
10/28/15	

1	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Advanced Programming
Lesson 4

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

•  After you complete this lesson you should be able to:
– Use Pair RDD functions

•  Joins
•  GroupBy
•  Key reordering

– Use more Core RDD functions
– Use the Spark documentation to find proper API
– Understand basic partitions in Spark
– Explain Job/Stage/Task and creation of the DAG
– View the Spark UI

10/28/15	

2	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Pair RDD Transformation: mapValues()

•  Performs a map only on the values, not changing the keys

 rdd=sc.parallelize([(“a”, [“dog”, “cat”, “bird”]), (“b”, [“this”])])
 rdd.mapValues(lambda x: len(x)).collect()
 [(‘a’, 3), (‘b’,1)]

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Pair RDD Transformation: groupByKey()

•  Returns an rdd with a grouping of values by key

 rdd = sc.parallelize([('a', 1), ('a', 2), ('b', 1), ('b', 3)])
 output = rdd.groupByKey()
 for (key, values) in output.collect():
 print ‘key: ‘,key
 for value in values: print ‘\t’, value

 [(‘a’, [1, 2]), (‘b’, [1, 3])]

10/28/15	

3	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Pair RDDs Transformation: Joins

•  All joins supported (inner, full outer, left outer, right outer)

 rdd = sc.parallelize([(‘a’, 1), (‘a’, 2), (‘b’, 1), (‘b’, 3)])
 rdd1 = sc.parallelize([(‘a’, 2), (‘a’, 3), (‘b’, 1), (‘c’, 3)])

 rdd1.leftOuterJoin(rdd).collect()
 [('a', (2, 1)), ('a', (2, 2)), ('a', (3, 1)), ('a', (3, 2)),
 ('c', (3, None)), ('b', (1, 1)), ('b', (1, 3))]

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Pair RDD Transformation: Reordering the K/V

•  A lot of times we need to reorder our K/V pair for processing
– This is called pattern matching
 rdd = sc.parallelize([('a', (1,2)), ('a', (2,3))])
 Python
 rdd.map(lambda (k, (v1,v2)) : ((k,v1) ,v2)).collect()
 [(('a', 1), 2), (('a', 2), 3)]
 Scala
 rdd.map{case (k,(v1,v2) => ((k, v1), v2)}.collect()
 [(('a', 1), 2), (('a', 2), 3)]

10/28/15	

4	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

More Pair RDD operations

•  Transformations
– keys() returns just the keys
– values() returns just the values
– subtractByKey() retruns rdd minus the keys in rdd1

•  Actions
–  lookup(key) returns all the values for that particular key

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

More RDD Transformations

•  keyBy() create a KV pair with the specified key
•  zipWithIndex() like zip, but also returns index of element
•  union() returns an RDD of both rdds
•  zip() returns an RDD of K/V where rdd element is key and

rdd1 element is value

10/28/15	

5	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Using the Spark API Documentation

•  http://spark.apache.org/docs/<version>/api/scala/
•  http://spark.apache.org/docs/<version>/api/python/
•  Version can be

–  “1.3.1”
–  “1.5.0”
–  “latest” for the newest release

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lab 2

•  In this lab we want to do the following:
– Find the top 5 states with the most males
– Get the top 3 wines for each state

•  Lab tip*
myString = (“This is my string”)
rdd=sc.parallelize([myString]).map(lambda line: line.split(“ “))

 .map(lambda line: (line[0], line[3])).take(1)
[('This', 'string')]

10/28/15	

6	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Basic Spark Partitioning/Parallelism

•  White Board
•  Notes:

– Defaults to number of blocks a file is on HDFS
– Can be set with spark.default.parallelism

•  Default is num of cores on local, or total cores on all executors
•  This setting is for operations with no parent RDD’s

– Shuffle based operations (join, reduceByKey, etc) take the
largest number in the parent

– Shuffle based operations take an optional param for partitions
•  rdd.reduceByKey(lamda a, b: a+b, 20) will have 20 partitions

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Wide vs Narrow Operations

•  Wide operations require a shuffling of data (normally)
–  reduceByKey
– groupByKey
–  repartition
–  join

•  Narrow operations can be executed locally
– map
–  filter
–  flatMap

10/28/15	

7	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Understanding the Shuffle

•  White board how a shuffle works
•  Extra Notes/Gotchas

– Lots of parallelism + lots of reducers = lots of small files
•  Not a big deal, except when you open more then 32k files on a system
•  spark.shuffle.consolidateFiles=False

– Shuffle the minimal amount of data
•  Avoid groupByKeys
•  Filter/Distinct Early!

– Embrace the Shuffle
•  Not necessarily bad

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spark Task/Stage/Job

•  Task is a unit of work
•  Stage is a group of tasks separated by a wide operation
•  A job is a grouping of stages

•  The next stage cannot start before all the tasks in the
previous stage have finished

10/28/15	

8	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Using the spark ui

•  For stand alone spark:
localhost:4040

•  For YARN integrated cluster, navigate with Hue

•  UI offers valuable insight into the application
•  Demo

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

10/28/15	

9	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Conclusion and Key Points

