
HDP Developer: Storm
Lab Guide



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
2 

  

HDP Analyst: Data Science 
Student Guid



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
3 

 
Title HDP Developer: Storm 
Version: Rev 1 
Date: June 1, 2015 
 
Hadoop and the Hadoop elephant logo are trademarks of the Apache Software Foundation. 
 
The contents of his course and all its related materials, including lab exercises and files are 
Copyright © Hortonworks, Inc. 2014-2015 All rights reserved. 
 
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in 
any form by any means electronic, photocopy, recording or otherwise without prior written 
permission of Hortonworks. 

  



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
4 

 	  



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
5 

Table	  of	  Contents	  

Lab:	  Configuring	  a	  Storm	  Development	  Environment	  ............................................................	  6	  
Setting	  up	  a	  Storm	  development	  environment	  using	  Eclipse	  and	  Gradle	  ....................................	  6	  

Lab:	  Storm	  WordCount	  .....................................................................................................................	  12	  
Develop	  a	  simple	  Storm	  application	  ......................................................................................................	  12	  

Lab:	  Using	  Storm	  Multilang	  Support	  ............................................................................................	  22	  
Use	  a	  Python	  bolt	  in	  a	  Storm	  topology	  ...................................................................................................	  22	  

Lab:	  Processing	  Log	  Files	  .................................................................................................................	  27	  
Write	  a	  Storm	  topology	  ...............................................................................................................................	  27	  

Lab:	  Integrating	  Kafka	  with	  Storm	  ...............................................................................................	  29	  
Consuming	  Kafka	  messages	  in	  a	  Storm	  Topology	  ..............................................................................	  29	  

Lab:	  Using	  Trident	  .............................................................................................................................	  31	  
Writing	  a	  Simple	  Trident	  Application	  ....................................................................................................	  31	  

Lab:	  Using	  Trident	  with	  Kafka	  .......................................................................................................	  33	  
Writing	  a	  Trident	  Toplogy	  that	  uses	  Kafka	  ..........................................................................................	  33	  

 

  



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
6 

 

Lab: Configuring a Storm Development Environment 

Setting up a Storm development environment using Eclipse 
and Gradle 
Table 1. About	  this	  Lab	  

Objective: Setup an environment for developing Storm applications for 
Hadoop written in Java using Eclipse and Gradle. 

File locations: /root/storm/labs/WordCount 

Successful outcome: You will have a new Eclipse project defined and configured for 
developing Java Storm applications. 

Before you begin This lab assumes you have already completed the steps in the 
course setup guide and imported the classroom VM into VMWare 
Player/Fusion. 

Related lesson:  

 
  



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
7 

Perform the following steps: 

Step 1: Start the VM 

1.1. Using VMWare Player or VirtualBox, or using an AWS instance URL provided by your 
instructor, start up the classroom virtual machine and login. Login as root, and the 
password is hadoop. 

Step 2: Start Eclipse 

2.1. Start Eclipse by clicking on the shortcut on the left-hand toolbar: 

 
 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
8 

2.2. Make sure the workspace folder is /root/storm/workspace: 
 

 
 

Step 3: Create a New Eclipse Project 

3.1. Open a Terminal window in your VM by clicking on the Terminal shortcut on the 
left-hand toolbar, or by using the Ctrl+Alt+T keyboard shortcut. 

3.2. From the Terminal window, change directories to /root/storm/workspace: 
 
# cd ~/storm/workspace/ 

3.3. You are going to create a project named WordCount. Start by making a new 
subdirectory of workspace named WordCount: 
 
# mkdir WordCount 

3.4. Copy the provided build.gradle file in the labs/WordCount folder into the 
workspace/WordCount folder: 
 
# cd WordCount 
# cp ~/storm/labs/WordCount/build.gradle . 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
9 

3.5. View the contents of build.gradle using the more command: 
 
# more build.gradle  
project.ext.mainclass = 'wordcount.WordCountJob' 
project.ext.archiveName = 'wordcount.jar' 
 
apply from: '/root/storm/labs/build.gradle' 
 
Notice it defines the name of the JAR file and the main class within that JAR file. The 
other settings are inherited from the build.gradle file in the /root/storm/labs folder. 

