
6/2/15	

1	

Page 1 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Hortonworks University

May 2015

Hortonworks. We do Hadoop.

Page 2 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

HDP Developer: Storm Essentials
Concepts, Terminology, and Operation

6/2/15	

2	

Page 3 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

HDP Developer: Storm Essentials

Lessons:
1 – Real-Time Data Processing
2 – Storm Components
3 – Installing and Configuring Storm
4 – Developing and Submitting Topologies
5 – Storm Reliability
6 – Storm Management
7 – Kafka Programming
8 – Trident Introduction
9 – Trident Operations
10 – Trident State

Page 4 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

About This Course
Using Storm or Trident is more about programming real-time data-processing pipelines than it is
system administration.
A system administrator:
•  Plans and installs a Storm cluster

•  Monitors Storm operation
•  Adds/replaces/removes Storm cluster nodes

Programmers use the Storm and Trident APIs to build processing pipelines that process real-
time data.
•  The primary interface for Storm and Trident programming is Java

– As a Thrift service, Storm also supports multiple languages

– Thrift and the use of other languages are beyond the scope of this course

This course focuses on the Storm and Trident Java interface.
•  A Java background is helpful but not explicitly required to complete this course

•  You will have to know Java in order to use Storm or Trident

6/2/15	

3	

Page 5 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

1 – Real-Time Data Processing
Real-time versus batch data processing

Page 6 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

When you complete this lesson you should be able to:
•  Identify whether Storm performs batch or real-time processing

•  Recognize the differences between batch and real-time processing
•  List reasons why companies deploy Storm
•  Describe Storm use cases

6/2/15	

4	

Page 7 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Consider These Scenarios
What if you are a financial services company and you need to analyze transactions in real time
to prevent fraud?
What if you are a telecom company and you need to analyze network traffic in real time to
allocate cell towers dynamically?
What if you need to monitor application logs in real time to respond to application anomalies as
they happen?
What if you are a trucking company and you need to analyze real-time data to modify drive
routes to save time and fuel costs?
Apache Storm can help in these types of scenarios.

Page 8 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Real-Time Streaming Data

The previous scenarios all had one thing in common:
•  The availability of continuous streams of real-time data

Apache Storm is a distributed computation system for processing continuous
streams of real-time data.
•  Storm augments the batch processing capabilities provided by MapReduce

Storm is commonly used for:
•  Stream processing
•  Continuous computation

•  Distributed remote procedure calls (DRPC)

6/2/15	

5	

Page 9 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The Assembly Line Model

Storm processes real-time data using an assembly line model similar to the
automotive industry.
•  Complex tasks are accomplished step by step by a series of workers performing different operations
•  There are identical, parallel assembly lines to increase throughput

•  In Storm, the assembly line is not always a line; there are branches and even directed acyclic graphs

raw
materials

finished
product

loading dock assembly
1

assembly
2

assembly
3

loading dock assembly
1

assembly
2

assembly
3

Factory

(data source) (Storm spout) (Storm bolt) (Storm bolt) (Storm bolt)

Page 10 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Real-Time Versus Batch Processing

Real-time and batch processing are very different.

Factors Real-Time Batch

Data

Age Real-time – usually less than 15
minutes old

Historical – usually more than
15 minutes old

Location Primarily in memory – moved to
disk after processing

Primarily on disk – moved to
memory for processing

Processing
Speed Sub-second to few seconds Few seconds to hours
Frequency Always running Sporadic to periodic

Clients
Who Automated systems only Human & automated systems
Type Primarily operational

applications
Primarily analytical applications

6/2/15	

6	

Page 11 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  What is the typical age of real-time
data?

2.  How often is real-time data processed?
3.  What is the typical age of batch data?
4.  What is typically the client of a real-time

processing system?
5.  How often is batch data processed?
6.  What is typically the client of a batch-

processing system?
7.  What type of application commonly

processes batch data?
8.  What type of application commonly

processes real-time data?

a.  an automated system
b.  typically older than 15 minutes
c.  historical analysis application
d.  typically less than 15 minutes old
e.  processed continually
f.  processed sporadically
g.  a human or an automated system
h.  an operational dashboard application

Match each question with its correct answer.

Page 12 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Why Enterprises Choose Storm

•  Horizontally scalable like Hadoop Highly scalable

•  For example, a 10 node cluster can process 1M 100 byte messages per second per node Fast

•  Highly redundant services and operation with automated failover capabilities Fault tolerant

•  Supports at-least-once and exactly-once processing semantics Guarantees
processing

•  Data-processing logic can be written in multiple languages Language agnostic

•  Brand, governance, and a large active community Apache project

6/2/15	

7	

Page 13 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm Use Cases – Prevent and Optimize

Prevent Optimize
finance •  Securities fraud

•  Compliance violation
•  Order routing
•  Pricing

telco •  Network breaches
•  Network outages

•  Bandwidth allocation
•  Customer service

retail •  Inventory overstock/under
stock

•  Offers
•  Pricing

manufacturing •  Machine failures •  Supply chain

transportation •  Driver and fleet issues •  Routes
•  Pricing

Web •  Application failures
•  Operational issues

•  Site content

streaming real-time data

Sentiment Clickstream Machine/Sensor Logs Geolocation

Page 14 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Integrating Real-Time Processing Workflows

persists data

Hadoop

batch processing

da
ta

batch feeds
Update event models

Pattern templates, key-
performance indicators, and

alerts

Dashboards and Applications

Storm real-time
data feeds

6/2/15	

8	

Page 15 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check
1.  True or False: Storm performs batch processing.
2.  Storm is used for: (choose three)

a.  stream processing

b.  continuous computation
c.  historical analysis
d.  distributed RPC

3.  Storm is commonly used to prevent certain outcomes and: (choose one)
a.  schedule Hadoop resources

b.  optimize operations
c.  secure Hadoop resources

d.  perform historical data analysis

Page 16 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lesson Review – Things to Remember

Apache Storm is a distributed computation system for processing continuous
streams of real-time data.

Storm is used to prevent certain outcomes or to optimize operations.

Real-time systems are always running and typically require automated
applications or dashboards to consume the data.

6/2/15	

9	

Page 17 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lab
Configuring a Storm Development Environment

Page 18 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

2 – Storm Components
An introduction to the Storm architecture

6/2/15	

10	

Page 19 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

When you complete this lesson you should be able to:
•  Define the terms tuple, stream, topology, spout, bolt, Nimbus, and Supervisor

•  Diagram the relationship between a Supervisor, worker process, executor, and a task
•  Diagram how Storm components interact to provide scalable, distributed, and parallel computation of

real-time data
•  Given the Java code for a topology, diagram the spout and bolt connections
•  Define the purpose of a stream grouping

•  List types of stream groupings
•  Recognize and explain sample spout and bolt Java code
•  List functions that ZooKeeper provides to Storm

Page 20 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

A Storm Topology

Storm data processing occurs in a
topology.

A topology consists of spout and
bolt components.
Spouts and bolts run on the systems
in a Storm cluster.

Multiple topologies can co-exist to
process different data sets in
different ways.

This lesson provides information
about topology components.

Storm topology

str
eam

stream

stream

stream

stream

stream

spout

spout

bolt

bolt

bolt

bolt

6/2/15	

11	

Page 21 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Tuples

The tuple is the fundamental data unit in Storm.
•  A tuple is a unit of work to process

•  A Storm topology processes tuples

A tuple is an ordered list of values.
•  The values can be of any type

In Storm, each field in a tuple must assigned a field name.
•  For example, the fields in a 5-tuple might be assigned the names name, user-id, age, salary, and

currency

 5, 10, 7, 35, 6

Rajesh, 3, London

“some_binary_data”, 5

These are all examples
of valid tuples.

Page 22 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Message Queues

Message queues are often the source of the data processed by Storm.
Storm integrates with many types of message queues.

real-time
data source

operating
systems,

services and
applications,

sensors

Kestrel,
RabbitMQ,

AMQP, Kafka,
JMS, others…

message
queue

log entries,
events, errors,

status
messages, etc.

Storm

data from queue
is read by Storm

6/2/15	

12	

Page 23 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Streams

The stream is one of the core abstractions in Storm.
A stream is an unbounded sequence of tuples.

Every stream is assigned a stream ID when it is created.
•  The default stream ID is default

•  For more information about assigning stream IDs, see https://storm.apache.org/apidocs/backtype/storm/
topology/OutputFieldsDeclarer.html

tuple tuple tuple tuple tuple tuple tuple tuple ID

tuple tuple tuple tuple tuple tuple tuple tuple ID

Page 24 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spouts
A spout is a source of streams in a topology. Spouts:
•  Act as an adapter between external data source and Storm

•  Read data from an external source (commonly a message queue)
•  Emit one or more streams of spout tuples into a topology

– Each stream requires a unique stream ID

Spouts can be reliable or unreliable.
•  A reliable spout replays a tuple that failed to process
•  An unreliable spout does not replay a tuple that failed to be processed

tuple tuple tuple tuple tuple tuple tuple tuple ID
external
message

queue

6/2/15	

13	

Page 25 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Example Spout Code (1 of 2)

public class RandomSentenceSpout extends BaseRichSpout {
 SpoutOutputCollector _collector;
 Random _rand;

 @Override
 public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
 _collector = collector;
 _rand = new Random();
 }
 @Override
 public void nextTuple() {
 Utils.sleep(100);
 String[] sentences = new String[]{ "the cow jumped over the moon", "an apple a day keeps

 the doctor away", "four score and seven years ago", "snow white and the seven dwarfs",
 "i am at two with nature" };

 String sentence = sentences[_rand.nextInt(sentences.length)];
 _collector.emit(new Values(sentence));
 }

Continued next page…

Storm uses open to open the spout and provide it with its configuration,
a context object providing information about components in the
topology, and an output collector used to emit tuples.

Storm uses nextTuple to request
the spout emit the next tuple.

The spout uses emit to send a
tuple to one or more bolts.

Name of the spout class. Storm spout class used as a “template”.

Page 26 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Example Spout Code (2 of 2)

 @Override emit
 public void ack(Object id) {
 }
 @Override
 public void fail(Object id) {
 }
 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields(”sentence"));
 }
 }

Storm calls the spout’s ack method to signal
that a tuple has been fully processed.

Storm calls the spout’s fail method to signal
that a tuple has not been fully processed.

The declareOutputFields
method names the fields in a tuple.

Continued…

6/2/15	

14	

Page 27 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Bolts
A bolt implements the data-processing logic.
•  A bolt processes each tuple in a stream and emits a new stream of tuples

A bolt can run a function or filter, aggregate, or join tuples.
A bolt can also send tuples to other message queues, databases, HDFS, and more.
Complex transformation and analysis is possible by connecting multiple bolts together.

database

Page 28 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Example Bolt Code

public static class ExclamationBolt extends BaseRichBolt {
 OutputCollector _collector;

 public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
 _collector = collector;
 }

 public void execute(Tuple tuple) {
 _collector.emit(tuple, new Values(tuple.getString(0) + "!!!"));
 _collector.ack(tuple);
 }

 public void cleanup(); {
 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }
}

The prepare method
provides the bolt with
its configuration and
an
OutputCollector
used to emit tuples.

The execute method
receives a tuple from a
stream and emits a
new tuple. It also
provides an ack
method that can be
used after successful
delivery.

The cleanup
method releases
system resources
when bolt is shut
down.

Names the fields in the output
tuples. More detail later.

Name of the bolt class. Bolt class used as a “template.”

6/2/15	

15	

Page 29 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Example Topology Code

public static main(String[] args) throws exception {

 TopologyBuilder builder = new TopologyBuilder();
 builder.setSpout(“words”, new TestWordSpout());
 builder.setBolt(“exclaim1”, new NewExclamationBolt()) .shuffleGrouping(“words”);
 builder.setBolt(“exclaim2”, new NewExclamationBolt()) .shuffleGrouping(“exclaim1”);

 Config conf = new Config();

 StormSubmitter.submitTopology(”add-exclamation", conf, topology);

}

This code…

words exclaim1 exclaim2

shuffleGrouping shuffleGrouping
…builds this

topology.

runs code in
TestWordSpout() runs code in

NewExclamationBolt()

runs code in
NewExclamationBolt()

Page 30 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  Performs functions or filters, aggregates, or joins tuples
2.  An unordered list of objects
3.  The source of streams in a topology
4.  Must be assigned a name
5.  An unbounded sequence of tuples
6.  A collection of spouts and bolts
7.  Can send tuples to a database

a.  spout
b.  bolt
c.  tuple
d.  stream
e.  tuple field
f.  topology

Match the definition with the correct term.

6/2/15	

16	

Page 31 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“arg1”, new Class1());
builder.setBolt(“arg2”, new Class2()) .arg3(“arg4”);
builder.setBolt(“arg5”, new Class3()) .arg6(“arg7”);

Given this topology and code segment, match args 1-7 to the correct word to
complete the topology code.

logs filter1 functionA

fieldsGrouping shuffleGrouping

1.  arg1
2.  arg2
3.  arg3
4.  arg4
5.  arg5
6.  arg6
7.  arg7

a.  logs
b.  fieldsGrouping
c.  filter1
d.  shuffleGrouping
e.  functionA

Page 32 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Given this code segment, match
the number with the correct
description.

a.  Method used to send a tuple

b.  Method used to provide a spout a configuration

c.  Name of the spout class

d.  Storm class used as a parent spout class

e.  Method used to request that a spout send the
next tuple

public class RandomSentenceSpout extends BaseRichSpout {
 SpoutOutputCollector _collector;
 Random _rand;

 @Override
 public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
 _collector = collector;
 _rand = new Random();
 }
 @Override
 public void nextTuple() {
 Utils.sleep(100);
 String[] sentences = new String[]{ "the cow jumped over the moon", "an apple a day keeps

 the doctor away", "four score and seven years ago", "snow white and the seven dwarfs",
 "i am at two with nature" };

 String sentence = sentences[_rand.nextInt(sentences.length)];
 _collector.emit(new Values(sentence));
 }

1 2 3

4

5

6/2/15	

17	

Page 33 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm Architecture
Storm is implemented as a cluster of machines.
•  Nimbus – master node daemon

– Similar function to YARN ResourceManager

– Distributes program code around cluster

– Assigns tasks

– Handles failures

– Responds to topology administration requests

•  Supervisor – slave node daemons
– Similar function to YARN NodeManager

– Runs bolts and spouts as tasks

– Commonly runs on Hadoop slave machines

•  ZooKeeper
– Cluster coordination

– Stores cluster metrics

Nimbus ZooKeeper

ZooKeeper

ZooKeeper

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Page 34 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Hadoop MapReduce and Storm Topologies Compared

A Storm cluster is superficially similar to a Hadoop cluster.
Storm and Hadoop provide a highly parallel processing cluster to reliably process massive
amounts of data.
Both Storm and Hadoop clusters can share the same machines.
Each is implemented using different daemons and libraries.

 Hadoop Cluster and MapReduce Storm Cluster and Topologies
Scalable Scalable
Guarantees no data loss Can guarantee no data loss
Batch processing Real-time processing
Jobs run to completion Topologies run until manually stopped
Stateful nodes Stateless nodes

6/2/15	

18	

Page 35 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Nimbus

Nimbus is implemented as a Thrift daemon.
•  ps –ef | grep nimbus
•  It is fail-fast and stateless
•  State is maintained on local disk and in ZooKeeper

The Nimbus daemon should be run under supervision.

Nimbus is a single point for configuration changes but not failure.

disk operating system

Nimbus supervision

ZooKeeper

state

State stored beneath the parent directory
defined by storm.local.dir in
storm.yaml file.

Page 36 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Supervisor

Supervisor is implemented as a Thrift daemon.
•  ps –ef | grep supervisor
•  It is fail-fast and stateless
•  State is maintained on local disk and in ZooKeeper

The Supervisor daemon should be run under supervision.

