
2016-04- : numList.txt/part-00003 &=

81 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Transformations vs. Actions: Lazy Evaluation

¢ Transformations are lazy - they do not compute until an action is performed

rddMary =
rddFlat =
rddFilter

rddFilter.

sc.textFile ("mary.txt")
rddMary.flatmap ()
= rddFlat.filter (lambda words: lepAwords) > 4)

Series of transformations is
built and tracked by the
Spark driver

count () — Action triggers execution
of the series of transformations
u“\glry
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Lazy Evaluation Visualized

Mary had a little lamb Mary had a little lamb .
Its fleece was white as snow Its fleece was white as snow ExeCUte an act|0n
And everywhere that Mary went And everywhere that Mary went
The lamb was sure to go The lamb was sure to go and data gOGS through
the transformations
filter() little
fleece
count=4
white
everywhere
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Introduction to RDDs

Spark Programming Basics
Basic Spark Transformations
Basic Spark Actions

RDD Special Topics
— Multiple RDDs

N A= — Named Functions
— Numeric Operations
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Multiple RDDs: union () and intersection ()

rddNumList = sc.parallelize([5, 7, 11, 14])

rddNumList2 = sc.parallelize([2, 4, 5, 14, 211)

rddCombined = rddNumList.union (rddNumList2)
rddCombined.collect ()

(5, 7, 11, 14, 2, 4, 5, 14, 21]

rddInter = rddNumList.intersection (rddNumList2)

rddInter.collect ()

[5, 14]

85 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Named Functions

@ Functions used multiple times or those that require more than a single line of code

should be explicitly defined and named
def gradeAorNot (percentage) :
if percentage > 89:
return "A"
else:

return "Not an A"

rddGrades = sc.parallelize([87, 94, 41, 901)
rddGrades.map (gradeRorNot) .collect ()

['"Not an A', 'A', 'Not an A', 'A']

86 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Numeric Operations

@ Math and statistical functions can be performed on RDDs
— mean, count, stDev, sum, stats, max, min, etc.

12/12/16

rddNumList = sc.parallelize([5, 7, 11, 147])

rddNumList.stats ()

(count: 4, mean: 9.25,

rddNumList.min ()

5

87 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

stdev: 3.49.., max: 14, min: 5)
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More Functions: Spark Documentation
® http://spark.apache.org/docs/<version>/api/

@ Version options
— Official version number, such as "1.4.0" or "1.6.1"
— "latest" for the newest release

a Parent Directory

@R_ 2016-03-10 19:28
@]M 2016-03-10 19:28
@g}m 2016-03-10 19:28
(C] scala/ 2016-03-10 19:28

Index of /docs/latest/api

Name Last modified Size Description
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Lab: Create and Manipulate
RDDs

UNIVERSITY
g

Knowledge Check
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Questions

o & 0N =

What does RDD stand for?

What two functions were covered in this lesson that create RDDs?

True or False: Transformations apply a function to an RDD, modifying its values
What operation does the lambda function perform?

Which transformation will take take all of the words in a text object and break
each of them down into a separate element in an RDD?

True or False: The count action returns the number of lines in a text document,
not the number of words it contains.

What is it called when transformations are not actually executed until an action
is performed?

True or False: The distinct function allows you to compare two RDDs and return
only those values that exist in both of them

12/12/16

9. True or False: Lazy evaluation makes it possible to run code that '\';;',,.,,.,,Ks
hundreds of transformations without actually executing any of them wwvessiry
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Summary

93

Resilient Distributed Datasets (RDDs) are immutable collection of elements that can be
operated on in parallel

Once an RDD is created, there are two things that can be done to it: transformations
and actions

Spark makes heavy use of functional programming practices, including the use of
anonymous functions

Common transformations include map (), flatmap (), filter (),distinct (),
union (), and intersection ()

Common actions include collect (), first (), take (), count (),
saveAsTextFile (), and certain mathematic and statistical functions

UN
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Pair RDDs
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Learning Objectives

e Define and create Pair RDDs
e Perform common operations on Pair RDDs

uN

4z
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@ Pair RDD Introduction
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Pair RDD Introduction

@ A Pair RDD has elements comprised of a key-value pairs

e Allows for additional key-value based functions and operations
— Direct RDD interactions that can be used as an alternative to SQL-like APIs

um‘\:Eo‘n/snv
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Create Pair RDDs: map ()
@ Pair RDDs can be created from regular RDDs by using the map() transformation:
rddMary = sc.textFile("filelocation/mary.txt")
rddFlat = rddMary.flatMap (lambda line: line.split(' "))
kvRdd = rddFlat.map (lambda word: (word,1))
kvRdd.collect ()
(Mary, 1)
(had, 1)
(a, 1)
(little, 1)
(sure, 1)
(to, 1) @
(go, 1) um(\:E’Lsurv
98 © Hortonworks Inc. 2011 — 2016. All Rights Reserved
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Create Pair RDDs: keyBy ()

@ Creates key-value pairs by applying a function on each data element
— Function result becomes the key, data element becomes the value in the pair

rddTwoNumList = sc.parallelize([(1,2,3),(7,8)])

keyByRdd = rddTwoNumList.keyBy (len)

keyByRdd.collect ()
[(3, (1, 2, 3)), (2, (7, 8))]

e AR
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Create Pair RDDs: zipWithIndex ()

o Creates key-value pairs by making element index (position) the value
— Element becomes the key

rddThreeWords = sc.parallelize(["cat","A","spoon"])

zipWIRdAd = rddThreeWords.zipWithIndex ()

zipWIRdd.collect ()

[('cat', 0), ('A', 1), ('spoon', 2)]

R
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Create Pair RDDs: zip ()

another RDD as the value
— Syntax: keyRDD.zip(valueRDD)

rddThreeWords =

sc.parallelize(["cat", "A",
rddThreeNums = sc.parallelize([11, 241, 371)
zipRdd = rddThreeWords.zip (rddThreeNums)

zipRdd.collect ()

® Creates key-value pairs by taking elements from one RDD as the key and elements of

— Assumes the two RDDs have the same number of partitions and elements

"Spoon"] )

12/12/16

[('cat', 11), ('A', 241), ('spoon', 37)]
@ Pair RDD Introduction
> @ Pair RDD Operations
~ Objectives
S ot
s ]
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mapValues ()

® Performs a function on Pair RDD values, leaving keys unchanged

zipWIRdAd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)])
rddMapVals = zipWIRdd.mapValues (lambda val: val + 1)

rddMapVals.collect ()
[('cat', 1), ('A', 2), ('spoon', 3)]

e AR
s
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keys (), values(), and sortByKey ()
® keys () -returnsa list of just the keys

rddMapVals.keys () .collect ()
['cat', 'A', 'spoon']

® values () -returnsa list of just the values

rddMapVals.values () .collect ()
(1, 2, 3]

® sortByKey (ascending=True/False)
— "ascending=False" sorts from largest to smallest; default is "ascending=True"

rddMapVals.sortByKey () .collect ()
(('a', 2), ('cat', 1), ('spoon', 3)]

104  © Hortonworks Inc. 2011 - 2016. All Rights Reserved

52



12/12/16

Reorder Key-Value Pairs using map ()

® Use pattern matching to reorder placement of key-value pair elements in an RDD

zipWIRdAd = sc.parallelize([("cat", 0), ("A", 1), ("spoon", 2)])

rddReorder = zipWIRdd.map (lambda (key, value): (value, key))

rddReorder.collect ()

[(O, 'cat'), (1, 'A"), (2, 'spoon')]

Y
2
D
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lookup (), countByKey (), and collectAsMap ()
® lookup (key) -returns a list containing all values for a given key
keyByRdd. lookup (2)
[(7, 8)]
® countByKey () -countsthe number times a key appears
keyByRdd.countByKey ()
defaultdict (<type 'int'>,{2: 1, 3: 1})
® collectAsMap () - collectsthe result asamap
— If multiple values exist for the same key only one will be returned
keyByRdd.collectAsMap () E;&ﬁq
{2: (7, 8), 3: (1, 2, 3)} unIVERSITY
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reduceByKey ()

® Performs a reduce operation on elements of a Pair RDD and runs a function on any
elements that share a key

kvReduced = kvRdd.reduceByKey (lambda a,b: atb)

(Mary, 1)

kvReduced.collect ()

(had, 1)

(a, 1)
(litle, 1) d', 1), (u'fleece’,
(tamb, 1) (u'went', 1),

1), (u'its',

[(u'a', 1), (u'lamb', 2),
1), (u'the', 1), (u'as', 1),

s', 2), (u'white', 1), (u'sure
'to', 1), (u'Mary', 2)]

> 2> 2> -

(Mary, 1)

(went, 1)
(The, 1)
(lamb, 1)
(was, 1)
(sure, 1)
(to, 1)

107 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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groupByKey ()

@ Returns an RDD with a grouping of values by key
— Grouped values are returned as a single iterable object
— Can be viewed by mapping the elements of the iterable object into a defined list

kvGroupByKey = kvRdd.groupByKey () .map (lambda x : (x[0], list(x[1])))

kvGroupByKey.collect ()

[(u'a', [11), (u'lamb', [1, 1]), (u'little', [1]),..(u'Mary',[1, 1])]

When desired output can be obtained by reduceByKey(), use that instead

108 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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subtractByKey ()

® Returns key-value pairs containing keys in the source RDD not found in another RDD

zipWIRdAd = sc.parallelize([("cat", 0), ("a", 1),

("spoon", 2)1)
rddSong = sc.parallelize ([ ("cat", 7),

("cradle™, 9), ("spoon", 4)])

rddSong.subtractByKey (zipWIRdd) .collect ()
[('cradle', 9)]

(‘A', 1) is not returned because it does not exist in the source RDD

[ mansR
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Pair RDD Joins

e Alljoins types are supported: inner ("join"), full outer, left outer, right outer

zipWIRdd = sc.parallelize([("cat", 0), ("A", 1),

("spoon", 2)1)
rddSong = sc.parallelize([("cat", 7),

("cradle"™, 9), ("spoon", 4)]

rddSong.leftOuterJoin (ZipWIRdd) .collect ()

[('spoon', (4, 2)), ('cradle', (9, none)), ('cat', (7, 0))]

UNIVERSITY

L
110 © Hortonworks Inc. 2011 — 2016. All Rights Reserved

55



12/12/16

e ———————— ]

More Functions: Spark Documentation
® http://spark.apache.org/docs/<version>/api/

@ Version options
— Official version number, such as "1.4.0" or "1.6.1"
— "latest" for the newest release

.
Index of /docs/latest/api
Name Last modified Size Description
a Parent Directory
a&/ 2016-03-1019:28
Diava/ 2016-03-10 19:28
3 pythow/ 2016-03-10 19:28
£ scala/ 2016-03-1019:28 - anm.
UNIVERSITY
=
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Lab: Create and Manipulate
Pair RDDs, Advanced RDD
Programming
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Knowledge Check
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Questions

1. An RDD that contains elements made up of key-value pairs is
sometimes referred to as a

2. Name two functions that can be used to create a Pair RDD.

3. True or False: A key can have a value that is actually a list of
many values.

4. Since sortByKey () only sorts by key, and there is no
equivalent function to sort by values, how could you go about
getting your Pair RDD sorted alphanumerically by value?

5. You determine either reduceByKey () oOr groupByKey ()
could be used in your program to get the same results. Which
one should you choose?

6. How can you use subtractByKey () to determine *all* of the
unique keys across two RDDs? anm.
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Summary
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Summary

116

Pair RDDs contain elements made up of key-value pairs

Common functions used to create Pair RDDs include map () , keyBy (),
zipWithIndex (), and zip ()

Common functions used with Pair RDDs include mapVvValues (), keys (),
values (), sortByKey (), lookup(), countByKey(),
collectAsMap (), reduceByKey (), groupByKey(),
flatMapValues (), subtractByKey (), and various join types.
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Spark Streaming
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Objectives

After completing this lesson, students should be able to:
e Describe Spark Streaming

e Create and view basic data streams

e Perform basic transformations on streaming data
e Utilize window transformations on streaming data

R
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S ® Spark Streaming Overview

=
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What is Spark Streaming?