Step 4: Import the Project into Eclipse 

4.1. From the Eclipse menu, select File -> Import…. 

4.2. Expand the Gradle folder and select Gradle Project: 
 

 
4.3. Click the Next button. 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
10 

4.4. Click the Browse… button next to the “Root folder:” textbox and select your 
/root/storm/workspace/WordCount folder: 
 

 
 

4.5. Click the Build Model button next to the Browse... button. This will cause 
WordCount to appear in the list of available projects. 

 
4.6. Check the box next to WordCount: 
 

 
4.7. Click the Finish button. Wait for the project to be imported into Eclipse. 

4.8. You should now see WordCount as a Gradle project in Eclipse in the Project Explorer 
window. Your Eclipse is project is ready to go. It will be used in a future lab to develop a 
Storm application. 

Step 5: Start the HDP Cluster 

5.1. From the Terminal window, run the following command (which should be in your 
PATH, so you can run the command from any directory): 
 
# storm_cluster.sh 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
11 

5.2. Wait for the script to complete. This script is starting up 5 nodes (using Docker) that 
create an HDP cluster. Three of the nodes are master nodes named namenode, 
resourcemanager, and hiveserver. The other 2 nodes are worker nodes named node1 
and node2 and have the DataNode and NodeManager processes running on them. 

5.3. Run the following command: 
 
# hdfs dfsadmin –report 
 
Scroll up through the output of the report and verify the number of available DataNodes 
is 2. 

5.4. Enter the following command: 
 
# yarn node –list 
 
Verify you have 2 NodeManagers in your cluster. 

  



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
12 

 

Lab: Storm WordCount  

Develop a simple Storm application 
Table 2. About	  this	  Lab	  

Objective: Write a WordCount application in Storm. 

File locations: /root/storm/workspace/WordCount 

Successful outcome:  

Before you begin You need to have created the WordCount project and imported it 
into Eclipse, which you did in the lab Configuring a Storm 
Development Environment. 

Related lesson: Configuring a Storm Development Environment 

 

 

Perform the following steps: 

Step 1: Define a New Package 
1.1. Right-click on the WordCount project and select New -> Source Folder. 

1.2. Enter src/main/java for the name and click the Finish button. 

1.3. Right-click on the src/main/java folder and select New -> Package. 

1.4. Enter wordcount for the name of the package and click the Finish button. 

Step 2: Create the SplitSentenceBolt Class 

2.1. Right-click on the wordcount package and select New -> Class. 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
13 

2.2. Name the class SplitSentenceBolt. Have it extend the 
backtype.storm.topology.base.BaseBasicBolt class, as shown here: 
 

 

2.3. Click the Finish button and the new class will open in the Eclipse editor. 

2.4. Notice your new class has the execute and declareOutputFields methods 
declared. 

Step 3: Define the SplitSentenceBolt Methods 

3.1. In the declareOutputFields method, declare a single field called “word”: 
 
public void declareOutputFields(OutputFieldsDeclarer declarer) {        
     declarer.declare(new Fields("word"));      
} 

3.2. In the execute method, split the incoming text into words and emit them. The 
StringUtils class is in the org.apache.commons.lang package: 
 
public void execute(Tuple input, BasicOutputCollector collector) {        
     String[] words = StringUtils.split(input.getString(0));        
     for (String word : words) { 
         collector.emit(new Values(word)); 
     } 
} 

 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
14 

3.3. Save your changes to SplitSentenceBolt.java. 

Step 4: Create the WordCountBolt Class 

4.1.  Add a class named WordCountBolt to the wordcount package. Have the class 
extend backtype.storm.topology.base.BaseBasicBolt. 

4.2. In the declareOutputFields method, declare two fields: “word” and “count”: 
public void declareOutputFields(OutputFieldsDeclarer declarer) { 
       declarer.declare(new Fields("word", "count")); 
} 

4.3. Add a java.util.HashMap field to WordCountBolt to store the words and the count 
of each word: 
Map<String, Integer> counts = new HashMap<String, Integer>(); 

4.4. In the execute method, get the word from the input Tuple, then add one to the count 
of that word. Then emit the word and its count: 
public void execute(Tuple input, BasicOutputCollector collector) { 
       String word = input.getString(0); 
       Integer count = counts.get(word); 
       if (count == null) 
         count = 0; 
       count++; 
       counts.put(word, count); 
       collector.emit(new Values(word, count)); 
} 

4.5. Save your changes to WordCountBolt.java. 

Step 5: Add the RandomSentenceSpout class to the Project 

5.1. There is a class written for you that generates random sentences. To add this class 
to the project, right-click on the wordcount package folder in Eclipse and select 
Import…. 