Supervisor failures do not affect running topologies.

disk operating system

Supervisor supervision

ZooKeeper

state

State stored beneath the parent directory
defined by storm.local.dir in
storm.yaml file.

6/2/15	

19	

Page 37 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  Responds to topology administration requests
2.  Assigns cluster tasks
3.  Provides cluster coordination
4.  Manages failures
5.  Runs spouts
6.  Runs bolts

a.  Nimbus
b.  Supervisor
c.  ZooKeeper

Match the definition to the correct Storm component.

Page 38 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  Nimbus and Supervisor state is maintained: (choose two)
a.  in HDFS

b.  on local disk
c.  in ZooKeeper
d.  in the supervisory daemon

2.  Nimbus and Supervisors should run under a supervisory program:
a.  because they are fail-fast

b.  to maintain their state information
c.  to collect performance metrics
d.  because they are Thrift services

6/2/15	

20	

Page 39 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Worker Processes, Executors, and Tasks

Each Supervisor
machine uses three
entities to run a
subset of a topology.
•  Worker process
•  Executor
•  Task

Adding more
machines with more
of these entities can
increase Storm
processing
scalability.

Each Supervisor machine can run
one or more worker processes.
Each worker process is a Java
virtual machine.

Each worker process runs one or
more threads, called executors.
•  Executors run tasks
•  One task per executor, by default
•  If an executor runs more than

one task, all tasks must be the
same component type (spout or
bolt)

A task performs the spout or bolt
data processing. A spout or bolt
can run in parallel across many
tasks.

Supervisor machine

worker process (JVM)

task

thread

task

thread

task

thread

task

thread

task

thread

task

thread

Page 40 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Parallel Execution of Topology Components

a logical
topology

spout A

bolt A bolt B

bolt C

a physical
implementation

machine A

machine B

machine/worker/
executor/task nestings

machine E

machine C

machine D

machine F

machine G

spout A
two tasks

bolt A
two tasks

bolt B
two tasks

bolt C
one task

User code developed
for a topology is
submitted to Nimbus
and is transferred to
appropriate Supervisor
machines.

6/2/15	

21	

Page 41 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Stream Groupings
A spout or bolt is commonly run as a
set of parallel tasks.

When a tuple is sent to a bolt, to
which bolt task is it sent?
•  For example, when a task in spout A needs to send

a tuple to bolt A, which task in bolt A should receive
it?

A developer-selectable stream
grouping defines how the tuples in a
stream should be partitioned among
a bolt’s tasks.

Storm has seven built-in stream
groupings.

spout A

bolt A bolt B

bolt C

stream
groupings

stream
groupings

Page 42 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Stream Grouping Types
Shuffle grouping: Tuples are randomly distributed across a bolt’s tasks in a way such that
each task is guaranteed to get an equal number of tuples.
All grouping: A tuple is replicated across all of the bolt’s tasks.
Global grouping: An entire stream is sent to the bolt task with the lowest ID number. (All tasks
are assigned a unique ID.)
None grouping: Currently, none groupings are equivalent to shuffle groupings.
Direct grouping: The tuple sender decides which task will receive the tuple.
Local or shuffle grouping: If the target bolt has one or more tasks in the same worker process
as the sender, tuples will be shuffled to just those in-process tasks. Otherwise, this acts like a
normal shuffle grouping.
Fields grouping: Tuples with the same value in a user-specified field are routed to the same
task.
A previous page titled Example Topology Code has an example of using a stream grouping.

6/2/15	

22	

Page 43 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Field Groupings and Output Field Declarations

Each field in a tuple emitted by a spout or bolt is assigned a name.
•  This is useful because the fields grouping stream grouping routes tuples to specific bolt tasks based on a

specific tuple field having a specific value

To assign field names, the spout or bolt program code should include the
declareOutputFields method.

public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("double", "triple"));
 }

public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }

“double”, “triple”
Rajesh!!, London!!!

“word”
 my

“word”
 dog

“word”
 car

“word”
 top

“word”
 bird

“double”, “triple”
 cat!!, glass!!!

“double”, “triple”
 print!!, cup!!!

Page 44 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Match the lettered elements in the diagram to
each of the labels listed below.

1.  a Java virtual machine

2.  a task

3.  an executor

4.  a thread

5.  a worker process

Supervisor machine

A

C

B

C

B

C

B

C

B

C

B

C

B

6/2/15	

23	

Page 45 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  Distribute tuples randomly across a bolt’s tasks.
2.  Send all tuples to the bolt’s task with the lowest task

ID number.
3.  Route tuples based on the value of a specific field.
4.  Every tuple is sent to all of a bolt’s tasks.
5.  The sender decides which bolt task receives a tuple.

a.  shuffle grouping
b.  all grouping
c.  global grouping
d.  none grouping
e.  direct grouping
f.  local or shuffle grouping
g.  fields grouping

Match the definition with the correct term.

Page 46 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  Given the code sample, which statement is correct?
a.  The spout emits a 2-tuple with the text values of double and triple.

b.  The spout emits a 2-tuple with the field names of double and triple.
c.  The spout emits two streams labeled double and triple.
d.  The spout emits one stream of 2-tuples and another stream of 3-tuples.

public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("double", "triple"));
 }

6/2/15	

24	

Page 47 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

More Information About Storm

Where can you get more information about Storm components and
operation?
https://storm.apache.org/documentation/Home.html

The URL has links to:
•  Manuals

•  Tutorials
•  FAQs

•  Javadocs
•  Email support addresses

Page 48 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lesson Review – Things to Remember
A Hadoop cluster runs MapReduce, Tez, HBase, Solr, Flume, and other job types while a Storm
cluster runs topologies.
•  Storm and Hadoop can run on the same machines

A Storm topology consists of spouts and bolts.
•  A spout ingests data from a source and emits a stream of tuples to one or more bolts
•  A bolt can run a function or filter, aggregate, or join tuples
•  Multiple bolts can be joined together to perform complex data-processing jobs

A Storm cluster includes a Nimbus master daemon, one or more Supervisor slaves daemons, and
a ZooKeeper ensemble used for Storm cluster coordination.
The Nimbus machine provides cluster management.
Each Supervisor machine runs one or more spouts and bolts.
•  Each spouts and bolt runs as a task inside an executor, while executors run inside worker processes
•  A worker process is a JVM; an executor is a thread running inside the JVM

Stream groupings determine how tuples are routed between spout and bolt tasks.

6/2/15	

25	

Page 49 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lab
Storm WordCount

Page 50 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

3 – Installing and Configuring Storm
Getting Storm up and running

6/2/15	

26	

Page 51 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

When you complete this lesson you should be able to:
•  Perform a Storm installation using the Hortonworks Data Platform and Ambari

•  Given a list of Storm configuration sources, order them by precedence
•  Identify the primary, installation-specific Storm configuration file
•  Identify the URL useful for reading Storm configuration parameter descriptions

•  Given the number of worker processes, parallelism hints, and a tasks value, diagram the resulting worker
process, executor, and task relationships

Page 52 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm Installation Overview

Installing a Storm cluster on the Hortonworks Data Platform is easy.

Here is a high-level overview of the process:
1.  Log in to the Apache Ambari Web-based user interface.
2.  Verify, or install and configure a ZooKeeper cluster.
3.  Install the Storm cluster.

It is possible to install a Storm cluster manually without using Ambari.
•  It is more time consuming and error prone

•  Directions are in the Storm documentation
•  There are several manual configuration changes required following installation

6/2/15	

27	

Page 53 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Verify the ZooKeeper Cluster

•  Use Ambari to verify that a ZooKeeper
cluster is available

•  It should have a minimum of three servers

Install the ZooKeeper
service, if necessary.

Install additional ZooKeeper
servers, if necessary.

Page 54 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Installing Storm – Add Service

Click to begin Storm
installation.

6/2/15	

28	

Page 55 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Installing Storm – Choose Services

In the Add Service
Wizard in the Choose
Services window:
•  Scroll to select Storm
•  Then click Next

Installed

Uninstalled

To be installed

Page 56 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Installing Storm – Assign Masters

In the Add Service Wizard in
the Assign Masters window:
•  Scroll to display the Storm

servers
– DRPC Server

– Nimbus

– Storm UI Server

•  Choose a cluster node to run
these servers

•  Then click Next

The drop-down
arrow enables
the selection of
another cluster
node.

6/2/15	

29	

Page 57 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Installing Storm – Assign Slaves and Clients

In the Add Service
Wizard in the Assign
Slaves and Clients
window:
•  Click to select which

nodes will run a
Supervisor

•  Then click Next

Page 58 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Installing Storm – Customize Services

In the Add Service Wizard
in the Customize Services
window:
•  Scroll to verify or modify

the default configuration
settings

•  Then click Next

6/2/15	

30	

Page 59 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Installing Storm - Review

In the Add Service Wizard in
the Review window:
•  Verify the installation choices
•  Click Deploy to start the

installation

Page 60 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Installing Storm – Install, Start, and Test

In the Add Service
Wizard in the Install,
Start and Test
window:
•  Monitor the progress

of the installation
•  Click Next when

installation is
complete

6/2/15	

31	

Page 61 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Installing Storm - Summary

In the Add Service
Wizard read the
Summary window.
•  It includes

important
information about
restarting the
Nagios monitoring
service

•  Then click
Complete

Page 62 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Restarting Services
Several services will need to be restarted after a Storm installation.
Select each service flagged for restart and click its Restart button.

6/2/15	

32	

Page 63 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm Configuration

Storm has many configuration
parameters.
•  Most of the default settings can be used “as is”

Nimbus, Supervisors, topologies,
spouts, and bolts are configurable.
•  Spouts, bolts, and topologies can be individually

configured

The final configuration used by a
Storm component is derived by
evaluating multiple configuration
locations.

overrides

overrides

overrides

Final configuration

defaults.yaml

storm.yaml

submitTopology

setSpout and setBolt

+

+

+

=

Page 64 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The defaults.yaml File

There are multiple references to the defaults.yaml file in the Storm
documentation.
•  There is no defaults.yaml file in the current HDP distribution
•  Starting with Storm version 0.8.2, the file is no longer included in the standard Storm download

Default configuration settings in defaults.yaml are compiled into the
Storm codebase.

Descriptions of the configuration parameters can be found at:
 https://storm.apache.org/apidocs/backtype/storm/Config.html

6/2/15	

33	

Page 65 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The storm.yaml File

Default configuration
settings are modified in
the per-installation
storm.yaml file.

In HDP 2.2, the default
location is /etc/
storm/conf/
storm.yaml.

An Ambari installation
makes all the
mandatory updates to
this file.

An example storm.yaml file

Page 66 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Updating the Storm Configuration

The simplest way to
update the Storm
configuration is to
use Ambari.
•  It updates the

underlying files
•  It notifies the

administrator when
a service needs to
be restarted

6/2/15	

34	

Page 67 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Mandatory storm.yaml Changes
If you do not use Ambari to install Storm, there are a few post-installation configuration changes that
are mandatory to get a working cluster.
storm.zookeeper.servers: “<IP_address>” – “<IP_address>” – “<IP_address>”
•  Set of IP addresses used by Nimbus and the Supervisors to reach the ZooKeeper servers

storm.local.dir: “/hadoop/storm”
•  Local disk directory used by Nimbus and Supervisors to store a small amount of state information

•  Create the directories and change the ownership to “storm” and set 755 permissions

nimbus.host: “<Nimbus_IP_address>”
•  Used by the Supervisors to download topology JAR files and configurations

supervisors.slots.ports: 6700 – 6701 – 6702 – 6703
•  List of ports that the worker processes on the Supervisors will use to receive messages
•  The number of ports listed determines the maximum number of per-Supervisor worker processes

Page 68 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Per-Topology Configuration Settings

Default topology settings are configured by the topology.* settings in the
storm.yaml file.
•  For example, topology.debug: false

These settings can be overridden on a per-topology basis when submitting
a topology using the submitTopology method in the StormSubmitter
class.
•  Only for those configuration settings prefixed by topology

Code sample:

Config conf = new Config();
conf.setNumWorkers(20);
conf.setMaxSpoutPending(5000);
StormSubmitter.submitTopology("mytopology", conf, topology);

Create a new
configuration object
named conf.

In conf, use the methods to modify two
default settings. Overrides
topology.workers and
topology.max.spout.pending.

Submit a topology named mytopology
to Storm, using the settings in conf.

6/2/15	

35	

Page 69 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Per-Spout and Per-Bolt Configuration Settings

Spouts and bolts can be individually configured
using the setSpout and setBolt methods in the
TopologyBuilder class.

builder.setBolt(“green-bolt”, new GreenBolt(), 2)
 .setNumTasks(4) .shuffleGrouping(“blue-spout”);

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“blue-spout”, new BlueSpout(), 2);

Create a new spout named blue-spout, using the class
BlueSpout, and modify the default configuration so that
the spout only uses two executors (threads) and tasks.

Supervisor
worker
process

task

thread

Supervisor
worker
process

task

thread

Supervisor Supervisor
worker
process

task

thread

task

Supervisor
worker
process

task

thread

task

Create a new spout named blue-spout, using the class
BlueSpout, and modify the default configuration so that
the spout uses only two executors (threads) and tasks.

Create a new bolt named green-bolt, using the class
GreenBolt, and modify the default configuration so that the
spout only uses two executors (threads) and four tasks.

Create a new bolt named green-bolt, using the
class GreenBolt, and modify the default
configuration so that the spout only uses two
executors (threads) and four tasks.

Create a new bolt named green-bolt, using the class
GreenBolt, and modify the default configuration so that
the spout uses only two executors (threads) but four tasks.

Code
examples:

Page 70 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Topology Parallelism Example

Defined in the storm.yaml file:
topology.workers: 50

Defined in the various topologies:
setSpout(“spout”, new Spout(), 30);
setBolt(“bolt”, new Bolt(), 20);
setSpout(“spoutA”, new SpoutA(), 30);
setBolt(“boltA”, new BoltA(), 20);

 Total threads = 100

… worker
process

1

2 per worker

2

thread

thread

worker
process

2

2 per worker

4

thread

thread

worker
process

3

2 per worker

6

thread

thread

worker
process

50

2 per worker

100

thread

thread

6/2/15	

36	

Page 71 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check
1.  Storm features multiple levels of configuration. Reorder the precedence of the following

choices from the most general to the most specific.
a.  setBolt and setSpout methods
b.  defaults.yaml file
c.  storm.yaml file

d.  submitTolopology
2.  What is the name of the parameter in the storm.yaml file that configures the default

number of worker processes in a Storm topology?
a.  topology.workers
b.  setNumTasks
c.  supervisors.slots
d.  parallelism.hint

Page 72 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check
1.  In HDP 2.2, the default location of the defaults.yaml file is:
a.  /usr/lib/storm
b.  /etc/storm/conf
c.  /etc/hadoop/storm
d.  There is no such file

2.  In HDP 2.2, the default location of the storm.yaml file is:
a.  /usr/lib/storm
b.  /etc/storm/conf
c.  /etc/hadoop/storm
d.  There is no such file

6/2/15	

37	

Page 73 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Assuming default parallelism settings are not explicitly overridden, which
diagram correctly illustrates the following code sample?

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“my-spout”, new MySpout(), 2);

Supervisor
worker
process

task

thread

Supervisor
worker
process

task

thread

Supervisor Supervisor
worker
process

task

thread

task

Supervisor
worker
process

task

thread

task

Supervisor
worker
process

task

thread

task

a. b. c.

Page 74 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lesson Review – Things to Remember
The easiest way to install Storm in HDP is to use the Ambari Web-based user interface.
It is possible to install Storm manually without using Ambari, but it is more time consuming and
error prone.
The final configuration used by a Storm component is derived by evaluating multiple
configuration locations.
Default configuration settings are modified per-installation in the storm.yaml file.
The simplest way to update the Storm configuration is to use Ambari.