® Implements a receiver and specialized RDDs called DStreams on top of Spark
® Enables micro-batch processing of live streaming data

e Allows for additional ROl on Spark platform investment

' DStream .

Streaming Data Receiver ‘:SML.. Spark Core

DStream

|
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DStreams

® Batches of input data created at regular time intervals
— Micro-batching as opposed to true streaming

DStream t=5
A B,CD,E

DStream t=10

Data Stream: A, B, C, D, E, F, G
K L, F,GH,I,)J

H1,J,K L MN,O

Receiver

DStream t=15
K,L,M,N,O

R
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DStream vs. RDD

@ DStreams contain data and physically exist in memory from moment of creation
— Normal RDDs are just sets of instructions until an action is performed

@ By default, DStreams are deleted after processing

® Outputs vs. Actions

R
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DStream Replication

@ Receiver duplicates data to two executors by default

Executor 1 \
Receiver m

\ - %

Executor 2 \

\_ /
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Receiver Availability

e If an executor with a receiver goes down, it will be restarted in another executor

/" ,‘\
lp

AN

a N

Executor 2

Receiver § DStream1

(&

N\
/
Executor 3
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Receiver Reliability

¢ By default, receivers are "unreliable"

No acknowledgment between receiver and source

No record of whether data has been successfully written
No ability to ask for retransmission for missed data
Possibility for data loss if receiver is lost

¢ To implement a reliable receiver, a custom receiver must be created
— Scala / Java only as of Spark 1.6.0
— Not supported by Python APIs

125 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Streaming Data Source Examples

@ Basic Sources
— Text files from an HDFS directory
— Text via TCP socket connection
— Queue of RDDs (for testing purposes)

¢ Advanced Sources
— Kafka
— Kinesis
— Flume
— MQTT

*Additional basic and advanced sources are available in Scala / Java

126 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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@ Spark Streaming Overview

@ Basic Streaming

UNIVERSITY
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StreamingContext

® An extension of the SparkContext
@ Entry point for streaming applications

® Sets up receiver and enables real-time transformations on Dstreams, as well as various
output types Ve >

Client Machine
or HDP Container

Driver

SparkContext

StreamingContext

128 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Modify REPL CPU Cores

® Streaming requires having two or more CPU cores available
— One core for the receiver plus one core for each DStream being ingested

@ This can be changed by modifying the MASTER environment variable when launching
the REPL

— To utilize two cores: pyspark --master local[2]

e AR
s
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Launch StreamingContext

® Importthe StreamingContext API
— Example: from pyspark.streaming import StreamingContext

® Create an instance of the StreamingContext and supply the name of the
SparkContext (when using the REPL, sc) and an interval time for micro-batching
— Example setting a one-second interval: ssc = StreamingContext (sc, 1)

® Spark StreamingContext instances can be defined with varying time intervals
based on needs

— Onlyone StreamingContext is allowed per JVM

sscTen = StreamingContext (sc, 10)

UNIVERSITY
=
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B
Stream from HDFS Directories and TCP Sockets

® To create a stream by monitoring an HDFS directory and ingesting any new files:

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")

® To create a stream by monitoring TCP socket source (hostname and port):

tcpInputDS = ssc.socketTextStream("someHostname", portNumber)

e AR
s
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Output to Console and to HDFS

Print output to the console:
— Python: DSvariableName.pprint ()
— Scala/Java: DSvariableName.print ()

Suggestion: set sc log level to "ERROR" when printing to console to reduce screen
clutter

— Example: sc.setLogLevel ("ERROR")

Save output as a time-stamped text file on HDFS:
— DSVariable.saveAsTextFiles ("HDFSlocation/prefix", "optionalSuffix")
— Directory permissions must be set accordingly

Can use the same DStream to output to both console and HDFS text file wusgsiTy

~
132 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

66



12/12/16

Start and Stop the Streaming Application

o All operations must be defined before the stream is started

¢ Whenready: ssc.start ()

¢ When finished: ssc.stop ()

e AR
s
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Simple Streaming Program Example Using a REPL

# pyspark —--master locall[2]

>>> sc.setLogLevel ("ERROR")

>>> from pyspark.streaming import StreamingContext

>>> gsscFive = StreamingContext (sc, 5)

>>> hdfsInputDS = sscFive.textFileStream("/user/root/test/")
>>> hdfsInputDS.saveAsTextFiles ("/user/root/test/stream/name")
>>> hdfsInputDS.pprint ()

>>> sscFive.start ()

134 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Lab: Basic Spark Streaming using
HDFS Directories and TCP Sockets
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® Spark Streaming Overview
@ Basic Streaming

@ Basic Streaming Transformations

~ Objectives ~
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DStream Transformations

¢ Allow modification of DStream data similar to RDD transformations

@ Familiar functions
— map ()
— flatMap ()
— filter ()
— repartition()
— union ()
— count ()
— reduceByKey ()
— join()
— Etc.

Ul
:ﬁ
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Transformation using £1atMap ()

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")
flatMapDS = hdfsInputDS.flatMap(lambda line: line.split(" ")
flatMapDS.pprint ()

ssc.start ()

R
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Combine DStreams using union ()

® Asimple example that creates two DStreams from the same source and combines them

inputl = ssc.textFileStream("/user/root/test/")

input2 ssc.textFileStream (" /user/root/test/")
combined = inputl.union (input2)

combined.pprint ()

ssc.start ()

e AR
s
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Create Key-Value Pairs

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")
kvPairDS = hdfsInputDS.flatMap (lambda line: line.split(" ") .map (lambda word: (word, 1))
kvPairDS.pprint ()

ssc.start ()
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reduceByKey ()

hdfsInputDS = ssc.textFileStream("someHDFSdirectory")

kvPairDS = hdfsInputDS.flatMap (lambda line: line.split(" ") .map (lambda word: (word, 1))
kvReduced = kvPairDS.reduceByKey (lambda a,b: a+b)

kvReduced.pprint ()

ssc.start ()

| HORTONWORKS |
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Lab: Basic Spark Streaming
Transformations

[ el

Lo |
\ HORTONWORKS' |

UNIVERSITY
T

71



12/12/16

@ Spark Streaming Overview
@ Basic Streaming

@ Streaming Transformations

\objeCtiveS ® Window Transformations

e\ 2.
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Stateful vs. Stateless Operations

@ By default, DStreams are discarded from memory when the next batch of data arrives
— Assumes all operations performed are on single DStreams, not dependent on previous data
— This is referred to as working with "stateless" operations / transformations

® However, it is sometimes beneficial to perform transformations and gather output using
overlapping time slices, or across an entire collected dataset
— Example: Every 15 seconds perform operations over the last 45 seconds worth of data
— This is referred to as working with "stateful" operations / transformations
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Checkpointing

@ Used in stateful streaming operations to maintain state in the event of system failure

¢ Toenable:

ssc.checkpoint ("someHDFSdirectory")

Y
2
D
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Streaming Window Functions

¢ Window functions perform combined operations on a set of Dstreams

¢ The window length (size, in seconds) and interval (how often it is collected) are set
during creation

— These values must be a multiple of the St reamingContext interval value

et e

Window 1

Window 2

Window 3 @
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B
Basic Window Transformations

¢ window (windowLength, interwval) -returnsanew DStream which is
computed based on the length and interval provided
— Functionally similar to a union () transformation
— Example: windowDS = streamingDS.window (30,10)

® countByWindow (windowLength, interwval) -returnsacount of the number
of elements in the stream
— Example: windowCountDS = streamingDS.countByWindow (30,10)

— Equivalent output to streamingDS.window (30, 10) .count (), but more efficient if
number of elements is large

e AR
s
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Sample Window Application

# pyspark --master locall[2]

>>> sc.setLogLevel ("ERROR")

>>> from pyspark.streaming import StreamingContext
>>> ssc = StreamingContext (sc, 1)

>>> ssc.checkpoint ("/user/root/test/checkpoint/")

>>> tcplInputDS = ssc.socketTextStream("sandbox",9999)

>>> windowDS = tcpInputDS.window (15, 5).
flatMap (lambda line: line.split(" ")) .count()

>>> windowDS.pprint ()

>>> gssc.start ()

148 © Hortonworks Inc. 2011 — 2016. All Rights Reserved g
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reduceByKeyAndWindow ()

tcpInDS = ssc.socketTextStream("sandbox",9999)

redPrWinDS = tcpInDS.flatMap (lambda line: line.split (" ")) .map(lambda word: (word, 1)).
reduceByKeyAndWindow (lambda a,b: a+b, lambda a,b: a-b, 10, 2)

redPrWinDS.pprint ()

ssc.start ()

| WoRERWoRks: |
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Lab: Spark Streaming Window
Transformations
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Knowledge Check
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Questions

1. Name the two new components added to Spark Core to create
Spark Streaming.

2. If an application will ingest three streams of data, how many CPU
cores should it be allocated?

3. Name the three basic streaming input types supported by both
Python and Scala APls.

4. What two arguments does an instance of StreamingContext
require?

5. What is the additional prerequisite for any stateful operation?

6. What two parameters are required to create a window?

R
R onks
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Summary
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Summary

® Spark Streaming is an extension of Spark Core that adds the concept of a streaming data
receiver and a specialized type of RDD called a DStream.

e DStreams are fault tolerant, whereas receivers are highly available.
@ Spark Streaming utilizes a micro-batch architecture.

® Spark Streaming layers in a StreamingContext on top of the Spark Core
SparkContext.

@ Many DStream transformations are similar to traditional RDD transformations

¢ Window functions allow operations across multiple time slices of the same DStream,
and are thus stateful and require checkpointing to be enabled.
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Spark SQL

AR
HORTONWORKS'

UNIVERSITY
=

Objectives

After completing this lesson, students should be able to:

¢ Name the various components of Spark SQL and explain their purpose
e Describe the relationship between DataFrames, tables, and contexts

e Use various methods to create and save DataFrames and tables

¢ Manipulate DataFrames and tables

R
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® Spark SQL Components Overview

\w‘\;;-\objectives
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Spark SQL
® A Spark module for processing structured data

¢ Automated performance improvements compared to Spark Core API programs

e Allows leveraging of investments in Hive data and knowledge-building while taking
advantage of Spark's in-memory processing capabilities

R
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DataFrames

e Data organized into one or more columns, similar to a table
— Underlying constructs = RDD

@ Can be created from RDDs, Hive tables, and outside data sources

@ Can be used to create SQL tables

® Three primary methods available to interact with DataFrames and tables
— DataFrames APl available for Java, Scala, Python, and R
— Native Spark SQL (subset of SQL92)
— HiveQL (with just a few exceptions)

e AR
s
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Hive

@ Original data warehouse platform in Hadoop
— Interacts with data using a SQL-like query language, HiveQL

® Represents unstructured data in HDFS as tables using a metadata overlay

¢ Ubiquitous
— Every Hadoop distribution includes it
— Massive amounts of existing data managed by Hive

IR
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Hive Data Visually

Represented logically as.... _

T e SaSSESSSEEEE——

Hive (metadata)

data file 1

HDFS

data file 2 (unstructured data)

data file 3
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The DataFrame Visually

Converted to...
> \ RDD 1.1x }

data file

Spa rk SQL Represented logically as....

