

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

2

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

3

Title HDP Developer: Apache Pig and Hive
Version: GA
Date: February 1, 2015

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software Foundation.

The contents of his course and all its related materials, including lab exercises and files are
Copyright © Hortonworks, Inc. 2015 All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form by any means electronic, photocopy, recording or otherwise without prior written
permission of Hortonworks.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

4

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

5

Table	 of	 Contents	
Lab: Start an HDP 2.2 Cluster .. 7	
Demonstration: Understanding Block Storage .. 17	
Lab: Using HDFS Commands .. 21	
Lab: Importing RDBMS Data into HDFS .. 27	
Lab: Exporting HDFS Data to an RDBMS .. 32	
Demonstration: Understanding MapReduce .. 38	
Lab: Running a MapReduce Job .. 40	
Demonstration: Understanding Pig .. 43	
Lab: Getting Started with Pig ... 47	
Lab: Exploring Data with Pig .. 51	
Lab: Splitting a Dataset .. 58	
Lab: Joining Datasets ... 62	
Lab: Preparing Data for Hive .. 68	
Demonstration: Computing PageRank ... 70	
Lab: Analyzing Clickstream Data ... 74	
Lab: Analyzing Stock Market Data using Quantiles ... 80	
Lab: Understanding Hive Tables .. 85	
Demonstration: Understanding Partitions and Skew ... 91	
Lab: Analyzing Big Data with Hive ... 95	
Lab: Understanding MapReduce ... 102	
Demonstration: Computing ngrams ... 103	
Lab: Joining Datasets in Hive ... 107	
Lab: Computing ngrams of Emails in Avro Format .. 111	
Lab: Using HCatalog with Pig .. 117	
Lab: Advanced Hive Programming .. 122	
Demonstration: Hive Optimizations .. 130	
Lab: Streaming Data with Hive and Python ... 131	
Lab: Running a YARN Application ... 133	
Lab: Defining an Oozie Workflow ... 137	
Appendix: Quick troubleshooting steps ... 149	

Unknown
Field Code Changed ... [1]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 15

Unknown
Field Code Changed ... [2]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 19

Unknown
Field Code Changed ... [3]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 25

Unknown
Field Code Changed ... [4]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 30

Unknown
Field Code Changed ... [5]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 34
Unknown
Field Code Changed ... [6]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 36
Unknown
Field Code Changed ... [7]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 39

Unknown
Field Code Changed ... [8]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 43

Unknown
Field Code Changed ... [9]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 47
Unknown
Field Code Changed ... [10]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 54
Unknown
Field Code Changed ... [11]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 58
Unknown
Field Code Changed ... [12]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 64
Unknown
Field Code Changed ... [13]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 66
Unknown
Field Code Changed ... [14]

Lester Martin Jr.� 11/10/2015 4:57 PM
Deleted: 70
Unknown
Field Code Changed ... [15]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [16]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [17]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [18]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [19]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [20]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [21]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [22]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [23]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [24]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [25]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [26]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [27]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [28]

Lester Martin Jr.� 11/10/2015 4:57 PM

Unknown
Field Code Changed ... [29]

Lester Martin Jr.� 11/10/2015 4:57 PM

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

6

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

7

Lab: Start an HDP 2.3 Cluster
This lab explores starting an HDP cluster in your VM.

	

Objective: Start an HDP cluster in your VM.

File locations: n/a

Successful outcome: The (local or cloud-hosted) VM will be running HDP 2.3.

Before you begin: VMWare should be installed on your machine and the classroom
VM should be imported, unless you are using a cloud-hosted VM.

Related lesson: Understanding Hadoop

Perform the following steps:

Step 1: Start the VM

1.1. If applicable, start VMWare Player (or Fusion) on your local machine, select the
course VM from the list of virtual machines, then click the Play virtual machine link.

1.2. You should see the desktop of your local or cloud-hosted VM:

	

1.3. Open a Terminal by double-clicking the shortcut on the desktop:

Lester Martin Jr.� 10/19/2015 9:19 AM
Deleted: 2

Lester Martin Jr.� 11/3/2015 4:12 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:13 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/28/2015 4:44 PM
Deleted: HDP 2.2
Lester Martin Jr.� 10/28/2015 4:44 PM
Deleted: virtual machine
Lester Martin Jr.� 10/28/2015 4:43 PM
Deleted: on your local machine

Lester Martin Jr.� 10/28/2015 4:45 PM
Deleted: S

Lester Martin Jr.� 10/28/2015 4:46 PM
Deleted: [30]

Lester Martin Jr.� 10/28/2015 4:40 PM

Deleted:

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

8

	

Step 2: Start the Cluster and verify that it is running

2.1. Navigate into the Docker sandbox instance and initiate the provisioning script:
root@ubuntu:~# ssh sandbox
[root@sandbox ~]# start_ambari

2.2. From the command line, enter the following command, which displays the usage of
the hdfs dfsadmin utility:

su -l hdfs -c "hdfs dfsadmin"

	

NOTE: The “dfs” in dfsadmin stands for distributed filesystem, and
the dfsadmin utility contains administrative commands for
communicating with the Hadoop Distributed File System.

2.3. Notice the dfsadmin utility has a -report option, which outputs the current health of
your cluster. Enter the following command to view this report:

su -l hdfs -c "hdfs dfsadmin -report"

2.4. What is the configured capacity of your distributed filesystem? ___________
Answer: Look for the value of “Configured Capacity” at the start of the output.

2.5. What is the present capacity? ___________

Lester Martin Jr.� 10/28/2015 4:41 PM

Deleted:

Lester Martin Jr.� 10/28/2015 4:47 PM
Deleted: Verify

Lester Martin Jr.� 10/28/2015 4:47 PM
Deleted: the Cluster

Lester Martin Jr.� 10/28/2015 4:47 PM
Deleted: Running

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

9

Answer: Look for the value of “Present Capacity” at the start of the output.

2.6. How much of your distributed filesystem is used right now? ___________
Answer: Look for the value of “DFS Used.”

2.7. What do you think an “Under-replicated block” is? ______________________
Answer: Data in HDFS is chunked into blocks and copied to various nodes in the
cluster. If a particular block does not have enough copies, it is referred to as “under
replicated.”

2.8. How many available DataNodes does your cluster have? ___________
Answer: 1

Step 3: View the Processes on the Cluster Nodes
Enter the jps command, which lists all Java processes running on this machine. While
your specific processes and they order they are presented in may look slightly different
than the list below, you should still see the NameNode process running:

jps
3706 ResourceManager
 2988 QuorumPeerMain
3675 RunJar
4032 RunJar
3740 NodeManager
3188 Nfs3
3186 Portmap
3738 JobHistoryServer
2556 DataNode
2557 SecondaryNameNode
2560 NameNode
3712 ApplicationHistoryServer
3511 RunJar
24669 -- process information unavailable
5516 AmbariServer
31813 Jps
3029 Bootstrap

Step 4: View the ResourceManager UI
4.1. Open Firefox in the VM by double-clicking on the Firefox icon.

4.2. Enter the following URL:
http://sandbox:8088/

4.3. Notice that the URL shows the ResourceManager Web UI:

Lester Martin Jr.� 11/10/2015 1:29 PM
Deleted: You

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

10

	
The ResourceManager UI displays information about the applications that have been
executed on your Hadoop cluster.

Step 5: View the NameNode UI

5.1. Point your browser to the NameNode UI:
http://sandbox:50070/

	
Notice the NameNode UI contains a lot of information about the cluster. The Overview
page shows the version of Hadoop and other details.

5.2. Scroll down to the Summary section on the Overview page and you will see a table
that looks similar to the hdfs dfsadmin -report output:

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

11

	
5.3. Click on the Datanodes tab of the NameNode UI:

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

12

	
You should see one DataNode in your cluster.

Step 6: View the JobHistory UI

6.1. The JobHistory UI is at:
http://sandbox:19888/

	
As it sounds, the JobHistory UI shows the jobs that have executed on your cluster. You
have not submitted any jobs to your cluster yet, but this page comes in handy as you
work on the labs throughout this course.

Step 7: Configure the gedit text editor to be launched on the "ubuntu" parent VM and to
allow opening of lab files on the Docker "sandbox" VM.

7.1. If using the hosted AWS virtual machine, click on "Places" in the upper-left corner
of the VM and then "Connect to Server…" as shown below.

Lester Martin Jr.� 11/10/2015 3:45 PM
Formatted: Font:(Default) Courier New,
10 pt

Lester Martin Jr.� 11/10/2015 3:52 PM
Formatted: Font:Bold, Italic

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

13

	

7.2. If using the downloaded VMware-based virtual machine, click on "Home Folder"
icon on the left nav (highlighted within a green box in the next screenshot) and then
select "File" and "Connect to Server…" as shown below.

	

7.3. In the new dialogue box that surfaces, change the "Type" pulldown to "SSH" and
update the values to look like the following (the password is "hadoop") before clicking on
the "Connect" button.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

14

	

7.4. Now you will see a UI-based view of the labs folder on the sandbox node.

	

7.5. You can now open files directly by right-clicking on them and choosing the option to
open with the gedit visual text editor or by using gedit's open/new controls.

Lester Martin Jr.� 11/10/2015 4:08 PM
Formatted: Font:(Default) Courier New,
10 pt

Lester Martin Jr.� 11/10/2015 4:23 PM
Formatted: Font:(Default) Courier New,
10 pt

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

15

	

	

Result: You now have a single-node Hortonworks Data Platform 2.3 cluster running in a virtual
machine. You will use this cluster to perform the labs in this course.

Lester Martin Jr.� 11/10/2015 4:12 PM
Deleted:

Lester Martin Jr.� 10/19/2015 9:56 AM
Deleted: 2

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

16

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

17

Demonstration: Understanding Block Storage
This lab explores how data is partitioned into blocks and stored in HDFS.

	

Objective: To understand how data is partitioned into blocks and stored in
HDFS.

During this
Demonstration:

Watch as your instructor performs the following steps.

Related lesson: The Hadoop Distributed File System (HDFS)

Perform the following steps:

Step 1: Put the File into HDFS

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Change directories to /root/devph/labs/demos:
cd /root/devph/labs/demos/

1.3. Use less to view the contents of the stocks.csv file. Press q when you are finished
to exit less.

less stocks.csv

1.4. Try putting the file into HDFS with a block size of 30 bytes:
hdfs dfs -D dfs.blocksize=30 -put stocks.csv

Notice that a size of 30 bytes is not a valid blocksize. The blocksize needs to be at
least 1,048,576 according to the dfs.namenode.fs-limits.min-block-size
property:

put: Specified block size is less than configured minimum value
(dfs.namenode.fs-limits.min-block-size): 30 < 1048576

1.5. Try the put again, but use a block size of 2,000,000:
hdfs dfs -D dfs.blocksize=2000000 -put stocks.csv

Notice that 2,000,000 is not a valid blocksize because it is not a multiple of 512
(the checksum size).

1.6. Try the put again, but this time use 1,048,576 for the blocksize:
hdfs dfs -D dfs.blocksize=1048576 -put stocks.csv

1.7. This time the put command should have worked. Use ls to verify that the file is in
HDFS in the /user/root folder:

Lester Martin Jr.� 11/3/2015 4:13 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:13 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 11/6/2015 11:41 AM
Deleted: Before you begin: ... [31]

Lester Martin Jr.� 11/6/2015 11:26 AM
Formatted: Font:(Default) Courier New

Lester Martin Jr.� 10/28/2015 4:57 PM
Deleted: hadoop

Lester Martin Jr.� 10/28/2015 4:57 PM
Deleted: hadoop

Lester Martin Jr.� 10/28/2015 4:58 PM
Deleted: adoop

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

18

hdfs dfs -ls
Found 1 items
-rw-r--r-- 1 root root 3613198 stocks.csv

Step 2: View the Number of Blocks
2.1. Run the following command to view the number of blocks that were created for
stocks.csv:

hdfs fsck /user/root/stocks.csv

2.2. Notice there are four blocks. Look for the following line in the output:
Total blocks (validated): 4 (avg. block size 903299 B)

Step 3: Find the Actual Blocks

3.1. Enter the same fsck command as before, but add the -files and -blocks options:
hdfs fsck /user/root/stocks.csv -files -blocks

Notice the output contains the block IDs, which are coincidentally the names of the
files on the DataNodes.

3.2. Run the command again, but this time add the -locations flag:
hdfs fsck /user/root/stocks.csv -files -blocks -locations

Notice in the output that the IP address of the DataNode appear next to each
block.

3.3. Change directories to the following:
cd /hadoop/hdfs/data/current/BP-xxx/current/finalized/

Replace BP-xxx with the actual folder name. To finish this, use the TAB key to
complete the filename once you have typed B. Then finish typing the rest of the
directory path.

3.4. Try and find the folder that contains the blocks you are looking for and change
directories into that folder. The easiest way is to look at the timestamps and find the
most recently changed folder. You can use the stat * command to view the contents of
the directory, then use ll to list the contents of that directory.

stat *
cd <most recently created directory - for example, subdir0>
ll

	

IMPORTANT: If the results of the ll command are additional
subdirectories rather than block information (as shown in the next lab
step), repeat the process above to once again find the newest
directory created , change to it, and list its contents.

Lester Martin Jr.� 10/28/2015 4:58 PM
Deleted: adoop
Lester Martin Jr.� 11/10/2015 4:32 PM
Deleted: 3

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

19

3.5. Notice that the actual blocks appear in this folder. Look for files that are exactly
1,048,576 bytes. These are three of the blocks. Notice that the fourth block is smaller:
467,470 bytes.

-rw-r--r-- 1 hdfs hdfs 1048576 blk_1073742090
-rw-r--r-- 1 hdfs hdfs 8199 blk_1073742090_1266.meta
-rw-r--r-- 1 hdfs hdfs 1048576 blk_1073742091
-rw-r--r-- 1 hdfs hdfs 8199 blk_1073742091_1267.meta
-rw-r--r-- 1 hdfs hdfs 467470 blk_1073742093
-rw-r--r-- 1 hdfs hdfs 3663 blk_1073742093_1269.meta

3.6. You can view the contents of a block (although this is not a typical task in Hadoop).
Here is the tail of the second block:

tail blk_1073741905
NYSE,XKK,2007-08-20,9.51,9.64,9.30,9.51,4700,7.17
NYSE,XKK,2007-08-17,9.30,9.99,9.26,9.57,3900,7.21
NYSE,XKK,2007-08-16,9.45,10.00,8.11,9.05,23400,6.82
NYSE,XKK,2007-08-15,9.51,9.51,9.18,9.35,4900,7.04
NYSE,XKK,2007-08-14,9.52,9.52,9.51,9.51,1100,7.17
NYSE,XKK,2007-08-13,9.60,9.60,9.56,9.56,3000,7.20
NYSE,XKK,2007-08-10,9.82,9.82,9.60,9.60,2500,7.23
NYSE,XKK,2007-08-09,9.83,9.87,9.82,9.82,4500,7.40
NYSE,XKK,2007-08-08,9.45,9.90,9.45,9.66,6000,7.28
NYSE,XKK,2007-08-07,9.25,9.50,9.25,9.40

Notice the last record in this file is not complete and spills over to the next block, a
common occurrence in HDFS.

3.7. Go back to the home directory.
cd ~

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

20

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

21

Lab: Using HDFS Commands
This lab explores how files are added to, removed from, and how to view files in HDFS.

	

Objective: To become familiar with how files are added to and removed from
HDFS and how to view files in HDFS.

File locations: /root/devph/labs/Lab2.1

Successful outcome: You will have added and deleted several files and folders in
HDFS.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: The Hadoop Distributed File System (HDFS)

Perform the following steps:

Step 1: View the hdfs dfs Command

1.1. Open a Terminal in your VM and type "ssh sandbox".

1.2. Enter the following command to view the usage of hdfs dfs:
hdfs dfs

1.3. Notice that the usage contains options for performing filesystem tasks in HDFS, like
copying files from a local folder into HDFS, retrieving a file from HDFS, copying and
moving files around, and making and removing directories. In this lab, you will perform
these commands, and many others, to help you become comfortable with working with
HDFS.

Step 2: Create a Directory in HDFS

2.1. Enter the following -ls command to view the contents of the user’s root directory in
HDFS, which is /user/root

hdfs dfs -ls

You do not have any files in /user/root yet, so no output is displayed.

Run the -ls command again, but this time specify the root HDFS folder:
hdfs dfs -ls /

The output should look similar to:
Found 10 items
drwxrwxrwx - yarn hadoop 0 2014-12-16 19:06 /app-logs
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:13 /apps
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:48 /demo

Lester Martin Jr.� 11/3/2015 4:13 PM
Deleted: About	 this	 lab
Lester Martin Jr.� 11/3/2015 4:14 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 10:02 AM
Deleted: 2

Lester Martin Jr.� 10/28/2015 4:58 PM
Deleted: adoop

Lester Martin Jr.� 11/6/2015 11:29 AM
Formatted: Font:(Default) Courier New

Lester Martin Jr.� 10/28/2015 5:05 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 4:58 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 4:59 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 4:59 PM
Deleted: adoop
Lester Martin Jr.� 11/10/2015 1:30 PM

Deleted: like

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

22

drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:07 /hdp
drwxr-xr-x - mapred hdfs 0 2014-12-16 19:06 /mapred
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:06 /mr-history
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:37 /ranger
drwxr-xr-x - hdfs hdfs 0 2014-12-16 19:08 /system
drwxrwxrwx - hdfs hdfs 0 2014-12-16 19:29 /tmp
drwxr-xr-x - hdfs hdfs 0 2015-01-12 05:34 /user

	

IMPORTANT: Notice how adding the / in the -ls command caused
the contents of the root folder to display, but leaving off the / showed
the contents of /user/root, which is the default prefix if you leave off
the leading / on any of the hadoop commands (assuming the
command is run by the “root” user).

2.2. Enter the following command to create a directory named test in HDFS:
hdfs dfs -mkdir test

2.3. Verify that the folder was created successfully:
hdfs dfs -ls
Found 1 items
drwxr-xr-x - root root 0 test

2.4. Create a couple of subdirectories for test:
hdfs dfs -mkdir test/test1
hdfs dfs -mkdir -p test/test2/test3

Notice how the -p command can be used to create multiple directories. The
second command above will fail if you omit the -p.

2.5. Use the -ls command to view the contents of /user/root:
hdfs dfs -ls

Notice you only see the test directory. To recursively view the contents of a folder,
use -ls -R:

hdfs dfs -ls -R

The output should look like:
drwxr-xr-x - root root 0 test
drwxr-xr-x - root root 0 test/test1
drwxr-xr-x - root root 0 test/test2
drwxr-xr-x - root root 0 test/test2/test3

Step 3: Delete a Directory

3.1. Delete the test2 folder (and recursively, its subcontents) using the -rm -R command:
hdfs dfs -rm -R test/test2

3.2. Now run the -ls -R command:

Lester Martin Jr.� 10/28/2015 4:59 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 4:59 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 4:59 PM
Deleted: adoop
Lester Martin Jr.� 10/28/2015 4:59 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 4:59 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 4:59 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 4:59 PM
Deleted: adoop

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

23

hdfs dfs -ls -R

The directory structure of the output should look like:
.Trash
.Trash/Current
.Trash/Current/user
.Trash/Current/user/root
.Trash/Current/user/root/test
.Trash/Current/user/root/test/test2
.Trash/Current/user/root/test/test2/test3
test
test/test1

	

NOTE: Notice Hadoop created a .Trash folder for the root user and
moved the deleted content there. The .Trash folder empties
automatically after a configured amount of time.

Step 4: Upload a File to HDFS

4.1. Now let’s put a file into the test folder. Change directories to
/root/devph/labs/Lab2.1:

cd /root/devph/labs/Lab2.1/

4.2. Notice this folder contains a file named data.txt:
tail data.txt

4.3. Run the following -put command to copy data.txt into the test folder in HDFS:
hdfs dfs -put data.txt test/

4.4. Verify that the file is in HDFS by listing the contents of test:
hdfs dfs -ls test

The output should look like the following:
Found 2 items
-rw-r--r-- 1 root root 1529355 test/data.txt
drwxr-xr-x - root root 0 test/test1

Step 5: Copy a File in HDFS
5.1. Now copy the data.txt file in test to another folder in HDFS using the -cp command:

hdfs dfs -cp test/data.txt test/test1/data2.txt

5.2. Verify that the file is in both places by using the -ls -R command on test. The
output should look like the following:

hdfs dfs -ls -R test
-rw-r--r-- 1 root root 1529355 test/data.txt

Lester Martin Jr.� 10/28/2015 4:59 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 5:00 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 5:00 PM
Deleted: adoop

Lester Martin Jr.� 11/10/2015 4:42 PM
Deleted: 3

Lester Martin Jr.� 10/28/2015 5:00 PM
Deleted: adoop
Lester Martin Jr.� 10/28/2015 5:00 PM
Deleted: adoop
Lester Martin Jr.� 11/10/2015 4:42 PM
Deleted: 3

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

24

drwxr-xr-x - root root 0 test/test1
-rw-r--r-- 1 root root 1529355 test/test1/data2.txt

5.3. Now delete the data2.txt file using the -rm command:
hdfs dfs -rm test/test1/data2.txt

5.4. Verify that the data2.txt file is in the .Trash folder.

Step 6: View the Contents of a File in HDFS

6.1. You can use the -cat command to view text files in HDFS. Enter the following
command to view the contents of data.txt:

hdfs dfs -cat test/data.txt

6.2. You can also use the -tail command to view the end of a file:
hdfs dfs -tail test/data.txt

Notice the output this time is only the last 20 rows of data.txt.

Step 7: Getting a File from HDFS

7.1. See if you can figure out how to use the get command to copy test/data.txt from
HDFS into your local /tmp folder.

Answer:
hdfs dfs -get test/data.txt /tmp/
cd /tmp
ls

Step 8: The getmerge Command

8.1. Put the file /root/devph/labs/demos/small_blocks.txt into the test folder in
HDFS. You should now have two files in test: data.txt and small_blocks.txt.

Answer:
hdfs dfs -put /root/devph/labs/demos/small_blocks.txt test/

8.2. Run the following getmerge command:
hdfs dfs -getmerge test /tmp/merged.txt

8.3. What did the previous command do? Did you open the file merged.txt to see what
happened?

Answer: The two files that were in the test folder in HDFS were merged into a
single file and stored on the local file system.

Step 9: Specify the Block Size and Replication Factor

9.1. Put /root/devph/labs/Lab2.1/data.txt into /user/root in HDFS, giving it a
blocksize of 1,048,576 bytes.

Lester Martin Jr.� 11/10/2015 4:42 PM
Deleted: 3

Lester Martin Jr.� 10/28/2015 5:00 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 5:00 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 5:00 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 5:00 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 5:00 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 5:00 PM
Deleted: adoop

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

25

	

HINT: The blocksize is defined using the dfs.blocksize property on the
command line.