5.2. Select File System and click the Next button. 

5.3. Click the Browse… button and select the /root/storm/labs/WordCount folder. 

5.4. Place a check mark next to RandomSentencesSpout.java and select Finish. 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
15 

 
5.5. You should now see RandomSentenceSpout.java in the wordcount package: 

 
Step 6: Write the WordCount Program 

6.1. Add a class named WordCount to the wordcount package. Check the box to have 
Eclipse stub out the main method for you: 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
16 

 
6.2. Within the main method of WordCount, instantiate a new TopologyBuilder: 
 
TopologyBuilder builder = new TopologyBuilder(); 

6.3. Add the RandomSentenceSpout to the topology with a parallelism hint of 5: 
builder.setSpout("spout", new RandomSentenceSpout(), 5); 

6.4. Add the SplitSentenceBolt to the topology with a parallelism hint of 8. Assign the 
“spout” as its input, using a shuffle grouping: 
builder.setBolt("split",  
                new SplitSentenceBolt(),  
                8).shuffleGrouping("spout"); 

6.5. Add the WordCountBolt to the topology with a parallelism hint of 12. Assign the 
“split” bolt as its input, and use a fields grouping on the “word” field: 
builder.setBolt("count",  
                new WordCountBolt(),  



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
17 

                12).fieldsGrouping("split", new Fields("word")); 

6.6. Instantiate a Config object. Set the maximum task parallelism to 3 and the number 
of workers to 3: 
Config conf = new Config(); 
conf.setDebug(true); 
conf.setMaxTaskParallelism(3); 
conf.setNumWorkers(3); 

Setting debug to true will allow you to view the word counts in the log files. 
6.7. Submit the topology using the StormSubmitter class: 
StormSubmitter.submitTopology("word-count",  
                conf,  
            builder.createTopology()); 

6.8. Add a try/catch block around the method call above. 

6.9. Save your changes to WordCount.java. 

Step 7: Build the JAR 

7.1. Right-click on the WordCount project and select Run As -> Gradle Build. 

7.2. In the Edit Configuration dialog, type in “clean” and “build” in the list of Gradle 
Tasks, as shown here: 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
18 

 
7.3. Click the Run button to clean and build the project. Make sure the WordCount project 
builds successfully. 

Step 8: Start the Topology 
8.1. Open a Terminal window and change to the WordCount project folder: 
 
# cd ~/storm/workspace/WordCount 

8.2. Run the program by entering the following command all on a single line: 
 
# storm jar storm-wordcount.jar wordcount.WordCount 

Step 9: Verify the Topology is Running 

9.1. Point your Web browser to http://localhost:8080/  

9.2. You should see the Storm UI and your word-count topology listed as ACTIVE: 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
19 

 
 

9.3. Click on the word-count link to view the Topology Summary page for your word-
count topology: 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
20 

 
9.4. Notice your spout and bolts appear on the summary page. Click on their links to 
view the details of the “spout”, and also the “count” and “split” bolts. 

Step 10: View the Word Counts 

10.1. Your WordCount topology does not output any results to HDFS, but it does display 
the words being counted in the log files. To view the log files, start by clicking on the 
word-count topology from the main Storm UI page. 
10.2. Second, click on the “count” bolt to view the Component Summary page for the 
bolt. 

10.3. At the bottom of the “count” summary page, notice the port number is a link in the 
Executors section, and there are three executors. Click on any of the port numbers to 
view the corresponding log file. 