6/2/15	

38	

Page 75 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Demonstrations
Storm Installation
Storm Configuration

Page 76 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

4 – Developing and Submitting
Topologies
Using Storm

6/2/15	

39	

Page 77 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

When you complete this lesson you should be able to:
•  List the differences between Storm local mode and distributed mode

•  Identify reasons to use Storm local mode
•  Given a JAR file name and the package name of a topology, build the storm command necessary to

submit the topology to a cluster
•  Given an example of the submitTopology method, identify whether the topology is being submitted to

Storm local mode or a distributed cluster
•  Given a topology code example, describe the spout and bolt connections in the topology
•  Identify the purpose of the Multilang Protocol

Page 78 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Programming Languages and Storm

Storm itself is written in Java and Clojure.
All Storm interfaces are specified as Java interfaces.

All Storm usage must go through the Storm Java API.
•  Storm topologies, spouts, and bolts written in Java execute in the JVM-based worker processes

Topologies and individual spouts and bolts can be written in other
languages.
•  For example, you can use JavaScript, Python, Ruby, Perl, PHP, and others

•  Spouts and bolts written in other languages execute through special Java ShellSpout and ShellBolt
classes
– These interfaces launch the program and script that implement the spout or bolt logic

6/2/15	

40	

Page 79 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm Operating Modes

Storm has two operating modes:
•  Distributed and local

Distributed mode operates as a
cluster of machines.
•  This is the normal operating mode

Local mode simulates a cluster
using a process running multiple
threads on a single machine.
•  Threads are used to simulate worker processes on

Supervisor machines.
•  Local mode is useful for topology development

and testing.

Nimbus

Supervisor Supervisor Supervisor

Supervisor Supervisor Supervisor

distributed
mode

single machine

local
mode

process with threads

N

S S S
S S S

cluster of machines

Page 80 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  Useful during topology development
2.  The normal operating mode
3.  Threads simulate worker processes
4.  Operates as a cluster of machines
5.  Operates as a single machine
6.  Has more scalability

a.  distributed mode
b.  local mode

Match the descriptions with the correct Storm operating mode.

6/2/15	

41	

Page 81 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm Topology Development Process Overview

1.  Install Storm software on the development client.
•  Makes necessary Storm JAR files available

•  Enables Storm to run in local mode for testing a topology

2.  Add the Storm JAR files to the CLASSPATH, or use a tool like Maven to
automatically add Storm dependencies to your project.

3.  Develop spout and bolt program code to process the data.

4.  Develop the program code that defines your topology.

5.  Package all the code into a JAR file that can be submitted to Storm.

6.  Submit the topology to Storm in local mode for testing and debugging.

7.  Submit and run the tested topology on a distributed Storm cluster.

Page 82 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Submitting a Storm Topology to a Distributed Cluster

From a Storm client, develop code
for spouts, bolts, and the topology

and package it in a JAR file

 Software package

 Spout code

 Bolt tuple processing logic

 Define topology and

 stream groupings

JAR file Nimbus

Supervisors download
code from the Nimbus

machine

From the Storm client, use
the storm jar command to
submit the JAR file to Nimbus

storm jar user_code.jar user.java.package.topology_name opt_arg1 opt_arg2

Supervisor

Supervisor

Supervisor

Supervisor

Nimbus and the Supervisors store the
JAR file beneath the parent directory

specified in storm.yaml by
storm.local.dir.

6/2/15	

42	

Page 83 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Local Versus Distributed Storm Clusters

The topology program code submitted to Storm using storm jar is
different when submitting to local mode versus a distributed cluster.

The submitTopology method is used in both cases.
•  The difference is the class that contains the submitTopology method.

Config conf = new Config();
LocalCluster cluster = new LocalCluster();
LocalCluster.submitTopology("mytopology", conf, topology);

Config conf = new Config();
StormSubmitter.submitTopology("mytopology", conf, topology);

Instantiate a local
cluster object.

Submit a topology to
a local cluster.

Submit a topology to a
distributed cluster. Same method

name, different
classes

Same method
name, different
classes.

Page 84 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Example Topology Code

public static main(String[] args) throws exception {

 TopologyBuilder builder = new TopologyBuilder();
 builder.setSpout(“sentence-spout”, new RandomSentenceSpout(), 5);
 builder.setBolt(“split”, new SplitSentence(), 8) .shuffleGrouping(“sentence-spout”);
 builder.setBolt(“count”, new WordCount(), 12 .fieldsGrouping(“split”, new Fields(“word”));

 Config conf = new Config();
 conf.setDebug(true);

 StormSubmitter.submitTopology(”word-count", conf, topology);

}

This code…

sentence-spout split count

shuffleGrouping fieldsGrouping
…builds this

topology.
Code in

RandomSentenceSpout()
will run across 5

executors

Code in SplitSentence()
will run across 8

executors

Code in WordCount()
will run across 12

executors

6/2/15	

43	

Page 85 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The Isolation Scheduler

The isolation scheduler:
•  Makes it easy and safe to share a cluster among topologies

•  Any isolated topology has its own dedicated cluster machines
•  Non-isolated topologies share remaining cluster machines

To configure it in storm.yaml:
•  Configure storm.scheduler to

 backtype.storm.scheduler.IsolationScheduler
•  Configure isolation.scheduler.machines to
"tiny-topology": 1
"some-other-topology": 3
"my-topology”: 8

other topologies

my-topology

some-other-topology

tiny-topology

Storm cluster

Page 86 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  What does this command do?
storm jar user_code.jar user.java.package.topology_name opt_arg1 opt_arg2

a.  Creates a JAR file containing both user and Storm Java code
b.  Submits a topology to Nimbus
c.  Adds Storm JAR files to the CLASSPATH
d.  Installs a Storm software development client

6/2/15	

44	

Page 87 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Does the following code submit a topology to a distributed cluster or a
local mode cluster?

Config conf = new Config();
StormSubmitter.submitTopology("mytopology", conf, topology);

Page 88 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Read the following code.

Which statements are true? (choose two)
a.  The spout must initially run across 8 Supervisor nodes.

b.  Tuples sent between the filter and function bolts are filtered using the tuple field labeled filter.
c.  The filter bolt will initially run as 10 executors.
d.  The topology named wordsmith will run on a distributed cluster.

public static main(String[] args) throws exception {

 TopologyBuilder builder = new TopologyBuilder();
 builder.setSpout(“myspout”, new MySpout(), 8);
 builder.setBolt(“filter”, new FilterBolt(), 10) .shuffleGrouping(“myspout”);
 builder.setBolt(“function”, new FunctionBolt(), 12 .fieldsGrouping(“filter”, new Fields(“log”));

 Config conf = new Config();
 conf.setDebug(true);

 StormSubmitter.submitTopology(”wordsmith", conf, topology);

}

6/2/15	

45	

Page 89 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Using Storm with Non-Java Languages

Non-Java languages can be used to:
•  Create topologies

•  Create individual spouts and bolts

Storm topologies are just Thrift structures and Nimbus is a Thrift daemon.
•  Thrift supports multiple languages, which means that topologies can be submitted in multiple languages
•  To learn more about submitting topologies as a Thrift structure, see https://github.com/apache/storm/

blob/master/storm-core/src/storm.thrift. (Requires knowledge of Thrift and is outside the scope of this
course)

•  The storm shell command submits a non-Java topology. Here is a python example:
 storm shell resources/ python topology.py optional_arg1 optional_arg2 …

the command directory
containing all

python
scripts

the
program
for the
script

the topology
script defining

a Thrift
structure

any optional
command-line

arguments

Page 90 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm Multilang Protocol

A spout or bolt can be written in a
non-Java language.
•  For example, PHP, Python, JavaScript, and others
•  The Supervisor launches a subprocess to run the

non-Java spout or bolt
– Functionality in the Java classes ShellSpout and
ShellBolt is used to help communicate with the new
subprocess

•  To communicate and manage these subprocesses,
the Supervisor uses the Storm Multilang Protocol

•  The Multilang Protocol defines communication using
JSON-encoded strings over standard in and
standard out

•  The non-Java spout or bolt must be able to read and
send JSON-encoded messages in the format
specified by the Storm Multilang Protocol

Supervisor

subprocess started by Supervisor
(non-Java spout or bolt logic)

JSON
message

(stdin)

JSON
message

(stdout)

Multilang
Protocol

communication

ShellSpout
/ ShellBolt

6/2/15	

46	

Page 91 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Python Spout Example

Code example for creating a new wrapper Java class to communicate with
and manage a Python-based spout.
•  The new Java wrapper class must extend ShellSpout and implement IRichSpout (or ShellBolt

and IRichBolt for bolts)

public class PythonWordSpout extends ShellSpout implements IRichSpout {
 public PythonWordSpout(string sentence) {
 super(“python”, “wordpythonscript.py”)
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields(”sentence"));
 }
}

Program and actual script name to run. Script
contains the spout logic.

Spout outputs a single field named sentence

Java wrapper class

Page 92 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Which statements are true regarding the Storm Multilang Protocol?
(choose two)
a.  The Multilang Protocol supports bolts but not spouts.
b.  The Multilang Protocol defines communication using JSON-encoded strings.

c.  Communication with non-Java spout or bolt logic occurs over standard in and standard out.
d.  The Multilang Protocol defines topologies using non-Java languages.

6/2/15	

47	

Page 93 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lesson Review – Things to Remember

Storm has two operating modes: local and distributed.
•  Local mode runs on a single machine and simulates a cluster using threads running in a single process

•  Local mode is commonly used for developing and testing topologies
•  Distributed mode runs on a cluster of machines and is the normal operating mode

The storm jar command submits topologies to a local or distributed
mode cluster.

Storm topologies are just Thrift structures and Nimbus is a Thrift daemon.
•  Thrift supports multiple languages, which means that topologies can be submitted in multiple languages

A spout or bolt can be written in a non-Java language.

The Multilang Protocol defines communication with spouts or bolts using
JSON-encoded strings over standard in and standard out.

Page 94 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lab
Using Storm MultiLang Support
Processing Log Files

6/2/15	

48	

Page 95 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

5 – Storm Reliability
Achieving at-least-once processing semantics

Page 96 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

When you complete this lesson you should be able to:
•  Identify the differences between reliable and unreliable operation

•  Diagram a tuple tree and identify its branches
•  List the two requirements for reliable operation
•  Given a diagram, describe the operation of an acker task

•  Describe the response to various Storm component failures
•  List three methods to disable reliable operation

6/2/15	

49	

Page 97 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Unreliable or Reliable Operation

Spouts can be configured for unreliable or reliable operation.
•  Unreliable means that each tuple emitted by a spout might not be fully processed

•  Reliable means that each tuple emitted by a spout will be fully processed
– Spout tuples not fully processed will be replayed

•  This means that Storm can guarantee at-least-once processing

What does fully processed mean?
•  A spout tuple is not fully processed until all tuples in the tuple tree have been completed
•  If a tuple tree is not completed in a specified timeout, the spout tuple is replayed

– Timeout set in storm.yaml by topology.message.timeout.secs, default is 30 seconds

•  Also, spouts and bolts each have a fail method that can used by Storm to immediately force the replay of
a spout tuple

So what is a tuple tree?

Page 98 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

A Tuple Tree
A tuple emitted from a spout is a spout tuple.
Each spout tuple can trigger hundreds of additional tuples that traverse different branches of the
topology.
A tuple tree is formed by the architecture and operation of a topology.
A tuple tree might have few or many branches, or even be a directed acyclic graph (DAG).

spout
tuple

tuple

tuple

tuple tree
branch

tree
branch

tuple
tree

6/2/15	

50	

Page 99 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Reliable Operation

In reliable operation, Storm ensures each spout tuple is fully processed.
•  For each spout tuple that is emitted, every branch in the tuple tree must complete the processing of any

resulting tuples

Reliable operation has two requirements:
•  Storm must be made aware of each tuple tree branch and its associated spout-to-bolt or bolt-to-bolt

connections
– This is accomplished by anchoring. Anchoring is achieved:
-  In spouts, by including message IDs when emitting spout tuples (detail on a later page)

-  In bolts, by including spout tuple message IDs when emitting subsequent tuples

•  Storm must have an acknowledgement mechanism to inform Storm whenever an individual tuple has
been processed
– Achieved using the ack and fail methods on spouts and bolts

– A special acker task is used to track tuple processing
-  An acker task will run out of memory if every tuple is not acked or failed

Page 100 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Tracking and Acknowledging Tuples

acker task
• An acker task tracks spout tuples through a

topology using messageIDs.
• Acker tasks use a spout tuple messageID to
ack the correct originating spout task.

•  If a tuple processing is not completed within a
specified timeout period, the acker task sends
a fail to the spout task and the spout task
replays the tuple.

tuple ID1

tuple

ID2

tuple ID3 ID1 ID2 tuple ID4 ID1 ID2

spout tuple
message

IDs copied

spout tuple
message

IDs copied

ack the
originating
spout tasks

inform acker
ID1, ID2 tuples

processed

DB

inform acker
ID1, ID2 tuples

processed

1

2

3

bolt ack’d 4

5 9

10

tuples sent
with

messageIDs

tuple sent 7 tuple sent

bolt ack’d 8

6

6/2/15	

51	

Page 101 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spouts and Reliability

Reliability on a spout is configured
differently than on a bolt.

Reliability can be configured on a stream-
by-stream basis.
•  Spout code includes the SpoutOutputCollector class

– This class includes the emit method used to send tuples to
bolts

•  The emit method supports different argument list formats
– Reliability is possible only if a messageID is included as an
emit argument

•  For code detail, see http://storm.apache.org/apidocs/
backtype/storm/spout/SpoutOutputCollector.html

tuple messageID

trackable by
acker tasks

Method Summary
emit(tuple)
emit(tuple, messageID)
emit(streamID, tuple)
emit(streamID, tuple, messageID)

reliable reliable
unreliable unreliable

Page 102 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Bolts – Anchoring Using BaseRichBolt

If using a BaseRichBolt and its OutputCollector you must explicitly
add the tuple to the first argument of the emit method.

public class SplitSentence extends BaseRichBolt {
 OutputCollector _collector;

 public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
 _collector = collector;
 }

 public void execute(Tuple tuple) {
 String sentence = tuple.getString(0);
 for(String word: sentence.split(" ")) {
 _collector.emit(tuple, new Values(word));
 }
 _collector.ack(tuple);

Explicitly add the tuple as the first
argument of the emit method.

BaseBasicBolt with
BasicOutputCollector

BaseRichBolt with
OutputCollector

The tuple is unanchored if the
tuple argument is not added.

6/2/15	

52	

Page 103 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Bolts – Anchoring Using BaseBasicBolt

If using a BaseBasicBolt and its BasicOutputCollector, anchoring is
automatic and you do not have to explicitly add the tuple as an argument
of the emit method.

public class SplitSentence extends BaseBasicBolt {
 OutputCollector _collector;

 public void prepare(Map conf, TopologyContext context, BasicOutputCollector collector) {
 _collector = collector;
 }

 public void execute(Tuple tuple) {
 String sentence = tuple.getString(0);
 for(String word: sentence.split(" ")) {
 _collector.emit(new Values(word));
 }
 _collector.ack(tuple); No explicit tuple argument.

