
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Spam Classification with Mllib LAB
A Hortonworks University
Hadoop Training Course
	 	

2	 Copyright	©	2015,	Hortonworks,	Inc.	All	rights	reserved.	

Title:	LAB	GUIDE:	Data	Science	for	the	Hortonworks	Data	Platform	
Revision	2	
	
Copyright	© 2015	Hortonworks	Inc	2015	All	rights	reserved.	
	
	
All	Rights	Reserved.	Hadoop	and	the	Hadoop	elephant	logo	are	trademarks	of	the	Apache	Software	Foundation.	
	
The	contents	of	this	course	and	all	its	related	materials,	including	lab	exercises	and	files,	are	Copyright	© 2015	
Hortonworks	Inc.	
	
No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any	
means	electronic,	mechanical,	photocopying,	recording	or	otherwise	without	the	prior	written	permission	of	
Hortonworks	Inc.	
	

Copyright	©	2015,	Hortonworks,	Inc.	All	rights	reserved	 3	

Lab:	Spam	Classifier	using	Spark	MLlib	

	

Objective:	 Become	familiar	with	using	Spark	MLlib	to	run	data	science	
algorithms	on	a	Hadoop	cluster.	

Successful	Outcome:	 You	will	have	created	a	spam	classifier	with	MLlib.	

Before	You	Begin:	 Your	HDP	cluster	should	be	up	and	running	in	the	classroom	
VM.	

	

	

4	 Copyright	©	2015,	Hortonworks,	Inc.	All	rights	reserved.	

1.1. Before	we	can	begin	this	lab,	we	need	to	retrieve	the	data	and	put	it	in	the	
HDFS.		Run	the	following	commands	below	the	screenshot	to	retrieve	the	data,	
unzip	the	file,	and	put	the	data	into	the	hdfs	

	

%sh
wget https://www.dropbox.com/s/5lzhi4ubwann65z/spamEmail.zip?dl=1
mv spamEmail.zip?dl=1 spamEmail.zip
unzip spamEmail.zip > out.log
ls
hdfs dfs -put spamEmail

Step	2: There	are	2	types	of	files	in	the	spamEmail	folder.		One	is	called	SPAMTrain.txt,	
which	contains	labels	for	the	emails,	and	the	other	are	training	emails	(names	
are	like	“TRAIN_0####.eml).		We	need	to	start	with	this	data	in	its	raw	format.	

2.1. Create	an	RDD	for	the	datafile	that	contains	the	email	name	and	the	labels.		
Do	it	take	on	the	rdd	to	verify	it	was	created	correctly.		Notice	the	format	of	the	
record.		There	are	two	values,	the	first	is	a	number	(0,	or	1)	which	correspond	to	
wether	the	email	with	that	title	is	spam	or	not	spam.		If	it’s	a	0,	it	is	not	spam,	if	it	
is	1,	it	is	spam.	

val labelDoc = sc.textFile("spamEmail/SPAM*")

Copyright	©	2015,	Hortonworks,	Inc.	All	rights	reserved	 5	

	

2.2. Next	we	need	to	create	an	RDD	for	the	emails.		Each	email	is	contained	within	
its	own	file,	so	TRAIN_00000.eml	is	one	email.		Because	of	the	nature	of	the	data,	
we	will	use	a	new	method	for	reading	the	data.		The	Spark	api	“wholeTextFiles”	
will	read	in	all	the	emails	into	a	PairRdd,	where	the	key	is	the	name	of	the	file	and	
the	value	is	the	content	of	the	file.		Do	a	take	on	the	RDD	to	get	an	idea	of	the	
structure.		Notice	how	the	key	is	the	entire	file	path,	and	in	our	labelsRdd,	we	only	
have	the	file	name.	

val spamEmail = sc.wholeTextFiles("spamEmail/T*")

	