Answer:
hdfs dfs -D dfs.blocksize=1048576 -put data.txt data.txt

9.2. Run the following fsck command on data.txt:
hdfs fsck /user/root/data.txt

9.3. How many blocks are there for this file? ________________
Answer: The file should be broken down into two blocks.

Result: You should now be comfortable with executing the various HDFS commands,
including creating directories, putting files into HDFS, copying files out of HDFS, and
deleting files and folders.

Lester Martin Jr.� 10/28/2015 5:01 PM
Deleted: adoop

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

26

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

27

Lab: Importing RDBMS Data into HDFS
This lab explores importing data from a database into HDFS.

	

Objective: Import data from a database into HDFS.

File locations: /root/devph/labs/Lab3.1/

Successful outcome: You will have imported data from MySQL into folders in HDFS.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Inputting Data into HDFS

Perform the following steps:

Step 1: Create a Table in MySQL

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. From the command prompt, change directories to /root/devph/labs/Lab3.1/:
cd ~/devph/labs/Lab3.1/

1.3. View the contents of salaries.txt:
tail salaries.txt

The comma-separated fields represent a gender, age, salary, and zip code.

1.4. Notice that there is a salaries.sql script that defines a new table in MySQL named
salaries. For this script to work, you need to copy salaries.txt to the /tmp directory:

cp salaries.txt /tmp

1.5. Now run the salaries.sql script using the following command:
mysql test < salaries.sql

Step 2: View the Table

2.1. To verify that the table is populated in MySQL, open the mysql prompt:
mysql

2.2. Switch to the test database, which is where the salaries table was created:
mysql> use test;

2.3. Run the show tables command and verify that salaries is defined:
mysql> show tables;
+----------------+
| Tables_in_test |

Lester Martin Jr.� 11/3/2015 4:14 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:14 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 10:30 AM
Deleted: 1

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

28

+----------------+
| salaries |
+----------------+
1 row in set (0.00 sec)

2.4. Select 10 items from the table to verify that it is populated:
mysql> select * from salaries limit 10;
+--------+------+--------+---------+----+
| gender | age | salary | zipcode | id |
+--------+------+--------+---------+----+
F	66	41000	95103	1
M	40	76000	95102	2
F	58	95000	95103	3
F	68	60000	95105	4
M	85	14000	95102	5
M	14	0	95105	6
M	52	2000	94040	7
M	67	99000	94040	8
F	43	11000	94041	9
F	37	65000	94040	10
+--------+------+--------+---------+----+

2.5. Exit the mysql prompt:
mysql> exit

Step 3: Import the Table into HDFS
3.1. Enter the following Sqoop command (all on a single line), which imports the salaries
table in the test database into HDFS:

sqoop import --connect jdbc:mysql://sandbox/test?user=root --table salaries

3.2. A MapReduce job should start executing, and it may take a couple of minutes for the
job to complete.

Step 4: Verify the Import
4.1. View the contents of your HDFS folder:

hdfs dfs -ls

4.2. You should see a new folder named salaries. View its contents:
hdfs dfs -ls salaries
Found 4 items
-rw-r--r-- 1 root hdfs 272 salaries/part-m-00000
-rw-r--r-- 1 root hdfs 241 salaries/part-m-00001
-rw-r--r-- 1 root hdfs 238 salaries/part-m-00002
-rw-r--r-- 1 root hdfs 272 salaries/part-m-00003

4.3. Notice there are four new files in the salaries folder named part-m-0000x. Why are
there four of these files?

__

Lester Martin Jr.� 10/28/2015 5:01 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 5:01 PM
Deleted: adoop

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

29

Answer: The MapReduce job that executed the Sqoop command used four
mappers, so there are four output files (one from each mapper).

4.4. Use the cat command to view the contents of the files. For example:
hdfs dfs -cat salaries/part-m-00000

Notice the contents of these files are the rows from the salaries table in MySQL.
You have now successfully imported data from a MySQL database into HDFS.
Notice that you imported the entire table with all of its columns. In the next step,
you will import only specific columns of a table.

Step 5: Specify Columns to Import

5.1. Using the --columns argument, write a Sqoop command that imports the salary and
age columns (in that order) of the salaries table into a directory in HDFS named salaries2.
In addition, set the -m argument to 1 so that the result is a single file.

Solution:
The command you enter in the command line will look like this in the terminal
window:

sqoop import --connect jdbc:mysql://sandbox/test?user=root --table salaries
--columns salary,age -m 1 --target-dir salaries2

To make it easier to read, below is the same command as above, however we have
broken it down into smaller chunks separated by a "\" at the end of the break point
in each line. When you see this formatting in the lab, you should type it out as it
appears above, and do not enter the \ characters unless specifically instructed to
do so.

sqoop import --connect jdbc:mysql://sandbox/test?user=root \
--table salaries \
--columns salary,age \
-m 1 \
--target-dir salaries2

5.2. After the import, verify you only have one part-m file in salaries2:
hdfs dfs -ls salaries2
Found 1 items
-rw-r--r-- 1 root hdfs 482 salaries2/part-m-00000

5.3. Verify that the contents of part-m-00000 are only the two columns you specified:
hdfs dfs -cat salaries2/part-m-00000
The last few lines should look like the following:
69000.0,97
91000.0,48
0.0,1
48000.0,45
3000.0,39
14000.0,84

Step 6: Importing from a Query

Lester Martin Jr.� 10/28/2015 5:01 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 5:01 PM
Deleted: adoop

Lester Martin Jr.� 10/28/2015 5:01 PM
Deleted: adoop

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

30

6.1. Write a Sqoop import command that imports the rows from salaries in MySQL
whose salary column is greater than 90,000.00. Use gender as the --split-by value,
specify only two mappers, and import the data into the salaries3 folder in HDFS.

	

TIP: The Sqoop command will look similar to the ones you have been
using throughout this lab, except you will use --query instead of --
table. Recall that when you use a --query command you must also
define a --split-by column, or define -m to be 1.

Also, do not forget to add $CONDITIONS to the WHERE clause of your
query, as demonstrated earlier in this unit.

Solution:

In the command below, the "\" at the beginning of line 3 just in front of
$CONDITIONS" is part of the actual command and is required for it to function
properly. All other \ symbols in the command should be ignored in the command line.

sqoop import --connect jdbc:mysql://sandbox/test?user=root \
--query "select * from salaries s where s.salary > 90000.00 and \
\$CONDITIONS" \
--split-by gender \
-m 2 \
--target-dir salaries3

--This is how it should appear in the command line:

sqoop import --connect jdbc:mysql://sandbox/test?user=root --query "select
* from salaries s where s.salary > 90000.00 and \$CONDITIONS" --split-by
gender -m 2 --target-dir salaries3

6.2. To verify the result, view the contents of the files in salaries3. You should have only
two output files.

hdfs dfs -ls salaries3

6.3. View the contents of part-m-00000 and part-m-00001.
hdfs dfs -cat salaries3/part-m-00000

hdfs dfs -cat salaries3/part-m-00001

Notice that one file contains females, and the other file contains males. Why?
__

Answer: You used gender as the split-by column, so all records with the same
gender are sent to the same mapper.

6.4. Verify that the output files contain only records whose salary is greater than
90,000.00.

Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs

Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

31

Result: You have imported the data from MySQL to HDFS using the entire table, specific
columns, and also using the result of a query.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

32

Lab: Exporting HDFS Data to an RDBMS
This lab explores exporting data from HDFS into a MySQL table using Sqoop.

	

Objective: Export data from HDFS into a MySQL table using Sqoop.

File locations: /root/devph/labs/Lab3.2

Successful outcome: The data in salarydata.txt in HDFS will appear in a table in MySQL
named salary2.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Inputting Data into HDFS

Perform the following steps:

Step 1: Put the Data into HDFS

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Change directories to /root/devph/labs/Lab3.2:
cd ~/devph/labs/Lab3.2

1.3. View the contents of salarydata.txt:
tail salarydata.txt
M,49,29000,95103
M,44,34000,95102
M,99,25000,94041
F,93,96000,95105
F,75,9000,94040
F,14,0,95102
M,68,1000,94040
F,45,78000,94041
M,40,6000,95103
F,82,5000,95050

Notice the records in this file contain four values separated by commas, and the
values represent a gender, age, salary, and zip code, respectively.

1.4. Create a new directory in HDFS named salarydata.
hdfs dfs -mkdir salarydata

1.5. Put salarydata.txt into the salarydata directory in HDFS.
hdfs dfs –put salarydata.txt salarydata

Step 2: Create a Table in the Database

Lester Martin Jr.� 11/3/2015 4:14 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:14 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 3:08 PM
Deleted: 1

Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/19/2015 4:12 PM
Deleted: -
Lester Martin Jr.� 10/19/2015 4:12 PM
Deleted: mkdir salarydata

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

33

2.1. There is a script in the Exporting HDFS Data to an RDBMS lab folder that creates a
table in MySQL that matches the records in salarydata.txt. View the SQL script:

more salaries2.sql

2.2. Run this script using the following command:
mysql test < salaries2.sql

2.3. Verify that the table was created successfully in MySQL:
mysql
mysql> use test;
mysql> describe salaries2;
+---------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+------------+------+-----+---------+-------+
gender	varchar(1)	YES		NULL	
age	int(11)	YES		NULL	
salary	double	YES		NULL	
zipcode	int(11)	YES		NULL	
+---------+------------+------+-----+---------+-------+

2.4. Exit the mysql prompt:
mysql> exit

Step 3: Export the Data
3.1. Run a Sqoop command that exports the salarydata folder in HDFS into the
salaries2 table in MySQL. At the end of the MapReduce output, you should see a log
event stating that 10,000 records were exported.

sqoop export \
--connect jdbc:mysql://sandbox/test?user=root \
--table salaries2 \
--export-dir salarydata \
--input-fields-terminated-by ","

3.2. Verify it worked by viewing the table’s contents from the mysql prompt. The output
should look like the following:

mysql
mysql> use test;
mysql> select * from salaries2 limit 10;
+--------+------+--------+---------+
| gender | age | salary | zipcode |
+--------+------+--------+---------+
M	57	39000	95050
F	63	41000	95102
M	55	99000	94040
M	51	58000	95102
M	75	43000	95101
M	94	11000	95051

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

34

M	28	6000	94041
M	14	0	95102
M	3	0	95101
M	25	26000	94040
+--------+------+--------+---------+

3.3. Exit the mysql prompt.

Result: You have now used Sqoop to export data from HDFS into a database table in
MySQL.

 Lester Martin Jr.� 10/19/2015 5:44 PM
Deleted: Solution: The Sqoop export
command in this lab looks like:

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

35

Lab: Importing Log Data into HDFS using Flume
This lab explores importing data from log files into HDFS using Flume.

	

Objective: Import data from log file into HDFS using Flume.

File locations: /root/devph/labs/Lab3.3

Successful outcome: The data in webtraffic.log on sandbox will be streamed into HDFS
directory /user/root/flumedata/.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Flume

Perform the following steps:

Step 1: Verify Flume is installed on your cluster.

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Type the following command from prompt:
flume-ng

1.3. The command should return the following usage instructions:

	

Step 2: . View the contents of the webtraffic.log file

Lester Martin Jr.� 11/5/2015 4:25 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 11/6/2015 11:32 AM
Formatted: Outline numbered + Level: 1 +
Numbering Style: 1, 2, 3, ... + Start at: 1 +
Alignment: Left + Aligned at: 0.31" +
Indent at: 0.81"

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

36

2.1. Change directories to /root/devph/labs/Labs3.3.
cd /root/devph/labs/Lab3.3

2.2. View the contents of the webtraffic.log:
less webtraffic.log

Press q to quit viewing the log.

2.3. A partial agent configuration has been written for you, view the file using the less
command.

less logagent.conf

2.4. From the VM desktop, start gedit.

2.5. Click Open and navigate to /root/devph/labs/Lab3.3

2.6. Modify this file replacing strings starting with "REPLACE-WITH-" (highlighted below)
with their appropriate value. HINT: Search for "HDFS Sink" at
https://flume.apache.org/FlumeUserGuide.html.

agent.sources = weblog
agent.channels = memoryChannel
agent.sinks = mycluster

Sources ###
agent.sources.weblog.type = exec
agent.sources.weblog.command = tail -F REPLACE-WITH-PATH2-webtraffic.log-FILE
agent.sources.weblog.batchSize = 1
agent.sources.weblog.channels = REPLACE-WITH-CHANNEL-NAME

Channels ##
agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 100
agent.channels.memoryChannel.transactionCapacity = 100

Sinks ###
agent.sinks.mycluster.type = REPLACE-WITH-CLUSTER-TYPE
agent.sinks.mycluster.hdfs.path=/user/root/flumedata
agent.sinks.mycluster.channel = REPLACE-WITH-CHANNEL-NAME

2.7. Click Save to save the logagent configuration.
2.8. From the terminal window, start the logagent from /root/devph/labs/Lab3.3.

flume-ng agent –n agent –f logagent.conf &

2.9. Hit Enter to get a command prompt back.

2.10. The sink for logagent is the HDFS folder /user/root/flumedata. Verify that this folder
does now exists.

hdfs dfs –ls flumedata/

2.11. View the contents of the streamed data in HDFS in FlumeData.<########>.

Lester Martin Jr.� 11/10/2015 3:45 PM
Formatted: Font:(Default) Courier New,
10 pt

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

37

hdfs dfs –cat flumedata/FlumeData.<#######>

The flumedata/FlumeData.<sequence> file should display the webtraffic as shown below:

	

Note: Notice the format difference.

Result: Successful import of data from Flume into HDFS.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

38

Demonstration: Understanding MapReduce
This lab explores how MapReduce works.

	

Objective: To understand how MapReduce works.

During this
Demonstration:

 Watch as your instructor performs the following steps.

Related lesson: The MapReduce Framework

Perform the following steps:

Step 1: Put the File into HDFS

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Change directories to the demos folder:
cd ~/devph/labs/demos/

1.3. Use more to look at a file named constitution.txt. Press q to exit when finished.
more constitution.txt

1.4. Put the file into HDFS:
hdfs dfs -put constitution.txt

Step 2: Run the WordCount Job

2.1. The following command runs a wordcount job on the constitution.txt and writes the
output to wordcount_output:

yarn jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-mapreduce-
examples.jar wordcount constitution.txt wordcount_output

2.2. Notice that a MapReduce job gets submitted to the cluster. Wait for the job to
complete.

Step 3: View the Results

3.1. View the contents of the wordcount_output folder:
hdfs dfs -ls wordcount_output
Found 2 items
-rw-r--r-- 1 root root 0 wordcount_output/_SUCCESS
-rw-r--r-- 1 root root 17049 wordcount_output/part-r-00000

3.2. Why is there one part-r file in this directory? ______________________________

Answer: The job only used one reducer.

3.3. What does the “r” in the filename stand for? _________________________

Lester Martin Jr.� 11/3/2015 4:14 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:14 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs

Lester Martin Jr.� 11/3/2015 4:50 PM
Deleted: historyserver

Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs
Lester Martin Jr.� 11/10/2015 10:26 PM
Deleted: 3
Lester Martin Jr.� 11/10/2015 10:26 PM
Deleted: 3

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

39

Answer: The “r” stands for “reducer.”

3.4. View the contents of part-r-00000:
hdfs dfs -cat wordcount_output/part-r-00000

3.5. Why are the words sorted alphabetically? _____________________________
Answer: The key in this MapReduce job is the word, and keys are sorted during the
shuffle/sort phase.

3.6. What was the key output by the WordCount reducer? ___________
Answer: The reducer’s output key was each word.

3.7. What was the value output by the WordCount reducer? _____________
Answer: The value output by the reducer was the sum of the 1s, which is the
number of occurrences of the word in the document.

3.8. Based on the output of the reducer, what do you think the mapper output would be
as key/value pairs? __

__
Answer: The mapper outputs each word as a key and the number 1 as each value.

Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

40

Lab: Running a MapReduce Job
This lab explores how to run a Java MapReduce job.

	

Objective: Run a Java MapReduce job.

File locations: /root/devph/labs/Lab4.1

Successful outcome: You will see the results of the Inverted Index job in the
inverted/output folder in HDFS.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: The MapReduce Framework

Perform the following steps:

Step 1: Put the Data into HDFS

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. The MapReduce job you are going to execute is an Inverted Index application, one
of the very first use cases for MapReduce. Open a command prompt and change
directories to /root/labs/Lab4.1:

cd ~/devph/labs/Lab4.1

1.3. Use more to view the contents of the file hortonworks.txt.
more hortonworks.txt

Each line looks like:
http://hortonworks.com/,hadoop,webinars,articles,download,enterprise,team,rel
iability

Each line of text consists of a Web page URL, followed by a comma-separated list
of keywords found on that page.

1.4. Make a new folder in HDFS named inverted/input:
hdfs dfs -mkdir -p inverted/input

1.5. Put hortonworks.txt into HDFS into the inverted/input/ folder. This file will be the
input to the MapReduce job.

hdfs dfs –put hortonworks.txt inverted/input/

Step 2: Run the Inverted Index Job

2.1. From the /root/devph/labs/Lab4.1 folder, enter the following command (all on a
single line):

Lester Martin Jr.� 11/3/2015 4:14 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:14 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 5:51 PM
Deleted: 2

Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/19/2015 5:52 PM
Deleted: -
Lester Martin Jr.� 10/19/2015 5:52 PM
Deleted: mkdir -p

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

41

yarn jar invertedindex.jar inverted.IndexInverterJob inverted/input
inverted/output

2.2. Wait for the MapReduce job to execute. The final output should look like:
File Input Format Counters
 Bytes Read=1126
File Output Format Counters
 Bytes Written=2997

Step 3: View the Results

3.1. List the contents of the inverted/output folder.
hdfs dfs -ls inverted/output

How many reducers did this job use? _____________
How can you determine this from the contents of inverted/output?
__
Answer: The job used one reducer, which you can determine by the existence of only
one part-r-n file in the output directory.
3.2. Use the cat command to view the contents of inverted/output/part-r-00000.
The file should look like:

hdfs dfs -cat inverted/output/part-r-00000
about http://hortonworks.com/about-us/,
apache
 http://hortonworks.com/products/hortonworksdataplatform/,http://hortonw
orks.com/about-us/,
articles http://hortonworks.com/community/,http://hortonworks.com/,
...

Step 4: Specify the Number of Reducers

4.1. Try running the job again, but this time specify the number of reducers to be three:
yarn jar invertedindex.jar inverted.IndexInverterJob
-D mapreduce.job.reduces=3 inverted/input inverted/output

4.2. View the contents of inverted/output. Notice there are three part-r files:
hdfs dfs -ls inverted/output
Found 3 items
1 root hdfs 1221 inverted/output/part-r-00000
1 root hdfs 977 inverted/output/part-r-00001
1 root hdfs 799 inverted/output/part-r-00002

4.3. View the contents of the three files. How did the MapReduce framework determine
which <key,value> pair to send to which reducer?

Answer: <key,value> pairs are sent to the reducer based on the hashing of the
key and using the remainder of dividing by the number of reducers.

Lester Martin Jr.� 10/19/2015 5:54 PM
Deleted: hadoop

Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs

Lester Martin Jr.� 10/28/2015 5:03 PM
Deleted: # hadoop fs

Lester Martin Jr.� 10/19/2015 5:59 PM
Deleted: hadoop

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

42

Result: You have now executed a Java MapReduce job from the command line that takes
an input text file and outputs the inverted indexes of the lines of text. This common task is
what Web search engines like Google and Yahoo! use to determine the pages associated
with search terms.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

43

Demonstration: Understanding Pig
This lab explores Pig scripts and relations.

	

Objective: To understand Pig scripts and relations.

During this
Demonstration:

Watch as your instructor performs the following steps.

Related lesson: Introduction to Pig

Perform the following steps:

Step 1: Start the Grunt Shell

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Review the contents of the file pigdemo.txt located in /root/devph/labs/demos.
more /root/devph/labs/demos/pigdemo.txt

1.3. Start the Grunt shell:
pig

1.4. Notice that the output includes where the logging for your Pig session will go as well
as a statement about connecting to your Hadoop filesystem:

[main] INFO org.apache.pig.Main - Logging error messages to:
/root/devph/labs/demos/pig_1377892197767.log
[main] INFO org.apache.pig.backend.hadoop.executionengine. HExecutionEngine
- Connecting to hadoop file system at: hdfs://sandbox.hortonworks.com:8020

Step 2: Make a New Directory
2.1. Notice you can run HDFS commands easily from the Grunt shell. For example, run
the ls command:

grunt> ls

2.2. Make a new directory named demos:
grunt> mkdir demos

2.3. Use copyFromLocal to copy the pigdemo.txt file into the demos folder:
grunt> copyFromLocal /root/devph/labs/demos/pigdemo.txt demos/

2.4. Verify the file was uploaded successfully:
grunt> ls demos
hdfs://sandbox.hortonworks.com:8020/user/root/demos/pigdemo.txt<r 1> 89

2.5. Change the present working directory to demos:

Lester Martin Jr.� 11/3/2015 4:15 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:15 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 11/10/2015 1:34 PM
Deleted: 3

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

44

grunt> cd demos
grunt> pwd
hdfs://sandbox.hortonworks.com:8020/user/root/demos

2.6. View the contents using the cat command:
grunt> cat pigdemo.txt
SD Rich
NV Barry
CO George
CA Ulf
IL Danielle
OH Tom
CA manish
CA Brian
CO Mark

Step 3: Define a Relation

3.1. Define the employees relation, using a schema:
grunt> employees = LOAD 'pigdemo.txt' AS (state, name);

3.2. Demonstrate the describe command, which describes what a relation looks like:
grunt> describe employees;
employees: {state: bytearray,name: bytearray}

	

NOTE: Fields have a data type, and we will discuss data types later in
this unit. Notice that the default data type of a field (if you do not
specify one) is bytearray.

3.3. Let’s view the records in the employees relation:
grunt> DUMP employees;

Notice this requires a MapReduce job to execute, and the result is a collection of
tuples:

(SD,Rich)
(NV,Barry)
(CO,George)
(CA,Ulf)
(IL,Danielle)
(OH,Tom)
(CA,manish)
(CA,Brian)
(CO,Mark)

Step 4: Filter the Relation by a Field
4.1. Let’s filter the employees whose state field equals CA:

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

45

grunt> ca_only = FILTER employees BY (state=='CA');
grunt> DUMP ca_only;

4.2. The output is still tuples, but only the records that match the filter appear:
(CA,Ulf)
(CA,manish)
(CA,Brian)

Step 5: Create a Group

5.1. Define a relation that groups the employees by the state field:
grunt> emp_group = GROUP employees BY state;

5.2. Bags represent groups in Pig. A bag is an unordered collection of tuples:
grunt> describe emp_group;
emp_group: {group: bytearray,employees: {(state: bytearray,name: bytearray)}}

5.3. All records with the same state will be grouped together, as shown by the output of
the emp_group relation:

grunt> DUMP emp_group;

The output is:
(CA,{(CA,Ulf),(CA,manish),(CA,Brian)})
(CO,{(CO,George),(CO,Mark)})
(IL,{(IL,Danielle)})
(NV,{(NV,Barry)})
(OH,{(OH,Tom)})
(SD,{(SD,Rich)})

	

NOTE: Tuples are displayed in parentheses. Curly braces represent
bags.