BaseBasicBolt with
BasicOutputCollector
BaseBasicBolt with
BasicOutputCollector

Page 104 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Failure Responses
If a spout task dies:

– The message source is responsible for replaying any messages unacknowledged by a spout

If a bolt task dies:
– The spout task will time out and the spout tuple is replayed

If an acker task dies:
– All spout tuples tracked by the acker task will time out and be replayed by a spout

If a worker process dies:
– The Supervisor daemon restarts it

If a Supervisor machine fails:
– Nimbus reassigns its tasks to other machines

If the Nimbus machine fails:
– Existing topologies continue to run, new topologies cannot be submitted

If Nimbus or a Supervisor daemon dies:
– They are restarted by the configured supervisory program (like daemontools or monit)

6/2/15	

53	

Page 105 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Disabling Reliable Operation

Reliable operation can be disabled if the application is tolerant to losing
spout tuples.

There are three ways to disable reliable operation:
•  In the storm.yaml file:

– Configure TOPOLOGY_ACKER_EXECUTORS to 0

– A spout is immediately ack’d following the release of a tuple

•  On a spout:
– Do not include a messageID as an argument for the SpoutOutputCollector.emit method

•  On a bolt:
– Do not anchor tuples emitted by a bolt

Page 106 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check
1.  Storm has two requirements for achieving reliable operation. They are: (choose two)

a.  Tuples must be anchored
b.  Tuples must be acknowledged
c.  Tuples must be checksummed

d.  Tuples must be redundant

2.  Reliable operation ensures that a spout tuple is fully processed. What does fully processed
mean?

a.  All tuples in the tuple tree are safely cached
b.  All tuples in the tuple tree are written to storage
c.  All tuples in the tuple tree are completed

d.  All tuples in the tuple tree are checksummed

6/2/15	

54	

Page 107 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Given this topology, how many branches are in the tuple tree?
a.  1

b.  2
c.  3
d.  4

Page 108 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

True or False: Given this spout code segment, reliable operation is
possible.

public class RandomSentenceSpout extends BaseRichSpout {
 SpoutOutputCollector _collector;
 Random _rand;

 @Override
 public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
 _collector = collector;
 _rand = new Random();
 }
 @Override
 public void nextTuple() {
 Utils.sleep(100);
 String[] sentences = new String[]{ "the cow jumped over the moon", "an apple a day keeps

 the doctor away", "four score and seven years ago", "snow white and the seven dwarfs",
 "i am at two with nature" };

 String sentence = sentences[_rand.nextInt(sentences.length)];
 _collector.emit(new Values(sentence));
 }

6/2/15	

55	

Page 109 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

True or False: Given this bolt code segment, reliable operation is possible.

public class SplitSentence extends BaseRichBolt {
 OutputCollector _collector;

 public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
 _collector = collector;
 }

 public void execute(Tuple tuple) {
 String sentence = tuple.getString(0);
 for(String word: sentence.split(" ")) {
 _collector.emit(tuple, new Values(word));
 }
 _collector.ack(tuple);

Page 110 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lesson Review – Things to Remember
Spouts and bolts can be configured for unreliable or reliable operation.
A spout tuple is not fully processed until all tuples in the tuple tree have been completed.
A tuple tree is formed by the architecture and operation of a topology.
Reliable operation has two requirements:
•  Storm must be made aware of each tuple tree branch and its associated spout-to-bolt or bolt-to-bolt

connections. This is achieved through anchoring
•  Storm must have an acknowledgement mechanism to inform Storm whenever an individual tuple has

been processed

An acker task tracks spout tuples through a topology using message IDs.
Storm uses redundancy, along with fail-fast, stateless operation to provide fault tolerance.

6/2/15	

56	

Page 111 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

6 – Storm Management
Using the command-line client and Storm UI console

Page 112 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

When you complete this lesson you should be able to:
•  List tools to manage and monitor Storm

•  Display online help using the Storm command-line client
•  Determine when it is appropriate to use the Storm list, activate, deactivate, rebalance, and
kill commands

•  Identify how to open the Storm UI console
•  Interpret the metrics displayed in the Storm UI console

6/2/15	

57	

Page 113 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Managing and Monitoring Storm

Storm includes three management and monitoring tools:
•  The Storm UI console

•  The Storm command-line client
•  The Storm log files

The Storm UI console:
•  Is a Web-based interface
•  Provides detailed topology metrics

•  Requires a running UI daemon

The Storm command-line client:
•  Runs on a Storm client

– Can manage remote Nimbus machines

•  Starts Storm daemons
•  Submits, kills, lists, and manages topologies

Page 114 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Additional Monitoring Tools
Additional tools can be installed to monitor Storm operation and performance.
As a few examples:
•  JMX – monitor Java applications

•  VisualVM – a JMX client to display JMX-gathered information
•  Metrics by Yammer – collect per-JVM metrics
•  Graphite – collect and graph the metrics

•  Log4j – configure and monitor log files
•  Nagios – monitor the hardware and log files

To enable JMX monitoring in the storm.yaml file, add:
worker.childopts: ”
-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.local.only=false
-Dcom.sun.management.jmxremote.port=1%ID%”

6/2/15	

58	

Page 115 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The Storm Command-Line Client

The storm command is the Storm
command-line client.

The storm command includes online
help.
storm help or storm –h
•  Lists the available command-line commands

Page 116 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Getting More Help

To get more detailed online help, type:
storm help <command>

6/2/15	

59	

Page 117 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Example Command-Line Operations
Command Description
storm version Prints the Storm version number.
storm nimbus Starts the Nimbus daemon. Include an ampersand (&) to start in the background.
storm supervisor Starts the Supervisor daemon. Include an ampersand (&) to start in the background.
storm ui Starts the UI daemon that enables viewing of detailed Web-based topology stats. Include an

ampersand (&) to start in the background.
storm drpc Starts the DRPC daemon that supports DRPC cluster operations. Include an ampersand (&) to

start in the background.
storm jar Submits a topology to Nimbus.
storm list Lists running topologies.
storm kill Gracefully shuts down and removes a running topology.
storm deactivate Deactivates spouts in a topology. (Pauses Storm data processing)
storm activate Activates spouts in a topology. (Resumes Storm data processing)
storm rebalance Used to redistribute topology worker processes or change topology parallelism.

Use storm help <command> to get additional syntax information.

Page 118 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Killing a Topology

The command storm kill <topology_name> [-w wait_time_secs]
shuts down and removes a running topology.
1.  First Storm deactivates the topology’s spouts for 30 seconds.

–  Deactivated spouts stop emitting tuples

–  The 30-second delay provides time for the topology to finish processing any outstanding tuples

–  The 30 seconds is determined by topology.message.timeout.secs in the storm.yaml file

–  The 30 seconds can be overridden by adding the optional –w wait_time_secs argument

2.  After 30 seconds, Storm removes state information from local disks and ZooKeeper.

3.  Finally, Storm removes heartbeat information and topology JAR files from local disks.

6/2/15	

60	

Page 119 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Deactivating/Activating a Topology

A running topology can be deactivated and reactivated.
•  It requires knowing a topology’s name

•  The command storm list displays the names of submitted topologies

The command storm deactivate <topology_name> deactivates a
topology’s spouts.
•  They stop emitting tuples
•  It is used to temporarily suspend, or pause, a topology

A deactivated topology is reactivated using the command
storm activate <topology_name>.
•  The topology’s spouts begin emitting tuples again

Topology_name Status Num_tasks Num_workers Uptime_secs

WordCount ACTIVE 28 2 6337

Page 120 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Rebalancing a Cluster
Rebalancing is most often performed after adding new Supervisors to a Storm cluster.
•  Adding more Supervisors adds additional slots for worker processes
•  Existing topology worker processes can be spread out across more Supervisor machines

– Rebalancing accomplishes this without having to kill and resubmit a topology

–  It might improve performance, depending on the source of a bottleneck

The command syntax is: storm rebalance topology-name [-w wait-time-secs]
[-n new-num-workers] [-e component=parallelism]

1.  Rebalancing first deactivates an active topology.
2.  Next, it evenly redistributes the worker processes.
3.  Lastly, it returns a topology to its previous active or inactive state.
The –n and –e options modify a topology’s number of worker processes or executors.

•  Example: storm rebalance mytopology –n 5 –e mybolt=10 –e yourspout=5
•  It might improve performance, depending on the source of a bottleneck

6/2/15	

61	

Page 121 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  Requires a running UI daemon
2.  Starts Storm daemons
3.  Is a Web-based interface

4.  Provides detailed Storm metrics
5.  Submits topologies

a.  The Storm UI console
b.  The Storm command-

line client

Match the description to the correct tool.

Page 122 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Rebalancing a cluster is useful when:
a.  Adding more Supervisors to a cluster

b.  Adding more memory to cluster machines
c.  Adding more network resources to a cluster
d.  Submitting more topologies to a cluster

6/2/15	

62	

Page 123 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm Metrics

Topology metrics are available in the Storm UI console.
Metrics are collected and aggregated by Nimbus.
They are counters rather than rates.
They are made available by Nimbus for specific time intervals.
They are not persistent.
•  Redeploying a topology clears its metrics

Use metrics for performance monitoring and tuning.
When tuning Storm or a topology, make a single change at a time.

Page 124 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The Storm UI Console

Each
section is
described
on the
next
pages.

Nimbus machine IP address (or hostname). Port
set by ui.port in storm.yaml file.

Link to Storm UI landing
page (this page).

Hover the mouse pointer over
any title to get a brief definition.

6/2/15	

63	

Page 125 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm UI – Cluster Summary Section

Useful for viewing total capacity and total workload information.

Storm version
installed.

Time current Nimbus
has been running.

Number of Supervisor
machines.

Total slots is determined by the slots-per-Supervisor multiplied
by the number-of-Supervisors. Number of Used and Free slots

depends on number and size of running topologies.

Total number of executors used
by all running topologies.

Total number of tasks used
by all running topologies.

Page 126 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Interpreting the Cluster Summary Section

Supervisor machine
Supervisor machine

Worker Process

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

Slot Supervisor machine
Worker Process

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

Slot

6/2/15	

64	

Page 127 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm UI – Supervisor Summary Section

Sortable list of Supervisors in the cluster.
(Only a single Supervisor in this example)

Unique ID assigned
by Storm.

Host Supervisor
runs on

How long Supervisor has been
registered with the cluster.

Number of slots on Supervisor
and how many are used.

Page 128 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm UI – Nimbus Configuration Section

The configuration section displays a read-only list of the current cluster
configuration settings.
•  These settings can be changed by modifying the storm.yaml file
•  Configuration changes require restarting Storm daemons

Sortable on either the
Key or Value column.

6/2/15	

65	

Page 129 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm UI Console with a Running Topology

The following command was used to submit a topology:
/usr/bin/storm jar storm-starter-0.0.1-storm-0.9.0.1.jar
storm.starter.WordCountTopology WordCount -c storm.starter.WordCountTopology WordCount
-c nimbus.host=sandbox.hortonworks.com

Name of the topology
and a hyperlink to the
topology details page.

Page 130 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Storm UI – Topology Page

This page is the
result of clicking the
topology name
hypertext link on the
Storm UI landing
page.
It displays detailed
information and
metrics about the
topology.
It also provides links
to pages with more
per-spout and per-
bolt details.

6/2/15	

66	

Page 131 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Topology Page – Topology Summary Section

The Topology summary section here is the same as the Topology summary section on the
Storm UI console landing page.

Worker Process

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E
Worker Process

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

T

E

ID assigned
by Nimbus.

Topology
status.

How long since topology
was submitted.

Resources consumed by
topology.

Page 132 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Topology Page – Topology Actions Section

Topology actions enable modification of a topology’s state.
•  A newly submitted topology will be active

•  Deactivate stops an active topology
•  Activate restarts an inactive topology
•  Rebalance evenly redistributes worker processes across Supervisor machines

•  Kill shuts down and removes a topology

6/2/15	

67	

Page 133 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Topology Page – Topology Stats Section

Click links to
update the

display.

Number of times
the emit method
has been called.

Number of tuples
sent to all bolt

tasks.

Time between spout
tuple being emitted
and being ack’d.

Spout tuples ack’d. (zero
for an unreliable

topology)

Spout tuples failed by calling
fail method or by timing out.

Page 134 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Topology Page – Topology Configuration Section

Displays a read-only list of the topology’s current configuration, set by:
•  The storm.yaml file

•  submitTopology, setSpout, and setBolt methods in the source code

6/2/15	

68	

Page 135 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Topology Page – Spouts (All time) Section

List of spouts in the
topology and link to
spout details page

(shown on next page).

Number of
executors

running the
spout.

Number of
tasks

running the
spout.

Number of times
the emit

method has
been called.

Number of
tuples sent to
all bolt tasks.

Time between spout
tuple being emitted
and being ack’d.

Spout tuples ack’d.
(zero for an
unreliable
topology)

Spout tuples failed by
calling fail method or

by timing out.

Last error, if any,
reported by the

spout.

Page 136 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spout Details Page
Displays detailed spout
metrics.
Most of these metrics
have been described
earlier.
This spout emits two
streams: _metrics and
default.
•  default is the stream of

tuples processed by the
WordCount topology

•  _metrics is a stream that
supports Storm
operation

6/2/15	

69	

Page 137 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Topology Page – Bolts (All time) Section

List of bolts in the
topology and links to

bolt details page (shown
on next page).

Number of
executors

running the
bolt.

Number of
tasks

running the
spout.

Time spent
running the
execute
method.

% of time in last 10
minutes that bolt
was executing

tuples.

Spout tuples failed by
calling fail method or

by timing out.

Bolt tuples
ack’d.

Number of
times the emit

method has
been called.

Number of
tuples sent to
all bolt tasks.

Number of times
the execute

method has been
called.

Time between when
execute is passed

tuple and ack is
called.

Page 138 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Bolt Details Page
Displays detailed bolt
metrics.
•  All of these metrics

have been described
earlier in this lesson

This bolt emits three
streams: _metrics,
_system, and default.
•  _metrics and _system

are automatically
created to support
Storm operation

•  default is the stream
of tuples processed by
the WordCount
topology

6/2/15	

70	

Page 139 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The System Stats Button

System stats are for
tuples sent on streams
other than the ones
that you have defined.

Example: The _metrics
stream used by acker
tasks to track tuples
though the tuple tree.

Show or hide
system stats.

Page 140 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Which diagram
accurately depicts
the metric
information?

Supervisor
Supervisor machine

Worker Process

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

Slot Supervisor machine
Worker Process

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

Slot

Supervisor
Supervisor machine

Worker Process

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

Slot
Supervisor

Supervisor machine
Worker Process

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

T
E

Slot

Supervisor
Supervisor machine

Worker Process
E

T

T

T

Slot

T

T

T

T

T

T

T

T

T

T

T

T

Supervisor machine
Worker Process

E
T

T

T

Slot

T

T

T

T

T

T

T

T

T

T

T

T

Supervisor
Supervisor machine

Worker Process
E

T

T

T

Slot

T

T

T

T

T

T

T

T

T

T

T

T

Supervisor
Supervisor machine

Worker Process
E

T

T

T

Slot

T

T

T

T

T

T

T

T

T

T

T

T

a. b.

c. d.

6/2/15	

71	

Page 141 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lesson Review – Things to Remember
Storm includes three management and monitoring tools: the Storm UI console, the command-
line client, and the Storm logs.
The storm kill command shuts down and removes a topology.
The storm deactivate and activate commands pause and resume the spouts in a
topology.
The storm rebalance command is most often used after adding new Supervisors to a Storm
cluster. It redistributes topology tasks across Supervisor machines.
The storm rebalance command is also used to change the parallelism of spouts and bolts.
Storm metrics are counters rather than rates.
Storm metrics are not persistent; they are reset if you redeploy a topology.
The storm ui command must be run before the Storm UI console is available.