Hive (metadata)

|

HDFS

(unstructured data)
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Spark SQL Contexts

¢ Two options:

from pyspark.sgl import SQLContext

sglContext = SQLContext (sc)

or

from pyspark.sql import HiveContext

sglContext = HiveContext (sc)

® Zeppelin uses HiveContext named sgqlContext when running $sgl code

® REPL also creates a HiveContext named sglContext at launch SR

UNIVERSITY
=
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SQLContext vs. HiveContext

® SQLContext
— Provides a generic SQL parser

® HiveContext
— Superset of (extends) SQLContext
— Enables numerous additional operations using the HiveQL parser
— Allows ability to read data directly from and write back to Hive tables
— Provides access to Hive User Defined Functions (UDFs)

¢ Which to use?
— SQLContext has fewer dependencies and uses less resources if the limited APl meets your needs
— HiveContext allows greater flexibility and capabilities
— When in doubt, use HiveContext
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Catalyst, the Spark SQL Optimizer

® Accelerates query performance via:
— Built-in catalog of optimizations
— Intelligent, cost-based plan selection and execution
® Simpler to write a SQL statement than a series of filter (), group (), etc. calls

@ Performance matches or outperforms equivalent core RDD programs

Cost
. gica a a Modeling

a a and Plan

Code
Generation
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@ Spark SQL Components Overview
> ¢ Create and Save DataFrames and Tables
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DataFrames and Tables - Row Objects

import org.apache.spark.sql.hive._

® Code looks different in Scala val sqlContext2 = new HiveContext(sc)
N frmport sqlContext2.implicits._
but the same baS|c ﬂOW case class DataSample(code: String, value: Long)
. val df2 = sc.parallelize(Seq(DataSample("CC™, 110008), DataSample("DD", 960608))).toDF()
applies - create formatted df2.registerTenpTable( "TESTS")
sqlContext2.sql("CREATE TABLE permcd AS SELECT * FROM test5™)

RDD, convert to DataFrame, sqlContext2.sql("SHOW TABLES").show()

register as a temporary table,  [twort org.apache.spark.sql.hive._

and save to Hive sqlContext2: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.HiveContext]

import sqlContext2.implicits._

defined class DataSample

df2: org.apache.spark.sql.DataFrame = [code: string, value: bigint]
res74: org.apache.spark.sql.Dataframe = []

g oe e e +
| tests| true|
| permab| false|
| perncd| false|
|permenriched| false|

e AR
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Convert an RDD to a DataFrame

¢ An RDD with elements that adhere to a properly defined schema can be converted to a
DataFrame using one of the following methods:

toDF (): dataframeX = rddName.toDF ()

createDataFrame ():
dataframeX = sglContext.createDataFrame ("rddName")

® In Python, if an RDD is properly formatted but lacks a schema, createDataFrame ()
can be used to infer the schema on DataFrame creation

rddName = sc.parallelize ([ (‘AA’, 150000), ('BB’, 80000)1])

dataframeX = sglContext.createDataFrame (rddName, [ ‘code’,
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Create DataFrames From Text Programmatically

from pyspark.sgl import SQLContext, Row
sglContext = SQLContext (sc)

##Want to create a DataFrame of People
##Attributes will be Name, Age

lines = sc.textFile("examples/src/main/resources/people.txt")
parts = lines.map(lambda 1: l.split(","))
people = parts.map(lambda p: Row(name=p[0], age=int(p[1l])))

##Create the DataFrame
peopleDF=sqglContext.createDataFrame (people)

ARAR
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Creating a DataFrame from a table in Hive

¢ Load the entire table
df = sglContext.table("patients")

@ Load using a SQL Query

sglContext.sqgl ("Use people")
dfl = sglContext.sgl ("SELECT * from patients WHERE age>50")

df2 = sglContext.sgl ("""

SELECT coll as timestamp, SUBSTR(date,1,4) as year, event
FROM events

WHERE year > 2014""")

AARIR
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Register DataFrames as Temporary Tables

12/12/16

® Use registerTempTable () to make the DataFrame available to SQL within the

current context

dataframel.registerTempTable ("tablel")

“pyspark
dataframel.registerTempTable("table1l")
sqlContext.sql("SELECT * FROM table1").show()|

R TR +
|code| value|
R -
| AA|150000|
| BB| 80060|
it TR -
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DataFrames and Tables - Summary

® Registering a temporary table makes that table available for either DataFrames API or
SQL interactions while operating in that specific context, but storing tables in Hive (and

using HiveContext) makes them available across contexts

e el - e
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sglContext.sql () and show()

® The DataFrames APl enables a user to run native SQL commands using the sql ()
function prepended by the name of the context (default is usually sglContext)

@ When displaying DataFrame contents or the output from a SQL command run from the
DataFrames API, append show () to display the contents on-screen

sglContext.sqgl ("SELECT * FROM permcd") .show ()

pyspark
sqlContext.sqL("SELECT * FROM permcd").show()

 EREt SEEEE +

|code| value|

e +
| C€C|110000]| et
| DD| 9680 ~o
173 ©
s S -
Saving Dataframe to Hive Table
¢ Use the HiveQL CREATE TABLE function to make a copy of a DataFrame as a
permanent Hive table
sglContext.sqgl ("CREATE TABLE tablelhive AS SELECT * FROM tablel")
pyspark
sqlContext.sql( "CREATE TABLE tablelhive AS SELECT * FROM tablel")
sqlContext.sql("SHOW TABLES").show()
Fommmmm e Fommm e +
| tableName|isTemporary]|
$rmmmmmmee ommmmmee +
| table1| true|
| test4| true|
| permab| false|
| permcd | false| -
|permenriched| false| UNIVERSITY
. | tablelhive| false| 174 T
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DataFrameReader / DataFrameWriter API

¢DataFrameReader
—Interface used to load a DataFrame from external storage
—format (str)—supports “orc”, “parquet”, “
—load(path-to-file)

e¢DataFrameWriter

json”, etc

—Interface used to store a DataFrame to external storage

” o« e

—format (str) —supports “orc”, “parquet”, “json”, etc

” o«

—mode (str) -whattodo when file exists: “append”, “ignore”, “overwrite

II, ”error”

—save (path-to-file)

e AR
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Create DataFrames from Files using read ()

¢ DataFrames can be created easily from certain structured file types, including ORC,
parquet, and if properly formatted, JSON (as well as others)
dataframeJSON = sglContext.read.format ("json").load ("dfsamp.json")
Or, if reading from a folder of part-* files created using write ():

dataframeJSON = sqglContext.read.format ("json") .load("folderName/*")

pyspark
dataframeJSON = sqlContext.read.format("json").load("dfsamp.json")
dataframeJSON. show()|

LAREEs X EEL ] +
|code| value|
L +
| AA|150000]
| BB| 80000|

R T -
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Save DataFrames as Files Using write ()

@ DataFrames can be saved to HDFS as files of many commonly used file formats,
including ORC, JSON, and parquet.

dataframel.write.format ("json") .save ("dfjson")
dataframel.write.format ("orc") .save ("dforc")

dataframel.write.format ("parquet") .save ("dfparquet")

‘pyspark
dataframel.write.format("json").save("dfjson")
dataframel.write.format("orc").save("dforc")
dataframel.write.format("parquet").save("dfparquet")

177 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
Save Modes
@ Save modes control behavior during save operations
— ErrorIfExists: Default mode, returns an error if the data already exists
— Append: Appends data to file or table if it already exists
— Overwrite: Replaces existing data if it already exists
— Ignore: Does nothing if the data already exists
dataframel.write.format ("orc") .save ("dforc", mode="overwrite")
‘pyspark
dataframel.write.format("orc").save("dforc", node-"overwrite"l)
SO
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Lab: Create and Save

DataFrames
:
| HORTONWORKS
UNIVERSITY
—
@ Spark SQL Components Overview
-> @ Create and Save DataFrames and Tables
N ¢ Manipulate DataFrames and Tables
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Working with Dataframes and sql()

@ SQL can be run against dataframes with just small modification

val df = sglContext.table ("myHiveTable")
df.registerTempTable ("t1")

val df2 = sglContext.sql ("SELECT A, B, C from tl")
df2.registerTempTable ("t2")

val df3 = sglContext.sqgl (".. from t2")
df3.registerTempTable ("t3")

3
3
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Zeppelin and the $sql binding

@ In Zeppelin we have a shortcut for

sglContext.sqgl ()

¢ In Zeppelin, we can use the %SQL on tables registered to the SQL Context (temp and
hive tables).

sql
select code from permab

BH o ¢ M |

code
....... s
UNIVERSITY
=
182 © Hortonworks Inc. 2011 - 2016. All Rights Reserved 182

91



12/12/16

Example DataFrames

For the next few slides, let's create two data frames:

dfl = sc.parallelize(

[Row (cid='101"', name='Alice', age=25, state='ca'), \
Row (cid='102"', name='Bob', age=15, state='ny') \
Row (cid='103"', name='Bob', age=23, state='nc') \

14
14
Row (cid='104"', name='Ram',6 age=45, state='fl')]).toDF()

df2 = sc.parallelize(
[Row (cid='101"', date='2015-03-12', product='toaster', price=200), \
Row (cid='104"', date='2015-04-12', product='iron', price=120), \
Row (cid='102"', date='2014-12-31"', product='fridge', price=850), \
Row (cid='102"', date='2015-02-03', product='cup', price=5)]) .toDF ()

e AR
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W
DataFrame Operations: Inspecting Content (1 of 2)
e first () —return the first row

® take (n) —returnnrows

dfl.first ()
Row (age=23, cid=u'l04', name=u'Bob', state=u'nc')

dfl.take (2)
[Row (age=45, cid=u'l04', name=u'Ram', state=u'fl')
Row (age=15, cid=u'l02', name=u'Bob', state=u'ny')]

184 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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DataFrame Operations: Inspecting Content (2 of 2)

¢ limit (n): reduce the DataFrame to n rows
— Result is still a DataFrame, not a Python result list

e show (n): prints the first n rows to the console

dfl.show(3)

R S R — +
|age|cid| name|state|
S S S S N +
| 25|101|Alice]| ca|
| 15|/102| Bob| ny |
| 23|103| Bob| nc |
S S R S +

185 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

dfl.limit (2) .show ()

R S +
|age|cid| name|state|
S S . S +
| 15/102| Bob| ny |
| 45|101|Alice| ca|
R S . S +

e AR
s
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DataFrame Operations: Inspecting Schema

dfl.columns

[u'age', u'cid', u'name',

dfl.dtypes

[('age', 'bigint'), ('cid',

'string')]

dfl.schema

StructType (List (StructField (age,LongType, true),
StructField(cid, StringType, true),
StructField (name, StringType, true),
StructField(state, StringType, true)))
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#Display column names
u'state']

#Display column names and types

#Display detailed schema

'string'), ('name', 'string'), ('state',
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DataFrame Operations: Counting Rows

® Count all the rows in a DataFrame

dfl.count ()
4

20
\m\‘\:E.‘n/snv

DataFrame Operations: Summary Statistics

dfl.describe () .show ()

oo o +

| summary | age |

S S — o +

| count | 4|

| mean | 27.0]

| stddev|11.045361017187261|

| min | 15|

| max | 45 |

S E— o +

Describe () shows statistics for all numeric columns, ignoring others
\INI};_R/SITY
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DataFrame Operations: Removing Duplicates

@ Remove duplicate rows

dfl.distinct () .show ()

R S R +
|age|cid| name|state|
R S S S +
| 23]/103| Bob| nc |
| 15]/102| Bob] ny |
| 45]/104| Ram| f1]
| 25]/101|Alice]| ca|

20
UNIVERSITY
DataFrame Operations: Removing Rows by Key
@ Removing duplicate rows by key, drops every row with the same key but the first
occurrence
dfl.drop duplicates (["name"]) .show ()
R S —— +
|age|cid| name|state|
ot S +
| 15/102| Bob| ny |
| 45]/104| Ram| £f1]
| 25|101|Alice] ca|
R S S +
e
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DataFrame Operations: Sorting Rows

dfl.sort(dfl["age"].desc()) .