10.4. Look carefully at the output in the log file. Notice that the emitted values are 
logged, so you will see entries like the following: 
[INFO] Emitting: count default [two, 4149] 
[INFO] Emitting: count default [keeps, 3911] 
[INFO] Emitting: count default [and, 8067] 
[INFO] Emitting: count default [away, 3911] 

10.5. Browse some of the other log files from the other executors, which will contain 
similar entries. 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
21 

Step 11: Kill the Topology 

11.1. There are two ways to kill a topology. In the Storm UI, you can click on the “Kill” 
button on the Topology Summary page. Or, you run the following command from the 
terminal: 
 
# storm kill word-count 

11.2. Refresh the Storm UI page, and you should no longer see the word-count topology. 
 

Result: Congratulations, you have just written your first Storm application. Your word-count 
topology did not output any data to HDFS (or any destination), but you will learn how to 
accomplish that in future labs. 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
22 

Lab: Using Storm Multilang Support 

Use a Python bolt in a Storm topology 
Table 3. About	  this	  Lab	  

Objective: Write a WordCount application in Storm that uses a bolt written in 
Python. 

File locations: /root/storm/labs/Multilang 

Successful outcome:  

Before you begin You need to have completed the WordCount project from the 
previous lab. 

Related lesson: Storm WordCount 

 

Perform the following steps: 

Step 1: Write a Python Bolt 

1.1. The Python code has been written for you. You just need to add it to the Eclipse 
project. Right-click on the WordCount project folder and select New -> Source 
Folder. 

1.2. Name the folder src/multilang/resources: 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
23 

 
1.3. Click the Finish button to create the folder. 

1.4. Right-click on the new src/multilang/resources folder and select Import….  

1.5. Select File System and click the Next button. 

1.6. Click the Browse… button and select the /root/storm/labs/Multilang folder. 

1.7. Check the splitsentences.py and storm.py files, then click the Finish button: 

 
1.8. Expand the src/multilang/resources folder in Eclipse, then right-click on 
splitsentences.py and select Open With -> Text Editor to view the script: 
import storm 
 
class SplitSentenceBolt(storm.BasicBolt): 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
24 

    def process(self, tup): 
        words = tup.values[0].split(" ") 
        for word in words: 
            storm.emit([word]) 
 
SplitSentenceBolt().run() 

1.9. Notice the code defines a Python class named SplitSentenceBolt which contains 
a process function that splits a line of text into words using a space as a delimiter. 

Step 2: Define a ShellBolt  
2.1. Right-click on the wordcount package and select New -> Class. 

2.2. Add a new class named SplitSentencePythonBolt that extends ShellBolt and 
implements IRichBolt, as shown below: 

 
2.3. In the declareOutputFields method, declare a single field named “word”: 
declarer.declare(new Fields("word")); 

2.4. Add a no-argument constructor that passes the Python script name to the parent 
constructor: 
public SplitSentencePythonBolt() { 
       super("python", "splitsentence.py"); 
} 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
25 

2.5. Save your changes to SplitSentencePythonBolt.java. 

Step 3: Copy the WordCount Class 

3.1. The WordCount class only needs a couple of minor changes, so you will use it as a 
starting point for configuring the ShellBolt. Click on WordCount.java in the Project 
Explorer view of Eclipse and press Ctrl+c to copy it. 

3.2. Press Ctrl+v to paste the file and a “Name Conflict” dialog window appears. 
Change the name to MultilangWordCount: 

 
3.3. Press OK to close the dialog. 

3.4. Double-click on MultilangWordCount.java to open the file in the Eclipse editor. 

Step 4: Configure the ShellBolt 
4.1. Within the main method of MultilangWordCount, change the SplitSentenceBolt to 
a SplitSentencePythonBolt. 

4.2. In the call to submitTopology, change the name of the topology from “word-count” 
to “multilang-word-count”. 

4.3. Save your changes to MultilangWordCount.java. 

Step 5: Run the Topology 

5.1. Right-click on the WordCount project and select Run As -> Gradle Build to 
rebuild the JAR file. 

5.2. Run the Storm JAR with the following command: 
# storm jar storm-wordcount.jar wordcount.MultilangWordCount 

Step 6: Verify the Topology 
6.1. Go to the Storm UI and verify that the multilang-word-count topology is ACTIVE. 

6.2. View the log files of the “count” bolt to verify that it is processing words and keeping 
track of their count. 

Step 7: Kill the Topology 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
26 

7.1. When you are done verifying that the topology is running successfully, kill it. 
 

Result: In this lab, you deployed a Storm topology that uses a bolt written in Python.  