Step 6: The STORE Command

6.1. The DUMP command dumps the contents of a relation to the console. The STORE
command sends the output to a folder in HDFS. For example:

grunt> STORE emp_group INTO 'emp_group';

Notice at the end of the MapReduce job that no records are output to the console.

6.2. Verify that a new folder is created:
grunt> ls
hdfs://sandbox.hortonworks.com:8020/user/root/demos/emp_group <dir>
hdfs://sandbox.hortonworks.com:8020/user/root/demos/pigdemo.txt<r 1> 89

6.3. View the contents of the output file: Lester Martin Jr.� 11/10/2015 1:33 PM
Deleted: 3

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

46

grunt> cat emp_group/part-r-00000
CA {(CA,Ulf),(CA,manish),(CA,Brian)}
CO {(CO,George),(CO,Mark)}
IL {(IL,Danielle)}
NV {(NV,Barry)}
OH {(OH,Tom)}
SD {(SD,Rich)}

Notice that the fields of the records (which in this case is the state field followed by
a bag) are separated by a tab character, which is the default delimiter in Pig. Use
the PigStorage object to specify a different delimiter:

grunt> STORE emp_group INTO 'emp_group_csv' USING PigStorage(',');

To view the results:

grunt > ls

grunt > cat emp_group_csv/part-r-00000

Step 7: Show All Aliases

7.1. The aliases command shows a list of currently defined aliases:
grunt> aliases;
aliases: [ca_only, emp_group, employees]

There will be a couple of additional numeric aliases created by the system for
internal use. Please ignore them.

Step 8: Monitor the Pig Jobs

8.1. Point your browser to the JobHistory UI at http://sandbox:19888/.

8.2. View the list of jobs, which should contain the MapReduce jobs that were executed
from your Pig Latin code in the Grunt shell.

8.3. Notice you can view the log files of the ApplicationMaster and also each map and
reduce task.

	

NOTE: Three commands trigger a logical plan to be converted to a
physical plan and execute as a MapReduce job: STORE, DUMP, and
ILLUSTRATE.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

47

Lab: Getting Started with Pig
This lab explores using Pig to navigate through HDFS and explore a dataset.

	

Objective: Use Pig to navigate through HDFS and explore a dataset.

File locations: /root/devph/labs/Lab5.1

Successful outcome: You will have a couple of Pig programs that load the White House
visitors’ data, with and without a schema, and store the output of
a relation into a folder in HDFS.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Introduction to Pig

Perform the following steps:

Step 1: View the Raw Data

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Change directories to the /root/devph/labs/Lab5.1 folder:
cd ~/devph/labs/Lab5.1

1.3. Unzip the archive in the /root/devph/labs/Lab5.1 folder, which contains a file
named whitehouse_visits.txt that is quite large:

unzip whitehouse_visits.zip

1.4. View the contents of this file:
tail whitehouse_visits.txt

This publicly available data contains records of visitors to the White House in
Washington, D.C.

Step 2: Load the Data into HDFS

2.1. Start the Grunt shell:
pig

2.2. From the Grunt shell, make a new directory in HDFS named whitehouse:
grunt> mkdir whitehouse

2.3. Use the copyFromLocal command in the Grunt shell to copy the
whitehouse_visits.txt file to the whitehouse folder in HDFS, renaming the file
visits.txt. (Be sure to enter this command on a single line):

Lester Martin Jr.� 11/3/2015 4:15 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:15 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 6:08 PM
Deleted: 2

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

48

grunt> copyFromLocal /root/devph/labs/Lab5.1/whitehouse_visits.txt
whitehouse/visits.txt

2.4. Use the ls command to verify that the file was uploaded successfully:
grunt> ls whitehouse
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/visits.txt<r 1>
 183292235

Step 3: Define a Relation
3.1. You will use the TextLoader to load the visits.txt file.

	

NOTE: TextLoader simply creates a tuple for each line of text, and it
uses a single chararray field that contains the entire line. It allows you
to load lines of text and not worry about the format or schema yet.

Define the following LOAD relation:
grunt> A = LOAD '/user/root/whitehouse/' USING TextLoader();

3.2. Use DESCRIBE to notice that A does not have a schema:
grunt> DESCRIBE A;
Schema for A unknown.

3.3. We want to get a sense of what this data looks like. Use the LIMIT operator to define
a new relation named A_limit that is limited to 10 records of A.

grunt> A_limit = LIMIT A 10;

3.4. Use the DUMP operator to view the A_limit relation. Each row in the output will look
similar to the following and should be 10 arbitrary rows from visits.txt:

grunt> DUMP A_limit;

(WHITLEY,KRISTY,J,U45880,,VA,,,,,10/7/2010 5:51,10/9/2010 10:30,10/9/2010
23:59,,294,B3,WIN,10/7/2010
5:51,B3,OFFICE,VISITORS,WH,RES,OFFICE,VISITORS,GROUP TOUR
,1/28/2011,,,
,,,
,,,
,,,,,,,,)

Step 4: Define a Schema

4.1. Load the White House data again, but this time use the PigStorage loader and also
define a partial schema:

grunt> B = LOAD '/user/root/whitehouse/visits.txt' USING PigStorage(',') AS (
 lname:chararray,
 fname:chararray,
 mname:chararray,
 id:chararray,
 status:chararray,

Lester Martin Jr.� 11/10/2015 1:33 PM
Deleted: 3

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

49

 state:chararray,
 arrival:chararray
);

4.2. Use the DESCRIBE command to view the schema:
grunt> describe B;
B: {lname: chararray,fname: chararray,mname: chararray,id: chararray,status:
chararray,state: chararray,arrival: chararray}

Step 5: The STORE Command

5.1. Enter the following STORE command, which stores the B relation into a folder named
whouse_tab and separates the fields of each record with tabs:

grunt> store B into 'whouse_tab' using PigStorage('\t');

5.2. Verify that the whouse_tab folder was created:
grunt> ls whouse_tab

You should see two map output files.

5.3. View one of the output files to verify they contain the B relation in a tab-delimited
format:

grunt> fs -tail whouse_tab/part-m-00000

5.4. Each record should contain seven fields. What happened to the rest of the fields
from the raw data that was loaded from whitehouse/visits.txt?

Answer: They were simply ignored when each record was read in from HDFS.

Step 6: Use a Different Storer

6.1. In the previous step, you stored a relation using PigStorage with a tab delimiter.
Enter the following command, which stores the same relation but in a JSON format:

grunt> store B into 'whouse_json' using JsonStorage();

6.2. Verify that the whouse_json folder was created:
grunt> ls whouse_json

6.3. View one of the output files:
grunt> fs -tail whouse_json/part-m-00000

Notice that the schema you defined for the B relation was used to create the
format of each JSON entry:

{"lname":"MATTHEWMAN","fname":"ROBIN","mname":"H","id":"U81961","status":"735
74","state":"VA","arrival":"2/10/2011 11:14"}
{"lname":"MCALPINEDILEM","fname":"JENNIFER","mname":"J","id":"U81961","status
":"78586","state":"VA","arrival":"2/10/2011 10:49"}

Result: You have now seen how to execute some basic Pig commands, load data into a
relation, and store a relation into a folder in HDFS using different formats.

Lester Martin Jr.� 11/11/2015 7:51 AM
Deleted: ;

Lester Martin Jr.� 11/11/2015 7:52 AM
Deleted: ;

Lester Martin Jr.� 11/11/2015 7:52 AM
Deleted: ;

Lester Martin Jr.� 11/11/2015 7:52 AM
Deleted: ;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

50

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

51

Lab: Exploring Data with Pig
This lab explores using Pig to navigate through HDFS and explore a dataset.

	

Objective: Use Pig to navigate through HDFS and explore a dataset.

File locations: whitehouse/visits.txt in HDFS

Successful outcome: You will have written several Pig scripts that analyze and query
the White House visitors’ data, including a list of people who
visited the President.

Before you begin: At a minimum, complete steps 1 and 2 of the Getting Started with
Pig lab.

Related lesson: Introduction to Pig

Perform the following steps:

Step 1: Load the White House Visitor Data
1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. You will use the TextLoader to load the visits.txt file. From the Pig Grunt shell, define
the following LOAD relation:

pig

grunt> A = LOAD '/user/root/whitehouse/' USING TextLoader();

Step 2: Count the Number of Lines

2.1. Define a new relation named B that is a group of all the records in A:
grunt> B = GROUP A ALL;

2.2. Use DESCRIBE to view the schema of B.
grunt> DESCRIBE B;

What is the datatype of the group field? _____________________
Where did this datatype come from?

Answer: The group field is a chararray because it is just the string “all” and is a result of
performing a GROUP ALL.

2.3. Why does the A field of B contain no schema? ______________________

Lester Martin Jr.� 11/3/2015 4:15 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:15 PM
Formatted: No bullets or numbering

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

52

Answer: The A field of B contains no schema because the A relation has no
schema.

2.4. How many groups are in the relation B? ______________

Answer: The B relation can only contain one group because it a grouping of every
single record. Note that the A field is a bag, and A will contain any number of
tuples.

2.5. The A field of the B tuple is a bag of all of the records in visits.txt. Use the COUNT
function on this bag to determine how many lines of text are in visits.txt:

grunt> A_count = FOREACH B GENERATE 'rowcount', COUNT(A);

	

NOTE: The ‘rowcount’ string in the FOREACH statement is simply to
demonstrate that you can have constant values in a GENERATE clause.
It is certainly not necessary; it just makes the output nicer to read.

2.6. Use DUMP on A_count to view the result. The output should look like:
grunt> DUMP A_count;

(rowcount,447598)

We can now conclude that there are 447,598 rows of text in visits.txt.

Step 3: Analyze the Data’s Contents

3.1. We now know how many records are in the data, but we still do not have a clear
picture of what the records look like. Let’s start by looking at the fields of each record.
Load the data using PigStorage(‘,’) instead of TextLoader():

grunt> visits = LOAD '/user/root/whitehouse/' USING PigStorage(',');

This will split up the fields by comma.

3.2. Use a FOREACH...GENERATE command to define a relation that is a projection of the
first 10 fields of the visits relation.

grunt> firstten = FOREACH visits GENERATE $0..$9;

3.3. Use LIMIT to display only 50 records then DUMP the result. The output should be 50
tuples that represent the first 10 fields of visits:

grunt> firstten_limit = LIMIT firstten 50;
grunt> DUMP firstten_limit;

(PARK,ANNE,C,U51510,0,VA,10/24/2010 14:53,B0402,,)
(PARK,RYAN,C,U51510,0,VA,10/24/2010 14:53,B0402,,)
(PARK,MAGGIE,E,U51510,0,VA,10/24/2010 14:53,B0402,,)
(PARK,SIDNEY,R,U51510,0,VA,10/24/2010 14:53,B0402,,)
(RYAN,MARGUERITE,,U82926,0,VA,2/13/2011 17:14,B0402,,)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

53

(WILE,DAVID,J,U44328,,VA,,,,)
(YANG,EILENE,D,U82921,,VA,,,,)
(ADAMS,SCHUYLER,N,U51772,,VA,,,,)
(ADAMS,CHRISTINE,M,U51772,,VA,,,,)
(BERRY,STACEY,,U49494,79029,VA,10/15/2010 12:24,D0101,10/15/2010 14:06,D1S)

	

NOTE: Because LIMIT uses an arbitrary sample of the data, your
output will be different names but the format should look similar.

Notice from the output that the first three fields are the person’s name. The next
seven fields are a unique ID, badge number, access type, time of arrival, post of
arrival, time of departure, and post of departure.

Step 4: Locate the POTUS (President of the United States of America)

4.1. There are 26 fields in each record, and one of them represents the visitee (the person
being visited in the White House). Your goal now is to locate this column and determine
who has visited the President of the United States. Define a relation that is a projection
of the last seven fields ($19 to $25) of visits. Use LIMIT to only output 500 records. The
output should look like:

grunt> lastfields = FOREACH visits GENERATE $19..$25;
grunt> lastfields_limit = LIMIT lastfields 500;
grunt> DUMP lastfields_limit;

(OFFICE,VISITORS,WH,RESIDENCE,OFFICE,VISITORS,HOLIDAY OPEN HOUSE/)
(OFFICE,VISITORS,WH,RESIDENCE,OFFICE,VISITORS,HOLIDAY OPEN HOUSES/)
(OFFICE,VISITORS,WH,RESIDENCE,OFFICE,VISITORS,HOLIDAY OPEN HOUSE/)
(CARNEY,FRANCIS,WH,WW,ALAM,SYED,WW TOUR)
(CARNEY,FRANCIS,WH,WW,ALAM,SYED,WW TOUR)
(CARNEY,FRANCIS,WH,WW,ALAM,SYED,WW TOUR)
(CHANDLER,DANIEL,NEOB,6104,AGCAOILI,KARL,)

It is not necessarily obvious from the output, but field $19 in the visits relation
represents the visitee. Even though you selected 500 records in the previous step,
you may or may not see POTUS in the output above. (The White House has
thousands of visitors each day, but only a few meet the President.)

4.2. Use FILTER to define a relation that only contains records of visits where field $19
matches POTUS. Limit the output to 500 records. The output should include only visitors
who met with the President. For example:

grunt> potus = FILTER visits BY $19 MATCHES 'POTUS';
grunt> potus_limit = LIMIT potus 500;
grunt> DUMP potus_limit;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

54

(ARGOW,KEITH,A,U83268,,VA,,,,,2/14/2011 18:42,2/16/2011 16:00,2/16/2011
23:59,,154,LC,WIN,2/14/2011 18:42,LC,POTUS,,WH,EAST
ROOM,THOMPSON,MARGRETTE,,AMERICA'S GREAT OUTDOORS ROLLOUT EVENT
,5/27/2011,,,
,,,
,,,
,,,,,,,)
(AYERS,JOHNATHAN,T,U84307,,VA,,,,,2/18/2011 19:11,2/25/2011 17:00,2/25/2011
23:59,,619,SL,WIN,2/18/2011 19:11,SL,POTUS,,WH,STATE
FLOO,GALLAGHER,CLARE,,RECEPTION
,5/27/2011,,,
,,,
,,,
,,,,,,,)

Step 5: Count the POTUS Visitors

5.1. Let’s discover how many people have visited the President. To do this, we need to
count the number of records in visits where field $19 matches POTUS. See if you can
write a Pig script to accomplish this. Use the potus relation from the previous step as a
starting point. You will need to use GROUP ALL and then a FOREACH projection that uses
the COUNT function.

If successful, you should get 21,819 as the number of visitors to the White House who
visited the President.

Solution:
grunt> potus = FILTER visits BY $19 MATCHES 'POTUS';
grunt> potus_group = GROUP potus ALL;
grunt> potus_count = FOREACH potus_group GENERATE COUNT(potus);
grunt> DUMP potus_count;

Step 6: Finding People Who Visited the President

6.1. So far you have used DUMP to view the results of your Pig scripts. In this step, you
will save the output to a file using the STORE command.

6.2. Now FILTER the relation by visitors who met with the President:
grunt> potus = FILTER visits BY $19 MATCHES 'POTUS';

6.3. Define a projection of the potus relationship that contains the name and time of
arrival of the visitor:

grunt> potus_details = FOREACH potus GENERATE
(chararray) $0 AS lname:chararray,
(chararray) $1 AS fname:chararray,
(chararray) $6 AS arrival_time:chararray,
(chararray) $19 AS visitee:chararray;

6.4. Order the potus_details projection by last name:
grunt> potus_details_ordered = ORDER potus_details BY lname ASC;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

55

6.5. Store the records of potus_details_ordered into a folder named potus and using
a comma delimiter:

grunt> STORE potus_details_ordered INTO 'potus' USING PigStorage(',');

6.6. View the contents of the potus folder:
grunt> ls potus
hdfs://sandbox.hortonworks.com:8020/user/root/potus/_SUCCESS<r 1> 0
hdfs://sandbox.hortonworks.com:8020/user/root/potus/part-r-00000<r 1>
 501378

6.7. Notice that there is a single output file, so the Pig job was executed with one
reducer. View the contents of the output file using cat:

grunt> cat potus/part-r-00000

The output should be in a comma-delimited format and should contain the last
name, first name, time of arrival (if available), and the string POTUS:

CLINTON,WILLIAM,,POTUS
CLINTON,HILLARY,,POTUS
CLINTON,HILLARY,,POTUS
CLINTON,HILLARY,,POTUS
CLONAN,JEANETTE,,POTUS
CLOOBECK,STEPHEN,,POTUS
CLOOBECK,CHANTAL,,POTUS
CLOOBECK,STEPHEN,,POTUS
CLOONEY,GEORGE,10/12/2010 14:47,POTUS

Step 7: View the Pig Log Files

7.1. Each time you executed a DUMP or STORE command, a MapReduce job is executed
on your cluster. You can view the log files of these jobs in the JobHistory UI. Point your
browser to http://sandbox:19888/:

	
7.2. Click on the job’s ID to view the details of the job and its log files.

Lester Martin Jr.� 11/11/2015 8:40 AM
Deleted: 3
Lester Martin Jr.� 11/11/2015 8:40 AM
Deleted: 3

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

56

Result: You have written several Pig scripts to analyze and query the data in the White
House visitors’ log. You should now be comfortable with writing Pig scripts with the Grunt
shell and using common Pig commands like LOAD, GROUP, FOREACH, FILTER, LIMIT,
DUMP, and STORE.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

57

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

58

Lab: Splitting a Dataset
This lab explores splitting a dataset, using White House visitor data, and looking for members
of Congress.

	

Objective: Research the White House visitor data and look for members of
Congress.

File locations: n/a

Successful outcome: Two folders in HDFS, congress and not_congress, containing a
split of the White House visitor data.

Before you begin: You should have the White House visitor data in HDFS in
/user/root/whitehouse/visits.txt.

Related lesson: Advanced Pig Programming

Perform the following steps:

Step 1: Explore the Comments Field

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. In this step, you will explore the comments field of the White House visitor data.
From the Pig Grunt shell, start by loading visits.txt:

pig

grunt> cd whitehouse
grunt> visits = LOAD 'visits.txt' USING PigStorage(',');

1.3. Field $25 is the comments. Filter out all records where field $25 is null:
grunt> not_null_25 = FILTER visits BY ($25 IS NOT NULL);

1.4. Now define a new relation that is a projection of only column $25:
grunt> comments = FOREACH not_null_25 GENERATE $25 AS comment;

1.5. View the schema of comments and make sure you understand how this relation
ended up as a tuple with one field:

grunt> describe comments;
comments: {comment: bytearray}

Step 2: Test the Relation

Lester Martin Jr.� 11/3/2015 4:15 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:15 PM
Formatted: No bullets or numbering

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

59

2.1. A common Pig task is to test a relation to make sure it is consistent with what you
are intending it to be. But using DUMP on a big data relation might take too long or not be
practical, so define a SAMPLE of comments:

grunt> comments_sample = SAMPLE comments 0.001;

2.2. Now DUMP the comments_sample relation. The output should be non-null comments
about visitors to the White House, similar to:

grunt> DUMP comments_sample;

(ATTENDEES VISITING FOR A MEETING)
(FORUM ON IT MANAGEMENT REFORM/)
(FORUM ON IT MANAGEMENT REFORM/)
(HEALTH REFORM MEETING)
(DRIVER TO REMAIN WITH VEHICLE)

Step 3: Count the Number of Comments
3.1. The comments relation represents all non-null comments from visits.txt. Write Pig
statements that output the number of records in the comments relation. The correct
result is 222,839 records.

Solution:
comments_all = GROUP comments ALL;
comments_count = FOREACH comments_all GENERATE
 COUNT(comments);
DUMP comments_count;

Step 4: Split the Dataset

	

NOTE: Our end goal is find visitors to the White House who are also
members of Congress. We could run our MapReduce job on the
entire visits.txt dataset, but it is common in Hadoop to split data into
smaller input files for specific tasks, which can greatly improve the
performance of your MapReduce applications. In this step, you will
split visits.txt into two separate datasets.

4.1. In this step, you will split visits.txt into two datasets: those that contain “CONGRESS”
in the comments field, and those that do not.

4.2. Use the SPLIT command to split the visits relation into two new relations named
congress and not_congress:

grunt> SPLIT visits INTO congress IF($25 MATCHES
'.* CONGRESS .*'), not_congress IF (NOT($25 MATCHES
'.* CONGRESS .*'));

4.3. Store the congress relation into a folder named ‘congress’.
grunt> STORE congress INTO 'congress';

4.4. Similarly, STORE the not_congress relation in a folder named ‘not_congress’.

Lester Martin Jr.� 10/21/2015 11:25 AM
Deleted: using a JSON format:

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

60

grunt> STORE not_congress INTO 'not_congress';

4.5. View the output folders using ls. The file sizes should be equivalent to the following:
grunt> ls congress
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/congress/_SUCCESS<r
1> 0
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/congress/part-m-
00000<r 1> 45618
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/congress/part-m-
00001<r 1> 0
grunt> ls not_congress
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/not_congress/_SUCCES
S<r 1> 0
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/not_congress/part-m-
00000<r 1> 90741587
hdfs://sandbox.hortonworks.com:8020/user/root/whitehouse/not_congress/part-m-
00001<r 1> 272381

4.6. View one of the output files in congress and make sure the string “CONGRESS”
appears in the comment field:

grunt> cat congress/part-m-00000

Step 5: Count the Results

5.1. Write Pig statements that output the number of records in the congress relation. This
will tell us how many visitors to the White House have “CONGRESS” in the comments of
their visit log. The correct result is 102.

	

NOTE: You now have two datasets: one in ‘congress,’ with 102
records, and the remaining records in the ‘not_congress’ folder.
These records are still in their original, raw format.

Solution:
grunt> congress_grp = GROUP congress ALL;
grunt> congress_count = FOREACH congress_grp GENERATE COUNT(congress);
grunt> DUMP congress_count;

Result: You have just split ‘visits.txt’ into two datasets, and you have also discovered that
102 visitors to the White House had the word “CONGRESS” in their comments field. We will
further explore these visitors in the next lab as we perform a join with a dataset containing
the names of members of Congress.

Lester Martin Jr.� 11/11/2015 8:47 AM
Deleted: 3
Lester Martin Jr.� 11/11/2015 8:47 AM
Deleted: 3
Lester Martin Jr.� 11/11/2015 8:47 AM
Deleted: 3
Lester Martin Jr.� 11/11/2015 8:47 AM
Deleted: 3
Lester Martin Jr.� 11/11/2015 8:47 AM
Deleted: 3
Lester Martin Jr.� 11/11/2015 8:47 AM
Deleted: 3

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

61

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

62

Lab: Joining Datasets
This lab explores joining two datasets in Pig.