2.3. Because	the	names	in	our	LabelRdd	and	spamEmailRdd	aren’t	the	same,	we	
need	to	massage	that	data.		In	order	to	get	only	the	file	name,	we	need	to	strip	off	
everything	before	the	last	“/”	in	the	key	field.		To	do	so,	we’ll	use	a	substring	and	
index	function	in	scala.	
val cleanEmailName = spamEmail.map{case (a,b) =>
 ((a.substring(a.lastIndexOf("/")+1)),b)}

	

6	 Copyright	©	2015,	Hortonworks,	Inc.	All	rights	reserved.	

	

2.4. Now	that	the	spamEmailRDD	names	line	up	with	the	labelDocRdd	names,	we	
can	do	a	join.		But	before	we	join,	remember	the	data	in	the	labelDoc	is	not	in	the	
correct	format.	So	we	need	fix	that.	

	

val cleanLabelDoc = labelDoc.map(line =>
 line.split(" ")).map(line => (line(1),line(0)))

	

2.5. Join	the	two	RDD’s	together	and	only	keep	the	values,	since	the	names	of	the	
emails	aren’t	important	to	us.		Also,	this	part	takes	a	while	as	some	data	is	moving	
around	the	network.		We	want	to	store	a	copy	of	the	output	data	in	memory	so	
the	rest	of	this	is	faster.	

val labelsAndEmails =
cleanLabelDoc.join(cleanEmailName).values
labelsAndEmails.take(1)
labelsAndEmails.cache()
labelsAndEmails.count()

Copyright	©	2015,	Hortonworks,	Inc.	All	rights	reserved	 7	

		

2.6. Now	that	we	have	the	data	in	the	correct	format,	and	a	copy	of	the	
intermediate	stored	in	memory,	we	can	start	working	with	the	ML-Lib	aspect	of	
application.	

Step	3: Lets	do	some	Machine	Learning	

3.1. First	we	need	to	import	the	relevant	packages	

import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.feature.HashingTF
import
org.apache.spark.mllib.classification.LogisticRegressionWithSGD

3.2. We	now	need	to	convert	our	words	into	numbers,	using	a	HashingTF.		This	
will	convert	the	emails	of	words	into	a	feature	vector	of	numbers.	

val HTF = new HashingTF(1000000)
val emailFeatures = labelsAndEmails.mapValues(feature =>
HTF.transform(feature.split(" ")))

8	 Copyright	©	2015,	Hortonworks,	Inc.	All	rights	reserved.	

3.3. 	Now	that	we	have	our	features	built,	we	need	to	label	the	features.		In	
addition,	this	is	the	last	step	before	we	run	our	machine	algorithm,	so	lets	cache	
the	dataset	in	memory,	and	take	a	look	at	the	data.	

val labelsAndFeatures = emailFeatures.map{case (a,b) =>
LabeledPoint(a.toInt,b)}
labelsAndFeatures.take(1)
labelsAndFeatures.cache()
labelsAndFeatures.count()

	

3.4. Now	we	have	all	of	our	data	in	the	right	format,	lets	build	the	model.		It	may	
take	a	couple	minutes	to	build	the	model	

val classified =
LogisticRegressionWithSGD.train(labelsAndFeatures,100)

	

Copyright	©	2015,	Hortonworks,	Inc.	All	rights	reserved	 9	

Step	4: The	model	is	build,	we	can	now	start	playing	with	the	model	and	see	how	it	
predicts	some	tests.		If	the	model	predicts	0,	it	is	spam,	if	the	model	predicts	1,	it	
is	not	spam.	

4.1. Lets	test	the	model	with	a	couple	of	made	up	sentences.		Note,	this	is	not	the	
normal	way	to	test	models,	but	a	fun	and	easy	way.		We	will	talk	about	evaluation	
in	a	bit.	

val positiveResult = HTF.transform("Poker for money against
real playersGet your favorite Poker action!".split(" "))
val negativeResult = HTF.transform("Please report to
principal's office...".split(" "))

classified.predict(positiveResult)
classified.predict(negativeResult)

	

	