  



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
27 

 

Lab: Processing Log Files 

Write a Storm topology  
Table 4. About	  this	  Lab	  

Objective: Write a Storm topology for processing log file entries. 

File locations: /root/storm/labs/LogTopology 

Successful outcome:  

Before you begin Make sure your cluster is up and running, and open Eclipse. 

Related lesson: Storm WordCount 

 

Perform the following steps: 

Step 1: Locate the Eclipse Project  

1.1. Open Eclipse. You should see a project named LogTopology. 

1.2. Notice the project contains a package named log and a spout named 
LogFileSpout that is written for you. View the code of the LogFileSpout class. Notice it 
reads in and then emits the lines of text from a given file. 

1.3. Put the file ~/storm/labs/LogTopology/node1.log into HDFS into the /user/root 
folder: 

# hadoop fs -put ~/storm/labs/LogTopology/node1.log /user/root/ 

Step 2: Write the LogSplitterBolt 

2.1. Add a new class named LogSplitterBolt to the log package that extends 
BaseBasicBolt. 

2.2. The lines of text emitted from the LogFileSpout will look like the following (all on a 
single line): 

2015-01-05 03:10:02,163 INFO  impl.MetricsSinkAdapter 
(MetricsSinkAdapter.java:start(195)) - Sink ganglia started 

2.3. Write the LogSplitterBolt so that it emits three values: the date, log level, and 
message. You will need to split the incoming line of text into these three values. HINT: 
The date is the first 24 characters; then you can split the remaining text on the first 
whitespace (because the log level will not have any spaces in it). The following code 
might help: 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
28 

String date = input.getString(0).substring(0, 23); 
String errormessage = input.getString(0).substring(24); 
String [] words = errormessage.split("\\s+"); 
collector.emit(new Values(date, words[0], words[1])); 

Step 3: Write the LogFilter Bolt 

3.1. Write a bolt called LogFilterBolt that filters the log message given a log level. You 
will need to add a field to the class that stores the log level being searched, and add a 
constructor that initializes that field. The bolt should only emit the messages that match 
the given filter.  
For example, if the search string is “WARN”, then the LogFilterBolt should only emit 
messages of type WARN, and only the message (not the date or log level). 

Step 4: Build the Topology 
4.1. Write a class named LogTopology that contains the main method to build the Storm 
topology. Build the topology using the LogFileSpout, and then attach the 
LogSplitterBolt and then the LogFilterBolt. Create a LogFileSpout that reads the 
log entries from node1.log. Pass in the file  
"hdfs://namenode:8020/user/root/node1.log" in the LogFileSpout constructor. 
Use “WARN” as the log level filter. 
4.2. Run the topology locally (as opposed to on the cluster): 

LocalCluster cluster = new LocalCluster(); 
    cluster.submitTopology("logfilter", conf, builder.createTopology()); 

Step 5: Run the Topology in Eclipse 
5.1. Right-click on the LogToplogy class and select Run As -> Java Application. You 
should see the output in the Eclipse Console window. 

Step 6: Verify the Output 
6.1. Scroll through the output and make sure your logs are being filtered properly. Add 
System.out.println calls to your code if you want to verify the messages being 
emitted by your bolts. 
 

Result: In this lab, you wrote a Storm topology that uses two bolts: one to split a log message 
into separate strings, and a second that filters the log messages on a given log level.  
You also saw how to run a Storm topology locally, which is useful when developing and 
testing a topology. 

 
  



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
29 

 

Lab: Integrating Kafka with Storm 

Consuming Kafka messages in a Storm Topology 
Table 5. About	  this	  Lab	  

Objective: Write a Storm topology that consumes messages from a Kafka 
spout. 

File locations: /root/storm/labs/Kafka 

Successful outcome: You will be able to send messages from the command line to a 
Kafka topic, and your Storm topology will read the messages. 

Before you begin Start the cluster and open Eclipse. 

Related lesson: n/a 

 

Perform the following steps: 

Step 1: SSH onto node1 

1.1. Open a Terminal window. 

1.2. A Kafka server is already running on node1 of your cluster. SSH onto node1: 
# ssh node1 

The password is hadoop. 