	

Objective: Join two datasets in Pig.

File locations: /root/devph/labs/Lab6.2

Successful outcome: A file of members of Congress who have visited the White House.

Before you begin: If you are in the Grunt shell, exit it using the quit command. In
this lab, you will write a Pig script in a text file.

Related lesson: Advanced Pig Programming

Perform the following steps:

Step 1: Upload the Congress Data

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Put the file /root/devph/labs/Lab6.2/congress.txt into the whitehouse
directory in HDFS.

hdfs dfs -put /root/devph/labs/Lab6.2/congress.txt whitehouse

1.3. Use the hdfs dfs -ls command to verify that the congress.txt file is in
whitehouse, and use hdfs dfs -cat to view its contents. The file contains the names
of and other information about the members of the U.S. Congress.

hdfs dfs -ls whitehouse

hdfs dfs -cat whitehouse/congress.txt

Step 2: Create a Pig Script File

2.1. In this lab, you will not use the Grunt shell to enter commands. Instead, you will enter
your script in a text file. Start by opening the gedit text editor using the shortcut
provided on the left-hand toolbar of your VM.

2.2. Click the Save button and save the new, empty file as join.pig in the
devph/labs/Lab6.2 folder:

Lester Martin Jr.� 11/3/2015 4:15 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:15 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/28/2015 5:05 PM

Deleted: hadoop fs -
Lester Martin Jr.� 10/28/2015 5:05 PM

Deleted: hadoop fs -
Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

63

	
2.3. At the top of the file, add a comment:

--join.pig: joins congress.txt and visits.txt

Step 3: Load the White House Visitors

3.1. Define the following visitors relations, which will contain the first and last names of all
White House visitors:

visitors = LOAD 'whitehouse/visits.txt' USING PigStorage(',') AS
(lname:chararray, fname:chararray);

That is the only data we are going to use from visits.txt.

Step 4: Define a Projection of the Congress Data
4.1. Add the following load command that loads the ‘congress.txt’ file into a relation
named congress. The data is tab-delimited, so no special Pig loader is needed:

congress = LOAD 'whitehouse/congress.txt' AS (
 full_title:chararray,
 district:chararray,
 title:chararray,
 fname:chararray,
 lname:chararray,
 party:chararray
);

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

64

4.2. The names in visits.txt are all uppercase, but the names in congress.txt are not.
Define a projection of the congress relation that consists of the following fields:

congress_data = FOREACH congress GENERATE
 district,
 UPPER(lname) AS lname,
 UPPER(fname) AS fname,
 party;

Step 5: Join the Two Datasets

5.1. Define a new relation named join_contact_congress that is a JOIN of visitors and
congress_data. Perform the join on both the first and last names.

5.2. Use the STORE command to store the result of join_contact_congress into a
directory named ‘joinresult’.

Solution:
join_contact_congress = JOIN visitors BY (lname,fname),
 congress_data BY (lname,fname);
STORE join_contact_congress INTO 'joinresult';

Step 6: Run the Pig Script
6.1. Save your changes to join.pig.

6.2. Open a Terminal window and change directories to the Joining Datasets lab folder:
cd ~/devph/labs/Lab6.2

6.3. Run the script using the following command:
pig join.pig

6.4. Wait for the MapReduce job to execute. When it is finished, write down the number
of seconds it took for the job to complete (by subtracting the StartedAt time from the
FinishedAt time) and write down the result: ___________________

6.5. The type of join used is also output in the job statistics. Notice the statistics output
has “HASH_JOIN” underneath the “Features” column, which means a hash join was
used to join the two datasets.

Step 7: View the Results

7.1. The output will be in the joinresult folder in HDFS. Verify that the folder was
created:

hdfs dfs -ls -R joinresult
-rw-r--r-- 1 root root 0 joinresult/_SUCCESS
-rw-r--r-- 1 root root 40892 joinresult/part-r-00000

7.2. View the resulting file:
hdfs dfs -cat joinresult/part-r-00000

The output should look like the following:

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 11/11/2015 8:54 AM
Deleted: 3
Lester Martin Jr.� 11/11/2015 8:54 AM
Deleted: 3
Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

65

DUFFY SEAN WI07 DUFFY SEAN Republican
JONES WALTER NC03 JONES WALTER Republican
SMITH ADAM WA09 SMITH ADAM Democrat
CAMPBELL JOHN CA45 CAMPBELL JOHN Republican
CAMPBELL JOHN CA45 CAMPBELL JOHN Republican
SMITH ADAM WA09 SMITH ADAM Democrat

Step 8: Try Using Replicated on the Join

8.1. Delete the joinresult directory in HDFS:
hdfs dfs -rm -R joinresult

8.2. Modify your JOIN statement in join.pig so that is uses replication. It should look
like this:

join_contact_congress = JOIN visitors BY (lname,fname),
 congress_data BY (lname,fname) USING 'replicated';

8.3. Save your changes to join.pig and run the script again.
pig join.pig

8.4. Notice this time that the statistics output shows Pig used a “REPLICATED_JOIN”
instead of a “HASH_JOIN”.

8.5. Compare the execution time of the REPLICATED_JOIN vs. the HASH_JOIN. Did you
have any improvement or decrease in performance?

	

NOTE: Using replicated does not necessarily increase the join time.
There are way too many factors involved, and this example is using
small datasets. The point is that you should try both techniques (if one
dataset is small enough to fit in memory) and determine which join
algorithm is faster for your particular dataset and use case.

Step 9: Count the Results

9.1. In join.pig, comment out the STORE command:
--STORE join_contact_congress INTO 'joinresult';

You have already saved the output of the JOIN, so there is no need to perform the
STORE command again.

9.2. Notice in the output of your join.pig script that we know which party the visitor
belongs to: Democrat, Republican, or Independent. Using the join_contact_congress
relation as a starting point, see if you can figure out how to output the number of
Democrat, Republican, and Independent members of Congress that visited the White
House. Name the relation counters and use the DUMP command to output the results:

join_group = GROUP join_contact_congress
 BY congress_data::party;
counters = FOREACH join_group GENERATE group,

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

66

 COUNT(join_contact_congress);

DUMP counters;

	

TIP: When you group the join_contact_congress relation, group it
by the party field of congress_data. You will need to use the ::
operator in the BY clause. It will look like:
congress_data::party

9.3. The correct results are shown here:
(Democrat,637)
(Republican,351)
(Independent,2)

Step 10: Use the EXPLAIN Command

10.1. At the end of join.pig, add the following statement:
EXPLAIN counters;

If you do not have a counters relation, then use join_contact_congress instead.

10.2. Run the script again. The Logical, Physical, and MapReduce plans should display
at the end of the output.
10.3. How many MapReduce jobs did it take to run this job? _____________

Answer: Two MapReduce jobs: the first job only requires a map phase, and the
second job has a map , a combine and a reduce phase.

Result: You should have a folder in HDFS named joinresult that contains a list of
members of Congress who have visited the White House (within the timeframe of the
historical data in visits.txt).

Lester Martin Jr.� 10/19/2015 11:57 PM
Deleted: Three

Lester Martin Jr.� 10/19/2015 11:57 PM
Deleted: two

Lester Martin Jr.� 10/19/2015 11:57 PM
Deleted: s

Lester Martin Jr.� 10/19/2015 11:57 PM
Deleted: third

Lester Martin Jr.� 10/19/2015 11:57 PM
Deleted: both

Lester Martin Jr.� 10/19/2015 11:58 PM
Formatted: Font:(Default) Courier New,
10 pt

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

67

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

68

Lab: Preparing Data for Hive
This lab explores transforming and exporting a dataset for use with Hive.

	

Objective: Transform and export a dataset for use with Hive.

File locations: /root/devph/labs/Lab6.3

Successful outcome: The resulting Pig script stores a projection of visits.txt in a folder
in the Hive warehouse named wh_visits.

Before you begin: You should have visits.txt in a folder named whitehouse in HDFS.

Related lesson: Advanced Pig Programming

Perform the following steps:

Step 1: Review the Pig Script

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Change directories to the Preparing Data for Hive lab folder:
cd ~/devph/labs/Lab6.3/

1.3. View the contents of wh_visits.pig:
more wh_visits.pig

1.4. Notice that all White House visitors who met with the President are the potus
relation.

1.5. Notice that the project_potus relation is a projection of the last name, first name,
time of arrival, location, and comments from the visit.

Step 2: Store the Projection in the Hive Warehouse

2.1. Open wh_visits.pig with the gedit text editor.

2.2. Add the following command at the bottom of the file, which stores the
project_potus relation into a very specific folder in the Hive warehouse:

STORE project_potus INTO '/apps/hive/warehouse/wh_visits/';

Step 3: Run the Pig Script

3.1. Save your changes to wh_visits.pig.

3.2. Run the script from the command line:
pig wh_visits.pig

Lester Martin Jr.� 11/3/2015 4:16 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:16 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 11/6/2015 11:45 AM
Deleted: From a command prompt, c

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

69

Step 4: View the Results

4.1. The wh_visits.pig script creates a directory in the Hive warehouse named
wh_visits. Use ls to view its contents:

hdfs dfs -ls /apps/hive/warehouse/wh_visits/
-rw-r--r-- 1 root hdfs 0 /apps/hive/warehouse/wh_visits/_SUCCESS
-rw-r--r-- 1 root hdfs 971339 /apps/hive/warehouse/wh_visits/part-m-
00000
-rw-r--r-- 1 root hdfs 142850 /apps/hive/warehouse/wh_visits/part-m-
00001

4.2. View the contents of one of the result files. It should look like the following:
hdfs dfs -cat /apps/hive/warehouse/wh_visits/part-m-00000
...
FRIEDMAN THOMAS 10/12/2010 12:08 WH PRIVATE LUNCH
BASS EDWIN 10/18/2010 15:01 WH
BLAKE CHARLES 10/18/2010 15:00 WH
OGLETREE CHARLES 10/18/2010 15:01 WH
RIVERS EUGENE 10/18/2010 15:01 WH

Result: You now have a folder in the Hive warehouse named wh_visits that contains a
projection of the data in visits.txt. We will use this file in an upcoming Hive lab.

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 11/11/2015 9:03 AM
Deleted: 3
Lester Martin Jr.� 11/11/2015 9:03 AM
Deleted: 3
Lester Martin Jr.� 11/11/2015 9:03 AM
Deleted: 3
Lester Martin Jr.� 10/28/2015 5:05 PM
Deleted: hadoop fs -

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

70

Demonstration: Computing PageRank
This lab explores how to use the PageRank UDF in DataFu.

	

Objective: To understand how to use the PageRank UDF in DataFu.

During this
demonstration:

 Watch as your instructor performs the following steps.

Related lesson: Advanced Pig Programming

Perform the following steps:

Step 1: View the Data

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Review the edges.txt file in the /root/devph/labs/demos folder:
cd ~/devph/labs/demos/
more edges.txt
0 2 3 1.0
0 3 2 1.0
0 4 1 1.0
0 4 2 1.0
0 5 4 1.0
0 5 2 1.0
0 5 6 1.0
0 6 5 1.0
0 6 2 1.0
0 100 2 1.0
0 100 5 1.0
0 101 2 1.0
0 101 5 1.0
0 102 2 1.0
0 102 5 1.0
0 103 5 1.0
0 104 5 1.0

1.3. The first column is the topic, but since we only have a single graph, the topic is 0 for
all of the edges.
1.4. The second and third columns are the source and destination of each edge. For
example, there is an edge from 2 to 3 based on the first row.

1.5. The fourth column is the weight of the edge. Our graph is all evenly weighted.

1.6. Based on the data above, which pages should be ranked toward the top?

Lester Martin Jr.� 11/3/2015 4:16 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:16 PM
Formatted: No bullets or numbering

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

71

Answer: It looks like 2 and 5 should end up toward the top.

Step 2: Put the Data in HDFS

2.1. Put edges.txt into HDFS:
hdfs dfs -put edges.txt

Step 3: Define the PageRank UDF

3.1. Install DataFu:
yum –y install datafu

3.2. View the contents of /root/devph/labs/demos/pagerank.pig using gedit. The
first two lines register the DataFu library and define the PageRank function (YOU DO
NOT NEED TO TYPE ANYTHING - THE LINES BELOW MERELY DISCUSS WHAT IS
ALREADY IN THE SCRIPT):

register /usr/hdp/current/pig-client/lib/datafu.jar;
define PageRank datafu.pig.linkanalysis.PageRank();

3.3. The edges are loaded and grouped by topic and source:
topic_edges = LOAD '/user/root/edges.txt' as
 (topic:INT,source:INT,dest:INT,weight:DOUBLE);
topic_edges_grouped = GROUP topic_edges by (topic, source);

3.4. The data is then prepared for the PageRank function, which is expecting a topic, a
source, and its edges:

topic_edges_data = FOREACH topic_edges_grouped GENERATE
 group.topic as topic,
 group.source as source,
 topic_edges.(dest,weight) as edges;

3.5. We only have one topic, but the edges still need to be grouped by topic:
topic_edges_data_by_topic = GROUP topic_edges_data
 BY topic;

3.6. We can now invoke the PageRank function:
topic_ranks = FOREACH topic_edges_data_by_topic GENERATE
 group as topic,
 FLATTEN(PageRank(topic_edges_data.(source,edges)));

3.7. The results are stored in HDFS:
store topic_ranks into 'topicranks';

Step 4: Run the Script
4.1. From the command prompt, enter:

pig pagerank.pig

The job will take a couple of minutes to run.

Step 5: View the Results

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

Lester Martin Jr.� 11/10/2015 3:44 PM
Formatted: Font:(Default) Courier New,
10 pt

Lester Martin Jr.� 11/3/2015 5:17 PM
Deleted: root/devph/labs/Lab6.5
Lester Martin Jr.� 11/3/2015 5:17 PM
Deleted: -1.2.0

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

72

5.1. View the contents of the topicranks folder in HDFS:
hdfs dfs -ls topicranks
Found 2 items
-rw-r--r-- 3 root root 0 topicranks/_SUCCESS
-rw-r--r-- 3 root root 181 topicranks/part-r-00000

5.2. View the contents of the output file:
hdfs dfs -cat topicranks/part-r-00000
0 104 0.013636362
0 1 0.02764593
0 103 0.013636362
0 5 0.06821412
0 100 0.013636362
0 102 0.013636362
0 6 0.032963693
0 3 0.2891899
0 2 0.32418048
0 4 0.032963693
0 101 0.013636362

Step 6: Analyze the Results
6.1. Which page should be ranked the highest? _____________

Answer: Page 2

6.2. Which page should be ranked the lowest? _____________
Answer: Pages 100 to 104 all ranked equally at the bottom.

6.3. Compare the actual results with your guess from Step 1.

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

73

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

74

Lab: Analyzing Clickstream Data
This lab explores using the DataFu library to sessionize clickstream data.

	

Objective: Become familiar with using the DataFu library to sessionize
clickstream data.

File locations: /root/devph/labs/Lab6.4

Successful outcome: You will have computed the length of each session along with the
average and median values of all session lengths.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Advanced Pig Programming

Perform the following steps:

Step 1: View the Clickstream Data

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. If not already done as part of the prior demonstration, install DataFu:
yum –y install datafu

1.3. Open a Terminal and change directories to ~/devph/labs/Lab6.4.
cd ~/devph/labs/Lab6.4

1.4. View the contents of clicks.csv:
more clicks.csv

The first column is the user’s ID, the second column is the time of the click stored
as a long, and the third column is the URL visited. Enter “q” to quit the more
command.

1.5. Put the file in HDFS:
hdfs dfs -put clicks.csv

Step 2: Define the Sessionize UDF

2.1. Using the gedit text editor, open the file
/root/devph/labs/Lab6.4/sessions.pig.

2.2. Notice two JAR files are registered: datafu.jar and piggybank.jar. The datafu
JAR contains the Sessionize function that you are going to use, and the piggybank.jar
contains a time-utility function named UnixToISO, which is already defined for you in this
Pig script.

Lester Martin Jr.� 11/3/2015 4:16 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:16 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 7:17 PM
Deleted: 2

Lester Martin Jr.� 11/11/2015 9:09 AM
Formatted: Font:Bold, Italic

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

Lester Martin Jr.� 11/3/2015 5:23 PM
Deleted: -1.2.0

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

75

2.3. Add the following DEFINE statement to define the Sessionize UDF:
DEFINE Sessionize datafu.pig.sessions.Sessionize('8m');

2.4. What does the '8m' mean in the constructor? __________________________
Answer: The '8m' stands for eight minutes, which is the length of the session. You
can pick any length of time you want to define your sessions.

Step 3: Sessionize the Clickstream

3.1. Notice the clicks.csv file is loaded for you in sessions.pig:
clicks = LOAD 'clicks.csv' USING PigStorage(',')
 AS (id:int, time:long, url:chararray);

3.2. Notice also that the clicks relation is projected onto clicks_iso with the long
converted to an ISO time format then grouped by id in the clicks_group relation:

clicks_iso = FOREACH clicks GENERATE UnixToISO(time)
 AS isotime, time, id;
clicks_group = GROUP clicks_iso BY id;

3.3. Sessionize the clickstream by adding the following nested FOREACH loop:
clicks_sessionized = FOREACH clicks_group {
 sorted = ORDER clicks_iso BY isotime;
 GENERATE FLATTEN(Sessionize(sorted))
 AS (isotime, time, id, sessionid);
};

3.4. Dump the sessionized data:
DUMP clicks_sessionized;

3.5. Save your changes to sessions.pig.

Step 4: Run the Script

4.1. Let’s verify that the Sessionized function is working by running the script:
pig sessions.pig

4.2. Verify that the tail of the output looks similar to the following:
(2013-01-10T07:15:20.520Z,1357802120520,2,51d89b38-b14a-4158-8703-
724525d9f787)
(2013-01-10T07:15:39.797Z,1357802139797,2,51d89b38-b14a-4158-8703-
724525d9f787)
(2013-01-10T07:26:30.602Z,1357802790602,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:26:53.357Z,1357802813357,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:26:58.800Z,1357802818800,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:27:05.253Z,1357802825253,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

76

(2013-01-10T07:27:57.844Z,1357802877844,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:28:20.610Z,1357802900610,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:29:01.128Z,1357802941128,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:29:02.190Z,1357802942190,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:29:23.190Z,1357802963190,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:30:04.181Z,1357803004181,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)
(2013-01-10T07:30:32.455Z,1357803032455,2,711525c4-eff6-4697-ade7-
e2ad5ec555e5)

Step 5: Compute the Session Length

5.1. Comment out the dump statement:
--DUMP clicks_sessionized

5.2. Add code to define a projection named sessions that is a projection of only the time
and sessionid fields of the clicks_sessionized relation.

Solution:
sessions = FOREACH clicks_sessionized GENERATE time, sessionid;

5.3. Add code to define a relation named sessions_group that is the sessions relation
grouped by sessionid.

Solution:
sessions_group = GROUP sessions BY sessionid;

5.4. Add code to define a session_times relation using the following projection that
computes the length of each session:

session_times = FOREACH sessions_group
 GENERATE group as sessionid,
 (MAX(sessions.time) - MIN(sessions.time)) / 1000.0 / 60
 as session_length;

5.5. Dump the session_times relation:
DUMP session_times;

5.6. Save your changes to sessions.pig and run the script. The output should look like
the following:

(01e5259c-c5a6-45b0-8d04-1be86182d12e,0.16571666666666665)
(164be386-1df2-40dd-9331-563e1b8a7275,4.030883333333334)
(16ab9225-28d3-45f6-9d07-f065223046bb,38.809916666666666)
(18362695-d032-424a-a983-33ab45638700,0.0)
(2699ef77-bd37-4611-a239-ddbd80066043,10.398116666666665)
(3077f9d1-a5d5-4bf9-8212-87ae848b4ed8,3.44485)
(3e732d19-e3ed-4cc4-810f-f05c8534fb28,1.1402833333333333)

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

77

(455183ea-c3bb-43fe-9f07-63e0c0199008,14.648516666666666)
(5a65d8dc-1a4e-4355-b86a-f1efc519b084,63.620149999999995)
(5ef45fc4-01df-40d8-805f-a61c60fc421e,0.03173333333333333)
(61e14bcf-1fb4-4f7e-a3b4-2b67b8840756,1.0819833333333333)
(63b53f03-31e9-4a01-8029-6334020080e4,4.48765)
(66f58bc2-7aeb-487d-a28e-21090578cfe2,22.9298)
(812a7fc4-9ea2-4c3b-a3da-17bbd740a49a,0.006183333333333333)
(84f8c113-d3c9-4590-83a8-5a9edf44c5c5,86.69525)
(85cd8b8c-644b-4fb9-a6c6-3b5082d32f0c,2.509133333333333)
(8e4cfed7-8500-47bb-a5e9-3744de6b1595,0.0)
(a35be8db-de7b-4b55-a230-66389a4e4b5f,0.9713166666666667)
(bcfef9fa-fd71-4962-8a0b-ddcf77ea47a3,0.37246666666666667)
(c092d0c4-3c7d-4cfc-b7f9-078baaa7469f,1.6453333333333333)
(d1d1b88e-b827-4005-b088-233d56c4ea8f,0.6608333333333333)
(e0f48349-1d2a-4cd7-8258-e36b4b6118fc,31.88788333333333)
(e1ccdf96-fc37-4b7e-9a7c-95acb8f52fa7,0.0)
(fd92f410-19fc-4927-917f-0f86b5d7edb2,17.197683333333334)
(fdfcea38-ddf9-477a-bb3e-401e8874e0ac,2.2512333333333334)
(ff70c6b5-abb2-4606-b12f-3054501947a4,0.05118333333333334)

5.7. How long was the longest session? _____________
Answer: The longest session was 86.69525 minutes.

Step 6: Compute the Average Session Length
6.1. Comment out the dump statement:

--DUMP session_times;

6.2. Define a relation named sessiontimes_all that is a grouping of all session_times.
sessiontimes_all = GROUP session_times ALL;

6.3. Define sessiontimes_avg using the following nested FOREACH statement:
sessiontimes_avg = FOREACH sessiontimes_all
 GENERATE AVG(session_times.session_length);

6.4. Dump the sessiontimes_avg relation:
DUMP sessiontimes_avg;

6.5. Save your changes to sessions.pig and run the script again.

6.6. Verify the output, which should be a single value representing the average session
time:

(11.88608076923077)

Step 7: Compute the Median Session Length

7.1. Using the sessiontimes_avg relation as an example, compute the median session
time. You will need to define the Median function from the DataFu library, which is
named datafu.pig.stats.Median().