dfl.sort ("age",

show () ascending=True) .show ()
R N e + Fe——t——_—t————— Fe——— +
|age|cid| name|state| |age|cid| name|state|
¥ S Sy RO e + Fm——t———t Fe—— +
| 45|104| Ram|  f1| | 15]102| Bob|  ny|
| 25[101|Alice| ca | 23]103| Bob| nc|
| 23|103| Bob| nc| | 25[101|Alice| ca
| 15102 Bob| ny| | 45[104] Ram|  f1]
[ R EYRIY R [ R + F———t———t Fe———— +
RN
DataFrame Operations: Adding a Column
dfl.withColumn ("age-dog-years", dfl["age"]*7) .show /()
T T tom Fom e +
|age|cid| name|state|age-dog-years|
TR S A —— T T +
| 25]|101|Alice]| ca| 175|
| 15/102| Bob| ny | 105 |
| 23/103| Bob| nc| 161 |
| 45[104| Ram| f1] 315
T T tom Fom e +
R
“‘“g".v
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96



12/12/16

DataFrame Operations: Renaming a Column

dfl.withColumnRenamed ("age", "age2") .show ()

S S S — +
|age2|cid| name|state|
S S S — +
| 25|101|Alice] cal|
| 15[/102| Bob| ny |
| 23|103| Bob] nc |
| 45]104| Ram| f1]|
S S —— +

20
UNIVERSITY
DataFrame Operations: select () Operator
° select (*cols)
— Cols: list of column names (strings) or list of "Column" expressions
dfl.select ("name", "age").show() dfl.select(dfl["name"],
e et dfl["age"]*7) .show()
| name|age| to———— Fommm +
N S—— S | name| (age * 7)|
|Alice| 25| to———- tommm +
| Bob| 15| |Alice| 175|
| Bob| 23| | Bob] 105 |
| Ram| 45| | Bob| 161 |
T s et | Ram| 315|
Fom—— o +
fmar
\ X “NI&_H/SITV
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DataFrame Operations: selectExpr () Operator

® selectExpr (*expr) -—Selectsa setof SQL expressions.

df.selectExpr ("colA","colB as newName","abs (colC)")

dfl.selectExpr ("substr (name,1,3)", "age*7") .show()

o Fomm e +
| SUBSTR (name, 1, 3)|(age * 7)|
. Fommm—_— +
| Ali| 175
| Bob | 105 |
| Bob | 161
| Ram | 315]
Ly O

————te—— e + Q&E@

UNIVERSITY
~d
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Column Expression

@ Column objects can be created from a DataFrame

Select a column: dfl1 ["age"]

OR

Expression: dfl.age * 2 - 15

@ Operations on Column objects:

Cast to type:
Rename a column:
Sort a column:
Substring:

Between:

196 © Hortonworks Inc. 2011 — 2016. All Rights Reserve

dfl["age"].cast ("string")

dfl["age"].alias("age2")

dfl["age"].asc () or df["age"].desc()
dfl["name"] .substr (1, 3)

dfl["age"] .between (25, 34)

IR
e onks
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DataFrame Operations: Dropping Columns

dfl.drop("age™") .show ()

R S S S — +
|cid| name|state|
R S S S — +
|101|Alice]| ca|
|102| Bob| ny |
|103| Bob| nc |
|104| Ram| £1|
S S S —— +

Y
2
D

\m\‘\:E.‘n/snv
Data Frame Operations: Filtering Rows
dfl.filter (dfl.age>21) .show ()
OR
dfl.filter (dfl["age"]1>21) .show ()
R S S — +
|age|cid| name|state|
S R S S S +
| 25]/101|Alice]| ca|
| 23|103| Bob] nc |
| 45|/104| Ram]| £1|
S R S S—— +
ke
\IN\:I.EO.-H/SITY
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B |
Data Frame Operations: groupBy ()

dfl.groupBy ("name") .count () .show ()

N S +
| name|count|

Y
2
D

\m\‘\:E.‘n/snv
Data Frame Operations: groupBy () and sum ()
df2.select (df2["date"] .substr(1l,4) .alias ("year"),
df2["price"]) .groupBy ("year") .sum() .show ()
o +
| year | SUM(price) |
et +
|2014 | 850 |
|2015| 325|
e +
R,
\INI}:;R/SITY
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U
Data Frame Operations: groupBy () and agg ()

® agg (*exprs) isageneric function for implementing aggregations after groupBy

® Exprs:adict mapping column names to aggregate function (min, max, count,
avg, sum)

df2.select (df2["date"] .substr(1,4) .alias ("year"),
df2["price"]1)\
.groupBy ("year") . \

agg ({"price": "avg", "year": "count"}) .show()
o o TS +
|year | AVG(price) | COUNT(year) |
T TP - +
|2014 | 850.0 | 1]
|2015|108.33333333333333| 3|

b N S e e + ﬁé&g
UNIVERSITY
-
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Inner Join with Data Frames

dfl.join(df2, dfl["cid"]==df2["cid"], "inner") .show()

S N R RS S S +
|age|cid| name|state|cid| date|price|product |
S Y S R R S S +
| 25|101|Alice] cal101|2015-03-12| 200]|toaster|
| 15/102| Bob| ny|102]|2014-12-31| 850| fridge|
| 15/102| Bob| ny|102]|2015-02-03| 5] cup |
| 45/104| Ram| £1|104|2015-04-12| 120| iron|
RS S S N S Fomm b N N +

g
UNIVERSITY
=
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More About join ()

® dfl.join(df2, joinExpr, joinType)
¢ joinTypeisoneof: inner, outer, left outer, right outer and semijoin

¢ JjoinExpr can be written in two ways
— dfl.join(df2, "cid", "inner")
— dfl.join(df2, dfl["cid"]==df2["cid"], "inner")

Y
2
3

§
i

UN

4z

203 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Multiple Conditions in joinExpr

Notice the special way to join with multiple conditions:

dfl.join(df2, (dfl["cid"]==df2["cid"] & (df2["price"] > 200),
"inner") .show ()

R S S — S +
|age|cid|name|state|cid| date|price|product |
R R Y Y S S —— S S +
| 15]102] Bob| ny|102[2014-12-31| 850 | fridge|
S Fommtmm - S —— Fommm——— +

\l“\:;ﬂ/s"’v
204 © Hortonworks Inc. 2011 — 2016. All Rights Reserved
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User Defined Functions (UDFs)

from pyspark.sqgl.functions import udf
from pyspark.sgl.types import IntegerType

get year = udf (lambda x: int(x[:4]), IntegerType())

df2.select (get year(df2["date"]) .alias("year"),
df2 ["product"]) .collect ()

Fommm o +
| year | product |
S +
|2015|toaster|
2015 | iron|
|2014| fridge|
|2015 | cup | L
S T + o

205 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

:
&

3
3

4z
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UDFS with Multiple Parameters

from pyspark.sqgl.functions import udf
from pyspark.sqgl.types import IntegerType

calc mins = udf (lambda h,m: int (h*60+m), IntegerType())

df2.select (calc mins (df2["hour"],
df2["mins"]) .alias ("my mins"))

R

HORTONWORKS'

UNIVERSITY
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G
Using UDFs in SQL Statements
df2.registerTempTable ("my df")

hc.registerFunction ("get year", lambda x: int(x[:4]))

hc.sgl ("select get year(date) as year FROM my df") .show/()

Fo———t
|year |
to——
|2015|
|2015 |
|2014]
|2015]
to——

207 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

explain ()

® Theexplain () command describes Spark-SQL execution plan

dfl.join(df2, (dfl["cid"]==df2["cid"]) & (df2["price"] > 200),
"inner") .show ()

ShuffledHashJoin [cid#140], [cid#143], BuildRight
Exchange (HashPartitioning 200)
PhysicalRDD [age#139L,cid#140,name#141,state#142], MapPartitionsRDD[286]
at applySchemaToPythonRDD at NativeMethodAccessorimpl.java:-2
Exchange (HashPartitioning 200)
Filter (price#145L > 200)
PhysicalRDD [cid#143,date#144,price#145L,product#146],
MapPartitionsRDD[295] at applySchemaToPythonRDD at NativeMethod
Accessorimpl.java:-2

IR
e onks

UNIVERSITY
=
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DataFrame Operations: Underlying RDD

@ A DataFrame is implemented with an RDD of Row objects; it is sometimes useful to
access that underlying RDD:

— df.rdd: returns the underlying rdd

® Several functions are shortcuts to the same function on that underlying RDD:

— df.map() = df.rdd.map ()

— df.flatMap() = df.rdd.flatMap ()
— df.foreach () = df.rdd.foreach ()
— etc

e AR
s

UNIVERSITY
~
209 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

More on DataFrames

® We covered a subset of data frames operations

® Other areas not covered here:
— Data Frame windowing functions (OVER with rank, first value, last value, etc)
— cov,crosstab, corr, rollup
— fillna () to deal with missing values

® The best reference is the documentation:
https://spark.apache.org/docs/latest/api/python/
pyspark.sqgl.html#pyspark.sgl.DataFrame

UNIVERSITY
=
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Lab: Work with Tables and
DataFrames, Dataframes
and UDFs, Hive + Spark SQL

UNIVERSITY
=

Knowledge Check

UNIVERSITY
=

106



Questions

1.

While core RDD programming is used with [structured/unstructured/both]
data Spark SQL is used with [structured/unstructured/both] data.

True or False: Spark SQL is an extra layer of translation over RDDs.
Therefore while it may be easier to use, core RDD programs will generally
see better performance.

True or False: AHiveContext can do everything that a SQL.Context can
do, but provides more functionality and flexibility.

True or False: Once a DataFrame is registered as a temporary table, it is
available to any running sqlContext in the cluster.

Hive tables are stored [in memory/on disk].
Name two functions that can convert an RDD to a DataFrame.

Name two file formats that Spark SQL can use without modification to
create DataFrames.

© Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Summary

R
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Summary

Spark SQL gives developers the ability to utilize Spark's in-memory processing
capabilities on structured data

Spark SQL integrates with Hive via the HiveContext, which broadens SQL capabilities
and allows Spark to use Hive HCatalog for table management

DataFrames are RDDs that are represented as table objects which can used to create
tables for SQL interactions

@ DataFrames can be created from and saved as files such as ORC, JSON, and parquet

® Because of Catalyst optimizations of SQL queries, SQL programming operations will

215

generally outperform core RDD programming operations

© Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Data Visualization in

Zeppelin

R
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Objectives

After completing this lesson, students should be able to:

e Explain the purpose and benefits of data visualization

e Perform interactive data exploration using visualization in Zeppelin
e Collaborate with other developers and stakeholders using Zeppelin

UN

Ul

217 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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¢ Data Visualization Overview

~ Objectives
! s

h\el .