Step 2: Define a Topic 

2.1. Use the kafka-topics.sh script (which is in the PATH of node1) to create a new 
topic named my_topic. ZooKeeper is running on namenode:2181. Use a replication 
factor of 1, and also use 1 partition. 

2.2. Use the --list option of kafka-topics.sh to verify your topic was created 
successfully. 

Step 3: Test the Topic 

3.1. Run the following command, which allows you to send messages to a topic from the 
console: 

# kafka-console-producer.sh --broker-list localhost:9092 --topic my_topic 

3.2. Type in some text and hit Enter. Each line of text you enter sends a message to 
my_topic. 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
30 

3.3. Hit Ctrl+c to stop the process. 

3.4. To consume your messages, run the following program: 
# kafka-console-consumer.sh --zookeeper namenode:2181 --topic my_topic \ 
--from-beginning 

3.5. You should see the messages that you typed in previously. 

3.6. Hit Ctrl+c to stop the process. 

Step 4: Open the Eclipse Project 

4.1. Locate the Kafka project in Eclipse. Notice it contains a package named kafka and 
two classes: KafkaTopology and SimpleBolt. 

Step 5: Create a KafkaSpout 

5.1. Open the file KafkaTopology.java. 

5.2. Within the main method, create a new KafkaSpout object. You will need a ZkHosts 
object for “namenode:2181”. The name of the topic is “my_topic”, and use “/my_topic” 
for the ZooKeeper location for storing the offset. Use any string you want for the topic 
ID. 

Step 6: Create a Topology 

6.1. Instantiate a new TopologyBuilder object. 

6.2. Add your KafkaSpout object to the topology. Give it the name “my_topic_spout” 
and set the number of tasks to 1. 
6.3. Add a new SimpleBolt object to the topology named “simplebolt”. 

Step 7: Create a LocalCluster 

7.1. Instantiate a new backtype.storm.Config object.  

7.2. Instantiate a new backtype.storm.LocalCluster object. 

7.3. Submit your topology to the LocalCluster object, which will run the code locally 
instead of on a cluster. 

7.4. Save your changes to KafkaTopology.java. 

Step 8: Run the Topology 

8.1. Right-click on KafkaTopology.java and select Run As -> Java Application. The 
output should appear in the Console tab of Eclipse. 

8.2. Run the kafka-console-producer.sh process and send some messages to 
my_topic. You should see the messages displayed in the Console in Eclipse as they get 
read by your spout and processed by the SimpleBolt object. 

Result: You Storm topology is consuming messages from a Kafka topic. 
 
 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
31 

 

Lab: Using Trident 

Writing a Simple Trident Application 
Table 6. About	  this	  Lab	  

Objective: Write a Trident word count application. 

File locations: /root/storm/labs/TridentWordCount 

Successful outcome: The count of words in a text document. 

Before you begin Start the cluster and open Eclipse. 

Related lesson: n/a 

 

Perform the following steps: 

Step 1: Review the Project 

1.1. Open the TridentWordCount project in Eclipse. 

1.2. Notice a spout named LineReaderSpout has been written for you in the trident 
package. This spout reads in a text document and emits each line of text as a tuple.  

Step 2: Define a Topology 

2.1. Open TridentWordCount.java in the trident package. 

2.2. Within main, create a new Config object and assign a new property named 
“inputFile” as the name of the file to process. In our example, we will use a simple file 
that is in the /root folder: 

      Config config = new Config(); 
      config.put("inputFile", "/root/install_course.sh"); 

2.3. Instantiate a new LineReaderSpout object. 

2.4. Instantiate a new TridentTopology object. 

2.5. Attach the LineReaderSpout object as a stream to the topology. 

2.6. Use the each operation to split the incoming lines of text into words. 

2.7. Use the groupBy operation to group the result by word. 

2.8. Use the aggregate operation with a new Count object to count the number of values 
in each group. 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
32 

2.9. Use the each operation with a new Debug instance to display the result of each word 
counted: 

.each(new Fields("word","count"), new Debug()) 

Your Trident topology should now be complete. 
Step 3: Submit the Topology 

3.1. Instantiate a LocalCluster object and submit your Trident topology along with the 
Config object. 

Step 4: Run the Application  

4.1. Save your changes to TridentWordCount.java. 

4.2. Run TridentWordCount as a Java application from within Eclipse. 

4.3. Watch the output in the Console window. The application should start successfully, 
but it may take a minute or so for the actual word counts to be displayed. 