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

78

Solution: A quick solution for computing the median is to simply add it to the
existing nested FOREACH statement in the sessiontimes_avg definition:

--ADD to the top of the file

DEFINE Median datafu.pig.stats.Median();

--MODIFY sessiontimes_avg definition

sessiontimes_avg = FOREACH sessiontimes_all {
 ordered = ORDER session_times BY session_length;
 GENERATE
 AVG(ordered.session_length) AS avg_session,
 Median(ordered.session_length) AS median_session;
};

7.2. Verify that you got the following value for the median session length:
(1.9482833333333334)

Result: You have taken clickstream data and sessionized it using Pig to determine
statistical information about the sessions, like the length of each session and the average
and median lengths of all sessions.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

79

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

80

Lab: Analyzing Stock Market Data using Quantiles
This lab explores using the DataFu library to compute quantiles.

	

Objective: Use DataFu to compute quantiles.

File locations: /root/devph/labs/Lab6.5

Successful outcome: You will have computed quartiles for the daily high prices of
stocks traded on the New York Stock Exchange.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM
and DataFu should have been installed via "yum –y install datafu".

Related lesson: Advanced Pig Programming

Perform the following steps:

Step 1: Review the Stock Market Data

1.1. O If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Change directories to the ~/devph/labs/Lab6.5 folder.
cd ~/devph/labs/Lab6.5

1.3. View the contents of the stocks.csv file, which contains the historical prices for
New York Stock Exchange stocks that begin with the letter “Y”:

tail stocks.csv
NYSE,YSI,2004-11-23,17.35,17.48,16.90,17.26,207400,13.26
NYSE,YSI,2004-11-22,17.20,17.43,16.90,17.35,204100,13.33
NYSE,YSI,2004-11-19,17.20,17.45,16.85,17.45,304100,13.41
NYSE,YSI,2004-11-18,17.40,17.45,17.10,17.11,180900,13.14
NYSE,YSI,2004-11-17,17.16,17.77,17.15,17.35,320400,13.33
NYSE,YSI,2004-11-16,17.20,17.33,17.05,17.15,245000,13.18
NYSE,YSI,2004-11-15,16.95,17.20,16.90,17.20,174400,13.21
NYSE,YSI,2004-11-12,17.05,17.14,16.99,17.00,359900,13.06
NYSE,YSI,2004-11-11,16.92,17.04,16.81,17.00,263800,13.06
NYSE,YSI,2004-11-10,16.90,17.05,16.80,17.00,243300,13.06

The first column is always “NYSE.” The second column is the stock’s symbol. The
third column is the date that the prices occurred. The next columns are the open,
high, low, close, and trading volume.

1.4. Put stocks.csv into your /user/root folder in HDFS (if you already have a stocks.csv
file in your HDFS home directory from exercising the block storage demonstration,
please delete the existing file first as the contents are different):

Lester Martin Jr.� 11/3/2015 4:16 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:16 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 9:19 PM
Deleted: 2

Lester Martin Jr.� 11/6/2015 11:46 AM
Deleted: From the command prompt, c

Lester Martin Jr.� 10/19/2015 9:30 PM
Formatted: Font:Italic

Lester Martin Jr.� 11/11/2015 9:26 AM
Formatted: Font:Bold, Italic

Lester Martin Jr.� 11/11/2015 9:26 AM
Formatted: Font:Bold, Italic

Lester Martin Jr.� 11/11/2015 9:26 AM
Formatted: Font:Bold

Lester Martin Jr.� 10/19/2015 9:30 PM
Formatted: Font:Italic

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

81

hdfs dfs -put stocks.csv

Step 2: Define the Quantile Function

2.1. Using gedit, create a new text file in the /root/devph/labs/Lab6.5 lab folder
named quantile.pig.

2.2. On the first line of the file, register the datafu JAR file which you installed in the prior
lab.

register /usr/hdp/current/pig-client/lib/datafu.jar;

2.3. Define the datafu.pig.stats.Quantile function as a quantile, and pass in the
values for computing the quartiles of a set of numbers:

define Quantile datafu.pig.stats.Quantile(
 '0.0','0.25','0.50','0.75','1.0');

Step 3: Load the Stocks

3.1. Enter the following LOAD command, which loads the first five values of each row:
stocks = LOAD 'stocks.csv' USING PigStorage(',') AS
 (nyse:chararray,
 symbol:chararray,
 closingdate:chararray,
 openprice:double,
 highprice:double,
 lowprice:double);

Step 4: Filter Null Values

4.1. The quantile function fails if any of the values passed to it are null. Define a relation
named stocks_filter that filters the stocks relation where the highprice is not null.

Solution:
stocks_filter = FILTER stocks BY highprice is not null;

Step 5: Group the Values

5.1. We want to compute the quantiles for each individual stock (as opposed to all the
stock prices that start with a “Y”), so define a relation named stocks_group that groups
the stock_filter relation by symbol.

Solution:
stocks_group = GROUP stocks_filter BY symbol;

Step 6: Compute the Quantiles

6.1. Define the following relation that invokes the Quantile method on the highprice
values:

quantiles = FOREACH stocks_group {
 sorted = ORDER stocks_filter BY highprice;
 GENERATE group AS symbol,
 Quantile(sorted.highprice) AS quant;

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

Lester Martin Jr.� 11/10/2015 3:44 PM
Formatted: Font:(Default) Courier New,
10 pt

Lester Martin Jr.� 11/3/2015 5:28 PM
Deleted: -1.2.0

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

82

};

6.2. How many times will the quantile function be invoked in the nested FOREACH
statement above? ___________________

Answer: The FOREACH statement iterates over the stocks_group, which is a
grouping by symbol. So the quantile function will be invoked once for each unique
stock symbol in the stocks.csv file.

6.3. Add a DUMP statement that outputs the quantiles relation:
DUMP quantiles;

Step 7: Run the Script

7.1. Save your changes to quantile.pig.

7.2. Run the script:
pig quantile.pig

7.3. There is stock information in the input data, so the output will be the quantiles of the
high price of these five stocks:

(YGE,(3.22,10.97,14.79,19.6,41.5))
(YPF,(9.0,23.62,31.94,41.47,69.98))
(YSI,(1.56,8.04,16.435000000000002,19.93,23.61))
(YUM,(21.9,32.08,37.85,48.91,73.87))
(YZC,(4.41,14.4,20.795,47.13,116.73))

Step 8: Compute the Median

8.1. Now that you have a working Pig script for computing the quantiles of the high
prices of stocks, see if you can modify the script (you only have to make a few changes)
to compute the median value of the high prices.

Solution:
1) Change the define statement to the following:

define Median datafu.pig.stats.Median();

2) Change the quantiles definition to a medians definition as follows:
medians = FOREACH stocks_group {
 sorted = ORDER stocks_filter BY highprice;
 GENERATE group AS symbol,
 Median(sorted.highprice) AS median;
};

3) Change the DUMP command to display medians:
DUMP medians;

4) Save the modified file as median.pig

5) Run the modified script and view the results

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

83

pig median.pig

5) The output will be the median values for the same five stocks:
(YGE,(14.79))
(YPF,(31.94))
(YSI,(16.435000000000002))
(YUM,(37.85))
(YZC,(20.795))

Result: You have used the DataFu library to compute the quantiles of a collection of
numbers using Pig.

Lester Martin Jr.� 11/11/2015 9:37 AM
Deleted:

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

84

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

85

Lab: Understanding Hive Tables
This lab explores how Hive table data is stored in HDFS.

	

Objective: Understand how Hive table data is stored in HDFS.

File locations: /root/devph/labs/7.1

Successful outcome: A new Hive table filled with the data from the wh_visits folder.

Before you begin: Complete the Preparing Data for Hive lab, or put the data from
the solution of that lab into HDFS.

Related lesson: Hive Programming

Perform the following steps:

Step 1: Review the Data

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Use the hdfs dfs -ls command to view the contents of the
/apps/hive/warehouse/wh_visits/ folder in HDFS that was created in an earlier lab.
You should see six part-m files:

hdfs dfs -ls /apps/hive/warehouse/wh_visits/

1.3. Recall that the Pig projection to create these files had the following schema (no
typing necessary - this is reprinted below for reference only):

project_potus = FOREACH potus GENERATE
 $0 AS lname:chararray,
 $1 AS fname:chararray,
 $6 AS time_of_arrival:chararray,
 $11 AS appt_scheduled_time:chararray,
 $21 AS location:chararray,
 $25 AS comment:chararray ;

In this lab, you will define a Hive table that matches these records and contains the
exported data from your Pig script.

Step 2: Define a Hive Script

2.1. In the Understanding /root/devph/labs/Lab7.1 folder, there is a text file named
wh_visits.hive. View its contents. Notice that it defines a Hive table named
wh_visits with the following schema that matches the data in your project_potus
folder:

cd ~/devph/labs/Lab7.1

Lester Martin Jr.� 11/3/2015 4:17 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:17 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/28/2015 5:05 PM
Deleted: hadoop fs -

Lester Martin Jr.� 10/19/2015 9:56 PM
Deleted: two

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

86

more wh_visits.hive
create table wh_visits (
 lname string,
 fname string,
 time_of_arrival string,
 appt_scheduled_time string,
 meeting_location string,
 info_comment string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t' ;

	

NOTE: You cannot use comment or location as column names
because those are reserved Hive keywords, so we changed them
slightly.

2.2. Run the script with the following command:
hive -f wh_visits.hive

2.3. If successful, you should see “OK” in the output along with the time it took to run the
query.

Step 3: Verify the Table Creation

3.1. Start the Hive Shell:
hive

3.2. From the hive> prompt, enter the “show tables” command:
hive> show tables;

You should see wh_visits in the list of tables.

3.3. Use the describe command to view the details of wh_visits:
hive> describe wh_visits;
OK
lname string
fname string
time_of_arrival string
appt_scheduled_time string
meeting_location string
info_comment string

3.4. Try running a query (even though the table is empty):
hive> select * from wh_visits limit 20;

You should see 20 rows returned. How is this brand new Hive table already
populated with records? __
__

Lester Martin Jr.� 10/19/2015 9:58 PM
Deleted:
Lester Martin Jr.� 10/19/2015 9:58 PM
Deleted:
Lester Martin Jr.� 10/19/2015 9:58 PM
Deleted:
Lester Martin Jr.� 10/19/2015 9:58 PM
Deleted:

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

87

Answer: In a previous lab, you already populated the
/apps/hive/warehouse/wh_visits folder with the output of a Pig job.

3.5. Why did the previous query not require a Tez or MapReduce job to execute?

Answer: The query selected all columns and did not contain a WHERE clause, the
query just needs to read in the data from the file and display it.

Step 4: Count the Number of Rows in a Table

4.1. Enter the following Hive query, which outputs the number of rows in wh_visits:
hive> select count(*) from wh_visits;

4.2. How many rows are currently in wh_visits? _____________

Answer: 21,819

Step 5: Selecting the Input File Name

5.1. Hive has two virtual columns that get created automatically for every table:
INPUT__FILE__NAME and BLOCK__OFFSET__INSIDE__FILE.

Note that between each word in the column name there are two underscore characters,
not just one. You must make sure you type both of them when using these columns in a
hive command.

You can use these column names in your queries just like any other column of the table.
To demonstrate, run the following query:

hive> select INPUT__FILE__NAME, lname, fname FROM wh_visits WHERE lname LIKE
'Y%';

5.2. The result of this query is visitors to the White House whose last name starts with
“Y.” Notice that the output also contains the particular file that the record was found in:

hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse/wh_visits/part-m-
00000 YOUNG MICHELLE
hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse/wh_visits/part-m-
00001 YOUNG LEDISI

Step 6: Drop a Table
6.1. Let’s see what happens when a managed table is dropped. Start by defining a
simple table called names using the Hive Shell:

hive> create table names (id int, name string)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

6.2. Use the Hive dfs command to put Lab7.1/names.txt into the table’s warehouse
folder:

hive> dfs -put /root/devph/labs/Lab7.1/names.txt /apps/hive/warehouse/names/;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

88

6.3. View the contents of the table’s warehouse folder:
hive> dfs -ls /apps/hive/warehouse/names;
Found 1 items
root hdfs 78 /apps/hive/warehouse/names/names.txt

6.4. From the Hive Shell, run the following query:
hive> select * from names;
OK
0 Rich
1 Barry
2 George
3 Ulf
4 Danielle
5 Tom
6 manish
7 Brian
8 Mark

6.5. Now drop the names table:
hive> drop table names;

6.6. View the contents of the table’s warehouse folder again. Notice the names folder is
gone:

hive> dfs -ls /apps/hive/warehouse/names;
ls: '/apps/hive/warehouse/names': No such file or directory

	

IMPORTANT: Be careful when you drop a managed table in Hive.
Make sure you either have the data backed up somewhere else or
that you no longer want the data.

Step 7: Define an External Table

7.1. In this step you will see how external tables work in Hive. Start by putting names.txt
into HDFS:

hive> dfs -put /root/devph/labs/Lab7.1/names.txt names.txt;

7.2. Create a folder in HDFS for the external table to store its data in:
hive> dfs -mkdir hivedemo;

7.3. Define the names table as external this time:
hive> create external table names (id int, name string)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
 LOCATION '/user/root/hivedemo';

7.4. Load data into the table:
hive> load data inpath '/user/root/names.txt' into table names;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

89

7.5. Verify that the load worked:
hive> select * from names;

7.6. Notice the names.txt file has been moved to /user/root/hivedemo:
hive> dfs -ls hivedemo;
Found 1 items
-rw-r--r-- 1 root hdfs 78 hivedemo/names.txt

7.7. Similarly, verify that names.txt is no longer in your /user/root folder in HDFS.
hive> dfs -ls /user/root/names.txt;

Why is it gone? __
Answer: The LOAD command moved the file from /user/root to
/user/root/names. The LOAD command does not copy files; it moves them.

7.8. Use the ls command to verify that the /apps/hive/warehouse folder does not
contain a subfolder for the names table.

hive> dfs -ls /apps/hive/warehouse;

7.9. Now drop the names table:
hive> drop table names;

7.10. View the contents of /user/root/hivedemo. Notice that names.txt is still there.
hive> dfs -ls /user/root/hivedemo;

Result: As you just verified, the data for external tables is not deleted when the
corresponding table is dropped. Aside from this behavior, managed tables and external
tables in Hive are essentially the same. You now have a table in Hive named wh_visits
that was loaded from the result of a Pig job. You also have an external table called names
that stores its data in /user/root/hivedemo. At this point, you should have a pretty good
understanding of how Hive tables are created and populated.

Lester Martin Jr.� 11/11/2015 9:53 AM
Deleted: 3

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

90

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

91

Demonstration: Understanding Partitions and Skew
This lab explores how Hive partitioning and skewed tables work.

	

Objective: To understand how Hive partitioning and skewed tables work.

During this
Demonstration:

Watch as your instructor performs the following steps.

Related lesson: Hive Programming

Perform the following steps:

Step 1: View the Data

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Review the hivedata_<<state>>.txt files in /root/devph/labs/demos. This will
be the data added to the table.

Step 2: Define the Table in Hive
2.1. View the create table statement in partitiondemo.sql:

cd ~/devph/labs/demos

more partitiondemo.sql
drop table if exists names;
create table names (id int, name string)
 partitioned by (state string)
 row format delimited fields terminated by '\t';

2.2. Run the query to define the names table:
hive -f partitiondemo.sql

2.3. Show the partitions (there won’t be any yet):
hive

hive> show partitions names;

Step 3: Load Data into the Table

3.1. When you load data into a partitioned table, you specify which partition the data
goes into. For example:

hive> load data local inpath '/root/devph/labs/demos/hivedata_ca.txt'
 into table names partition (state = 'CA');

3.2. Load the CO and SD files also:
hive> load data local inpath '/root/devph/labs/demos/hivedata_co.txt'

Lester Martin Jr.� 11/3/2015 4:17 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:17 PM
Formatted: No bullets or numbering

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

92

 into table names partition (state = 'CO');
load data local inpath '/root/devph/labs/demos/hivedata_sd.txt'
 into table names partition (state = 'SD');

3.3. Verify that all of the data made it into the names table:
hive> select * from names;
OK
1 Ulf CA
2 Manish CA
3 Brian CA
4 George CO
5 Mark CO
6 Rich SD

Step 4: View the Directory Structure

4.1. List the partitions and view the contents of /apps/hive/warehouse/names:
hive> show partitions names;
OK
state=CA
state=CO
state=SD

hive> dfs -ls -R /apps/hive/warehouse/names/;
0 /apps/hive/warehouse/names/state=CA
24 /apps/hive/warehouse/names/state=CA/hivedata_ca.txt
0 /apps/hive/warehouse/names/state=CO
16 /apps/hive/warehouse/names/state=CO/hivedata_co.txt
0 /apps/hive/warehouse/names/state=SD
6 /apps/hive/warehouse/names/state=SD/hivedata_sd.txt

4.2. Notice that each partition has its own subfolder for storing its contents.

Step 5: Perform a Query

5.1. When you specify a where clause that includes a partition, Hive is smart enough to
only scan the files in that partition. For example:

hive> select * from names where state = 'CA';
OK
1 Ulf CA
2 Manish CA
3 Brian CA

5.2. Notice that a MapReduce job was not executed. Why? ______________________
__
Answer: The result of the query is exactly the contents of the underlying files, so
there is no need to run a MapReduce job. The files can simply be read and
displayed.

5.3. You can select the partition field, even though it is not actually in the data file.
Hive uses the directory name to retrieve the value:

Lester Martin Jr.� 11/11/2015 9:58 AM
Deleted: V

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

93

hive> select name, state from names where state = 'CA';

5.4. You can still run queries across the entire dataset. For example, the following query
spans multiple partitions. When you are done, use quit to exit the Hive shell.:

hive> select name, state from names where state = 'CA' or state = 'SD';

hive> quit;

Step 6: Create a Skewed Table

6.1. Verify the existence of the salaries.txt folder in ~/devph/labs/demos/ and then put it
into the /user/root/salarydata/ folder in HDFS.

ls salaries.txt

hdfs dfs -put salaries.txt /user/root/salarydata/salaries.txt

6.2. View the contents of demos/skewdemo.hive, which defines a skewed table named
skew_demo using the salaries.txt data:

more skewdemo.hive

6.3. Which values are skewing this table? ___________________________
Answer: The skewed values are the 95102 and 94040 zip codes.

Run the skewdemo.hive script:
hive -f skewdemo.hive

6.4. View the contents of the underlying Hive warehouse folder:
hdfs dfs -ls -R /apps/hive/warehouse/skew_demo

6.5. Select a few records to make sure the table has data behind it:
hive -f show_skewdemo.hive

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

94

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

95

Lab: Analyzing Big Data with Hive
This lab explores techniques to analyze Big Data, using public visitor data from the White
House.

	

Objective: Analyze the White House visitor data.

File locations: /root/devph/labs/Lab7.2

Successful outcome: You will have discovered several useful pieces of information
about the White House visitor data.

Before you begin: Complete the Understanding Hive Tables Lab.

Related lesson: Hive Programming

Perform the following steps:

Step 1: Find the First Visit

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Using gedit, create a new text file named whitehouse.hive and save it in your
~/devph/labs/Lab7.2 folder.

1.3. In this step, you will instruct the hive script to find the first visitor to the White House
(based on our dataset). This will involve some clever handling of timestamps. This will be
a long query, so enter it on multiple lines (note the lack of a ";" at the end of this first
step). Start by selecting all columns where the time_of_arrival is not empty:

select * from wh_visits where time_of_arrival != ""

1.4. To find the first visit, we need to sort the result. This requires converting the
time_of_arrival string into a timestamp. We will use the unix_timestamp function to
accomplish this. Add the following order by clause (again, no ";" at the end of the line):

order by unix_timestamp(time_of_arrival,
 'MM/dd/yyyy hh:mm')

1.5. Since we are only looking for one result, we certainly don’t need to return every row.
Let’s limit the result to 10 rows, so we can view the first 10 visitors (this finishes the
query, so will end with the ";" character):

limit 10;

1.6. Save your changes to whitehouse.hive.

1.7. Execute the script whitehouse.hive and wait for the results to be displayed:
cd ~/devph/labs/Lab7.2

Lester Martin Jr.� 11/3/2015 4:17 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:17 PM
Formatted: No bullets or numbering

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

96

hive -f whitehouse.hive

1.8. The results should be 10 visitors, and the first visit should be in 2009, since that is
when the dataset begins. The first visitors are Charles Kahn and Carol Keehan on
3/5/2009.

Step 2: Find the Last Visit
2.1. This one is easy: just take the previous query and reverse the order by adding desc
to the order by clause:

order by unix_timestamp(time_of_arrival,
'MM/dd/yyyy hh:mm') desc

2.2. Run the query again, and you should see that the most recent visit was Jackie
Walker on 3/18/2011.

hive -f whitehouse.hive

Step 3: Find the Most Common Comment
3.1. In this step, you will explore the info_comment field and try to determine the most
common comment. You will use some of Hive’s aggregate functions to accomplish this.
Start by using gedit to create a new text file named comments.hive and save it in
~/devph/labs/Lab7.2 folder.

3.2. You will now create a query that displays the 10 most frequently occurring
comments. Start with the following select clause:

from wh_visits
select count(*) as comment_count, info_comment

This runs the aggregate count function on each group (which you will define later in
the query) and names the result comment_count. For example, if “OPEN HOUSE”
occurs five times then comment_count will be five for that group.

Notice we are also selecting the info_comment column so we can see what the
comment is.

3.3. Group the results of the query by the info_comment column:
group by info_comment

3.4. Order the results by comment_count, because we are only interested in comments
that appear most frequently:

order by comment_count DESC

3.5. We only want the top results, so limit the result set to 10:
limit 10;

3.6. Save your changes to comments.hive and execute the script. Wait for the
MapReduce job to execute.

hive -f comments.hive

Lester Martin Jr.� 11/10/2015 3:44 PM
Formatted: Font:(Default) Courier New,
10 pt

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

97

3.7. The output will be 10 comments and should look like:
9036
1253 HOLIDAY BALL ATTENDEES/
894 WHO EOP RECEP 2
700 WHO EOP 1 RECEPTION/
601 RESIDENCE STAFF HOLIDAY RECEPTION/
586 PRESS RECEPTION ONE (1)/
580 GENERAL RECEPTION 1
540 HANUKKAH RECEPTION./
540 GEN RECEP 5/
516 GENERAL RECEPTION 3

3.8. It appears that a blank comment is the most frequent comment, followed by the
HOLIDAY BALL, then a variation of other receptions.

3.9. Modify the query so that it ignores empty comments. If it works, the comment “GEN
RECEP 6/” will show up in your output.