Page 142 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Demonstration
Storm Monitoring

6/2/15	

72	

Page 143 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

7 – Kafka Programming
Using Kafka with Storm

Page 144 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

When you complete this lesson you should be able to:
•  Recognize use cases for Kafka

•  Describe the components of Kafka
•  Explain the concept of a topic leader and followers
•  Describe the publication and consumption of Kafka messages

•  Define a new topic in Kafka
•  Write Java code to publish messages to a topic
•  Configure and instantiate a Kafka spout for a Storm topology

•  Configure and instantiate a Kafka spout for a Trident topology

6/2/15	

73	

Page 145 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

What is Kafka?
•  According to the Kafka website:

•  distributed: horizontally scalable (just like Hadoop!)
•  partitioned: the data is split-up and distributed across the brokers
•  replicated: allows for automatic failover
•  unique: Kafka does not track the consumption of messages (the consumers do)
•  fast: designed from the ground up with a focus on performance and throughput

Kafka is a distributed, partitioned, replicated
commit log service. It provides the

functionality of a messaging system, but with
a unique design.

Page 146 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

How Fast is Kafka?
•  “Up to 2 million writes/sec on 3 cheap machines”

–  Using 3 producers on 3 different machines, 3x async replication

http://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

6/2/15	

74	

Page 147 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Why is Kafka so fast?
•  Fast writes:

–  While Kafka persists all data to disk, essentially all writes go to the
page cache of OS, i.e. RAM.

•  Fast reads:
–  Very efficient to transfer data from page cache to a network socket
–  Linux: sendfile() system call

•  Fast writes + fast reads = fast Kafka!
–  On a Kafka cluster where the consumers are mostly caught up, you will see no read activity on the

disks as they will be serving data entirely from cache.

14
7

http://kafka.apache.org/documentation.html#persistence

Page 148 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Kafka Use Cases

•  Web site activity: track page views, searches, etc. in real time

•  Events & log aggregation: particularly in distributed systems where
messages come from multiple sources

•  Monitoring and metrics: aggregate statistics from distributed applications
and build a dashboard application

•  Stream processing: process raw data, clean it up, and forward it on to
another topic or messaging system

•  Real-time data ingestion: fast processing of a very large volume of
messages

6/2/15	

75	

Page 149 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Kafka Terminology

Kafka is a publish/subscribe messaging system comprised of the
following components:

•  Topic: a message feed

•  Producer: a process that publishes messages to a topic

•  Consumer: a process that subscribes to a topic and processes its messages

•  Broker: a server in a Kafka cluster

Page 150 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Kafka Components

Kafka Cluster
brokers

Kafka uses ZooKeeper to coordinate
brokers with consumers

6/2/15	

76	

Page 151 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Overview of Topics

•  A topic is a name assigned to a feed to which messages are published
•  A topic in Kafka is partitioned

•  Each partition is an ordered, immutable sequence of messages
•  it is continually appended to

•  each message is assigned a sequential id called an offset

•  Messages are retained for a configurable amount of time (24 hours, 7 days,
etc.)

•  Each consumer retains its own offset in the partition
•  allows the consumer to go back and re-read messages without retaining the message

•  the offset is the only metadata that the consumer retains
•  different consumers maintain their own offset

Page 152 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Publishing Messages

message_a
message_b
message_c
message_d
message_e
message_f
…

1. A producer publishes messages to a topic

2. The producer decides which
partition to send each message to

offset -> 0 1 2 3 4
Partition 0 message_b message_f
Partition 1 message_a message_c message_e
Partition 2 message_d

Old	 New	
3. New messages are written to
the end of the partition

4. A consumer fetches messages from
a partition by specifying an offset

6/2/15	

77	

Page 153 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Understanding Partitions

•  Partitions are distributed across the cluster

•  A partition is managed by a broker

•  Each partition is replicated for fault tolerance
•  You configure the replication factor

•  A replicated partition has one broker that acts as the leader

•  The other brokers of that partition act as followers
•  The followers passively replicate the leader
•  If the leader fails, one of the followers automatically becomes the new leader

•  Brokers distribute their roles as leaders and followers to maintain a well-balanced cluster

Page 154 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Leader and Followers
Broker	 1	

my_topic	
Par88on-‐1	
(follower)	

Broker	 2	

my_topic	
Par88on-‐1	
(leader)	

Broker	 3	

my_topic	
Par88on-‐1	
(follower)	

6/2/15	

78	

Page 155 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Controlling Partitioning Logic

•  The partitioning logic is performed by the producer

•  This can happen various ways:
•  hash function (default behavior – the keys are hashed and divided by the # of partitioners)
•  random distribution (if the keys are null)

•  you can specify a partitioner using the partitioner.class config property (set to the name of a custom
Java class that you write)

Page 156 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Consuming Messages

•  Messages are consumed in Kafka by a consumer group
•  Each individual consumer is labeled with a group name

•  Each message in a topic is sent to one consumer in the group

•  In other words, messages are consumed at the group level, not at the
individual consumer level

•  This allows for fault tolerance and scalability of consumers

•  This design allows for both queue and publish-subscribe models:
•  If you need a queue behavior, then simply place all consumers into the same group
•  If you need a publish-subscribe model, then create multiple consumer groups that subscribe to a

topic

6/2/15	

79	

Page 157 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Consumer Groups

Broker	 1	

my_topic:	 Par88on-‐0	

my_topic:	 Par88on-‐3	

Broker	 2	

my_topic:	 Par88on-‐1	

my_topic:	 Par88on-‐2	

Consumer	 Group	 A	

consumer-‐1	 consumer-‐2	

consumer-‐3	 consumer-‐4	

Consumer	 Group	 B	

consumer-‐5	 consumer-‐6	

consumer-‐8	 consumer-‐9	

consumer-‐7	

message_1

Page 158 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The Consumer Offset

•  It is up to the consumer to maintain its offset in the partition (stored in a
special topic named __consumer_offsets)

0 1 2 3 4 5 6 7 8 9 10 11 12

Messages a b c d e f g h i j

•  This has several key benefits, including:
•  performance: there is no back-and-forth acknowledging of message consumption

•  simplicity: the consumer only has to maintain a single integer value for its state, which can be easily
stored and shared between consumers (if a failure occurs)

•  re-consume messages: it becomes trivial for a consumer to re-consume messages

consumer offset

6/2/15	

80	

Page 159 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Message Delivery Guarantees

•  Kafka guarantees at-least-once delivery by default

•  At-most-once delivery is possibly by disabling retries on the producer (when
a commit fails)

•  Exactly-once delivery is possible (with clever coordination of your
consumers and the consumer offset)

•  Other guarantees:
•  Messages in a partition are stored in the order that they were sent by the publisher
•  Each partition is consumed by exactly one consumer in the group
•  That consumer is the only reader in the group of that partition in the group

•  Messages are consumer in order
•  Messages committed to the log are not lost for up to N-1 broker failures (where N is the replication

factor)

Page 160 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

In-Sync Replicas

•  Kafka replicates the messages in each partition across multiple brokers
•  You specify the replication factor at the topic level

•  New messages are always appended to the leader
•  The followers replicate new messages into their own log

•  The leader maintains a list of all followers that are “in sync”

•  A follower that keeps up is called an ISR, or in-sync replica, which means:
•  The follower is alive (still communicating with ZooKeeper)
•  The follower has not fallen too far behind (the replica.lag.max.messages property)

•  A message is considered committed when all ISRs have a copy of the
message

•  Kafka guarantees that a committed message will not be lost if at least one ISR is alive at all times

6/2/15	

81	

Page 161 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check
1.  A message feed in Kafka is called a ___________________________.
2.  The servers in a Kafka cluster are referred to as __________________.

3.  How do messages sent to a topic get partitioned?

4.  True or False: Each message in a topic is processed by a random
consumer from each subscribed consumer group.

5.  True or False: If a follower can not keep up with the leader, the leader
removes the follower from the list of ISR’s.

6.  If a consumer fails, how does the new consumer know where the failed
consumer left off?

Page 162 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Defining Topics

•  Use the kafka-topics.sh script to create a topic:

•  Use --alter to modify an existing topic:

6/2/15	

82	

Page 163 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Viewing Topics

•  Use --list to view the current topics:

Page 164 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Sending Messages (0.8.1 and prior)

•  Before Kafka 0.8.2 - use the kafka.javaapi.producer.Producer class

6/2/15	

83	

Page 165 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Sending Messages (after 0.8.2)

•  After Kafka 0.8.2, use org.apache.kafka.clients.producer.KafkaProducer

Page 166 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Consuming Messages

•  Use the SimpleConsumer class in the Kafka API
•  Useful outside of a Hadoop or Storm environment

•  Use LinkedIn’s Camus, which provides classes for piping Kafka messages
into HDFS

•  Camus may be a good solution for non-Storm applications

•  Use the Hortonworks-provided Kafka spout and bolt
•  Useful for integrating Kafka as part of a Storm topology

6/2/15	

84	

Page 167 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The Kafka Spout

•  Hortonworks provides a Kafka spout to facilitate ingesting data from Kafka
brokers into HDFS

•  allows you to combine the benefits of Kafka and Storm

•  Two types of spouts
•  Core storm: use the KafkaSpout class
•  Trident: use the TransactionalTridentKafkaSpout or OpaqueTridentKafkaSpout classes

•  There is also a storm.kafka.bolt.KafkaBolt class for publishing tuples to a
Kafka topic

Page 168 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Creating a KafkaSpout

•  The KafkaSpout object can now be used in any Storm topology

6/2/15	

85	

Page 169 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Creating a Trident Spout

•  There are two types of Trident spouts:
•  TransactionalTridentKafkaSpout

•  OpaqueTridentKafkaSpout

•  Now the spout can be used in a Trident topology

Page 170 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check
1.  What is the name of the script used to define a new topic?

2.  What is the data type of the argument for the send() method of the
KafkaProducer class? _____________________________

3.  True or False: Kafka messages can be consumed within a Storm topology
by a Kafka spout.

4.  True or False: A Storm bolt can act as a producer to a Kafka topic.

6/2/15	

86	

Page 171 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lesson Review – Things to Remember
Kafka is a distributed, partitioned, replicated commit log service comprised of topics, producers,
consumers and brokers.
A topic is a message feed.
A producer is a process that publishes messages to a topic.
A consumer is a process that subscribes to a topic and processes its messages.
A broker is a server in a Kafka cluster.
Messages in a topic are divided into partitions.
Messages are consumed by a group of consumers, with a single consumer processing
messages from the same partition.
The producer determines the partitioning of messages in a topic.
A Kafka topic can be a spout in a Storm topology, and a Storm bolt can public to a Kafka topic.

Page 172 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lab
Integrating Kafka with Storm

6/2/15	

87	

Page 173 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

8 – Trident Introduction
Trident concepts, terminology, and components

Page 174 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

When you complete this lesson you should be able to:
•  List differences between core Storm and Trident

•  List characteristics of a Trident topology
•  Describe a Trident tuple
•  Describe a Trident stream

•  Describe a batch
•  List the benefits of batch processing
•  Describe a partition

•  Diagram the relationship between a stream, a batch, and a partition
•  List differences between a Storm spout and a Trident spout

•  Explain why Trident requires a ZooKeeper cluster
•  Recognize Trident code used to create a topology and a stream

6/2/15	

88	

Page 175 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident
Trident is a high-level abstraction for doing stateful, real-time stream processing on top of
Storm.
•  Trident enables transactional processing, but it abstracts the details of transactional processing and state

management
– A developer does not have to write code to manage the details of low-level state information

•  It is similar to the way Apache Hive or Apache Pig layers over MapReduce and abstracts the details of
MapReduce

Use Trident anytime that stateful stream processing is required.
Use Trident anytime that exactly once processing semantics are required.
Trident was released starting with Storm 0.8.x.
Trident supersedes both the Storm LinearDRPCTopologyBuilder class and transactional
topologies.
•  However, these technologies are still described in the current Trident documentation

Page 176 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Beyond Spouts and Bolts

Core Storm and Trident compared.

Core Storm Trident
Is a stateless, stream-processing
framework

Is a stateful, stream-processing
framework

Offers only at-least-once tuple-
processing semantics

Offers at-least-once and exactly once
tuple-processing semantics

Uses Storm spouts as the source of
tuples

Uses Trident spouts as the source of
tuples

Developers use bolts to implement data-
processing logic

Developers use higher-level operations
to implement data-processing logic

Processes tuples one at a time Processes batches of tuples

6/2/15	

89	

Page 177 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident Topologies
Trident works with streams of data flowing through various operations.
•  The stream operations include filters, functions, aggregations, merges, and joins.

Trident topologies are used for performing:
•  Real-time data processing
•  Distributed remote procedure calls (DRPC)

operation operation state

operation operation

operation

core Storm topology Trident topology

Page 178 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Conversion to a Storm Topology
A Trident topology compiles into a Storm topology.
•  The compilation is automatic and creates an efficient-as-possible Storm topology
•  Tuples are sent over the network between cluster nodes only during repartitioning operations

Trident topology

state persistent
Aggregate each partitionBy

stateQuery
each partitionBy

state persistent
Aggregate each partitionBy

stateQuery
each partitionBy

bolt

bolt bolt

Trident topology
compiled into
Storm bolts

Operations are
performed locally on
a single cluster node

in a single bolt
whenever possible.

network
transfer

node

node
node

6/2/15	

90	

Page 179 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Creating a Topology

Use the TridentTopology class to create a new instance of a topology.
•  TridentTopology provides methods to declare and work on streams of data

•  The other operations in this code sample are described later

TridentTopology topology = new TridentTopology();

TridentState wordCounts = topology.newStream("spout1", spout)
.each(new Fields("sentence"), new Split(), new Fields("word"))
.groupBy(new Fields("word"))
.persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))
.parallelismHint(6);

Creates a new Trident
topology named topology.

Page 180 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  Is a stateless, stream processing
framework

2.  Offers at-least-once and exactly once
tuple-processing semantics

3.  Developers use bolts to implement data-
processing logic

4.  Developers use higher-level operations
to implement data-processing logic

5.  Processes batches of tuples
6.  Supersedes the

LinearDRPCTopologyBuilder class

a.  Storm
b.  Trident

Match the description to the correct name.

6/2/15	

91	

Page 181 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Fill in the blank:

1.  Tuples are transferred over the network between cluster nodes only during

____________________ operations.

2.  The __________________ class provides methods to declare and work on streams of data.

Page 182 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident Tuples

A Trident tuple is the same as a Storm tuple.
•  It is still a unit of work to process

How tuples are processed in a Trident topology is different.
•  Trident processes tuples in batches

•  Different Trident operations have different rules for how and when to emit tuples
– These rules are described later

5, 10, 7, 35, 6

Rajesh, 3, London

“some_binary_data”, 5

These are all examples
of valid tuples.

6/2/15	

92	

Page 183 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident Streams
The core data model in Trident is the stream.
A stream is an unbounded sequence of tuples.

A stream is the flow of data through a Trident topology.
Operations performed on a stream can create additional streams.
Trident includes two types of streams; the difference is how the tuples are organized:
•  Stream
•  GroupedStream

– A GroupedStream is the result of a groupBy operation

– The groupBy operation is described later

tuple tuple tuple tuple tuple tuple tuple tuple

Page 184 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Working with Streams
Data is transformed and analyzed by first creating a Stream object.

•  The TridentTopology and Stream objects expose the interfaces for constructing Trident operations

– Trident operations are implemented by Java methods

•  The newStream method creates the s1 and s2 Stream objects

•  Stream s1 comes from myspout1 and stream s2 comes from myspout2
•  Trident keeps a small amount of state information for each spout

– The state information is called spout metadata

– The metadata keeps track of what data a spout has consumed from its data source

– The metadata is referenced when data must be replayed by a spout following a failure

– “spout1” and “spout2” are the names of the ZooKeeper directory nodes created by Trident to hold the
metadata

TridentTopology topology = new TridentTopology();
Stream s1 = topology.newStream(“spout1”, myspout1);
Stream s2 = topology.newStream(“spout2”, myspout2);

6/2/15	

93	

Page 185 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Batches
Trident processes a stream as a series of batches.
A batch is a group of tuples.