X

UNIVERSITY
=
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Data Visualization Introduction

@ Table-based data is great for calculation and organization, but hard to use for decision
making when working with large sets of data

@ Data visualizations enable humans to make inferences and draw conclusions about large
sets of data based on visual input alone

sql
select * fron bankdstapern
B oM e e 2 &
= wal on anes
age alance marital = =
58 2,143 married
44 29 single
33 2 married
- 1506 armed - [
33 1 single
35 23 married 10
28 447 single |
P : LA
I Y Ll RN IR TR L A \7
o 121 - s s ) w ) ph r o o Fy
| HoRronmoRks:
UNIVERSITY
-
219 © Hortonworks Inc. 2011 - 2016. All Rights Reserved 219

Data Visualization and Spark

® The Spark project contains a module called GraphX for visualizations
— Scala only

— Programmatic (difficult for non-coders to interact with)

@ Zeppelin can be used for data visualization as well
— Lots of built-in, easy to use visualizations

— Virtually any visualization library from any supported language can be used

— Easy collaboration with other developers and non-technical business owners )
R

HORTONWORKS'

UNIVERSITY
=
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@ Data Visualization Overview
-> e Data Exploration

AR
WERWonks

UNIVERSITY
=
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EE—

Visualizations on Tables (¥sql default)

sql
select * fron bankdatapern

B M e 2

898 | it + tron samkettaparn
58 | @ W O m w i
44 sql
it ton e
33 W M O
47
”
s o+ ton e
L R
35
-
28 50,94 select * from bankdatapern
42 o M e e 2
o -
L | od o ot - o st
@ 0w &) swtnge
0o 4
@ (age, balance)
L] 100 528
aooe0
2
20000
L «
000
Ll ioor +
B S NC IR T T T T S T O T T T JO O I A I I IO O B B B B I
2 % 30 3 40 45 50 55 60 61 UNIVERSITY
=
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Visualizations on DataFrames

® z.show (DataFrameName)

223

pyspark
bankDataFrame - sqlContext. table( "bankdatapern”)
2. show(bankDataFrame)

H oW ¢ e

age
58
44
33
47
33
35
28
42
58

balance

2,143

1,506

231
447

121

marital
married
single
married
married
single
married
single
divorced

married

3

Visualizations on Other Formatted Data

® Use $table as part of the print instruction and, if formatted correctly, the data will be

presented with visualizations enabled

println("%$table code\tvalue\nAA\t150000\nBB\t80000\n")

LA
BB

code value

156060
86000

println("code\tvalue\nAA\t150000\nBB\t86600\n")

224 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

println("%table code\tvalue\nAA\t156600\nBB\t86666\n")

H W e M |~

HORTONWOR

UNIVERSITY

code value

AA 150,000

BB 80,000
224

=
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EEe—— |

Interactive Visualization - Programmatic

@ Visualization displays change any time a new query (or other command) is executed

ssql FINISHED D>
select * from bankdatapern
B M @ M ¥ seltingsv

@Grouped  O'Stacked
503!0]

10,00
20,000

15,000

10,000

o - - — | - —
a7 49 51 53 55 57 59

@balance
“sql
4000 ' gelect * from bankdatapern where age > 45|
3000 B &l ‘ e & & seftings~
@Grouped OStacked @balance
2000 27,007
25,000

I
61
225 © Hortonworks Inc. 2011 - 2016. All Rights Reserved 225

Interactive Visualization - Pivot Charts

® |n addition, Zeppelin provides a Pivot Chart capability under Settings in which additional

data manipulations can be performed without changing the original query o

r command

select * fran bankdatavern

M W @ e i sefingsa

Alfieids:

Groups Values
0= ]

@Grouped O Stacked
50,980

@balance
40,000}

30,000

20,000
10,000

. __—_.--I-I.II-.-.I.---II_.lI_I.-__
o 2 29 33 37 a1 4 49 53 57 61
o
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e ——————— |

Pivot Chart - Value Options

@ Click on the box under "Values" and a drop-down menu appears

Values

@ Use it to change the default value action balance AVG %
— Switch between SUM, AVG, COUNT, MIN, and MAX

sum
count
avg
min
max

| HORTONWORKS |

=
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e ——————— |

Pivot Chart - Change Values or Keys

@ Click on the "x" to the right of a box to remove that from the appropriate column, then
drag and drop from the column options to display something new

oy
select * fron bankdatavern

WM @ e 2 sefingsa

Alfieids:
age |balance | marital

Keys Groups Values

@Grouped O Stacked

@age
5
u
o._-.---. —
22 2 29 3 37 41 45 49 53 57 61

8
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N
Pivot Chart - Add Groups

@ Drag and drop the appropriate grouping category from the list of options to see the
data further broken down

e FINISHED D>
select * fron bankdatavern

WM @ M & lE selingsa

B
@
E%

@ single married @ divorced

@ Grouped O Stacked

5

o w IFTET ||| |.|.|.|||.|.|||I|I..II|||I|.II..||||| ol B in I I I v
23 26 29 32 35 38 41 44 5! 48 w

22

Dynamic Forms

#sql FINISHED D X BB &
select * from bankdataperm where age >= S{Minimum Age-0}

Minimum Age

45

—
B ¢ M ¥ seftings v

@Grouped O Stacked @ balance

45 a7 49 51 55 57 59 61

53

27,107
25,000

20,000

15,000

10,000

5,000

0

230 © Hortonworks Inc. 2011 — 2016. All Rights Reserved 230 E
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]

Dynamic Forms - Multiples

@ Multiple variables can be included as Dynamic Forms

%sql FINISHED D> 3%
select * from bankdataperm where age >= S{Minimum Age-0} and age <= S{Maximum Age-100}

Maximum Age Minimum Age
55 30

B @ M ¥ seltings~

@Grouped O Stacked @ balance

40,000

30,000

- L.l II II |
I m— NS | MOTTTT | .
30 33 36 39 42 47 50 53

20,000

D ——— ]

Dynamic Forms - Select

select * from bankdataperm where age ->= ${Minimum Age=0} and age <= ${Maximum Age-=180} and marital = “"${marital=married,married|single|divorced}"

marital Maximum Age

{divorced ! o ‘ 55

Minimum Age

30

24,598

20,000

10,000

5,000

W €& M |~ |F sefings v

@Grouped Q Stacked @ balance

32 44

35 38 41 47 48 51

232
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@ Data Visualization Overview
-> e Data Exploration
® Collaboration and Sharing

um‘\gnsmr
233 © Hortonworks Inc. 2011 - 2016. All Rights Reserved =
Clone and Export a Note
@ Before sharing a note with others, it may be a good idea to make a copy of it
¢ Two ways to do this:
— Clone: make a copy of the note in Zeppelin @ -‘
— Export: save a copy of the note in JSON format t] -‘. E
“nglrv

234 © Hortonworks Inc. 2011 - 2016. All Rights Reserved 234
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Import a Note

® Exported notes can be shared with and imported by another developer

Welcome to Zey

Zeppelin is web-based notebook that eng
You can make beautiful data-driven, inte

Notebook &

2. Import note

ﬂ Create new note

an g
HERYORWoRKS
UNIVERSITY
=
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Note Cleanu
p 20160606-120716 2070726122

® In-process notes can be messy and contain —Width |12 =
. . | - |
unnecessary duplicate code or alternatives

(® Move Up
® Individual paragraphs that are no longer needed © Move Down
can be deleted from the note ® Insert New )

A Show title

@ Paragraphs can also be reordered and new
paragraphs can be inserted
— For example, to add Markdown comments [> Disable run

{= Show line numbers

(7} Link this paragraph

2 Clear output
mnaR
5o
X Remove NIVERSITY
1'G
236 © Hortonworks Inc. 2011 — 2016. All Rights Reserved
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E————— |
Interactive Note Sharing

® Note URLs can be shared
— All connections using this URL are live, real-time connections to the same note

€ @ sandbox:

,a Zeppelin Notebook ~ In

AR
WERWonks

UNIVERSITY
=
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Note Access Control

® By default, anyone with the note link can completely control the note

® To control access, click the Note Permissions (padlock) icon at the top-right corner of
the note and set permissions accordingly
8 default~

Note Permissions (Only note owners can change)

Enter comma separated users and groups in the fields.
Empty field (*) implies anyone can do the operation.

Owners : * Owners can change permissions, read and write the note.
Readers : * Readers can only read the note.
Writers : * Writers can read and write the note.
mnaR
R onks
UNIVERSITY
Save Cancel P
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Note Formatting

@ Note owners can control all paragraphs at the note level, including:

— Hide/Show all code

> »x B #

— Hide/Show all output

— Clear all output

() £ & default~

@ There are also two additional note views

default
— Simple: Removes note-level controls )

simple
— Report: Removes note-level controls and all code report

239 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Automate Note Updates

® Entire notes can be played, paragraph by paragraph, at regular intervals

0 ‘ )
Run note with cron scheduler. Either choose from

preset or write your own cron expression.

- Preset None 1m 5m 1h 3h 6h 12h 1d

- Cron expression

- auto-restart interpreter on cron execution

240 © Hortonworks Inc. 2011~ 2016. All Rights Reserved 240

120



Paragraph Formatting

@ Paragraphs also contain formatting settings, including:

— Hide/Show paragraph code
— Hide/Show paragraph output

— Clear paragraph output is available

20160606-120716_2070726122

—Width |12 2

® Move Up

® Move Down

in the settings menu (gear icon)

241 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

@® Insert New

A Show titie

{= Show line numbers
[> Disable run

[} Link this paragraph

& Clear output

% Remove

241 -
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Paragraph Enhancement - Width

® Width: Controls width of the paragraph in
the note, allowing multiple paragraphs to be

displayed in a row

20160606-120716_2070726122

—Width |5 =
(® Move Up

® Move Down

bankDataFrame = sqlContext. table("bankdat .
2.show(bankDataFrane)

B W ¢ M 2
age balance
58 2,143
44 29
33 2
47 1,506
33 1
35 231

marital
married
single
married
married
single

married

sql
select * fron bankdatapern where age >= $_ ge=0}
age <= ${Maxinun Age=160} and marital = "${marital=narried

marital Maximum Age

divorced j 55

Minimum Age

30

5 W e e

settings v

@Grouped O Stacked

24,598
20,000‘ I

@ balance

@ Insert New

A Show title

{= Show line numbers
[> Disable run

(7} Link this paragraph

& Clear output

%X Remove PPN

242 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Paragraph Enhancement - Show Title

® Paragraph titles can be added for clarity

Balance by Age FINISH

%sql
select * from bankdataperm where age >= S$S{Minimum
age <= ${Maximum Age=100} and marital = "${marita]

marital Maximum Age

243 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

FINISHE

20160606-120716_2070726122

—Width |12 2

J
(® Move Up
® Move Down
@ Insert New
{= Show line numbers
[> Disable run
(7} Link this paragraph
& Clear output

%X Remove

243

AR
WERWonks
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Paragraph Enhancement - Line Numbers

@ Line numbers can be added to paragraph code

1 ¥%sql FINISHE
2 select * from bankdataperm where age S{MU|
and age <= ${Maximum Age-100} and marital =

marital

Maximum Age

244 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

20160606-120716_2070726122

—Width |12 *

|
(® Move Up
® Move Down
® Insert New
A Show title
[> Disable run
(7} Link this paragraph
& Clear output

% Remove

244
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e ———— |

n L~ . I ]
= ) @ sandbox:9995/#/notebook/2BQ3NADGM/paragraph/20160606-173014_1738579607asIframe vC" vLocq«c Q wBe ¥ A& =
imarital Maximum Age
divorced 4 |
IMinimum Age
30
@Grouped (Q Stacked @ balance
4,051
3,000

2,000

1,000

32 34

245 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

e ———— |

Disable Paragraph Output Changes FINISHED [> }:

20160606-120716_2070726122
@ Disable the paragraph run feature to lock the

output of a paragraph ~Width |12 2 |
(® Move Up
@ Changes to Dynamic Forms or code will not ® Move Down
be reflected in the paragraph ® Insert New
A Show title

= Show line numbers
(7} Link this paragraph
& Clear output

% Remove

UNIVERSITY
&=
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Lab: Data Visualization in
Zeppelin

UNIVERSITY
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Knowledge Check
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Questions

1. What is the value of data visualization?
2. How many chart views does Zeppelin provide by default?

3. How do you share a copy of your note (non-collaborative) with another
developer?

4. How do you share your note collaboratively with another developer?
5. Which note view provides only paragraph outputs?

6. Which paragraph feature provides the ability for an outside person to see a
paragraph's output without having access to the note?

7. What paragraph feature allows you to give outside users the ability to modify
parameters and update the displayed output without using code?