Solution:
--In comments.hive, insert the following line between your select and group
statements:

where info_comment != ""

Save the changes, then back at the command line, re-run the query:

hive -f comments.hive

Step 4: Least Frequent Comment

4.1. Run the previous query again, but this time, find the 10 least occurring comments.
--Remove DESC from your order statement so that it looks like this:

order by comment_count

Save the changes, then back at the command line, re-run the query:

hive -f comments.hive

The output should look something like:
1 CONGRESSIONAL BALL/
1 CONG BALL/
1 merged to u59031
1 CONGRESSIONAL BALL
1 CONG BALL
1 COMMUNITY COLLEGE SUMMIT
1 48 HOUR WAVE EXCEPTION GRANTED
1 DROP BY VISIT
1 WHO EOP/
1 "POTUS LUNCH WITH WASHINGTON

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

98

This seems accurate since 1 is the least number of times a comment can appear.

Step 5: Analyze the Data Inconsistencies

5.1. Analyzing the results of the most- and least-frequent comments, it appears that
several variations of GENERAL RECEPTION occur. In this step, you will try to determine the
number of visits to the POTUS involving a general reception by trying to clean up some
of these inconsistencies in the data.

	

NOTE: Inconsistencies like these are very common in big data,
especially when human input is involved. In this dataset, we likely
have different people entering similar comments but using their own
abbreviations.

5.2. Modify the query in comments.hive. Instead of searching for empty comments.
Search for comments that contain variations of the string “GEN RECEP.”

where info_comment rlike '.*GEN.*\\s+RECEP.*'

5.3. Change the limit clause from 10 to 30:
limit 30;

5.4. Run the query again.
hive -f comments.hive

5.5. Notice there are several GENERAL RECEPTION entries that only differ by a number at
the end or use the GEN RECEP abbreviation:

580 GENERAL RECEPTION 1
540 GEN RECEP 5/
516 GENERAL RECEPTION 3
498 GEN RECEP 6/
438 GEN RECEP 4
31 GENERAL RECEPTION 2
23 GENERAL RECEPTION 3
20 GENERAL RECEPTION 6
20 GENERAL RECEPTION 5
13 GENERAL RECEPTION 1

5.6. Let’s try one more query to try and narrow GENERAL RECEPTION visit. Modify the
WHERE clause in comments.hive to include “%GEN%”:

where info_comment like "%RECEP%"
 and info_comment like "%GEN%"

5.7. Leave the limit at 30, save your changes, and run the query again.
hive -f comments.hive

5.8. The output this time reveals all the variations of GEN and RECEP. Next, let’s add up
the total number of them by running the following query:

from wh_visits

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

99

 select count(*)
 where info_comment like "%RECEP%"
 and info_comment like "%GEN%";

--Then save your changes and run the query again from the command line:

hive -f comments.hive

5.9. Notice there are 2,697 visits to the POTUS with GEN RECEP in the comment field,
which is about 12% of the 21,819 total visits to the POTUS in our dataset.

	

NOTE: More importantly, these results show that the conclusion from
our first query, where we found that the most likely reason to visit the
President was the HOLIDAY BALL with 1,253 attendees, is incorrect.
This type of analysis is common in big data, and it shows how data
analysts need to be creative and thorough when researching their
data.

Step 6: Verify the Result

6.1. We have 12% of visitors to the POTUS going for a general reception, but there were
a lot of statements in the comments that contained WHO and EOP. Modify the query from
the last step and display the top 30 comments that contain “WHO” and “EOP.”

--You should be able to undo changes to comments.hive and restore it to the
state before the last lab. Then make the following two additional edits:

--Change the where clause to match WHO and EOP

where info_comment like "%WHO%"
 and info_comment like "%EOP%";

--Add the DESC command back to the end of the order statement

order by comment_count DESC

--Finally, double-check select count(*) as comment_count, info_count
--Make sure the "as..." portion is there

--Then save your changes and run the query again from the command line:

hive -f comments.hive

The result should look like:
894 WHO EOP RECEP 2
700 WHO EOP 1 RECEPTION/
43 WHO EOP RECEP/
20 WHO EOP HOLIDAY RECEP/
13 WHO/EOP #2/
8 WHO EOP RECEPTION
7 WHO EOP RECEP

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

100

1 WHO EOP/
1 WHO EOP RECLEAR

6.2. Modify the script again, this time to run a query that counts the number of records
with WHO and EOP in the comments, and run the query:

from wh_visits
 select count(*)
 where info_comment like "%WHO%"
 and info_comment like "%EOP%";

--Run the query from the command line:

hive -f comments.hive

You should get 1,687 visits, or 7.7% of the visitors to the POTUS. So GENERAL
RECEPTION still appears to be the most frequent comment.

Step 7: Find the Most Visits

7.1. See if you can write a Hive script that finds the top 20 individuals who visited the
POTUS most. Use the Hive command from Step 3 earlier in this lab as a guide.

	

TIP: Use a grouping by both fname and lname.

The solution is printed below.

7.2. The following script will accomplish the intention of the previous step:
from wh_visits
 select count(*) as most_visit, fname, lname
 group by fname, lname
 order by most_visit DESC
 limit 20;

To verify that your script worked, here are the top 20 individuals who visited the POTUS
along with the number of visits (your output may vary slightly due to randomization of
names):

16 ALAN PRATHER
15 CHRISTOPHER FRANKE
15 ANNAMARIA MOTTOLA
14 ROBERT BOGUSLAW
14 CHARLES POWERS
12 SARAH HART
12 JACKIE WALKER
12 JASON FETTIG
12 SHENGTSUNG WANG
12 FERN SATO
12 DIANA FISH
11 JANET BAILEY
11 PETER WILSON

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

101

11 GLENN DEWEY
11 MARCIO BOTELHO
11 DONNA WILLINGHAM
10 DAVID AXELROD
10 CLAUDIA CHUDACOFF
10 VALERIE JARRETT
10 MICHAEL COLBURN

Result: You have written several Hive queries to analyze the White House visitor data. The
goal is for you to become comfortable with working with Hive, so hopefully you now feel
like you can tackle a Hive problem and be able to answer questions about your big data
stored in Hive.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

102

Lab: Understanding MapReduce

Lester Martin Jr.� 11/11/2015 10:28 AM
Comment [1]: DELETING THIS WHOLE
LAB
Lester Martin Jr.� 11/11/2015 10:28 AM
Deleted: This lab explores how Hive
queries get executed as MapReduce jobs.
 To understand better how Hive queries
get executed as MapReduce jobs. ... [32]

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

103

Demonstration: Computing ngrams
This demonstration explores how to compute ngrams using Hive.

	

Objective: To understand how to compute ngrams using Hive.

During this
demonstration:

 Watch as your instructor performs the following steps.

Related lesson: Hive Programming

Perform the following steps:

Step 1: Create a Hive Table for the Data

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. This demonstration computes ngrams on the U.S. Constitution, which is in a text file
in the /root/devph/labs/demos folder:

cd ~/devph/labs/demos/
more constitution.txt

--press q to exit more

1.3. Start the Hive shell and define the following table:
hive

hive> create table constitution (
 line string
)
ROW FORMAT DELIMITED;

Each line of text in the text file is going to be a record in our Hive table.

Step 2: Load the Hive Table

2.1. Load constitution.txt into the constitution table:
hive> load data local inpath '/root/devph/labs/demos/constitution.txt' into
table constitution;

2.2. Verify that the data is loaded:
hive> select * from constitution;

You should see the contents of constitution.txt again.
Step 3: Compute a Bigram

Lester Martin Jr.� 11/3/2015 4:17 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:17 PM
Formatted: No bullets or numbering

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

104

3.1. Enter the following Hive command, which computes a bigram for the Constitution
and shows the top 15 results:

hive> select explode(ngrams(sentences(line),2,15)) as x
from constitution;

The result should look similar to:
{"ngram":["of","the"],"estfrequency":194.0}
{"ngram":["shall","be"],"estfrequency":100.0}
{"ngram":["the","United"],"estfrequency":76.0}
{"ngram":["United","States"],"estfrequency":76.0}
{"ngram":["to","the"],"estfrequency":57.0}
{"ngram":["shall","have"],"estfrequency":44.0}
{"ngram":["the","President"],"estfrequency":30.0}
{"ngram":["shall","not"],"estfrequency":29.0}
{"ngram":["in","the"],"estfrequency":28.0}
{"ngram":["by","the"],"estfrequency":25.0}
{"ngram":["the","Congress"],"estfrequency":22.0}
{"ngram":["and","the"],"estfrequency":21.0}
{"ngram":["for","the"],"estfrequency":21.0}
{"ngram":["Vice","President"],"estfrequency":21.0}
{"ngram":["the","Senate"],"estfrequency":21.0}
{"ngram":["States","and"],"estfrequency":20.0}
{"ngram":["States","shall"],"estfrequency":19.0}
{"ngram":["any","State"],"estfrequency":18.0}
{"ngram":["Congress","shall"],"estfrequency":18.0}
{"ngram":["on","the"],"estfrequency":17.0}

Step 4: Compute a Trigram

4.1. Run the previous query again, but this time compute a trigram:
hive> select explode(ngrams(sentences(line),3,20)) as result from
constitution;

4.2. The result should look similar to:
{"ngram":["the","United","States"],"estfrequency":68.0}
{"ngram":["of","the","United"],"estfrequency":51.0}
{"ngram":["shall","not","be"],"estfrequency":16.0}
{"ngram":["of","the","Senate"],"estfrequency":14.0}
{"ngram":["States","shall","be"],"estfrequency":13.0}
{"ngram":["House","of","Representatives"],"estfrequency":13.0}
{"ngram":["United","States","shall"],"estfrequency":13.0}
{"ngram":["shall","have","been"],"estfrequency":12.0}
{"ngram":["the","several","States"],"estfrequency":12.0}
{"ngram":["President","of","the"],"estfrequency":11.0}
{"ngram":["United","States","and"],"estfrequency":11.0}
{"ngram":["The","Congress","shall"],"estfrequency":10.0}
{"ngram":["the","House","of"],"estfrequency":10.0}
{"ngram":["United","States","or"],"estfrequency":10.0}
{"ngram":["Congress","shall","have"],"estfrequency":10.0}
{"ngram":["the","Vice","President"],"estfrequency":9.0}
{"ngram":["of","the","President"],"estfrequency":8.0}

Lester Martin Jr.� 10/21/2015 10:57 AM
Deleted: like

Lester Martin Jr.� 10/21/2015 10:57 AM
Deleted: like

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

105

{"ngram":["Consent","of","the"],"estfrequency":8.0}
{"ngram":["shall","be","the"],"estfrequency":7.0}
{"ngram":["by","the","Congress"],"estfrequency":7.0}

Step 5: Compute a Contextual ngram

5.1. Let’s find the 20 most frequent words that follow “the”:
hive> select explode(context_ngrams(sentences(line),
 array("the",null),20)) as result
 from constitution;

5.2. The result should look similar to:
{"ngram":["United"],"estfrequency":76.0}
{"ngram":["President"],"estfrequency":30.0}
{"ngram":["Congress"],"estfrequency":22.0}
{"ngram":["Senate"],"estfrequency":21.0}
{"ngram":["several"],"estfrequency":15.0}
{"ngram":["Vice"],"estfrequency":12.0}
{"ngram":["State"],"estfrequency":11.0}
{"ngram":["same"],"estfrequency":10.0}
{"ngram":["Constitution"],"estfrequency":10.0}
{"ngram":["States"],"estfrequency":10.0}
{"ngram":["House"],"estfrequency":10.0}
{"ngram":["whole"],"estfrequency":10.0}
{"ngram":["office"],"estfrequency":9.0}
{"ngram":["right"],"estfrequency":8.0}
{"ngram":["Legislature"],"estfrequency":8.0}
{"ngram":["Consent"],"estfrequency":6.0}
{"ngram":["powers"],"estfrequency":6.0}
{"ngram":["supreme"],"estfrequency":6.0}
{"ngram":["people"],"estfrequency":6.0}
{"ngram":["first"],"estfrequency":6.0}

Lester Martin Jr.� 10/21/2015 10:59 AM
Deleted: s

Lester Martin Jr.� 10/21/2015 10:57 AM
Deleted: like

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

106

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

107

Lab: Joining Datasets in Hive
This lab explores performing joins of two datasets in Hive.

	

Objective: Perform a join of two datasets in Hive.

File locations: /root/devph/labs/Lab7.4

Successful outcome: A table named stock_aggregates that contains a join of NYSE
stock prices with the stock’s dividend prices.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Hive Programming

Perform the following steps:

Step 1: Load the Data into Hive

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. View the contents of the file setup.hive in /root/devph/labs/Lab7.4:
cd ~/devph/labs/Lab7.4/
more setup.hive

1.3. Notice that this script creates three tables in Hive. The nyse_data table is filled with
the daily stock prices of stocks that start with the letter K and the dividends table that
contains the quarterly dividends of those stocks. The stock_aggregates table is going
to be used for a join of these two datasets and contain the stock price and dividend
amount on the date the dividend was paid.

1.4. Run the setup.hive script from the Joining Datasets in Hive lab folder:
hive -f setup.hive

1.5. To verify that the script worked, enter the Hive Shell and run the following following
queries:

hive

hive> select * from nyse_data limit 20;

hive> select * from dividends limit 20;

You should see daily stock prices and dividends from stocks that start with the
letter K.

1.6. The stock_aggregates table should be empty, but view its schema to verify that it
was created successfully, then type quit to exit the Hive Shell:

Lester Martin Jr.� 11/3/2015 4:17 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:17 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 11:21 PM
Deleted: 1

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

108

hive> describe stock_aggregates;
OK
symbol string
year string
high float
low float
average_close float
total_dividends float

hive> quit;

Step 2: Join the Datasets

2.1. The join statement is going to be fairly long, so let’s create it in a text file. Use gedit
to create a new text in the /root/devph/labs/Lab7.4/ folder named join.hive.

2.2. We will break the join statement down into sections. First, the result of the join is
going to be put into the stock_aggregates table, which requires an insert:

insert overwrite table stock_aggregates

The overwrite causes any existing data in stock_aggregates to be deleted.

2.3. The data being inserted is going to be the result of a select query that contains
various insightful indicators about each stock. The result is going to contain the stock
symbol, date traded, maximum high for the stock, minimum low, average close, and the
sum of dividends, as shown here:

select a.symbol, year(a.trade_date), max(a.high), min(a.low), avg(a.close),
sum(b.dividend)

2.4. The from clause is the nyse_data table:
from nyse_data a

2.5. The join is going to be a left outer join of the dividends table:
left outer join dividends b

2.6. The join is by stock symbol and trade date:
on (a.symbol = b.symbol and a.trade_date = b.trade_date)

2.7. Let’s group the result by symbol and trade date:
group by a.symbol, year(a.trade_date);

2.8. Save your changes to join.hive.

Step 3: Run the Query

3.1. Run the query and wait for Tez to execute:
hive -f join.hive

3.2. How many total mappers and reducers does it take to perform this query?

Answer: Two mappers and one reducer.

Lester Martin Jr.� 11/11/2015 10:35 AM
Deleted: the MapReduce jobs

Lester Martin Jr.� 11/11/2015 10:36 AM
Deleted: jobs

Lester Martin Jr.� 11/11/2015 10:36 AM
Deleted: One MapReduce job with
one mapper and one reducer

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

109

Step 4: Verify the Results

4.1. Enter the Hive Shell and run a select query to view the contents of
stock_aggregates:

hive

hive> select * from stock_aggregates;

The output should look like:
KYO 2004 90.9 66.25 75.79952 0.544
KYO 2005 78.45 62.58 72.042656 0.91999996
KYO 2006 98.01 71.73 85.80327 0.851
KYO 2007 110.01 81.0 93.737686 NULL
KYO 2008 100.78 45.41 79.6098 NULL
KYO 2009 93.2 52.98 77.04389 NULL
KYO 2010 93.83 85.94 90.71 NULL
stock_symbol NULL NULL NULL NULL NULL

4.2. List the contents of the stock_aggregates directory in HDFS. The 000000_0 file
was created as a result of the join query:

hive> dfs -ls -R /apps/hive/warehouse/stock_aggregates/;
-rw-r--r-- 3 root hdfs 41109
/apps/hive/warehouse/stock_aggregates/000000_0

4.3. View the contents of the stock_aggregates table using the cat command:
hive> dfs -cat /apps/hive/warehouse/stock_aggregates/000000_0;

Result: The stock_aggregates table is a joining of the daily stock prices and the
quarterly dividend amounts on the date the dividend was announced, and the data in the
table is an aggregate of various statistics like max high, min low, etc.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

110

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

111

Lab: Computing ngrams of Emails in Avro Format
This lab explores using Hive to compute ngrams.

	

Objective: Use Hive to compute ngrams.

File locations: /root/devph/labs/Lab7.5

Successful outcome: A bigram of words found in a collection of Avro-formatted emails.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Hive Programming

Perform the following steps:

Step 1: View an Avro Schema

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Change directories to the /root/devph/labs/Lab7.5 folder. Notice this folder
contains an Avro file named sample.avro.

cd ~/devph/labs/Lab7.5

ls sample.avro

1.3. Enter the following command to view the schema of the contents of sample.avro:
avro cat --print-schema sample.avro

1.4. How many fields do records in sample.avro have? ______________

Answer: Four fields

1.5. Create a schema file for sample.avro:
avro cat --print-schema sample.avro > sample.avsc

1.6. Put the schema file in HDFS:
hdfs dfs -put sample.avsc

Step 2: Create a Hive Table from an Avro Schema

2.1. View the contents of the CREATE TABLE query defined in the
create_sample_table.hive file in your Computing ngrams of Emails in Avro Format lab
folder:

more create_sample_table.hive

Lester Martin Jr.� 11/3/2015 4:17 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:18 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 11:27 PM
Deleted: 1

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

112

2.2. Make sure the avro.schema.url property points to the schema file you created in
the previous step:

WITH SERDEPROPERTIES (
 'avro.schema.url'='hdfs:///user/root/sample.avsc')

2.3. Run the CREATE TABLE query:
hive -f create_sample_table.hive

Step 3: Verify the Table

3.1. Start the Hive shell.
hive

3.2. Run the show tables command and verify that you have a table named
sample_table.

hive> show tables;

3.3. Run the describe command on sample_table. Notice the schema for sample_table
matches the Avro schema from sample.avsc.

hive> describe sample_table;

3.4. Let’s associate some data with sample_table. Copy sample.avro into the Hive
warehouse folder by running the following command (all on a single line):

hive> dfs -put /root/devph/labs/Lab7.5/sample.avro
/apps/hive/warehouse/sample_table;

3.5. View the contents of sample_table, then quit the Hive Shell:
hive> select * from sample_table;
OK
Foo 19 10, Bar Eggs Spam 800

hive> quit;

Note that there is only one record in sample.avro. You have now seen how to
create a Hive table using an Avro schema file. This was a simple example; next you
will complete these steps using a large data file that contains emails in an Avro
format.

Step 4: Create an Email-User Table

4.1. There is an Avro file in your /root/devph/labs/Lab7.5 folder named mbox7.avro,
which represents emails in an Avro format from a Hive mailing list for the month of July.
Use the --print-schema option of avro to view the schema of this file.

avro cat --print-schema mbox7.avro

4.2. How many fields do records in mbox7.avro have? _______________

Answer: Four fields

Lester Martin Jr.� 11/3/2015 3:49 PM
Deleted: file

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

113

4.3. Run the --print-schema command again, but this time output the schema to a file
named mbox.avsc:

avro cat --print-schema mbox7.avro > mbox.avsc

4.4. Put the Avro schema file into /user/root in HDFS:
hdfs dfs -put mbox.avsc

4.5. Use more to view the contents of the create_email_table.hive ;:script in your
/root/devph/labs/Lab7.5 folder. Verify the avro.schema.url property is correct.

more create_email_table.hive

4.6. Run the script to create the hive_user_email table:
hive -f create_email_table.hive

4.7. Copy mbox7.avro into the warehouse directory:
hdfs dfs -put mbox7.avro /apps/hive/warehouse/hive_user_email

4.8. Start the Hive shell and verify the table has data in it:
hive

hive> select * from hive_user_email limit 20;

Step 5: Compute a Bigram

5.1. Use the Hive ngrams function to create a bigram of the words in mbox7.avro:
hive> select
 ngrams(sentences(content),2 ,10)
 from hive_user_email;

The output will be kind of a jumbled mess:
[{"ngram":["2013","at"],"estfrequency":802.0},{"ngram":["of","the"],"estfrequ
ency":391.0},{"ngram":["I","am"],"estfrequency":368.0},{"ngram":["I","have"],
"estfrequency":340.0},{"ngram":["J","E9r"],"estfrequency":306.0},{"ngram":["f
or","the"],"estfrequency":291.0},{"ngram":["you","are"],"estfrequency":289.0}
,{"ngram":["user","hive.apache.org"],"estfrequency":289.0},{"ngram":["to","th
e"],"estfrequency":276.0},{"ngram":["E9r","F4me"],"estfrequency":270.0}]

5.2. To clean this up, use the Hive explode function to display the output in a more
readable format:

hive> select
 explode(ngrams(sentences(content),2 ,10))
 from hive_user_email;

You should see a nice, readable list of 10 bigrams:
{"ngram":["2013","at"],"estfrequency":802.0}
{"ngram":["of","the"],"estfrequency":391.0}
{"ngram":["I","am"],"estfrequency":368.0}
{"ngram":["I","have"],"estfrequency":340.0}
{"ngram":["J","E9r"],"estfrequency":306.0}

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

114

{"ngram":["for","the"],"estfrequency":291.0}
{"ngram":["you","are"],"estfrequency":289.0}
{"ngram":["user","hive.apache.org"],"estfrequency":289.0}
{"ngram":["to","the"],"estfrequency":276.0}
{"ngram":["E9r","F4me"],"estfrequency":270.0}

5.3. Typically when working with word comparison we ignore case. Run the query again,
but this time add the Hive lower function and compute 20 bigrams:

hive> select
 explode(ngrams(sentences(lower(content)),2 ,20))
 from hive_user_email;

The output should look like the following:
{"ngram":["2013","at"],"estfrequency":802.0}
{"ngram":["i","have"],"estfrequency":409.0}
{"ngram":["of","the"],"estfrequency":391.0}
{"ngram":["i","am"],"estfrequency":372.0}
{"ngram":["if","you"],"estfrequency":347.0}
{"ngram":["in","hive"],"estfrequency":337.0}
{"ngram":["for","the"],"estfrequency":309.0}
{"ngram":["j","e9r"],"estfrequency":306.0}
{"ngram":["you","are"],"estfrequency":289.0}
{"ngram":["user","hive.apache.org"],"estfrequency":289.0}
{"ngram":["to","the"],"estfrequency":276.0}
{"ngram":["outer","join"],"estfrequency":271.0}
{"ngram":["2013","06"],"estfrequency":270.0}
{"ngram":["e9r","f4me"],"estfrequency":270.0}
{"ngram":["left","outer"],"estfrequency":270.0}
{"ngram":["in","the"],"estfrequency":252.0}
{"ngram":["gmail.com","wrote"],"estfrequency":248.0}
{"ngram":["17","16"],"estfrequency":248.0}
{"ngram":["06","17"],"estfrequency":246.0}
{"ngram":["wrote","hi"],"estfrequency":234.0}

Step 6: Compute a Context ngram

6.1. From the Hive shell, run the following query, which uses the context_ngrams
function to find the top 20 terms that follow the word “error”:

hive> select
 explode(context_ngrams(sentences(lower(content)),
 array("error", null) ,20))
 from hive_user_email;

The output should look like the following:
{"ngram":["in"],"estfrequency":102.0}
{"ngram":["return"],"estfrequency":97.0}
{"ngram":["org.apache.hadoop.hive.ql.exec.udfargumenttypeexception"],"estfreq
uency":49.0}
{"ngram":["failed"],"estfrequency":49.0}
{"ngram":["is"],"estfrequency":41.0}
{"ngram":["message"],"estfrequency":40.0}

Lester Martin Jr.� 11/11/2015 10:44 AM
Deleted: <#>Run the same query
again, but this time run it on Tez: ... [33]

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

115

{"ngram":["when"],"estfrequency":39.0}
{"ngram":["please"],"estfrequency":36.0}
{"ngram":["while"],"estfrequency":28.0}
{"ngram":["org.apache.thrift.transport.ttransportexception"],"estfrequency":2
8.0}
{"ngram":["datanucleus.plugin"],"estfrequency":26.0}
{"ngram":["during"],"estfrequency":18.0}
{"ngram":["query"],"estfrequency":16.0}
{"ngram":["hive"],"estfrequency":16.0}
{"ngram":["could"],"estfrequency":16.0}
{"ngram":["java.lang.runtimeexception"],"estfrequency":13.0}
{"ngram":["13"],"estfrequency":12.0}
{"ngram":["error"],"estfrequency":12.0}
{"ngram":["exec.execdriver"],"estfrequency":10.0}
{"ngram":["exec.task"],"estfrequency":10.0}

6.2. What is the most likely word to follow “error” in these emails? ___________
Answer: “in”

6.3. Run a Hive query that finds the top 20 results for words in mbox7.avro that follow the
phrase “error in.”

Solution:
select
 explode(context_ngrams(sentences(lower(content)),
 array("error", "in", null) ,20))
 from hive_user_email;

Result: You have written several Hive queries that computed bigrams based on the data
in the mbox7.avro file. You should also be familiar with working with Avro files, a popular
file format in Hadoop.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

116

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

117

Lab: Using HCatalog with Pig
This lab explores using HCatalog to provide the schema for a Pig relation.