Each batch is assigned a transaction ID to track its progress.
The default is to process a single batch at a time.
•  A batch must succeed or fail before trying another batch

A batch pipeline processes multiple batches simultaneously.
•  Pipelines increase overall throughput and lower overall processing latency

•  The parameter topology.max.spout.pending in the storm.yaml file controls how many batches
can be simultaneously processed
– The parameter is a number

tuple tuple tuple

transaction ID

tuple tuple tuple

transaction ID

tuple tuple tuple

transaction ID

Page 186 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Why Batch Processing?
Batch processing is more efficient because:
•  It results in fewer acknowledgements than acknowledging a single tuple at a time

– Storm can acknowledge all tuples in a batch with a single ack

•  It results in fewer I/O operations when writing to, or reading from, storage
– Multiple read or write requests are grouped together as a single request to storage

Batch processing slightly increases processing latency.
•  Batch size affects latency
•  Recommendation: Start small and increase while monitoring performance

6/2/15	

94	

Page 187 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Partitions
Operations on a batch are commonly performed in parallel across multiple cluster nodes.
A partition is the subset of a batch that resides on a single cluster node.

Some Trident operations repartition batches across cluster nodes.
•  Local partition processing is faster because the data is local to the processing resources

•  Repartitioning operations are slower because of the network data transfer between cluster nodes

3 partitions

batch with txid

data
source C tuple tuple

cluster
node

spout with
3 tasks

data
source B tuple tuple

cluster
node

data
source A tuple tuple

cluster
node

Page 188 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident Spouts
Trident spouts source streams of tuples just like core Storm spouts.
•  However, the Trident API exposes additional features for creating more sophisticated spouts

Trident spouts are implemented differently than Storm spouts.
•  Trident spouts are implemented as Storm bolts and appear in the Storm UI as a mastercoord-bg<N>

bolt and one or more spoutcoord-spout<N> bolts
– The Master Batch Coordinator (MBC) and Spout Coordinators

Master Batch Coordinator Spout Coordinator
Generic and the same for every Trident topology Different for every specific Trident spout type
Performs batch management using ZooKeeper
metadata

Coordinates the tuples emitted into a topology by
multiple spouts from multiple data sources

Sends a seed tuple and batch number to the Spout
Coordinator

Passes a seed tuple and offset range information to
spout tasks, which read the data sources and emit
batches

6/2/15	

95	

Page 189 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spout Identity
Each Trident spout in a topology must be assigned a unique identifier.

The identifier:
•  Defines the name of the ZooKeeper directory node holding the metadata information
•  Is used to track tuple completion

•  Must be unique across all Trident topologies

Trident spouts require a ZooKeeper cluster.
•  The ZooKeeper configuration settings are in the storm.yaml file:

– transactional.zookeeper.servers: - list of ZooKeeper server host names

– transactional.zookeeper.port: - port number of the ZooKeeper cluster

– transactional.zookeeper.root: - root directory for the metadata directory nodes

topology.newStream("myspoutid", MyTridentSpout);

Page 190 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident Spout Classes
Trident spouts implement the following base interfaces:
•  IBatchSpout – a non-transactional Trident spout that emits batches of tuples
•  ITridentSpout – the most generic spout API

–  It supports transactional or opaque semantics.

– However, it is more common to use one of the partitioned spouts shown below.

•  IPartitionedTridentSpout – a transactional spout that reads from partitioned data sources, like
Kafka

•  IOpaquePartitionedTridentSpout – an opaque transactional spout that reads from a partitioned
data source

Non-transactional, transactional, and opaque transactional spouts are described in the Trident State lesson.

6/2/15	

96	

Page 191 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spout Interfaces
Each of the spout classes listed on the previous page include two interfaces:
•  Coordinator
•  Emitter
The Coordinator interface methods create the ZooKeeper metadata for new batches of
tuples.
•  The metadata should contain whatever is necessary to be able to replay a batch.
•  The Coordinator methods and metadata vary based on the type of spout and data input source.

– Non-transactional, transactional, or opaque transactional spouts and partitioned versus non-partitioned input
sources

The Emitter interface methods emit a batch of tuples.
•  The Emitter methods vary based on the type of spout and data input source.

– Non-transactional, transactional, or opaque transactional spouts and partitioned versus non-partitioned input
sources

Page 192 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spout Methods

Each of the spout classes include four primary methods:

Method Description
getCoordinator Enables a spout to work with the Coordinator
getEmitter Enables a spout to work with the Emitter
getComponentConfiguration Declares any configuration specific to a spout
getOutputFields Declares the output schema for streams emitted by a spout

6/2/15	

97	

Page 193 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Tuple Field Identities

Trident spouts are implemented using Java methods contained in a Trident spout class.
Storm ships with several different Trident spout classes.
•  Classes are listed on the next page

Each Trident spout class includes the getOutputFields method.
•  This method declares the tuple field names emitted by a spout

public Fields getOutputFields() {
 return new Fields(“id”, “location”, “building”, “energy”); }

tuple field names

Page 194 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Answer the questions about the following code sample:

1.  What is the name of the TridentTopology object?
2.  What is the name of the first spout?
3.  What is the name of the ZooKeeper directory node for the first spout?

TridentTopology topology = new TridentTopology();
Stream s1 = topology.newStream(“spout1”, myspout1);
Stream s2 = topology.newStream(“spout2”, myspout2);

6/2/15	

98	

Page 195 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Use the diagram to fill in the blanks.
Number 1 in the diagram points to a _________, while number 2 points to a ___________.
 Choices: stream, topology, tuple, batch, partition, transaction

data
source C tuple tuple

cluster
node

data
source B tuple tuple

cluster
node

data
source A tuple tuple

cluster
node

1 2

Page 196 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident Operations
Unlike Storm, developers do not define bolts in a Trident topology.
Instead, a developer defines operations on a data flow.
Operations are a higher-level abstraction than bolts.
Operations are the programming logic that perform the data processing.
•  Trident operations take place inside Storm bolts

Trident operation types include:
•  Filters
•  Functions

•  Aggregations
•  Joins
•  Merges

6/2/15	

99	

Page 197 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Stream and TridentTopology Classes
Operations are performed by invoking methods on a Stream object.

List available methods by displaying the Stream and TridentTopology classes.

 Method Class Method Class
aggregate Stream partitionAggregate Stream

applyAssembly Stream partitionBy Stream

batchGlobal Stream partitionPersist Stream

broadcast Stream persistentAggregate Stream

chainedAgg Stream project Stream

each Stream shuffle Stream

getOutputFields Stream stateQuery Stream

global Stream toStream Stream

identityPartition Stream join TridentTopology

parallelismHint Stream merge TridentTopology

partition Stream

Page 198 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

The five types of Trident operations include __________, __________,
_________, ___________, and __________.

6/2/15	

100	

Page 199 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lesson Review – Things to Remember
Trident is a high-level abstraction for doing stateful, real-time stream processing on top of
Storm.
Trident supersedes the Storm LinearDRPCTopologyBuilder and transactional topologies
explained in the online documentation.
Trident topologies are used for performing real-time data processing and distributed RPC.
Trident works with streams of data flowing through various operations.
Operations include filters, functions, aggregations, joins, and merges.
Trident processes tuples in batches, and each batch is assigned a unique transaction ID.
A partition is the subset of a batch that resides on a single cluster node.
Trident spouts are implemented as Storm bolts.
Trident uses ZooKeeper to hold the metadata information used to track which source data has
been consumed by a spout.

Page 200 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

9 – Trident Operations
Trident methods in action

6/2/15	

101	

Page 201 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

When you complete this lesson you should be able to:
•  Describe the purpose and operation of the each method

•  Describe the purpose and operation of a Trident filter
•  Describe the purpose and operation of a Trident function
•  Describe parallelism and the operation of a parallelism hint

•  Describe the operation of repartitioning operations
•  Describe the types of aggregation operations
•  Describe the differences between an aggregation method and an aggregator interface

•  Describe chaining
•  Describe the operation and differences between a merge and a join operation

Page 202 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The each Method
The each method is fundamental to Trident topologies.
It reads each tuple, which enables the processing of each tuple.
It includes one or more input field selectors.

TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout)
.each(new Fields("sentence"), new Split(), new Fields("word"))

Read all tuples and
send their “sentence”

field values to the
Split function.

Split the “sentence”
field into words and

emit new tuples with a
“word” field appended

to the end of each
tuple.

Tuples with the “word”
field can be sent to the

next operation defined in
the topology (not shown

here).

6/2/15	

102	

Page 203 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The each Method with Two Input Field Selectors
Multiple input field selectors are treated as an array with positions 0 through x.

The following line of code in MyFilter would access the value in the “day” tuple field.

Why? Because tuple.getString(0) refers to “time” while tuple.getString(1) refers
to “day”.

TridentTopology topology = new TridentTopology();
topology.newStream("spout1", spout1)
.each(new Fields("time", "day"), new MyFilter(“Monday"))

tuple.getString(1).equals(day);

Read all tuples and send
their “time” and “day”

fields values to the
MyFilter function.

Forward only tuples
whose “day” field
equals Monday.

Page 204 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident Filters
A filter evaluates an input tuple and determines whether to forward it to downstream operations.

Each tuple is read using the each method.
A filter examines one or more developer-defined tuple fields.
•  Defined using the each method’s input field selector

TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout)
.each(new Fields(“event”), new TimeFilter(), new Fields(“day”))

Read all tuples and send
their “event” field

values to the
TimeFilter function.

If the conditions in the
filter evaluate to true,
emit new tuples with a

tuple field named “day”.

input tuples

tuple

output tuple

tuple

MyFilter

tuple

6/2/15	

103	

Page 205 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Writing Filters
Filters are written as a subclass of BaseFilter, which implements the Filter interface.

The primary method in a filter is the boolean isKeep.
•  If the conditions in the filter evaluate to true then a tuple is forwarded downstream
•  If the conditions in the filter evaluate to false then the input tuple is dropped

An example of a built-in Trident filter is available by reviewing the Equals class.

public class TimeFilter extends BaseFilter {
 public boolean isKeep(TridentTuple tuple) {
 return tuple.getInteger(0) < 10;
 }
 } If the value in the input array

in position 0 is less than 10,
the boolean isKeep is true

and a tuple is emitted
downstream.

Page 206 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident Functions
Trident functions have some similarity to Storm bolts.
•  They receive and process tuples and optionally emit new tuples

–  If a function does not emit a tuple, it operates like a filter

•  They implement data-processing logic

Trident functions are also different from Storm bolts.
•  The output of functions is additive. They append tuple fields and values to the ends of input tuples

– They do not remove or modify input tuple fields or values

The number of function fields declared in the Trident topology must match the number of fields emitted by
the function.

input tuple

“name”, “num”, “city”

MyFunction output tuple

“name”, “num”, “city”, “month”

.each(new Fields(“name”), new MyFunction(), new Fields(“month”))

6/2/15	

104	

Page 207 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Writing Functions
Functions are written as an extension of the BaseFunction class.

The primary method in a function is execute.
•  The execute method contains the logic to either filter the input tuple or append tuple fields to an output

tuple
•  It takes an input tuple and a collector as arguments

– The input tuple is processed while the collector is used to emit new tuples

public class Split extends BaseFunction {
 public void execute(TridentTuple tuple, TridentCollector collector) {

 String sentence = tuple.getString(0);
 for(String word: sentence.split(" ")) {
 collector.emit(new Values(word));
 }
 }
 }

Page 208 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Modifying Streams Using Projection

Trident includes a project method that enables projection operations.
A projection operation enables a topology developer to remove fields from input tuples and
forward the modified tuples to downstream operations.

input tuple

“name”, “num”, “city”

.project output tuple

“name”, “num”

.project(new Fields(“name”, “num”)

6/2/15	

105	

Page 209 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  Enables the processing of each tuple
2.  Its primary method is execute
3.  Its primary method is isKeep
4.  Includes one or more input field selectors
5.  Removes fields from input tuples
6.  Appends tuple fields to output tuples
7.  Drops input tuples (choose two)

a.  each method
b.  Trident filter
c.  Trident function
d.  Trident projection

Based on the lecture content to this point, match the description with the
correct operation.

Page 210 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Given the following topology code, answer the question:

1.  myFilter contains an entry tuple.getString(1) which is used to read input from the

each method. What will it read?
a.  The transaction ID from spout1

b.  The value of the “time“ tuple field
c.  The value of the “day“ tuple field
d.  The value of the “Monday“ tuple field

TridentTopology topology = new TridentTopology();
topology.newStream("spout1", spout1)
.each(new Fields("time", "day"), new MyFilter(“Monday"))

6/2/15	

106	

Page 211 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

True or False?

1.  Trident functions do not remove or modify input tuple fields or values.

2.  Trident functions always emit output tuples.

3.  The following diagram illustrates projection.

input tuple

“name”, “num”, “city”

output tuple

“name”, “num”

Page 212 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Parallelism
A batch of tuples is normally processed in parallel across multiple cluster nodes.
•  This enables a cluster to process larger amounts of data more quickly
•  The degree of parallelism for different operations in a topology can be controlled

– By using one or more parallelism hints

spout operation1 operation2 operation3 finish
no parallelism,

small “pipe”
throughout

spout operation1 operation2 operation3 finish

spout operation1 operation2 operation3 finish

full parallelism,
larger “pipe”
throughout

spout
operation1 operation2 operation3

finish
operation1 operation2 operation3 different degrees

of parallelism,
“pipe” size varies

6/2/15	

107	

Page 213 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Parallelism Hints
The degree of parallelism is controlled by providing a parallelismHint.
A parallelismHint applies a specific degree of parallelism to all operations listed before it
until there is a repartitioning operation or another parallelismHint.
Different topology operations can run with different degrees of parallelism.
The number of partitions can also change as a result of repartitioning.

topology.newStream("spout", spout)
.parallelismHint(2)
.shuffle()
.each(new Fields(”location", ”month"), new PerMonthFilter(”March"))
.parallelismHint(5)

Spout runs as two tasks.

applies

applies Repartitioning operation “resets” the
subsequent parallelismHint.

PerMonthFilter runs as five tasks.

Page 214 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Repartitioning
Repartitioning operations use network transfers to move tuples from one cluster node to
another.
•  Repartitioning is commonly done to reorganize the data across cluster nodes

There are multiple types of repartitioning operations, and each specifies how tuples should be
routed to the next cluster node.

3 partitions

tuple tuple cluster
node

tuple tuple cluster
node

tuple tuple cluster
node

tuple tuple cluster
node

tuple tuple cluster
node

tuple tuple cluster
node

repartitioning
(groupBy)

The
number of
partitions
can be

different.

6/2/15	

108	

Page 215 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Repartitioning Operations

The aggregate and persistentAggregate methods can also force repartitioning.
Aggregation is described in the next section of this lesson.

Method Description
shuffle
(illustrated next
page)

Performs random routing
•  It uses a random, round-robin algorithm to evenly redistribute tuples across all target

partitions
partitionBy
(illustrated next
page)

Uses a set of developer-defined tuple fields to perform semantic partitioning
•  The tuple fields are hashed and modded by the number of target partitions to select the

target partition
•  It guarantees that the same set of fields always goes to the same target partition

global Sends all tuples in the stream to the same partition
•  The same partition is chosen for all batches in the stream

batchGlobal Sends all tuples in a batch to the same partition
•  Different batches in the same stream might go to different partitions

partition Used to implement a custom, site-specific partitioning scheme

Page 216 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

shuffle and partitionBy Examples

TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout)
.parallelismHint(1);
.shuffle()
.each(new Fields(”word"), new PrintPartition())
.parallelismHint(4);

TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout)
.parallelismHint(1);
.partitionBy(new Fields(“word”))
.each(new Fields(”word"), new PrintPartition())
.parallelismHint(4);

cat, dog, pig,
bee, bird, cat,
snake, pig, bee

cat, dog, bird partition 1

pig, bee partition 2

bee, snake partition 3

cat, pig partition 4

cat, dog, pig,
bee, bird, cat,
snake, pig, bee

cat, cat, bird partition 1

pig, pig partition 2

bee, bee partition 3

snake, dog partition 4

shuffle() example

partitionBy() example

6/2/15	

109	

Page 217 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Use the code sample to answer the following question.