UNIVERSITY
=
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Summary
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Summary

@ Data visualizations are important when humans need to draw conclusions about large
sets of data

® Zeppelin provides support for a number of built-in data visualizations, and these can be
extended via visualization libraries and other tools like HTML and JavaScript

® Zeppelin visualizations can be used for interactive data exploration by modifying
gueries, as well as the use of pivot charts and implementation of dynamic forms

® Zeppelin notes can be shared via export to a JSON file or by sharing the note URL

® Zeppelin provides numerous tools for controlling the appearance of notes and
paragraphs which can assist in communicating important information

@ Paragraphs can be shared via a URL link

important information
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Objectives

After completing this lesson, students should be able to:
@ Describe the components of a Spark job

@ Explain default parallel execution for stages, tasks, across CPU cores

@ Monitor Spark jobs via the Spark Application Ul

uN

Ul
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S ¢ Job Anatomy
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Spark Task/Stage/Job/ DAG Schedule

eTask is a unit of work (pipeline of operations that do not require a shuffle)
eStage is a group of tasks separated by a operation that requires a shuffle
®A job is a grouping of stages

oThe DAG scheduler tells Spark which stages to execute when
—The next stage cannot start before all the tasks in the previous stage have finished

12/12/16

UNIVERSITY
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Wide and Narrow Operations
®Wide operations require a shuffling of data (many to 1 relationship)
—reduceByKey
—groupByKey
—repartition
—join
e Narrow operations can be executed locally (1 to many relationship)
—map
—filter
—flatMap
\ullglry
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RDD Graph

sc.textFile("/path/to/data")
flatMap(lambda line: line.split(" "))
.map(lambda word: (word,1)))
.reduceByKey(lambda a,b: a+b, numPartitions = 3)
.collect()

Ul

UN
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DAG Scheduler

textFile
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> @ Job Anatomy

¢ Parallel Execution

[ R
WERwWonks
UNIVERSITY
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Task Steps

@ A task consists of three steps
— Fetch input data
— Execute the operation
— Produce output

e Parallel execution minimizes task completion times

1
Fetch Input '
1
! All three steps can be
= te Tasl
Task : working at the same time
1
Write Output :

Task Task
Start End

UNIVERSITY
=
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Tasks and CPU Cores

Worker 1 Worker 2

CPU1 CPU2 CPU1 CPU2

Fetch Input

I

1 Fetch Input Fetch Input
Worker 1 !

1 Execute Task

1

1

1

1 [ [ 1
1 [ [ 1
1 [ [ 1
| I I I

[ 1 1
1 LI 1! |
1 LI | (I} "

Core 1

Each CPU core
on each node can

1

T
Worker 1 '
Core 2 !

|

Fetch Input
Execute Task
Write Output

1

Fetch Input ]

1

|
1

o |
'

process tasks
independently

1 | 1
| Fetch Input 1 1 Fetch Input
I | 1
Worker2 | pwmmesmg | |
Corel ! ! !
N
'
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Inherent Parallelism —parallelize ()

® parallelize () bases default partitioning on the number of cores across all
executors it is assigned

— Minimum of two partitions

— Default behavior can be overridden
— Intent is to maximize parallel operations

@ Can be overridden at RDD creation time:

rddl = sc.parallelize([1,2,3,4,5,6],8)

R
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Inherent Parallelism — textFile ()

® textFile () partitions based on the number of HDFS blocks the file uses
— Asingle-block file (default 128 MB or less) will get the minimum of two partitions
— RDD partition number can be larger, but not smaller, than number of HDFS blocks
— Goal is to avoid moving data between nodes

@ Can be overridden at RDD creation time:

rdd2 = sc.textFile ("statePopulations.csv",numPartitions=8)

e AR
s
UNIVERSITY
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Tune Data Parallelism

eSpark works with partitions as the mechanism for data processing parallelization
eUse repartition () or coalesce () to control parallelism when needed
—Use coalesce when reducing partitions, repartition to increase
rdd.repartition (500)

rdd.coalesce (20)

#Many operations include numPartitions as parameter that does this automatically
rdd.reduceByKey (lambda ab: atb, numPartitions=10)

®In the REPL, users can check the number of partitions by executing the following:
rdd.getNumPartitions ()

IR
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Changing the Level of Parallelism

sc.textFile repartition(4) sc.textFile coalesce(2)
Partition 1 Partition 1 | Partition 1
Partition 1
- L Partition 2
Partition 2 Rarktion|2
HDFS HDFS
data.txt data.txt
Partition 3 Partition 3 N Partition 3
Partition 2
. » » Partition 4
Partition 4 Partiion 4
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> @ Job Anatomy
@ Parallel Execution

® Spark Application Ul
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Spark Application Ul

® Generated by and available for the life of a SparkContext

— When the SparkContext is exited, no longer available
@ Accessed via <drivernode>:4040
— In our environment: sandbox:4040

¢ If multiple SparkContext instances are launched, multiple Spark Application Uls will exist

— Each new one incremented port number by one - for example: sandbox:4041, sandbox:4042
— For example: running Zeppelin, open a PySpark REPL

[ R
WERwWonks
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Spark Ul: Jobs View

SPO‘-? — Jobs Stages Storage Environment Executors Spark shell application Ul

Spark Jobs

Total Uptime: 1.8 h
Scheduling Mode: FIFO
Completed Jobs: 18

» Event Timeline

Completed Jobs (18)

Job Id Description Submitted Duration Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total

17 take at <console>:30 2015/11/11 17:52:08 2s 33 _
16 take at <console>:26 2015/11/11 17:52:03 18 ms n T F———=,
15 take at <console>:26 2015/11/11 17:51:03 18 ms 3l B /. B
14 take at <console>:26 2015/11/11 17:50:52 15 ms 1”1 e —
13 take at <console>:30 2015/11/11 17:50:36 01s 1/1 (2 skipped) . 11(8skipped)
12 take at <console>:30 2015/11/11 17:50:36 05s 1/1 (2 skipped) . 4/4@skpped)
1 take at <console>:30 2015/11/11 17:50:33 3s 33 -
10 take at <console>:26 2015/11/11 17:50:19 26 ms ” e —
9 take at <console>:24 2015/11/11 17:49:43 21ms n T M,

268 © Hortonworks Inc. 2011 - 2016. All Rights Reserved @
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Spark Ul: Single Job View

Spo‘% 24 Jobs  Stages  Storage  Environment  Executors Spark shell application Ul

Details for Job 17

Status: SUCCEEDED
Completed Stages: 3

» Event Timeline
» DAG Visualization

Completed Stages (3)

Stage Tasks: Shuffle Shuffle

Id Description Submitted Duration Succeeded/Total Input Output Read Write

25 take at <console>:30 +details 2015/11/11 oss [ 1120.9 KB
17:52:09

24 keyBy at <console>:23 +details  2015/11/11 1s —— ey 64.1 KB 41.8KB
17:52:08

23 keyBy at <console>:23 +details 2015/11/11 2s L6’ 6578 4.1MB
17:52:08 MB

269 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

Spark Ul: Single Job DAG Visualization

‘ Sporiz s Jobs  Stages  Storage  Environment  Executors Spark shell application Ul

Details for Job 17

Status: SUCCEEDED
Completed Stages:

Shows a graph of stages executed for

» Event Timeline this job, each of which can contain
~ DAG Visualization 4 R N A ]
fiter(), and of RDDs Inside each
‘operation (shown as dots).

Stage 23 Stage 25

textFile textFile join
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Jobs

Stages

Storage

Details for Stage 23 (Attempt 0)

Total Time Across All Tasks: 5 s

Input Size / Records: 657.8 MB / 7009728

Shuffle Write: 4.1 MB / 68613

» DAG Visualization

» Show Additional Metrics

» Event Timeline

Summary Metrics for 6 Completed Tasks

Metric

Duration

GC Time

Input Size / Records

Scheduler Delay

Shuffle Write Size / Records

Aggregated Metrics by Executor

Min
0.1s
2ms

8ms

17.5 MB / 184198

110.3 KB/ 1759

12/12/16

Spark Ul: Inside a Stage

Environment

25th percentile

08s
3ms

22ms

Executors

128.1 MB / 1351102

807.6 KB/ 13134

Median

1s

5ms

0.1s

128.1 MB / 1368262
825.0 KB / 13364

75th percentile

1s
7ms

0.1s

128.1 MB / 1369518

826.8 KB/ 13413

Spark shell application Ul

Max

1s

17 ms

0.1s

128.1 MB / 1372006
841.8 KB /13617

Executor ID Address Task Time Total Tasks Failed Tasks Succeeded Tasks Input Size / Records Shuffle Write Size / Records
driver localhost:45917 6 0 6 657.8 MB / 7009728 4.1 MB/ 68613
271 © Hortonworks Inc. 2011 - 2016. All Rights Reserved E
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Spark Ul: Inside a Stage, cont.
Tasks
Locality Executor ID / Scheduler GC Write Shuffle Write Size /
Index ID Attempt Status Level Host Launch Time Duration Delay Time  Input Size / Records Time Records Errors
0 30 SUCCESS ANY driver / localhost 2015/11/11 1s 5ms 95ms  128.1 MB (hadoop) / 5ms 823.3 KB/ 13326
17:52:08 1372006
1 340 SUCCESS ANY driver / localhost  2015/11/11 1s 7ms 0.1s  128.1 MB (hadoop) / 7ms 841.8 KB/ 13617
17:52:08 1368262
2 35 0 SUCCESS ANY driver / localhost 2015/11/11 1s 3ms 01s 128.1 MB (hadoop) / 5ms 825.0 KB / 13364
17:52:08 1369518
3 36 0 SUCCESS ANY driver / localhost 2015/11/11 1s 4ms 0.1s  128.1 MB (hadoop) / 6ms 826.8 KB / 13413
17:52:08 1364642
4 37 0 SUCCESS ANY driver / localhost 2015/11/11 08s 17 ms 22ms  128.1 MB (hadoop) / 4ms 807.6 KB /13134
17:52:09 1351102
5 38 0 SUCCESS ANY driver / localhost 2015/11/11 0.1s 2ms 8ms 17.5 MB (hadoop) / 2ms 110.3 KB /1759
17:52:09 184198

272
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BEE———l ]
Spark Ul: Environment

Jobs Stages Storage Environment Executors ark shell application Ul
arK™ 1.4 < e >

Environment

Runtime Information

Name Value

Java Home /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.91.x86_64/jre
Java Version 1.7.0_91 (Oracle Corporation)
Scala Version version 2.10.4
Spark Properties

Name Value

spark.app.id local-1447263545873
spark.app.name Spark shell
spark.driver.extraJavaOptions -Dhdp.version=2.3.2.0-2950
spark.driver.host 192.168.1.170
spark.driver.port 35557

UNIVERSITY
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Executor View

M 180 Jobs Stages Storage Environment Executors sQL Zeppelin application Ul

Executors (3)

Memory: 0.0 B Used (797.6 MB Total)

Disk: 0.0 B Used

Executor RDD Storage Disk Active Failed Complete Total Task Shuffle Shuffle Thread

D Address Blocks Memory Used Tasks Tasks Tasks Tasks Time Input  Read Write Logs Dump

1 sandbox:52087 0 0.0B/1433 00B 0 4 594 598 329s 22 10.8KB 21.6 KB stdout Thread
MB MB stderr Dump

2 sandbox:57010 0 0.0B/1433 00B 0 4 628 632 328s 20 10.8KB 21.7KB stdout Thread
MB MB stderr Dump

driver 172.17.0.1:52752 0 0.0B/511.1 00B 0 0 0 0 Oms 00B 00B 0.0B Thread
MB Dump

R
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SQL View

12/12/16

.
M 188 Jobs Stages Storage Environment Executors saL Zeppelin application Ul

Completed Queries

ID Description Submitted Duration Jobs Detail

5 take at NativeMethodAccessorimpl.java:-2 +details  2016/06/09 2s 12 == Parsed Logical Plan == +details
10:46:18

4 take at NativeMethodAccessorimpl.java:-2 details  2016/06/09 2s 11 == Parsed Logical Plan == +details
10:46:15

3 take at NativeMethodAccessorimpl.java:-2 +details 2016/06/09 3s 10 == Parsed Logical Plan ==
10:46:12

2 take at NativeMethodAccessorimpl.java:-2 +detalls 2016/06/09 2s 5 == Parsed Logical Plan == +detalls
10:45:50

1  take at NativeMethodAccessorimpl.java:-2 +detalls 2016/06/09 2s 4 == Parsed Logical Plan ==
10:45:48

0 take at NativeMethodAccessorimpl.java:-2 s 2016/06/09 16s 3 == Parsed Logical Plan == +det
10:45:32

AR
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SQL Query Details - Visual

276
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Details for Query 5

Submitted Time: 2016/06/09 10:46:18
Duration: 2's
Succeeded Jobs: 12

ExistingRDD

Project
number of rows: 6778

TungstenAggregate
number of input rows: 6778
number of output rows: 30
ata size total (min,
16.5MB gz 1B, 8.2 M
spill size total (min, med, max)
0.0B(0.08,0.08,0.0B8)
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S

SQL Query Details - Text

!