	

Objective: Use HCatalog to provide the schema for a Pig relation.

File locations: n/a

Successful outcome: You will have written a Pig script that uses HCatLoader to retrieve
a schema from an HCatalog table and HCatStorer to write data to
a table managed by HCatalog.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.
Complete the Understanding Hive Tables Lab.

Related lesson: Using HCatalog

Perform the following steps:

Step 1: Start the Grunt Shell
1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Start the Grunt shell for use with HCatalog:
pig -useHCatalog

Step 2: Load an HCatalog Table

2.1. Define a relation for the wh_visits table in Hive using the HCatLoader():
grunt> visits = LOAD 'wh_visits' USING
org.apache.hive.hcatalog.pig.HCatLoader();

2.2. View the schema of the visits relation to verify that it matches the schema of the
wh_visits table:

grunt> describe visits;

visits: {lname: chararray,fname: chararray,time_of_arrival:
chararray,appt_scheduled_time: chararray,meeting_location:
chararray,info_comment: chararray}

Step 3: Run a Pig Query

3.1. Let’s execute a query to verify that everything is working. Define the following
relation:

grunt> joe = FILTER visits BY (fname == 'JOE');

3.2. Dump the relation:

Lester Martin Jr.� 11/3/2015 4:18 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:18 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 11:45 PM
Deleted: 1

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

118

grunt> DUMP joe;

The output should be visitors from wh_visits with the first name “JOE.”

Step 4: Create an HCatalog Schema
4.1. Quit the Grunt shell and start the Hive shell.

grunt> quit;

hive

4.2. An HCatalog schema is essentially just a table in the Hive metastore. To define a
schema for use with HCatalog, create a table in Hive:

hive> create table joes (fname string, lname string, comments string);

4.3. Verify that the table was created successfully using ‘show tables.’
hive> show tables;

4.4. Use the describe command to view the schema of joes:
hive> describe joes;
OK
fname string
lname string
comments string

Step 5: Using HCatStorer

5.1. Exit the Hive shell and start the Grunt shell again. Be sure to use the useHCatalog
option:

hive> quit;

pig -useHCatalog

5.2. Define the visits and joe relations again (using the up arrow to browse through the
history of Pig commands).

5.3. In this step, you will use HCatStorer in Pig to input records into the joes table. To do
this, you need a relation whose fields match the schema of joes. You can accomplish
this using a projection. Define the following relation:

grunt> project_joe = FOREACH joe GENERATE fname, lname, info_comment;

5.4. Store the projection into the HCatalog table using the STORE command:
grunt> STORE project_joe INTO 'joes' USING
org.apache.hive.hcatalog.pig.HCatStorer();

This command failed. Why? __
Answer: The initial STORE command failed because the field names in the relation
you were trying to store did not match the column names of the underlying table’s
schema.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

119

5.5. Notice that the projection has fields named fname, lname, and info_comment, but
the joes table in HCatalog has a schema with fname, lname, and comments. The fname
and lname fields match, but info_comment needs to be renamed to comments. Modify
your projection by using the AS keyword:

grunt> project_joe = FOREACH joe GENERATE fname, lname, info_comment AS
comments;

5.6. Now run the STORE command again:
grunt> STORE project_joe INTO 'joes' USING
org.apache.hive.hcatalog.pig.HCatStorer();

This time the command should work and a MapReduce job will execute.

Step 6: Verify that the STORE Worked

6.1. Quit the Grunt shell and start the Hive shell again.
grunt> quit;

hive

6.2. View the contents of the joes table:
hive> select * from joes;

You should see visitors all named “JOE,” along with their last name and the
comments.

Step 7: View the Files

7.1. You can also check the file system to see if a STORE command worked:
hive> dfs -ls /apps/hive/warehouse/joes/;
Found 1 items
-rw-r--r-- 1 root hdfs 896 /apps/hive/warehouse/joes/part-m-00000

Notice that the file for the joes table is named part-m-00000. Where did that name
come from? __
Answer: The part-m-00000 file is a result of the Pig MapReduce job that executed
when you ran the STORE command with HCatStorer.

7.2. Use the cat command to view the contents of part-m-00000:
hive> dfs -cat /apps/hive/warehouse/joes/part-m-00000;

As you can see, this is the same list of names from the Hive select * query, which
should be no surprise at this point in the course.

Result: You have seen how to run a Pig script that uses HCatalog to provide the schema
using HCatLoader and HCatStorer.

Lester Martin Jr.� 11/11/2015 10:54 AM
Deleted: 3

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

120

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

121

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

122

Lab: Advanced Hive Programming
This lab explores some of the more advanced features of Hive work, including multi-table
inserts, views, and windowing.

	

Objective: To understand how some of the more advanced features of Hive
work, including multi-table inserts, views, and windowing.

File locations: /root/devph/labs/Lab9.1

Successful outcome: You will have executed numerous Hive queries on customer order
data.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Advanced Hive Programming

Perform the following steps:

Step 1: Create and Populate a Hive Table
1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. From the command line, change directories to /root/devph/labs/Lab9.1 folder:
cd ~/devph/labs/Lab9.1

1.3. View the contents of the orders.hive file in that folder:
more orders.hive

Notice it defines a Hive table named orders that has seven columns.

1.4. Execute the contents of orders.hive:
hive -f orders.hive

1.5. From the Hive shell, verify that the script worked by running the following
commands:

hive

hive> describe orders;
hive> select count(*) from orders;

Your orders table should contain 99,999 records.

Step 2: Analyze the Customer Data
2.1. Let’s run a few queries to see what this data looks like. Start by verifying that the
username column actually looks like names:

Lester Martin Jr.� 11/3/2015 4:18 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:18 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/19/2015 11:53 PM
Deleted: 2

Lester Martin Jr.� 11/11/2015 10:57 AM
Deleted: hive> set
hive.execution.engine=tez;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

123

hive> SELECT username FROM orders LIMIT 10;

You should see 10 first names.

2.2. The orders table contains orders placed by customers. Run the following query, that
shows the 10 lowest-price orders:

hive> SELECT username, ordertotal FROM orders ORDER BY ordertotal LIMIT 10;

The smallest orders are each $10, as you can see from the output:
Chelsea 10
Samantha 10
Danielle 10
Kimberly 10
Tiffany 10
Megan 10
Maria 10
Megan 10
Melissa 10
Christina 10

2.3. Run the same query, but this time use descending order:
hive> SELECT username, ordertotal FROM orders ORDER BY ordertotal DESC LIMIT
10;

The output this time is the 10 highest-priced orders:
Brandon 612
Mark 612
Sean 612
Jordan 612
Anthony 612
Paul 611
Jonathan 611
Eric 611
Nathan 611
Jordan 610

2.4. Let’s find out if men or women spent more money:
hive> SELECT sum(ordertotal), gender FROM orders GROUP BY gender;

Based on the output, which gender has spent more money on purchases? ______
Answer: Men spent $9,919,847, and women spent $9,787,324.

2.5. The orderdate column is a string with the format yyyy-mm-dd. Use the year
function to extract the various parts of the date. For example, run the following query,
which computes the sum of all orders for each year:

hive> SELECT sum(ordertotal), year(order_date) FROM orders GROUP BY
year(order_date);

The output should look like this. Verify, then quit the Hive shell:
4082780 2009

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

124

4404806 2010
4399886 2011
4248950 2012
2570749 2013

hive> quit;

Step 3: Multi-File Insert

3.1. In this step, you will run two completely different queries, but in a single job. The
output of the queries will be in two separate directories in HDFS. Start by using gedit to
create a new text file in the /root/devph/labs/Lab9.1 folder named multifile.hive.

3.2. Within the text file, enter the following query. Notice there is no semicolon between
the two INSERT statements:

FROM ORDERS o
INSERT OVERWRITE DIRECTORY '2010_orders'
SELECT o.* WHERE year(order_date) = 2010
INSERT OVERWRITE DIRECTORY 'software'
SELECT o.* WHERE itemlist LIKE '%Software%';

3.3. Save your changes to multifile.hive.

3.4. Run the query from the command line:
hive -f multifile.hive

3.5. The above query executes in a single job. Even more interesting, it only requires a
map phase.

Why did this job not require a reduce phase?
__
Answer: Because the query only does a SELECT *, no reduce phase was needed.

3.6. Verify that the two queries executed successfully by viewing the folders in HDFS:
hdfs dfs -ls

You should see two new folders: 2010_orders and software.

3.7. View the output files in these two folders. Verify that the 2010_orders directory
contains orders from only the year 2010, and verify that the software directory contains
only orders that included ‘Software.’

hdfs dfs -ls 2010_orders

hdfs dfs -cat 2010_orders/000000_0

hdfs dfs -ls software

hdfs dfs -cat software/000000_0

Step 4: Define a View

Lester Martin Jr.� 11/11/2015 11:00 AM
Deleted: MapReduce

Lester Martin Jr.� 11/11/2015 11:00 AM
Deleted: MapReduce

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

125

4.1. Start the Hive shell. Define a view named 2013_orders that contains the orderid,
order_date, username, and itemlist columns of the orders table where the
order_date was in the year 2013.

Solution: The 2013_orders view:
hive

hive> CREATE VIEW 2013_orders AS
SELECT orderid, order_date, username, itemlist
FROM orders
WHERE year(order_date) = '2013';

4.2. Run the show tables command:
hive> show tables;

You should see 2013_orders in the list of tables.

4.3. To verify your view is defined correctly, run the following query:
hive> SELECT COUNT(*) FROM 2013_orders;

The 2013_orders view should contain 13,104 records.

Step 5: Find the Maximum Order of Each Customer

5.1. Suppose you want to find the maximum order of each customer. This can be done
easily enough with the following Hive query. Run this query now:

hive> SELECT max(ordertotal), userid
FROM orders GROUP BY userid;

5.2. How many different customers are in the orders table? _____________
Answer: There are 100 unique customers in the orders table.

5.3. Suppose you want to add the itemlist column to the previous query. Try adding it
to the SELECT clause by the following method and see what happens:

hive> SELECT max(ordertotal), userid, itemlist
FROM orders GROUP BY userid;

Notice this query is not valid because itemlist is not in the GROUP BY key.

5.4. We can join the result set of the max-total query with the orders table to add the
itemlist to our result. Start by defining a view named max_ordertotal for the
maximum order of each customer:

hive> CREATE VIEW max_ordertotal AS
SELECT max(ordertotal) AS maxtotal, userid
FROM orders GROUP BY userid;

5.5. Now join the orders table with your max_ordertotal view:
hive> SELECT ordertotal, orders.userid, itemlist
FROM orders
JOIN max_ordertotal ON

Lester Martin Jr.� 11/11/2015 11:03 AM
Deleted: hive> set
hive.execution.engine=tez;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

126

max_ordertotal.userid = orders.userid
AND
max_ordertotal.maxtotal = orders.ordertotal
ORDER BY orders.userid;

5.6. What did the Tez job look like for this query? ___________
Answer: The query resulted in a map-reduce-reduce Tez job.

5.7. The end of your output should look like:
600 98
Grill,Freezer,Bedding,Headphones,DVD,Table,Grill,Software,Dishwasher,DVD,Micr
owave,Adapter
600 99 Washer,Cookware,Vacuum,Freezer,2-Way Radio,Bicycle,Washer &
Dryer,Coffee Maker,Refrigerator,DVD,Boots,DVD
600 100 Bicycle,Washer,DVD,Wrench Set,Sweater,2-Way
Radio,Pants,Freezer,Blankets,Grill,Adapter,pillows

Step 6: Fixing the GROUP BY Key Error

6.1. Let’s compute the sum of all of the orders of all of the customers. Start by entering
the following query:

hive> SELECT sum(ordertotal), userid FROM orders GROUP BY userid;

Notice that the output is the sum of all orders, but displaying just the userid is not
very exciting.

6.2. Try to add the username column to the SELECT clause in the following manner and
see what happens:

hive> SELECT sum(ordertotal), userid, username
FROM orders
GROUP BY userid;

This generates the infamous “Expression not in GROUP BY key” error, because the
username column is not being aggregated but the ordertotal is.

6.3. An easy fix is to aggregate the username values using the collect_set function, but
output only one of them:

hive> SELECT sum(ordertotal), userid, collect_set(username)[0] FROM orders
GROUP BY userid;

You should get the same output as before, but this time the username is included.

Step 7: Using the OVER Clause

7.1. Now let’s compute the sum of all orders for each customer, but this time use the
OVER clause to not group the output and to also display the itemlist column:

hive> SELECT userid, itemlist, sum(ordertotal)
OVER (PARTITION BY userid)
FROM orders;

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

127

Notice the output contains every order, along with the items they purchased and
the sum of all of the orders ever placed from that particular customer.

Step 8: Using the Window Functions

8.1. It is not difficult to compute the sum of all orders for each day using the GROUP BY
clause:

hive> select order_date, sum(ordertotal)
FROM orders
GROUP BY order_date;

Run the query above and the tail of the output should look like:
2013-07-28 18362
2013-07-29 3233
2013-07-30 4468
2013-07-31 4714

8.2. Suppose you want to compute the sum for each day that includes each order. This
can be done using a window that sums all previous orders along with the current row:

hive> SELECT order_date, sum(ordertotal)
OVER
(PARTITION BY order_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
FROM orders;

To verify that it worked, your tail of your output should look like:
2013-07-31 3163
2013-07-31 3415
2013-07-31 3607
2013-07-31 4146
2013-07-31 4470
2013-07-31 4610
2013-07-31 4714

Step 9: Using the Hive Analytics Functions

9.1. Run the following query, which displays the rank of the ordertotal by day:
hive> SELECT order_date, ordertotal, rank()
OVER
(PARTITION BY order_date ORDER BY ordertotal)
FROM orders;

9.2. To verify it worked, the output of July 31, 2013, should look like:
2013-07-31 48 1
2013-07-31 104 2
2013-07-31 119 3
2013-07-31 130 4
2013-07-31 133 5
2013-07-31 135 6
2013-07-31 140 7
2013-07-31 147 8
2013-07-31 156 9

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

128

2013-07-31 192 10
2013-07-31 192 10
2013-07-31 196 12
2013-07-31 240 13
2013-07-31 252 14
2013-07-31 296 15
2013-07-31 324 16
2013-07-31 343 17
2013-07-31 500 18
2013-07-31 528 19
2013-07-31 539 20

9.3. As a challenge, see if you can run a query similar to the previous one except
compute the rank over months instead of each day.

Solution: The rank query by month:
SELECT substr(order_date,0,7), ordertotal, rank()
OVER
(PARTITION BY substr(order_date,0,7) ORDER BY ordertotal)
FROM orders;

Step 10: Histograms

10.1. Run the following Hive query, which uses the histogram_numeric function to
compute 20 (x,y) pairs of the frequency distribution of the total order amount from
customers who purchased a microwave (using the orders table):

hive> SELECT explode(histogram_numeric(ordertotal,20)) AS x
 FROM orders
 WHERE itemlist LIKE "%Microwave%";

The output should look like the following:
{"x":14.333333333333332,"y":3.0}
{"x":33.87755102040816,"y":441.0}
{"x":62.52577319587637,"y":679.0}
{"x":89.37823834196874,"y":965.0}
{"x":115.1242236024843,"y":1127.0}
{"x":142.6468885672939,"y":1382.0}
{"x":174.07664233576656,"y":1370.0}
{"x":208.06909090909105,"y":1375.0}
{"x":242.55486381322928,"y":1285.0}
{"x":275.8625954198475,"y":1048.0}
{"x":304.71100917431284,"y":872.0}
{"x":333.1514423076924,"y":832.0}
{"x":363.7630208333335,"y":768.0}
{"x":397.51587301587364,"y":756.0}
{"x":430.9072847682117,"y":604.0}
{"x":461.68715083798895,"y":537.0}
{"x":494.1598360655734,"y":488.0}
{"x":528.5816326530613,"y":294.0}
{"x":555.5166666666672,"y":180.0}
{"x":588.7979797979801,"y":198.0}

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

129

10.2. Write a similar Hive query that computes 10 frequency-distribution pairs for the
ordertotal from the orders table where ordertotal is greater than $200.

SELECT explode(histogram_numeric(ordertotal,10)) AS x
FROM orders
WHERE ordertotal > 200;

{"x":218.8195174551819,"y":7419.0}
{"x":254.10237580993478,"y":6945.0}
{"x":293.4231618807192,"y":6338.0}
{"x":334.57302573203015,"y":5635.0}
{"x":379.79714934930786,"y":4841.0}
{"x":428.1165628891644,"y":4015.0}
{"x":473.1484734420741,"y":2391.0}
{"x":511.2576946288467,"y":1657.0}
{"x":549.0106899902812,"y":1029.0}
{"x":589.0761194029857,"y":670.0}

Result: You should now be comfortable running Hive queries and using some of the more
advanced features of Hive, like views and the window functions.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

130

Demonstration: Hive Optimizations

Lester Martin Jr.� 11/11/2015 1:22 PM
Comment [2]: Removing ENTIRE
demonstration as it just isn't as clear on
this very tiny cluster with small data
Lester Martin Jr.� 11/11/2015 1:22 PM
Deleted: This lab explores various
methods to optimize Hive queries,
including vectorization and Tez.
 To learn how to configure Hive queries for
Tez, create a table that uses the ORC file
format, enable vectorization for a query,
and use cost-based optimization on a
query. ... [34]

Unknown
Formatted: Font:Calibri

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

131

Lab: Streaming Data with Hive and Python

Lester Martin Jr.� 11/11/2015 1:40 PM
Comment [3]: Deleting ENTIRE lab as
not as relevant given Tez utilization
Lester Martin Jr.� 11/11/2015 1:40 PM
Deleted: This lab explores custom
reducer scripts, and using them to
optimize a Hive query.
 Use a custom reducer script to optimize
a Hive query. ... [35]

Unknown
Formatted: Font:Calibri

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

132

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

133

Lab: Running a YARN Application
This lab explores how to run a YARN application.

	

Objective: To run a YARN application.

File locations: n/a

Successful outcome: You will have executed the DistributedShell YARN application.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Hadoop 2 and YARN

Perform the following steps:

Step 1: Run a DistributedShell Application

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. In a terminal window change directories to the /usr/hdp/current/hadoop-yarn-
client folder:

cd /usr/hdp/current/hadoop-yarn-client/

1.3. Run the following command, which runs a sample YARN application that ships with
HDP 2.x:

yarn jar hadoop-yarn-applications-distributedshell.jar
org.apache.hadoop.yarn.applications.distributedshell.Client -jar hadoop-yarn-
applications-distributedshell.jar -shell_command cal

The DistributedShell command allows you to run a script or shell command
on your cluster. The example above runs the Unix “cal” command, which displays
a text calendar.

1.4. Wait for the YARN job to finish.

Step 2: Verify the Result

2.1. Enter the following command (all on a single line):
yarn application -list -appStates FINISHED | grep Dist

You should see the application ID of the DistributedShell command that you
just ran:

application_1378331467073_0004 DistributedShell YARN yarn
default FINISHED SUCCEEDED 100%

Lester Martin Jr.� 11/3/2015 4:18 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:18 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/20/2015 9:32 AM
Deleted: 2

Lester Martin Jr.� 11/6/2015 11:39 AM
Deleted: Open

Lester Martin Jr.� 11/6/2015 11:39 AM
Deleted: and

Lester Martin Jr.� 11/11/2015 1:42 PM
Deleted: lib

Lester Martin Jr.� 10/20/2015 9:34 AM
Deleted: 2.2.0.0-2041

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

134

2.2. Copy and paste the application ID of your DistributedShell command and check
its status using the following command (but replacing the ID shown here with your actual
application ID):

yarn application -status application_1378331467073_0004

Notice that the details of the job are displayed. This was a simple application, so
there is not a lot of information to analyze:

Application Report :
 Application-Id : application_1378331467073_0004
 Application-Name : DistributedShell
 Application-Type : YARN
 User : root
 Queue : default
 Start-Time : 1408060384688
 Finish-Time : 1408060391340
 Progress : 100%
 State : FINISHED
 Final-State : SUCCEEDED
 Tracking-URL : N/A
 RPC Port : -1
 AM Host : sandbox.hortonworks.com/172.16.173.149
 Diagnostics :

	

NOTE: The YARN application command also has a -kill option
(followed by the application’s ID) that kills a running YARN job. This is a
great tool when you have submitted a job and then need to stop it
before it runs to completion.