1.  Which of the following statements are correct?

a.  The SensorSpout runs as two parallel tasks.

b.  The HeatFilter runs as two parallel tasks.
c.  The CelsiusToFahrenheit function runs as two parallel tasks.
d.  The Save function runs as four tasks.

TridentTopology topology = new TridentTopology();
topology.newStream(”sensorData", SensorSpout)
.shuffle()
.each(new Fields(”Heat"), new HeatFilter(”Validate”))
.parallelismHint(2)
.each(new Fields(”Heat"), new CelsiusToFahrenheit(), new Fields(”Fahrenheit"))
.each(new Fields(”Fahrenheit"), new CalcChange(), new Fields(”Change"))
.parallelismHint(4)
.aggregate(new Fields(”Change"), new Save(), new Fields(”saved"));

Page 218 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  Uses a set of developer-defined tuple fields to
perform semantic partitioning

2.  Sends all tuples in the stream to the same partition
3.  Performs random routing
4.  Sends all tuples in a batch to the same partition
5.  Used to implement a custom, site-specific

partitioning scheme

a.  shuffle
b.  partitionBy
c.  global
d.  batchGlobal
e.  partition

Match the description with the correct repartitioning operation.

6/2/15	

110	

Page 219 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Aggregation
Aggregation in Trident is a broad concept that means performing computations on tuples.
Aggregation operations enable a topology to combine tuple values in a partition, in a batch, or
across an entire stream.
Aggregation is used for such operations as:
•  Summing tuple values
•  Averaging tuple values

•  Multiplying tuple values (finding the product)
•  Finding the minimum value
•  Finding the maximum value

Page 220 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Aggregation and Output Tuples
Aggregation operations replace input tuple fields and values with new fields and values.

.aggregate(new Fields(“val2”), new Sum(), new Fields(“sum”))

Read all tuples and
send their “val2”
field values to the
Sum function.

Emit a single, new
tuple with only a

“sum” field and value.

input tuples aggregation
Sum()

output tuple

“sum”

“val1”, “val2”

“val1”, “val2”

“val1”, “val2”

6/2/15	

111	

Page 221 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Aggregation Methods and Interfaces
Trident has both aggregation methods and interfaces.
•  Aggregation methods and aggregator interfaces are different

Aggregation methods include:
•  aggregate
•  partitionAggregate
•  persistentAggregate
The aggregation interfaces include the:
•  CombinerAggregator
•  ReducerAggregator
•  Aggregator
The topology developer specifies which aggregation interface to use when performing an
aggregation operation using an aggregation method.

Page 222 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The aggregate Method
The aggregate method aggregates all the tuples in a single batch.
•  Batches in a stream are aggregated independently

The aggregate method is a repartitioning operation.
•  Information from all the batch’s partitions must be transferred to a single partition

The aggregate method can be used with the ReducerAggregator, Aggregator, or
CombinerAggregator interfaces.
•  Which interface is used is determined by which one the Sum() function utilizes
•  Which interface is chosen affects how much data is transferred over the network

.aggregate(new Fields("count"), new Sum(), new Fields("sum"));

Read all tuples in a
batch and send their
“count” field values
to the Sum function.

Emit a single, new
tuple with only a

“sum” field and value.

6/2/15	

112	

Page 223 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The aggregate Method Illustrated
If the aggregate method is used with a
ReducerAggregator or Aggregator interface then:
•  All the data from all partitions in a batch is transferred to a

single partition
•  All aggregation is performed in a single partition

If the aggregate method is used with a
CombinerAggregator interface then:
•  Trident computes partial aggregations in each partition in a

batch
•  Trident transfers only the partial aggregations to a single

partition
•  The partial aggregations are combined into a final result

The CombinerAggregator interface is more efficient
and should be used whenever possible.

data
data
data

partial
agg

data
data
data

partial
agg

data
data
data

final
agg

partial
agg

CombinerAggregator

data
data
data

final
agg

Aggregator/
ReducerAggregator

data
data
data

data
data
data

Page 224 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The partitionAggregate Method
The partitionAggregate method:
•  Operates on a batch of tuples
•  Aggregates tuples only within individual partitions
•  Is not a repartitioning operation

The partitionAggregate method can be used with the CombinerAggregator,
ReducerAggregator, or Aggregator interfaces.
•  Which interface is used is determined by which one the Sum() function utilizes

•  Because there is no repartitioning, there is limited benefit to using a CombinerAggregator

.partitionAggregate(new Fields(”count"), new Sum(), new Fields(”sum"))

Read all tuples in a
partition and send
their “count” field
values to the Sum

function.

Emit a single, new
tuple with only a
“sum” field and

value.

6/2/15	

113	

Page 225 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The partitionAggregate Method Illustrated

The partitionAggregate method
performs per-partition aggregation
per batch.
It is not a repartitioning operation.

data
data
data

data
data
data

final
agg

final
agg

data
data
data

data
data
data

final
agg

final
agg

batch

partition

partition

partition

partition

Page 226 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The persistentAggregate Method
The persistentAggregate method:
•  Operates across batches of tuples

–  It is a stream aggregator whose values represent the aggregation of all tuples across all batches in a stream

•  Stores aggregations in a source of state
– Memory, Memcached, Cassandra, HDFS, or some other store

•  Is a repartitioning operation

The persistentAggregate method can be used with the CombinerAggregator or
ReducerAggregator interfaces.

.persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))

Read all tuples in a
stream and use the
Count function to

count the number of
tuples.

Emit a single, new
tuple with only a
“count” field and

value.

Update the source
of state with the

current count value.

6/2/15	

114	

Page 227 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The persistentAggregate Method Illustrated
If the persistenAggregate method employs a
ReducerAggregator interface then:
•  All the data in a stream is transferred to a single

partition
•  All aggregation is performed in a single partition and

the results are sent to the source of state

If the persistentAggregate method employs
the CombinerAggregator interface then:
•  Trident computes partial aggregations in each partition

in a batch
•  Trident transfers only the partial aggregations to a

single partition
•  The partial aggregations are combined into a final

result
•  The results are sent to the source of state

data
data
data

data
data
data

final
agg

ReducerAggregator

state

data
data
data

partial
agg

data
data
data

partial
agg

data
data
data

final
agg

partial
agg

CombinerAggregator

state

data
data
data

Page 228 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The groupBy Method and Aggregators
The groupBy method converts a Stream into a GroupedStream.
The groupBy method is commonly used with an aggregation method. For example:

A groupBy modifies the behavior of a subsequent aggregation operation.
•  A groupBy followed by an aggregate operation results in repartitioning and an aggregation for each

individual group rather than a whole batch
•  A groupBy followed by an persistentAggregate operation results in repartitioning and an

aggregation for each individual group rather than the entire stream
– A persistentAggregate operation will also store the results in a source of state with the key being the grouping

fields

•  A groupBy followed by partitionAggregate results in an aggregation for each individual group,
within each individual partition
– There is no repartitioning

topology.newStream("spout", spout)
.groupBy(new Fields("location"))
.aggregate(new Fields("location"), new Count(), new Fields("count"))

6/2/15	

115	

Page 229 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

aggregate and groupBy Illustrated
With GroupedStreams, the output tuple contains the grouping fields followed by the fields
emitted by the aggregator.

•  Example of obtaining a count of the number of temperature sensors in each city
-  Input tuple fields are “location” and “currTemp”

-  The Count function counts the number of tuples

topology.newStream("spout", spout)
.groupBy(new Fields("location"))
.aggregate(new Fields("location"), new Count(), new Fields("count"))
.each(new Fields(“location”, “count”), new PrintResults());

aggregation batch of input tuples

Tokyo, 26

Bangalore, 30

Tokyo,25

London, 22

New York, 24 London, 23

New York, 23

London, 23

output tuples

Tokyo, 2

Bangalore, 1

New York, 2

London, 3 Because of the
addition of groupBy,
the result is a count of

tuples for each
location rather than a
count of all tuples in

the batch.

Page 230 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Chaining
Chaining enables Storm to execute multiple aggregators in a single operation.
•  Chaining is implemented using the chainedAgg and chainEnd methods

This code runs the Count and Sum aggregators on each partition at the same time.
The output for each partition will be a single tuple with the fields "count” and "sum”.

Note: The Count and Sum aggregators download with Trident. They are optimized to use the
CombinerAggregator interface. Because partitionAggregate was used, little to no benefit is
gained by the use of the CombinerAggregator interface.

.chainedAgg()
 .partitionAggregate(new Count(), new Fields("count"))
 .partitionAggregate(new Fields("b"), new Sum(), new Fields("sum"))
 .chainEnd()

6/2/15	

116	

Page 231 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

1.  aggregate
2.  ReducerAggregator
3.  CombinerAggregator
4.  persistentAggregate
5.  Aggregator
6.  partitionAggregate

a.  aggregation method
b.  aggregator interface

Match the name on the left with the correct type on the right.

Page 232 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Use the following code sample to answer the question:

1.  Where would an aggregator interface be implemented?

a.  In the partitionAggregate method

b.  In the first Fields function
c.  In the Sum function
d.  In the last Fields function

.partitionAggregate(new Fields(”count"), new Sum(), new Fields(”sum"))

6/2/15	

117	

Page 233 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

True or False?

1.  Aggregation operations replace input tuple fields and values with new fields and values.

2.  The persistentAggregate method is a stream aggregator whose values represent the

aggregation of all tuples across all batches in a stream.

3.  The partitionAggregate method aggregates all tuples across all partitions in a batch.

Page 234 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Use the diagram to answer the
question.

1.  What type of aggregation or aggregation

interface would operate as depicted in the
diagram?

a.  partitionAggregate
b.  CombinerAggregator
c.  ReducerAggregator
d.  chainedAgg

data
data
data

final
agg

partition

data
data
data

data
data
data partition

partition

6/2/15	

118	

Page 235 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Use the following code sample to answer the question:

1.  Which tuples fields will be in the output tuple?
a.  total
b.  units and sum
c.  sum
d.  total and sum

.chainedAgg()
 .partitionAggregate(new Count(), new Fields(”total"))
 .partitionAggregate(new Fields(“units"), new Sum(), new Fields("sum"))
 .chainEnd()

Page 236 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The Aggregator Interfaces
Topology developers may use three different Trident interfaces for writing aggregator functions:
•  CombinerAggregator
•  ReducerAggregator
•  Aggregator
Each of these are described next.

6/2/15	

119	

Page 237 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

CombinerAggregator Interface
The CombinerAggregator interface includes three methods and:
•  Combines a set of tuple field values into a single value
•  Maximizes network efficiency by performing per-partition partial aggregations

Example of a Count function implemented as a CombinerAggregator:

To maximize the benefit of a CombinerAggregator interface, use it with the aggregate or
persistentAggregate methods rather than the partitionAggregate method.

public class Count implements CombinerAggregator<Long> {
 public Long init(TridentTuple tuple) {
 return 1L;
 }
 public Long combine(Long val1, Long val2) {
 return val1 + val2;
 }
 public Long zero() {
 return 0L;
 }
 }

Storm calls the init method for each tuple.

The combine method is called until all tuples
in the partition have been processed.

The zero method is called to emit a zero if
there are no tuples in the partition.

Page 238 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

ReducerAggregator Interface
The ReducerAggregator interface includes two methods that take a prior result, along with a
set of new records, and return a new result.
•  This is useful in situations where more input values make an answer more accurate or more true

Example of a Count function implemented as a ReducerAggregator:
 public class Count implements ReducerAggregator<Long> {

 public Long init() {
 return 0L;
 }
 public Long reduce(Long curr, TridentTuple tuple) {

 return curr + 1;
 }
 }

The init method produces an initial value.

The reduce method iterates on the value
as each new tuple is read.

6/2/15	

120	

Page 239 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Aggregator Interface
The Aggregator is the most generic of the three interfaces.
It includes three methods that aggregate a set of tuples and can emit a result at any time.
Example of a Count function implemented as an Aggregator:

public class CountAgg extends BaseAggregator<CountState> {
 static class CountState {
 long count = 0;
 }
 public CountState init(Object batchId, TridentCollector collector) {
 return new CountState();
 }
 public void aggregate(CountState state, TridentTuple tuple, TridentCollector collector) {
 state.count+=1;
 }
 public void complete(CountState state, TridentCollector collector) {
 collector.emit(new Values(state.count));
 }
}

The init method is called at the beginning
of each batch. It returns an object that

represents the state of the aggregation.

The aggregate method is called
for each tuple in the batch

partition. It can update state, if
state is maintained, and also emit

tuples.

The complete method is called when all tuples
in the batch partition have been processed.

Page 240 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Merges and Joins

The Trident API includes operations that combine streams.
Streams can be merged or joined.
The Trident class TridentTopology includes the merge and join methods.

6/2/15	

121	

Page 241 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The merge Method
The simplest way to combine streams is to merge them into a single stream.
•  The merge method merges all tuples from two or more streams
•  The streams must have the same number of tuple fields

The tuple fields of the output stream are given the names of tuple fields in the first stream.

Stream s1 = topology.newStream(“spout1”, spout1);
Stream s2 = topology.newStream(“spout2”, spout2);
topology.merge(s1, s2);

“val1”, “val2”
 1, 7

“val1”, “val2”
 3, 6

“vala”, “valb”
 2, 8

“vala”, “valb”
 2, 4

Stream s1

Stream s2

“val1”, “val2”
 1, 7

“val1”, “val2”
 3, 6

“val1”, “val2”
 2, 8

“val1”, “val2”
 2, 4

Page 242 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The join Method
The join method provides a way to combine only selected tuples from different streams.
The join operation is performed per batch.

Assuming that streams from two spouts are joined, Storm synchronizes the spouts to emit the
same batch size.

Stream s1 = topology.newStream(“spout1”, spout1);
Stream s2 = topology.newStream(“spout2”, spout2);
topology.join(stream1, new Fields("key"), stream2, new Fields("x"), new Fields("key", "a", "b", "c"));

“key”, “val1”, “val2”
 1, 7, 2

“x”, “y”
 1, 8

Stream s1

Stream s2

join if equal joined “key”, “a”, “b”, “c”
 1, 7 2, 8

Join if values in “key” and “x” are equal.
•  All output tuple fields must be named.
•  Fields “a”, “b”, and “c” are non-join fields.
•  “a” and “b” are “val1” and “val2” from s1.
•  “c” is “y” from s2.

6/2/15	

122	

Page 243 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

True or false?

1.  The join method merges all tuples from two or more streams.

2.  The merge method provides a way to combine only selected tuples from different streams.

Page 244 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lesson Review – Things to Remember
The each method is fundamental to Trident topologies and enables the reading and processing
of each tuple in a batch.

Trident filters evaluate input tuples and determine whether to forward them to downstream
operations.

Trident functions implement data-processing logic.

Different topology operations can run with different degrees of parallelism.

Repartitioning operations use network transfers to move tuples from one cluster node to
another.

Aggregation operations enable a topology to combine tuple values in a partition, in a batch, or
across an entire stream.

Chaining enables Storm to execute multiple aggregators in a single operation.

Streams can be merged; tuples can be joined.