TakeOrderedAndProject

~ Details

== Parsed Logical Plan =
Limit 1001
+- Sort [SpendinginBillions#43 DESC], true
+- Aggregate [category#29], [category#29, (cast((sum(cast(spending#32 as bigint)),mode=Complete, isDistinct=false) as double) / cast(cast(1000 as bigint) as double)) AS Spe
ndinginBillions#43]
+- Subquery health_table
+- LogicalRDD [year#27,state#28, category#29, funding src1#30, funding_scr2#31, spending#32], MapPartitionsRDD[48] at rddToDataFrameHolder at <console>:36

== Analyzed Logical Plan ==
category: string, SpendinginBillions: double
Limit 1001
+- Sort [SpendinginBillions#43 DESC], true
+- Aggregate [category#29], [category#29, (cast((sum(cast(spending#32 as bigint)),mode=Complete, isDistinct=false) as double) / cast(cast(1000 as bigint) as double)) AS Spe
ndinginBillions#43]
+- Subquery health_table
+- LogicalRDD [year#27,state#28, category#29, funding_src1#30, funding_scr2#31, spending#32], MapPartitionsRDD[48] at rddToDataFrameHolder at <console>:36

== Optimized Logical Plan ==
Limit 1001
+- Sort [SpendinqinBillions#43 DESC1. true

R
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Streaming Tab

e
spa-i-{ _— Jobs  Stages Storage  Environment  Executors  Streaming PySparkShell application Ul

Spark Jobs (V)
Total Uptime: 3.9 min
Scheduling Mode: FIFO
Active Jobs: 1
Completed Jobs: 6

» Event Timeline
Active Jobs (1)

Jobld  Description Submitted Duration  Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total

0 Streaming job running receiver 0 2016/06/09 12:17:36 1.2 min on 01

start at NativeMethodAccessorimpl.java:-2

Completed Jobs (6)

Job Id Description Submitted Duration Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total

6 runJob at PythonRDD.scala:393 2016/06/09 12:18:45 0.1s n LT VR ——
5 runJob at PythonRDD.scala:393 2016/06/09 12:18:45 52ms 17 [FRSTSS, 1| WA————
4 runJob at PythonRDD.scala:393 2016/06/09 12:18:40 0.1s n ——————<D e ee——
3 rundob at PythonRDD.scala:393 2016/06/09 12:18:40 59ms 1" ———— e ——
2 runJob at PythonRDD.scala:393 2016/06/09 12:18:35 63ms n s ————
1 runJob at PythonRDD.scala:393 2016/06/09 12:18:35 04s n e —
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Streaming View
Wﬁ i Jobs Stages Storage

Streaming Statistics

Streaming

Running batches of 5 seconds for 3 minutes 21 seconds since 2016/06/09 12:16:28 (26 completed batches, 4 records)

Timelines (Last 26 batches, 0 active, 26 completed)

events/sec
1.0

» Input Rate 0.60
Receivers: 1/1 active 0.40
Avg: 0.03 events/sec 0.204

Histograms

0

ko

20 25 #batches
1 e}

500.00
400.00
Scheduling Delay (7 300.00
Avg: 0 ms 200.00

12:19:45

n
S
Lro
o

500.00
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12:19:45

=)
Lo

20 25 #batches
1 1

#batches

PySparkShell application Ul

12/12/16

Streaming Additional Charts

ms
500.00
400.00
Scheduling Delay (7 300.00

Avg: 0 ms 200.004
100.004
0.00

10 15 20

12:17:40

500.00]
400.00
Processing Time (7 300.00

Avg: 61 ms 200.004
100.004

12:19:45

0.00
12:17:40

ms
500.00
400.00
Total Delay (7 300.004

Avg: 62 ms 200.004
100.004

12:19:45

0.00
12:17:40

12:19:45

10 15 20

10 15 20

#batches

#batches

#batches
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Streaming Batches

12/12/16

Active Batches (0)

Batch Time Input Size Scheduling Delay (7 Processing Time (7 Output Ops: Succeeded/Total Status

Completed Batches (last 26 out of 26)

Batch Time Input Size Scheduling Delay (7 Processing Time (7 Total Delay (7 Output Ops: Succeeded/Total

2016/06/09 12:19:45 0 events 2ms 27 ms 29ms ek ——

2016/06/09 12:19:40 0 events oms 17ms 17 ms [T, || F—————

2016/06/09 12:19:35 0 events 1ms 10ms 11ms —————— L —————

2016/06/09 12:19:30 0 events oms 14ms 14 ms L T T —————

2016/06/09 12:19:25 0 events oms 13ms 13 ms ] C——

2016/06/09 12:19:20 0 events 3ms 31ms 34ms [FERSTT, | | ——

2016/06/09 12:19:15 0 events oms 13ms 13 ms [EE R |\ N ——

2016/06/09 12:19:10 0 events oms 14ms 14 ms [ | | O ——

2016/06/09 12:19:05 0 events oms 13ms 13ms ————————

2016/06/09 12:19:00 0 events oOms 14ms 14ms T T —————————

2016/06/09 12:18:55 0 events 0ms 87 ms 87 ms I———] ] ———— |
UNIVERSITY
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Batch Detail
s‘,aﬁ 169 Jobs Stages Storage Environment Executors Streaming PySparkShell application Ul

Details of batch at 2016/06/09 12:19:45

Batch Duration: 5 s
Input data size: 0 records
Scheduling delay: 2 ms
Processing time: 27 ms
Total delay: 29 ms

Output Op Job Stages: Tasks (for all stages):
Id Description Duration Status Id Duration [Total Total Error
0 callForeachRDD at NativeMethodAccessorimpl.java:-2 +details 28 ms Succeeded - -

282 © Hortonworks Inc. 2011 - 2016. All Rights Reserved
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Lab: Job Monitoring
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Questions

1. Spark jobs are divided into , Which are logical
collections of

2. Ajob is defined as a set of tasks that culminates in a

3. What Spark component organizes stages into logical groupings
that allow for parallel execution?

4. What is the default port used for the Spark Application UI?

5. If two SparkContext instances are running, what is the port used
for the Spark Application Ul of the second one?

6. As discussed in this lesson, what tabs in the Spark Application Ul
only appear if certain types of jobs are run?
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Summary
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Summary

287

Spark applications consist of Spark jobs, which are collections of tasks that culminate in
an action.

Spark jobs are divided into stages, which separate lists of tasks based on shuffle
boundaries and are organized for optimized parallel execution via the DAG Scheduler.

The Spark Application Ul provides a view into all jobs run or running for a given
SparkContext instance, including detailed information and statistics appropriate for the
application and tasks being performed.
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Caching and Persisting’

Data, Checkpointing
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Objectives

After completing this lesson, students should be able to:
@ Understand the caching, persisting, and the different storage levels

® Describe and implement checkpointing

UN
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@ Caching and Persisting Data
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Caching and Persisting Data

@ Spark data is not maintained in memory by default

@ Spark allows the developer to persist data in memory

— Beneficial when an RDD is going to be used more than once - for example: an application where a
"clean" file, reject file, and summary file are each created by processing the same original file

— Very useful (and incredibly fast) for iterative applications

UNIVERSITY
~d
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Memory Representations & Limitations

Caching occurs at the partition level

@ Cached datasets can be stored three ways

— Serialized: objects are turned into compact byte streams - reduces memory usage, but require
more processing resources to deserialize when needed

— Raw: fastest to process, but can easily take up 2-10x more memory than serialized datasets

— Off-heap: Utilize off heap memory to avoid GC's. Slower to access off heap memory (all data must
be serialized, primative classes have encoders)

Executor memory is a finite resource
— Least Recently Used (LRU) algorithm determines which dataset(s) to evict when needed
— If an operation tries to use cache that no longer exists, data will be recomputed and recached

¢ Will discuss in more detail later

UNIVERSITY
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Caching Syntax

persist () - developer can control caching storage level
— persist (Storagelevel.Selection)

cache () - simple operation
— cache() == persist(StorageLevel.MEMORY ONLY)

Spark SQL:

unpersist () - remove data from cache
sqlContext.cacheTable()

sglContext.uncacheTable()
Must import library to use it:

scala -> import org.apache.spark.storage.storageLevel.
python -> from pyspark import Storagelevel

In pyspark: objects are always stored with the Pickle library
— SoMEMORY_ONLY and MEMORY ONLY_SER are the same R

UNIVERSITY
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e e——— |

Physical Options for Caching

2%

MEMORY_ONLY (default) Yes Never No No
MEMORY_AND_DISK Yes Spills No No
MEMORY_ONLY_SER Yes No Yes No
MEMORY_AND_DISK_SER Yes Spills Yes No
MEMORY_ONLY_2 Yes No No Yes
MEMORY_AND_DISK_2 Yes Spills No Yes
DISK_ONLY No Yes No No

R
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Example

from pyspark import Storagelevel

rdd = sc.textFiles ("/user/root/logs/*")

rdd.persist (StorageLevel .MEMORY ONLY SER)

rdd.map (..) .saveAsTextFile ("/user/root/cleanLogs.txt")
rdd.filter (..) .saveAsTextFile ("/user/root/filteredLogs.txt")
rdd.unpersist ()

e AR
s
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Which Storage Level to Choose?
¢ If the RDD fits in memory, use the default MEMORY_ONLY

e If RDDs are too big, try MEMORY_ONLY_SER with a fast serialization library (Scala only)

If the RDDs are still too big:
— Consider the time to compute this RDD from parent RDD vs the time to load it from disk
— Re-computing an RDD may sometimes be faster than reading it from disk

Replicated storage is good for fast fault recovery, but...
— Usually this is overkill, and not a good idea if you're using a lot of data relative to total memory

® For DataFrames, use cache () instead of persist (StorageLevel) @
\m\?n/snv
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Serialization Options

® For Scala, Spark provides two serialization libraries:
— Java serialization (default)
— Kryo serialization

® Kryo is much faster & more compact (often as much as 10x)
— Used to require registration of custom classes, but this has since been
addressed

® Python uses Pickle for RDD serialization
— DataFrames generate Java byte code, so DataFrames should leverage Kryg@

ONWORKS'
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Kyro Serialization

® Using Kryo Serialization (always use it)

conf = SparkConf ()
conf.set ('spark.serializer',
'org.apache.spark.serializer.KryoSerializer')

sc=SparkContext (conf=conf)

IR
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Lab: Caching and Persisting
Data
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@ Caching and Persisting Data
> ® Checkpointing
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Recomputation Problem

@ As Spark transformations are processed they create a lineage
— This lineage provides resilience, but can also cause problems as number of transformations grows

e If datais lost on an executor, re-computing that data can take a very long time
— The data can potentially have to be reprocessed through hundreds/thousands of operations

e AR
s
UNIVERSITY
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Checkpointing