Step 3: View the Log File
3.1. Enter the following command to view the output for this YARN application that you
just executed:

yarn logs -applicationId application_1378331467073_0004

IMPORTANT: The -applicationId must have the correct case for every letter, or
else you will see an error message stating that it is missing. The only capital letter
in the option is the I. The d, and all other letters, are lower case.
Somewhere in the log file, you should see a text calendar of the current month. For
example:

LogType: stdout
LogLength: 150
Log Contents:
 August 2014
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

135

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

Step 4: Optional: Run the Job in Six Containers

4.1. The DistributedShell application allows you to specify how many containers the
ApplicationMaster uses. Add the following arguments to the end of the YARN command
from Step 1.2:

-num_containers 6 -container_memory 20

4.2. Now find the applicationID and view the aggregated log file:
yarn application -list -appStates FINISHED | grep Dist

yarn logs -applicationId <applicationId>

You should see six calendars this time, one from each container.

4.3. Notice that this also demonstrates how the log output from multiple containers is
aggregated into a single, convenient log file.

Result: In this lab you ran a simple YARN application called the DistributedShell (that
ships with HDP 2.x). You also saw how to view the output of the aggregated log file using
the YARN logs command.

Lester Martin Jr.� 10/20/2015 9:45 AM
Deleted: Two

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

136

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

137

Lab: Defining an Oozie Workflow
This lab explores how to define and run an Oozie workflow.

	

Objective: Define and run an Oozie workflow.

File locations: /root/devph/labs/Oozie

Successful outcome: You will run an Oozie job that executes a Pig script and a Hive
script.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Defining Workflow with Oozie

Perform the following steps:

Step 1: Store the Job Data in HDFS

1.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

1.2. Make sure you have whitehouse/visits.txt in HDFS:
hdfs dfs -ls whitehouse

If not, the file (zipped within whitehouse_visits.zip) can be found in the
/root/devph/labs/Lab5.1 folder. The Oozie job assumes there is a file named
visits.txt in a folder named whitehouse in HDFS.

Step 2: Deploy the Oozie Workflow

2.1. Using the gedit text editor, open the file /root/devph/labs/Oozie/workflow.xml.

2.2. How many actions are in this workflow? _____________
Answer: Two

2.3. Which action will execute first? _________________
Answer: The Pig action named export_congress

2.4. If the first action is successful, which action will execute next? ____________
Answer: The Hive action named define_congress_table

2.5. To deploy this workflow, we need a directory in HDFS:
cd ~/devph/labs/Oozie/
hdfs dfs -mkdir congress

2.6. Copy congress_visits.hive and whitehouse.pig from the Oozie folder into the
new congress folder in HDFS.

Lester Martin Jr.� 11/3/2015 4:19 PM
Deleted: About	 this	 Lab
Lester Martin Jr.� 11/3/2015 4:19 PM
Formatted: No bullets or numbering

Lester Martin Jr.� 10/20/2015 9:46 AM
Deleted: 2

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/20/2015 9:48 AM

Deleted: Pull

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

138

hdfs dfs -put congress_visits.hive congress/congress_visits.hive
hdfs dfs -put whitehouse.pig congress/whitehouse.pig

2.7. Also, put workflow.xml into the congress folder.
hdfs dfs -put workflow.xml congress/workflow.xml

2.8. Verify that you have three files now in your congress folder in HDFS:
hdfs dfs -ls congress
Found 3 items
-rw-r--r-- 1 root root 429 congress/congress_visits.hive
-rw-r--r-- 1 root root 580 congress/whitehouse.pig
-rw-r--r-- 1 root root 1692 congress/workflow.xml

Step 3: Deploy the Hive Configuration File

3.1. If you look at the Hive action in workflow.xml, you will notice that it references a file
named hive-site.xml within the <job-xml> tag. This file represents the settings Oozie
needs to connect to your Hive instance, and the file needs to be deployed in HDFS
(using a relative path to the workflow directory). Make a copy of the original file into the
working directory:

cp /etc/hive/conf/hive-site.xml .

3.1. To address an Oozie expression language issue and to ensure the workflow will run in
the lab VM, use the gedit text editor to open /root/devph/labs/Oozie/hive-
site.xml and delete the marked out stanza below as well as change the default
execution engine from tez to mr:

 <property>
 <name>hive.server2.logging.operation.log.location</name>

<value>${system:java.io.tmpdir}/${system:user.name}/operation_logs</value>
 </property>

 <property>
 <name>hive.execution.engine</name>
 <value>mr</value>
 </property>

3.1. Verify that the differences form the original file and the modified one are correct by
returning results similar to those listed below:

diff /etc/hive/conf/hive-site.xml hive-site.xml
250c250
< <value>tez</value>

> <value>mr</value>
544,548d543
< <name>hive.server2.logging.operation.log.location</name>
<
<value>${system:java.io.tmpdir}/${system:user.name}/operation_logs</value>
< </property>
<

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 11/11/2015 1:52 PM
Deleted: 3
Lester Martin Jr.� 11/11/2015 1:52 PM
Deleted: 3
Lester Martin Jr.� 11/11/2015 1:52 PM
Deleted: 3

Lester Martin Jr.� 11/10/2015 1:17 PM
Formatted: Font:Italic

Lester Martin Jr.� 11/10/2015 1:14 PM
Formatted: Font:(Default) Courier New,
10 pt

Lester Martin Jr.� 11/10/2015 1:15 PM
Formatted: Strikethrough

Lester Martin Jr.� 11/10/2015 1:14 PM
Formatted: Font:(Default) Courier New,
10 pt

Lester Martin Jr.� 11/10/2015 1:14 PM
Formatted: Font:(Default) Courier New,
10 pt

Lester Martin Jr.� 11/10/2015 1:15 PM
Formatted: Strikethrough

Lester Martin Jr.� 11/10/2015 1:14 PM
Formatted: Highlight

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

139

< <property>
783c778
< </configuration>
\ No newline at end of file

> </configuration>

3.2. Copy the modified hive-site.xml into the workflow directory:
hdfs dfs -put hive-site.xml congress/hive-site.xml

Step 4: Define the OOZIE_URL Environment Variable

4.1. Although not required, you can simplify oozie commands by defining the OOZIE_URL
environment variable. From the command line, enter the following command:

export OOZIE_URL=http://sandbox:11000/oozie

Step 5: Run the Workflow
Run the workflow with the following command from the /root/devph/labs/Oozie
directory:

oozie job -config job.properties -run

The job.properties file reference above contains the following entries (no need to
type this):

oozie.wf.application.path=hdfs://sandbox:8020/user/root/congress

#Hadoop RM
resourceManager=resourcemanager:8050

#Hadoop fs.default.name
nameNode=hdfs://sandbox:8020/

#Hadoop mapred.queue.name
queueName=default

oozie.use.system.libpath=true

If successful, the job ID should be displayed at the command prompt.

Step 6: Monitor the Workflow
6.1. Point your Web browser to the Oozie Web Console at the following URL:
http://sandbox:11000/oozie

You should see your Oozie job in the list of workflow jobs:

Lester Martin Jr.� 11/10/2015 1:19 PM
Deleted: If you look at the Hive action
in workflow.xml, you will notice that it
references a file named hive-
site.xml within the <job-xml> tag.
This file represents the settings Oozie
needs to connect to your Hive instance,
and the file needs to be deployed in
HDFS (using a relative path to the
workflow directory).

Lester Martin Jr.� 11/10/2015 1:18 PM
Deleted: Put

Lester Martin Jr.� 10/28/2015 5:04 PM
Deleted: # hadoop fs
Lester Martin Jr.� 11/10/2015 1:19 PM
Deleted: /etc/hive/conf/
Lester Martin Jr.� 10/21/2015 10:49 AM

Deleted: (do not type the "\"
characters)

Lester Martin Jr.� 10/21/2015 10:49 AM
Formatted: Program Listing

Lester Martin Jr.� 10/21/2015 10:50 AM
Deleted: # oozie job -config
job.properties -run ... [36]

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

140

	
6.2. Click on the Job ID to the Job Info page:

	
6.3. Notice that you can view the status of each Action within the workflow.

Step 7: Verify the Results

Lester Martin Jr.� 10/20/2015 9:52 AM
Deleted: Double-c

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

141

7.1. The Oozie job should take a few minutes to complete. Refresh the status page every
so often until the status changes from RUNNING to COMPLETE, or the job no longer
appears under Active Jobs tab and shows up under the Done Jobs tab.

Once the Oozie job is completed successfully, back in the terminal window start the Hive
Shell.

hive

7.2. Run a select statement on congress_visits and verify that the table is populated:
hive> select * from congress_visits;
...
WATERS MAXINE 12/8/2010 17:00 POTUS OEOB
 MEMBERS OF CONGRESS AND CONGRESSIONAL STAFF
WATT MEL 12/8/2010 17:00 POTUS OEOB MEMBERS OF
CONGRESS AND CONGRESSIONAL STAFF
WEGNER DAVID L 12/8/2010 16:46 12/8/2010 17:00 POTUS OEOB
 MEMBERS OF CONGRESS AND CONGRESSIONAL STAFF
WILLOUGHBY JEANNE P 12/8/2010 17:07 12/8/2010 17:00 POTUS
 OEOB MEMBERS OF CONGRESS AND CONGRESSIONAL STAFF
WILSON ROLLIE E 12/8/2010 16:49 12/8/2010 17:00 POTUS
 OEOB MEMBERS OF CONGRESS AND CONGRESSIONAL STAFF
YOUNG DON 12/8/2010 17:00 POTUS OEOB MEMBERS OF
CONGRESS AND CONGRESSIONAL STAFF
MCCONNELL MITCH 12/14/2010 9:00 POTUS WH MEMBER OF
CONGRESS MEETING WITH POTUS.
Time taken: 1.082 seconds, Fetched: 102 row(s)

Result: You have just executed an Oozie workflow that consists of a Pig script followed by
a Hive script.

Lester Martin Jr.� 11/10/2015 1:06 PM
Deleted: between 5 and 20

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

142

Lab: Getting Started with Apache Spark
This lab explores Spark Core and RDD structures using Python Spark Shell.

	

Objective: Read and manipulate HDFS files with Spark.

File locations: /root/devph/labs/Spark

Successful outcome: You will have processed several HDFS file via Spark Core.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Programming with Apache Spark

Perform the following steps:

Step 8: Execute a WordCount with Spark.

8.1. If not already done, open a Terminal in your VM and type "ssh sandbox".

8.2. Copy the constitution.txt file to HDFS.
[root@sandbox ~]# cd ~/devph/labs/Spark
[root@sandbox Spark]# hdfs dfs -mkdir spark
[root@sandbox Spark]# hdfs dfs -put ~/devph/labs/demos/constitution.txt
spark/
[root@sandbox Spark]# hdfs dfs -ls spark
Found 1 items
-rw-r--r-- 1 root hdfs 45489 2015-11-09 09:39 spark/constitution.txt

8.3. Launch the Python Spark Shell. NOTE: "INFO" comments will be removed from the
output in this lab guide going forward.

[root@sandbox ~]# pyspark
Python 2.6.6 (r266:84292, Jul 23 2015, 15:22:56)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-11)] on linux2

 ... lines removed ...

Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 1.4.1
 /_/

Using Python version 2.6.6 (r266:84292, Jul 23 2015 15:22:56)
SparkContext available as sc, HiveContext available as sqlContext.
>>>

Lester Martin Jr.� 11/9/2015 7:15 PM
Formatted: No bullets or numbering

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

143

8.4. Read in the file as a RDD.
>>> baseFile =
sc.textFile("hdfs://sandbox:8020/user/root/spark/constitution.txt")
>>> baseFile.take(1)
[u'We the People of the United States, in Order to form a more perfect ']

8.5. Break the full lines down into a collection of words.
>>> justWords = baseFile.flatMap(lambda line: line.split(' '))
>>> justWords.take(5)
[u'We', u'the', u'People', u'of', u'the']

8.6. Map the words with a count of "1" for each.
>>> mappedWords = justWords.map(lambda word: (word, 1))
>>> mappedWords.take(5)
[(u'We', 1), (u'the', 1), (u'People', 1), (u'of', 1), (u'the', 1)]

8.7. Count up the words; sorting them in reverse.
>>> wordCounts = mappedWords.reduceByKey(lambda a,b:
a+b).sortByKey(ascending=False)
>>> wordCounts.take(10)
[(u'years;', 1), (u'years', 9), (u'year,', 1), (u'year', 1), (u'written', 6),
(u'writs', 1), (u'writing,', 1), (u'would', 2), (u'work', 1), (u'witnesses',
2)]

8.8. Chain all the method invocations into a single operation, as is more the normal usage
pattern. NOTE: Type as a single line without the new line or "\" characters.

>>> asOneLine =
sc.textFile("hdfs://sandbox:8020/user/root/spark/constitution.txt") \
 .flatMap(lambda line: line.split(' ')) \
 .map(lambda word: (word, 1)) \
 .reduceByKey(lambda a,b: a+b) \
 .sortByKey(ascending=False)
>>> asOneLine.take(10)
[(u'years;', 1), (u'years', 9), (u'year,', 1), (u'year', 1), (u'written', 6),
(u'writs', 1), (u'writing,', 1), (u'would', 2), (u'work', 1), (u'witnesses',
2)]

8.9. Exit out of the pyspark REPL.
>>> quit()

Step 9: On a simple customer file, find the top 5 states with the most male customers.

9.1. Upload customer.csv and explore its format of name, gender, state and duration.
[root@sandbox Spark]# hdfs dfs -put customer.csv spark
[root@sandbox Spark]# hdfs dfs -tail spark/customer.csv
celia,F,Maryland,3.97
Evalyn,F,Pennsylvania,2.1
Jeneva,F,Nebraska,9.26
Kelsey,F,Minnesota,8.68
Daine,F,Nebraska,6.34

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

144

 ... lines removed ...

Annamae,F,Nebraska,9.11
Racheal,F,Wisconsin,9.65
Ellan,F,Michigan,5.82

9.2. Launch pyspark and read the file.
[root@sandbox labs]# pyspark
>>> custFile =
sc.textFile("hdfs://sandbox:8020/user/root/spark/customer.csv")
>>> custFile.take(3)
[u'Irvin,M,Maryland,5.06', u'Owen,M,Illinois,2.01',
u'August,M,Illinois,1.42']

9.3. Filter out just the male customers.
>>> justMales = custFile.map(lambda line: line.split(',')).filter(lambda
line: line[1] == 'M')
>>> justMales.take(2)
[[u'Irvin', u'M', u'Maryland', u'5.06'], [u'Owen', u'M', u'Illinois',
u'2.01']]

9.4. Create Key-Value-Pairs (KVP) with state being the key and the number "1" being the
value.

>>> mapByStateCode = justMales.map(lambda line: (line[2], 1))
>>> mapByStateCode.take(4)
[(u'Maryland', 1), (u'Illinois', 1), (u'Illinois', 1), (u'New Jersey', 1)]

9.5. Count up the number of customers by state.
>>> nbrCustsByState = mapByStateCode.reduceByKey(lambda a,b: a+b)
>>> nbrCustsByState.take(4)
[(u'Wisconsin', 2), (u'New Jersey', 4), (u'Michigan', 8), (u'Pennsylvania',
2)]

9.6. Flip the KVP so that the count is first and order that from highest to lowest.
>>> highToLowCountAndState = nbrCustsByState.map(lambda (a,b):
(b,a)).sortByKey(ascending=False)
>>> highToLowCountAndState.take(6)
[(8, u'Michigan'), (8, u'Maryland'), (7, u'Illinois'), (5, u'Nebraska'), (4,
u'New Jersey'), (4, u'Indiana')]

9.7. Flip the KVP pair back to state and count plus add an index to represent the ordering
sequence.

>>> stateCountIndexedHighToLow = highToLowCountAndState.map(lambda (a,b):
(b,a)).zipWithIndex()
>>> stateCountIndexedHighToLow.take(6)
[((u'Michigan', 8), 0), ((u'Maryland', 8), 1), ((u'Illinois', 7), 2),
((u'Nebraska', 5), 3), ((u'New Jersey', 4), 4), ((u'Indiana', 4), 5)]

9.8. Eliminate all records except for the top 5.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

145

>>> topFive = stateCountIndexedHighToLow.filter(lambda ((a,b),c): c<5)
>>> topFive.collect()
[((u'Michigan', 8), 0), ((u'Maryland', 8), 1), ((u'Illinois', 7), 2),
((u'Nebraska', 5), 3), ((u'New Jersey', 4), 4)]

9.9. Eliminate the index and the counts to just return the top 5 state names.
>>> top5Names = topFive.map(lambda ((a,b),c): a)
>>> top5Names.collect()
[u'Michigan', u'Maryland', u'Illinois', u'Nebraska', u'New Jersey']

9.10. As before, chain all the method invocations into a single operation as is more the
normal usage pattern.

>>> sc.textFile("hdfs://sandbox:8020/user/root/spark/customer.csv") \
 .map(lambda line: line.split(',')) \
 .filter(lambda line: line[1] == 'M') \
 .map(lambda line: (line[2], 1)) \
 .reduceByKey(lambda a,b: a+b) \
 .map(lambda (a,b): (b,a)) \
 .sortByKey(ascending=False) \
 .map(lambda (a,b): (b,a)) \
 .zipWithIndex() \
 .filter(lambda ((a,b),c): c<5) \
 .map(lambda ((a,b),c): a) \
 .collect()
[u'Michigan', u'Maryland', u'Illinois', u'Nebraska', u'New Jersey']

Result: Successful use of Spark Core and RDD to read files and perform data analysis.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

146

Lab: Exploring Spark SQL
This lab utilizes Spark SQL and DataFrames within the Python Spark Shell.

	

Objective: Create DataFrame structure from Hive tables & HDFS files and
utilize both the DataFrame API and SQL to refine returned data.

File locations: /root/devph/labs/Spark

Successful outcome: You will have successfully queries data from multiple DataFrame
objects as well as joined them together.

Before you begin: Your HDP 2.3 cluster should be up and running within your VM.

Related lesson: Spark SQL and DataFrames

Perform the following steps:

Step 10: Run a query on an existing Hive table.

10.1. Load file into HDFS and create a Hive table mapping to it.
[root@sandbox Spark]# hdfs dfs -mkdir spark/cust_fav
[root@sandbox Spark]# hdfs dfs -put cust_fav.csv spark/cust_fav/
[root@sandbox Spark]# hive -f cust_fav.hive
[root@sandbox Spark]# hive -e 'select * from cust_fav limit 5;'
OK
Irvin Riesling
Owen Pinot Noir
August Sauvignon Blanc
Christian Merlot
Arlen Pinot Noir
Time taken: 3.023 seconds, Fetched: 5 row(s)

10.2. Create a DataFrame from querying the Hive table created in the prior step after
starting up pyspark again.

>>> from pyspark.sql import HiveContext
>>> hc = HiveContext(sc)
>>> custFavDF = hc.sql("SELECT * FROM cust_fav")
>>> custFavDF.show(5)
+---------+---------------+
|cust_name| wine_type|
+---------+---------------+
| Irvin| Riesling|
| Owen| Pinot Noir|
| August|Sauvignon Blanc|
|Christian| Merlot|
| Arlen| Pinot Noir|

Lester Martin Jr.� 11/9/2015 7:16 PM
Formatted: No bullets or numbering

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

147

+---------+---------------+

Step 11: Using the same customer data file from the prior lab, find the average length of
customers by gender and state.

11.1. Import the necessary Row definition and then create a RDD from the customer.csv
file previously loaded into HDFS.

>>> from pyspark.sql import Row
>>> customerRaw =
sc.textFile("hdfs://sandbox:8020/user/root/spark/customer.csv")
>>> customerRaw.take(2)
[u'Irvin,M,Maryland,5.06', u'Owen,M,Illinois,2.01']

11.2. Break each long string representing a row from the input file into discrete customer
records.

>>> customerRecords = customerRaw.map(lambda line: line.split(','))
>>> customerRecords.take(2)
[[u'Irvin', u'M', u'Maryland', u'5.06'], [u'Owen', u'M', u'Illinois',
u'2.01']]

11.3. Convert that the RDD to a DataFrame.
>>> customerDF = customerRecords.map(lambda c: Row(name=c[0], gender=c[1],
state=c[2], length=float(c[3]))).toDF()
>>> customerDF.show(2)
+------+------+-----+--------+
|gender|length| name| state|
+------+------+-----+--------+
| M| 5.06|Irvin|Maryland|
| M| 2.01| Owen|Illinois|
+------+------+-----+--------+

11.4. Search for the final results with the DataFrame API.
>>>
customerDF.select("gender","state","length").groupBy("gender","state").avg("l
ength").show()
+------+------------+------------------+
|gender| state| AVG(length)|
+------+------------+------------------+
F	Illinois	7.49
F	New Jersey	4.04
F	Minnesota	6.204
F	Michigan	4.207142857142857
M	Indiana	4.369999999999999
M	Maryland	5.326250000000001
M	Nebraska	6.516
M	Illinois	4.858571428571428
M	New Jersey	4.6499999999999995
M	Minnesota	5.4375
F	Wisconsin	6.29125
M	Michigan	5.0337499999999995
F	Pennsylvania	5.575

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

148

F	Ohio	5.93
F	Iowa	7.430000000000001
M	Wisconsin	0.33
M	Pennsylvania	3.665
M	Ohio	4.25
M	Iowa	5.753333333333333
F	Maryland	5.003749999999999
+------+------------+------------------+

Step 12: Join the prior two DataFrames.
12.1. Utilize the DataFrame API to perform the join.

>>> customerDF.join(custFavDF, customerDF.name ==
custFavDF.cust_name).show(5)
+------+------+---------+----------+---------+---------------+
|gender|length| name| state|cust_name| wine_type|
+------+------+---------+----------+---------+---------------+
| M| 5.06| Irvin| Maryland| Irvin| Riesling|
| M| 2.01| Owen| Illinois| Owen| Pinot Noir|
| M| 1.42| August| Illinois| August|Sauvignon Blanc|
| M| 8.17|Christian|New Jersey|Christian| Merlot|
| M| 2.24| Arlen| Indiana| Arlen| Pinot Noir|
+------+------+---------+----------+---------+---------------+

Result: Successful creation of a DataFrame from a Hive tables and a HDFS file; as well as
joining these two DataFrames.

HDP Developer: Apache Pig and Hive

Copyright © 2015, Hortonworks, Inc. All rights reserved.

149

Appendix: Quick troubleshooting steps

If VM was not shut down properly for multiple occations or some of the daemons aren’t
working properly, please try the following:

1. Execute the following command:
service startup_script restart

2. If service startup_script restart does not work, excute the following:

Run the “jps” command and identify PID for all running processes.
Kill these processes using the “kill -9 <PID>” command
Remove all *.pid files from the corresponding /var/run/<SERVICE> directories
Run “service startup_script restart”

3. If services still don’t come back up, try stop all, start all from Ambari. If Ambari no

longer works, try service ambari stop and service ambari start.

In most cases, rebooting VM will fix the problem.