 
Result: Your Trident topology should output the word count of the given text input file. 
  



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
33 

 

Lab: Using Trident with Kafka 

Writing a Trident Toplogy that uses Kafka 
Table 7. About	  this	  Lab	  

Objective: Write a Trident topology that consumes messages from a Kafka 
topic. 

File locations: /root/storm/labs/TridentKafkaTopology 

Successful outcome: The Trident topology reads messages from the Kafka topic, and a 
query displays the count of specified words. 

Before you begin Start the cluster and open Eclipse. 

Related lesson: n/a 

 

Perform the following steps: 

Step 1: Import the Project 

1.1. Open the TridentKafkaTopology project in Eclipse. 

1.2. Open the file SentenceProducer.java in the kafka package. 

1.3. Notice the SentenceProducer application publishes the same sentences 10,000 
times to a topic named “sentences”. 

Step 2: Define the Topic 

2.1. From a Terminal window, define a new topic named sentences using the ZooKeeper 
instance on namenode:2181. Use 1 for the replication factor and the number of 
partitions. 

Step 3: Publish Messages to the Topic 

3.1. In Eclipse, run the SentenceProducer application by right-clicking on 
SentenceProducer.java and selecting Run As -> Java Application. (There is no 
output, so just check the Console for any error messages.) 

Step 4: Configure the TridentKafkaConfig Instance 

4.1. Open TridentKafkaWordCount.java. 

4.2. Locate the static buildTopology method. Notice there is a comment showing where 
to add your new code for this lab. 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
34 

4.3. Instantiate a new TridentKafkaConfig object. Use namenode:2181 for the ZkHosts, 
and the name of the topic is “sentences”. 

4.4. Set the scheme of the TridentKafkaConfig object to a new StringScheme: 
spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme()); 

4.5. Set the forceFromStart property to true: 
spoutConfig.forceFromStart = true; 

4.6. Instantiate a new TransactionalTridentKafkaSpout instance, using your 
TridentKafkaConfig instance: 

TransactionalTridentKafkaSpout kafkaSpout =  
  new TransactionalTridentKafkaSpout(spoutConfig); 

Step 5: Configure a TridentTopology 

5.1. Instantiate a new TridentTopology instance. 

5.2. Configure the topology to process the stream from the kafkaSpout: 
TridentState wordCounts = topology.newStream("spout", kafkaSpout) 
       .parallelismHint(16) 
    .each(new Fields("str"), new Split(), new Fields("word")) 
    .groupBy(new Fields("word")) 

        .persistentAggregate(new MemoryMapState.Factory(), new Count(), 
new Fields("count")) 
    .parallelismHint(16); 

5.3. Now define a distributed query on the word counts, using the LocalDRPC reference 
passed in to the method: 

topology.newDRPCStream("words", drpc) 
  .each(new Fields("args"), new Split(), new Fields("word")) 
  .groupBy(new Fields("word")) 
  .stateQuery(wordCounts, new Fields("word"), new MapGet(), new 
Fields("count")) 
  .each(new Fields("count"), new FilterNull()) 
  .aggregate(new Fields("count"), new Sum(), new Fields("sum")); 

5.4. Build the topology and return it from the buildTopology method: 
return topology.build(); 

5.5. Save your changes to TridentKafkaWordCount.java. 

Step 6: Submit the Topology 
6.1. The main method is written for you. Notice it invokes the static buildTopology 
method and submits it to a local cluster. Then a for loop executes the LocalDRPC query 
100 times, sleeping for one second inbetween queries. 

6.2. Right-click on TridentKafkaWordCount and select Run As -> Java Application. 

6.3. Check the output in Console. As the query executes, you should its output and the 
number of occurrences of the strings “good” and “happy”. 



HDP Developer: Storm 

Copyright © 2015, Hortonworks, Inc. All rights reserved. 

 
35 

6.4. Feel free to change the words in the query and run the process again to view the 
count of other words in the stream. 

 

Result: You now have a Trident topology processing messages from a Kafka spout. 
 