@ Helps mitigate the recomputation problem

Enabling checkpointing does the following
— Data checkpointing that saves intermediate data to reliable storage (HDFS)
— Metadata checkpointing, which stores file names and other configuration data

Lineage is "reset" to the point of the last checkpoint

¢ Considerations:
— Performed at the RDD, not the application, level
— No current DataFrame support
— There is an expense to persist to HDFS, but this is usually overshadowed by the benefits
— No automatic cleanup of HDFS files
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Node Loss Without Checkpointing

All processing must be repeated, potentially
hundreds or thousands of transformations

Worker 1 Worker 2 Worker 3

Worker 5

uuuuuuuuuuu

UNIVERSITY
L
303 © Hortonworks Inc. 2011 - 2016. All Rights Reserved

Node Loss With Checkpointing

Trade performance while

- ; processing in exchange
Only processing since last for faster recovery in
checkpoint must be repeated case of node loss
Worker 1 Worker 2 Worker 3

| o) o
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Checkpointing vs Caching

@ Checkpoint
— Saves a permanent copy of the intermediate data
— Lineage is then rebuilt from the intermediate data
— If data is lost, recomputes the data from intermediate data

e Caching
— Data is stored somewhere temporarily
— Lineage is preserved
— If data is lost, recomputes from base data
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When to Use Checkpointing

® Window and other stateful streaming application transformations require it

@ lterative applications that may loop through data hundreds, or thousands of times
— Machine learning algorithms typically do this

HORTONWORKS'
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e ——— |
Implementing Checkpointing
@ Set a checkpoint directory, and checkpoint the rdd:

sc.setCheckpointDir ("somedir/")
rdd = sc.textFile("/path/to/file.txt")
while x in range (<large number>)
rdd.map (...)
if x $ 5 ==
rdd.checkpoint ()

rdd.saveAsTextFile ("/path/to/output.txt™)

e AR
s
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B
Understand RDD lineage with toDebugString()

eExample:
rdd. toDebugString

(2) PythonRDD[29] at RDD at PythonRDD.scala:43 []
| MapPartitionsRDD[28] at mapPartitions at PythonRDD.scala:346 []

| ShuffledRDD[27] at partitionBy at NativeMethodAccessorimpl.java:-2 []
+-(2) PairwiseRDD[26] at reduceByKey at <ipython-input-8-1817f0de03c6>:2 []

| PythonRDD[25] at reduceByKey at <ipython-input-8-1817f0de03c6>:2 [] |
MapPartitionsRDD[24] at textFile at NativeMethodAccessorimpl.java:-2 []
| some-text-file HadoopRDD[23] at textFile at NativeMethodAccessorimpl.java:-2 []

IR
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Lab: Checkpointing and RDD
Lineage

Spark Shared Variablesh
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Objectives
After completing this lesson, students should be able to:

@ Use accumulators

@ Use broadcast variables

UN

4z
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® Accumulators

R
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Accumulators

counter = sc.accumulator (0)
rdd. foreach (...
counter += 1

)

counter.value ()

Driver

counter.value n <

HORTONWORKS'
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Accumulators

eAccumulator = A variable that is only “added” to through an associated operation, and
can therefore be efficiently supported in parallel.

eAccumulators can be used to implement counters (as in MapReduce) or sums.
e Only the driver can access the value.
—Updates are sent to the driver, will get an exception if you use the .value on executors

eSpark natively supports accumulators of numeric types, and developers can add
support for new types.

—Doubles
—Floats
—Ints
eMost common uses
—Count events that occur, like invalid records
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B
Accumulators and Fault Tolerance

eSpark automatically deals with failed or slow machines by re-executing failed or slow
tasks.

eAccumulators are returned at the end of successful tasks

eFor accumulators used in actions, Spark applies each task’s update to each
accumulator only once

—If a reliable counter is required, they must be used in an action, like foreach()

eFor accumulators used in transformations, the guarantee does not exist
—Transformations can happen more than once in an action, if there are slow or failed tasks
—Accumulators in transformations should only be used for debugging

2.
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Accumulator in Transformation Example

rdd=sc.textFile (myfile.txt)

blanklines = sc.accumulator (0) ## Create an Accumulator[Int]
initialized to O

rddNotBlank = rdd.map(lambda line: \
if not line:
blanklines += 1
else:

line) .map (lambda line: line.split(',"')

rddNotBlank.saveAsTextFile ("myfile.txt")

IR
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Accumulator in Action Example

val rdd=sc.textFile (myfile.txt)

//Create Accumulator[Int] initialized to O
val blanklines = sc.accumulator (0)

val rddNotBlank = rdd.filter(line => !line.isEmpty)

rdd.foreach (line =>
if (line.isEmpty) {
blanklines +=1
})

rdd.join (otherrdd) .saveAsTextFile ()
blanklines.value
rddNotBlank.saveAsTextFile ("myfile.txt")
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Lab: Using Accumulators to
Check Data Quality
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@ Using Accumulators
-> ® Using Broadcast variables

. Objectives

L

A

UN
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How do Broadcast Variables Work?

e Without broadcast variables, reference
data gets sent to every task on the
Reference executor, even though multiple tasks
Data reuse the same variables.

eUsing broadcast variables, Spark sends
a copy to the node once, then the data
is stored in memory. Each task will
reference the local copy of the data.

Reference
Data

UNIVERSITY
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Broadcast Variables

e Spark feature for sharing a variable throughout the application cluster
— The broadcast variable must fit within an executor's memory
— Not intended for RDDs or DataFrames
— Immutable

e Give every node a copy of an input dataset in an efficient manner
— Uses P2P torrenting concepts to efficiently distribute
— Lazy - the first read of a broadcast variable will retrieve and store the data
— Sent to each executor once

2.
UNIVERSITY
-
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12/12/16

Why Use Broadcast Variables?

¢ Minimize network traffic by passing referenced variables to an executor only
one time

— Especially beneficial when local variables are 20kb or larger

¢ Complements Spark's task launching behavior for RDD programming, which is
optimized for small tasks

— Not used with Spark SQL

IR
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]
Implementing Broadcast Variables

rdd = sc.textFile (input.txt) .map(...)..
toBroadcast = //some dictonary

lkp bc = sc.broadcast (toBroadCast)
lookuprdd = rdd.map (lambda (key, value):
(key, lkp bc.value[value])))

| HORTONWORKS |
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Lab: Using Broadcast
Variables
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Objectives

After completing this lesson, students should be able to:

@ Control behavior and performance of Spark applications via:
— mapPartitions () vs.map ()
— Modifying RDD parallelism / partitioning
— Caching and persisting
— Checkpointing
— Using broadcast variables
— Implementing joining strategies
— Optimizing executors

R
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® mapPartitions () vs.map ()

“'_~~Objecti\(es
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Improve Performance: mapPartitions () vs. map ()

® mapPartitions () isa special kind of map transformation
— Requires both input and output to be iterable
— Operates at the RDD partition level, as opposed to the element level like map ()

@ Ex: Initialize a database with 2,000,000 elements spread across four RDD partitions
— map () initializes each element individually, thus 2,000,000 initializations

— mapPartitions () initializes each partition (four initializations total) and then can iterate
through the elements in each partition

Can result in significant performance improvements

rddl = sc.parallelize((1,2,3,4,5,6,7,8),2)
rddl.mapPartitions (lambda x: [sum(x)]).collect ()
[ (10, 26)]

R
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map vs mapPartitions example cont.

o Lets fix this, and use a better parser -> Converting string to Array[String]
rdd = ##someRdd

rdd.mapPartitions (lambda lines: {
myObject = simulateExpensiveOjectCreation ()
lines.map (lambda line: {
myObject.map (lambda line:
1)
}) .take (5) .foreach (printlin)

®In this example we created a single instance of a an obect per partition, instead of per record.

def simulateExpensiveObjectCreation() {
Thread sleep 10
}

Ul
:ﬁ
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® mapPartitions () vs.map ()
> @ Partition Optimization

Objectives
e 5
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PairRDD Parallelism — Hashed Partitions

¢ By default, files read into Spark are not necessarily organized so that matching
keys are written to the same partition

— Also, when map () is used to create a PairRDD, partitions are not reorganized

¢ PairRDDs can be partitioned so that matching keys are in the same partition
— Can result in performance improvements, particularly when implementing joins

e Some operations create hashed partitions by design
—partitionBy (), cogroup (), join (), groupByKey (), reduceByKey (), sort ()
—The default HashPartitioner guarantees identical keys go to same partition

st
mqv:nslrv
Preserving Hashed Partitions
e Some Spark transformations maintain partitioning after hashing
— No need to recreate hashed partitions after the first run
— No new keys are created and partition placement is maintained
e Examples of operations that preserve hashed partitioning:
—mapValues (), flatMapValues (), filter (), reduceByKey (), groupByKey (),
and join ()
uug&n/surv
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BE————
Partitioning Optimization

® Generally speaking, too many partitions is better than too few
— Increase partitions by numbers by 50% until performance stops improving
— Tasks will usually take at least 200ms
— Scheduling tasks takes ~10ms-20ms regardless of the amount of data being processed

@ Number of partitions should be a slightly less than a multiple of the number of executor
cores
— Ten executors with two cores each = RDDs with 39, 58, or 78 partitions
— Reasons for a little less is to leave a couple cores open for speculative execution

e Spark SQL
— uses "spark.sql.shufflePartitions" by default is 200
— Best to have number partitions = output datasize / block size

e AR
s
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® mapPartitions () vs.map ()
> @ Partition Optimization

@ Joining Strategies

Objectives
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Spark Joins at the Partition Level

e To improve performance, joins technically occur at the partition, not the
complete dataset, level

— Framework ensures that join key placement in partitions aligns with all datasets
— The collective results represent the comprehensive join request

e Leverages hash partitions and requires equal number of partitions for datasets
to be joined

Partition 1 Partition 2
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No Common Hash Partitioning (Worst Case) F _
oLl 0_ID=1
¢ Neither dataset is partitioned by the o L=l
join key ID=5 o o
ID=1 0_ID=5 -
® Both have to perform a ID=2 _ 0_ID=2
A ) ID=3 D=2 0_ID=3
partitionBy () transformation D4 0_ID=2 o (o8
— Incurs a shuffle for each D5 0_ID=2 0_ID=4
= ID=6
ID=6 0_ID=6 O_ID=5
ID=7 - 0_ID=6
e NOTE: The newly created hashed ID=8 0_ID=3 0_1b=7
partitioned datasets use the number of 0_ID=3 8—:gf§
partitions from the largest original 'D=7o o7 0_ID=8
ID=4
0_ID=4
ID=8
0_ID=8
0_ID=8
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One Dataset Hashed Partitioned (Better) F _
8—:32 0_ID=1
® The larger dataset is hashed partitioned - 0 ID=1 8—:31
by the join key ID=5 0_ID=5
ID=1 _ _ID=
0_ID=5
@ The smaller one performs a ID=2 P 0_ID=2
Cs . ID=3 = 0_ID=2
partitionBy () transformation Dot 0_ID=2 O 0ot
— Only one shuffle is requir 0_ID=2 =
y e is required ID=5 D=6 O_ID=3
ID=6 0O ID=6 O_ID=3
ID=7 D3 0_ID=7
ID=8 0_ID=3 O_ID=8
0_ID=3 O_ID=8
ID=7 0O_ID=8
0 ID=7 O_ID=8
ID=4
0_ID=4
ID=8
0_ID=8 ..
0_ID=8 S
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Co-Partitioned (Best Case) F _
8—:3j 0_ID=1
¢ Both datasets are hashed partitioned - 0 ID=1 8-:81
by the join key with the same number ID=5 e
iti ID=1 0_ID=5 =
of partitions N N Do L ow
— Referred to as co-partitioned join ID=2 0 ID=2
o O_ID=2 0_ID=6
¢ No sh