6/2/15	

123	

Page 245 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lab
Using Trident

Page 246 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

10 – Trident State
Keeping track of results over time

6/2/15	

124	

Page 247 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

When you complete this lesson you should be able to:
•  List the three types of Trident states

•  List the three types of Trident spouts
•  Recall which Trident states and spouts support at-most-once, at-least-one, and exactly once processing

semantics
•  Paraphrase how each type of Trident spout and state operates
•  Describe how an opaque transactional spout is more fault tolerant than a transactional spout

•  Recognize the operation of the state-based partitionPersist, persistentAggregate, and
stateQuery methods

Page 248 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident State
In a distributed, real-time computation system, failures are inevitable and batches will be retried.
The problem is:
•  How to retry a batch after a failure but make it appear that each tuple was processed only once

The problem is solved by maintaining state information for each batch.
State information can be stored and updated using different strategies:
•  The state database can be internal to the topology

–  In-memory
–  In-memory but backed by HDFS

•  The state database can be an external database
– Like Memcached or Cassandra

6/2/15	

125	

Page 249 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident and a State Database
Trident assumes nothing about how a state
database operates.
It does not assume:
•  What kinds of methods exist to update it

•  What kind of methods exist to read it
•  How long data is retained in it

– State can be retained for a limited amount of time or
forever

The lack of assumptions provides the
freedom to use a variety of databases as the
source of state.

state

update?

query?
retention?

Page 250 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Types of Trident State
There are three types of state in Trident.

The type of Trident spout used determines the level of fault tolerance possible.

State Corresponding Spout Processing Semantics
Transactional Transactional spout Enables exactly once

processing semantics
Opaque transactional Opaque transactional spout Enables exactly once

processing semantics
Non-transactional Non-transactional spout No exactly once processing

semantics, only at-most-once
or at-least-once

6/2/15	

126	

Page 251 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

True or false?

1.  In a distributed, real-time computation system, batches cannot be retried.

2.  Trident state cannot be maintained in memory.

3.  Trident must be aware of how long state is retained in a database.

Page 252 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Support for Transactional States
Trident enables the transactional states by adding two fundamental primitives to its batch
processing:
•  Each batch is assigned a transaction ID

–  If a batch is retried, it must use the same transaction ID

•  State updates must be ordered among transaction IDs
– For example, updates for batch ID 2 are applied before updates for batch ID 3

These primitives are part of the Trident State abstractions.
•  A developer never has to manually write code to store or compare transaction IDs in a state database

If exactly once processing behavior is not required then stateless operation is possible.
•  Stateless operation eliminates a small amount of CPU, memory, I/O, and storage overhead
•  Trident still provides the benefit of a higher level of abstraction than writing real-time processing pipelines

using Storm

6/2/15	

127	

Page 253 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Transactional Spouts
Transactional spouts guarantee the composition of batches.
•  A retried batch must contain the exact same tuples
•  The same tuple will never appear in two different batches

Transactional spouts support the transactional state.
•  They enable exactly once processing semantics
•  They enable idempotent operation

Trident IPartitionedTridentSpout is a transactional spout class.
•  It is available to topology developers for building transactional spouts

Page 254 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Transactional Spout Operation
•  The state database for a transactional spout stores:

– The current state value

– The last successfully completed transaction ID

cat-> [count=4,txid=6]
dog-> [count=3,txid=6]
mouse-> [count=7,txid=6]
bird-> [count=4,txid=6]

txid 6
cat
dog
mouse
bird

new partial count
from batch

cat-> [count=3,txid=5]
dog-> [count=2,txid=5]
mouse-> [count=7,txid=6]
bird-> [count=3,txid=3]

current state
database

updated state
database

Is the
batch
txid

higher
?

Compare batch txid
to database txid

Update count and
txid in database

Do nothing in
database

yes no

State database update example
Transactional state update logic

6/2/15	

128	

Page 255 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Transactional Spout Fault Tolerance
Transactional spouts are not fault tolerant when reading from partitioned input sources.
•  If one of the partitioned input sources fails, a batch cannot contain the exact same tuples
•  Because it is impossible to retry the exact same batch again, Trident cannot continue processing

– Because of strict batch transaction ID ordering

input
source tuple tuple

input
source tuple tuple

input
source tuple tuple

batch with txid

3 spout
tasks

some
downstream

failure

first try with a downstream failure

input
source tuple tuple

input
source tuple tuple

input
source tuple tuple

batch with txid

3 spout
tasks

batch fails
because
original

tuples no
longer

available

second try after input source failure

X X X

Page 256 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Opaque Transactional Spouts
Opaque transactional spouts cannot guarantee that the composition of a batch remains
constant.
•  A retried batch might not contain the exact same tuples
•  However, the same tuple will never be successfully completed in two different batches

Opaque transactional spouts support the opaque transactional state.
•  They enable exactly once processing semantics
•  They enable idempotent operation

Trident IOpaquePartitionedTridentSpout is an opaque transactional spout class and is
available to topology developers for building transactional spouts.

6/2/15	

129	

Page 257 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Opaque Transactional Spout Operation
•  Opaque transactional spouts support the

opaque transactional state by storing more
state information in the state database

•  Opaque transaction spouts store:
– The current state value

– The previous state value

– The last successfully completed transaction ID

•  In the example, each word has a current
count, a previous count, and a transaction
ID number

cat-> [count=3,prevCount=1,txid=5]
dog-> [count=2,prevCount=1,txid=5]
mouse-> [count=7,prevCount=6,txid=6]
bird-> [count=3,prevCount=2,txid=3]

Compare
batch txid to

database txid

1. Do not update the
prevCount value.

2. Update the current count
value by adding together
the partial count value
from the batch and the
prevCount value.

3. Do not update the txid.

no yes

1. Update the prevCount
value to equal to the
current count value.

2. Update the current count
value by adding to it the
partial count value from
the batch.

3. Update the txid.

Is the batch
txid higher?

Opaque
transactional state

update logic

Page 258 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Opaque Transactional Spout Update Example

cat-> [count=4,prevCount=3,txid=6]
dog-> [count=3,prevCount=2,txid=6]
mouse-> [count=8,prevCount=6,txid=6]
bird-> [count=4,prevCount=3,txid=6]

txid 6
cat
dog
mouse
bird

cat-> [count=3,prevCount=1,txid=5]
dog-> [count=2,prevCount=1,txid=5]
mouse-> [count=7,prevCount=6,txid=6]
bird-> [count=3,prevCount=2,txid=3]

current state
database

updated state
database

new partial count
from batch

6/2/15	

130	

Page 259 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Opaque Transactional Spout Fault Tolerance
Opaque transactional spouts are fault tolerant when reading from partitioned input sources.
•  If one of the partitioned input sources fails, a batch can be replayed without the missing tuples
•  Trident will continue processing

input
source tuple tuple

input
source tuple tuple

input
source tuple tuple

batch with txid

3 spout
tasks

some
downstream

failure

first try with a downstream failure

input
source tuple tuple

input
source tuple tuple

input
source tuple tuple

batch with txid

3 spout
tasks

batch
successfully

replayed
without the

missing
tuples

second try after input source failure

X X X

Page 260 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Non-Transactional Spouts
Non-transactional spouts provide no guarantees on the composition of batches.
•  The same tuples could be repeated in different batches

Non-transactional spouts support the non-transactional state.
•  They do not provide any guarantees about what is in each batch
•  They might have at-most-once or at-least-once processing semantics
•  They do not enable idempotent operation

Trident IBatchSpout is a non-transactional spout interface and is available to topology
developers for building non-transactional spouts.
Core Storm spouts are also non-transactional.
•  They are based on the IRichSpout interface and not recommended for use in Trident

Non-transactional spouts store only the current value in the state database.
•  They do not store the transaction ID or previous value information

Non-transactional spouts are fault tolerant when reading from partitioned input sources.

6/2/15	

131	

Page 261 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

a.  Transactional spout
b.  Opaque transactional spout
c.  Non-transactional spout

1.  Enables at-most-once processing semantics
2.  Enables at-least-once processing semantics
3.  Enables exactly once processing semantics
4.  Enables idempotent operation
5.  Fault tolerant to partitioned input source failures
6.  Not fault tolerant to partitioned input source failures

Match the description with the correct term. There might be more than
one correct match.

Page 262 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

a.  Transactional state
b.  Opaque transactional state
c.  Non-transactional state

1.  State database stores only the current state value
2.  State database stores the current state value and a

transaction ID
3.  State database stores the current state value, the

previous state value, and a transactions ID
4.  Enables idempotent operation
5.  Replayed batches must contain the exact same tuples
6.  The same tuples could be repeated in different

batches

Match the description with the correct term. There might be more than
one correct match.

6/2/15	

132	

Page 263 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Trident State-Based Operations
Trident includes three methods that support state-based operations.
•  partitionPersist
•  persistentAggregate
•  stateQuery

Page 264 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The partitionPersist Method
The partitionPersist method updates a source of state.
It persists state for each partition without coordination with other partitions.

•  The LocationDBFactory is shown on the next page

•  The LocationUpdater is shown on a later page

TridentTopology topology = new TridentTopology();
TridentState locations = topology.newStream("locations", locationsSpout)
.partitionPersist(new LocationDBFactory(), new Fields("userid", "location"), new LocationUpdater())

Persist the “userid” and
“location” values for each
partition to the statefactory

defined by
LocationDBFactory.

Get the “userid”
and “location”
field values from
the input tuples.

6/2/15	

133	

Page 265 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

LocationDBFactory Example
Trident uses a StateFactory interface to create instances of the State object that are usable
by each task in a Trident topology.
•  Storm uses these instances to persist information
•  State is executed at the level of a single cluster node

–  It just updates the state database for each partition of a batch

To access an external database, a topology developer must write a state factory based on the
Trident StateFactory class.
•  Here is an example from the Trident online documentation:

The LocationDB function is shown on the next page.

public class LocationDBFactory implements StateFactory {
 public State makeState(Map conf, int partitionIndex, int numPartitions) {
 return new LocationDB();
 }
 }

Page 266 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The LocationDB Function
Trident can use a state database that is internal to the topology—kept in memory—or external
to the topology.
Methods to update a state database are provided by developing a class based on the Trident
State class.
Here is an example from the Trident online documentation:

public class LocationDB implements State {
 public void beginCommit(Long txid) {
 }
 public void commit(Long txid) {
 }
 public void setLocationsBulk(List<Long> userIds, List<String> locations) {

 // set locations in bulk }
 public List<String> bulkGetLocations(List<Long> userIds) {
 // get locations in bulk
 }
 }

6/2/15	

134	

Page 267 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The LocationUpdater Function
The LocationUpdater function was part of the topology code shown earlier.
The example LocationUpdater function is an extension of the Trident BaseStateUpdate
class.
•  It is shown as an example of how state can be implemented and used

•  This example is part of the Trident online documentation

public class LocationUpdater extends BaseStateUpdater<LocationDB> {
 public void updateState(LocationDB state, List<TridentTuple> tuples, TridentCollector collector) {
 List<Long> ids = new ArrayList<Long>();
 List<String> locations = new ArrayList<String>();
 for(TridentTuple t: tuples) {
 ids.add(t.getLong(0));
 locations.add(t.getString(1));
 }
 state.setLocationsBulk(ids, locations);
 }
 }

Page 268 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The persistentAggregate Method
The persistentAggregate method is an additional abstraction built on top of the
partitionPersist method.
The values stored by persistentAggregate represents the aggregation of all tuples across
all batches in a stream.
•  It knows how to use a Trident aggregator and apply the latest result to a source of state

Trident automatically batches operations that write to, or read from, a source of state.
•  For example, a batch requiring 15 updates to a database would result in 1 write request to state

batch batch batch batch batch

state

stream

update
state

update
state

update
state

update
state

update
state

6/2/15	

135	

Page 269 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Using the persistentAggregate Method
The persistentAggregate method is often run on a GroupedStream.
•  The results are stored in a MapState with the key being the grouping fields

The persistentAggregate method transforms this stream into a TridentState object.
•  In this example, the TridentState object represents a count of all the words in the stream
•  A TridentState object can be read by the stateQuery method

TridentTopology topology = new TridentTopology();
TridentState wordCounts = topology.newStream("spout1", spout)
.each(new Fields("sentence"), new Split(), new Fields("word"))
.groupBy(new Fields("word"))
.persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))

cat -> count=3
dog -> count=2
bird -> count=3

MapState

stateQuery method read

Page 270 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Partitioning State
State can be partitioned across multiple Storm cluster nodes.
Use the parallelismHint method to partition a state database.

The example code would partition the state information across 10 nodes by the word field.

TridentTopology topology = new TridentTopology();
TridentState wordCounts = topology.newStream("spout1", spout)
.each(new Fields("sentence"), new Split(), new Fields("word"))
.groupBy(new Fields("word"))
.persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))
.parallelismHint(10)

Added parallelismHint

6/2/15	

136	

Page 271 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The stateQuery Method
The stateQuery method queries a source of state and creates of a stream of tuples from the
state information.
•  Example from the Trident online documentation:

topology.newDRPCStream("words")
 .each(new Fields("args"), new Split(), new Fields("word"))
 .groupBy(new Fields("word"))
 .stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count"))
 .each(new Fields("count"), new FilterNull())
 .aggregate(new Fields("count"), new Sum(), new Fields("sum"));

DRPCClient client = new DRPCClient("drpc.server.location", 3772);
System.out.println(client.execute("words", "cat dog the man");

Makes a
distributed

RPC request
to the Storm

cluster.

DRPC service started by
storm drpc command.

Make a query by
using MapGet on
the wordCounts

state object. Return the current word
counts to the DRPC client.

invoke the
words function get word

counts for
these words

Page 272 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

The broadcast Method
The broadcast method replicates every tuple in a stream to all partitions.
This can be useful during DRPC if you need to send every tuple of the query to every state
database partition.
For example:

topology.newStream(”queries”, querySpout).broadcast()
 .stateQuery(state, new Fields(”sentence"), new QueryState(), new Fields(”matches"))
 .each(new Fields(”matches"), new DebugAction())

Spout emits queries The query tuples are broadcast
(replicated) to each state partition.

6/2/15	

137	

Page 273 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

True or false?

1.  The partitionPersist method persists state for each partition without coordination with

other partitions.
2.  The values stored by persistentAggregate represents the aggregation of all tuples

across all batches in a stream.
3.  The stateQuery method queries a source of state and creates a stream of tuples from the

state information.

Page 274 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Knowledge Check

Given the following code segments, choose the correct answer to the
question.

1.  What argument should replace the placeholder “???” in the first code segment?
a.  args
b.  word
c.  words
d.  count
e.  sum

DRPCClient client = new DRPCClient("drpc.server.location", 3772);
System.out.println(client.execute(”???", "cat dog the man");

topology.newDRPCStream("words")
 .each(new Fields("args"), new Split(), new Fields("word"))
 .groupBy(new Fields("word"))
 .stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count"))
 .each(new Fields("count"), new FilterNull())
 .aggregate(new Fields("count"), new Sum(), new Fields("sum"));

6/2/15	

138	

Page 275 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lesson Review – Things to Remember
In a distributed, real-time computation system, failures are inevitable and batches will be retried.
Trident can maintain enough state information about each batch to make it appear that a tuple
was processed only once.
State information can be stored and updated using different strategies.
Trident has transactional, opaque transactional, and non-transactional states with corresponding
transactional, opaque transactional, and non-transactional spouts.
The transactional and opaque transactional states enable exactly once, at-least-once, and at-
most-once processing semantics.
The non-transactional state enables only at-least-once and at-most-once processing semantics.
The opaque transactional and non-transactional states have more fault tolerance to partitioned
input source failures than the transactional state.
The Trident partitionPersist, persistentAggregate, and stateQuery methods
support state-based operations.

Page 276 © Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lab
Using Trident with Kafka

