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I Learning Objectives

 After you complete this lesson you should be able to:
— Explain the core components of a Spark Application
— Understand partitions in Spark
— Understand the shuffle
— Explain Job/Stage/Task and creation of the DAG
— Describe the difference between cache and persist
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Core Components of a Spark application

» Storage System (HDFS/S3/etc)

YARN or Spark Standalone Resource Manager
Driver

SparkContext

Executor

Hortonworks

HDFS

* Hadoop distributed file system
» Provides fault tolerant storage for data
» Scales incredibly well to accommodate more data

» Creates blocks of data that in turn can be processed by
other frameworks
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YARN - Yet Another Resource Manager

* The “HR Team”

» Democratizes hadoop to allow multiple execution/
processing frameworks to use hadoop

» Provides resources for applications to run in the form of a
container

 Allows jobs to be run on a Kerberized cluster

Hortonworks

Spark Executor

* The “workers”
Comparable, but not equivalent to mappers and reducers
Do all the processing for the application

If we lose an executor, anything assigned to the current
one, along with any lost data will be reassigned and
recomputed on another executor

Configuring correctly can greatly increase performance
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Spark Context

 The “boss”

Contains the code/objects required to process data in the
cluster

Works with YARN to get resources for the application
Coordinates the processing, following the DAG schedule
Schedules the tasks to be done on the executors

Checks in with executors to report on work being done
— We can see this in the web ui, covered in the future
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Spark Driver

* The “owner”
Responsible for containing the Spark Context

Holds resources for the Spark Context to communicate
with the cluster

Responsible for writing logs from the context

Essentially the most important part
— If this goes down, the job fails
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How do they all fit together?

A resourcemanager namenode
client
A
1. driver 7/ [ C\ ]
2. SubMmit YARN app  3a} Start cantainer
Spark program
’ park prog worker \ worker
Create context
I nodemanager\ / nodemanager
? SparkContext 4
3b.|launch |respures b. launch
runlpb y 53/ Stalrt container
’ DAGScheduler applicationMaster container
runibb ExecutorLauncher/ —*| executorBackend
’ TaskScheduler &
executor
Iauncb task
SchedulerBackend
datanode datanode
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Spark Partitioning/Parallelism

* White Board

* Notes:
— Defaults to number of blocks a file is on HDFS

— Can be set with spark.default.parallelism
* Default is num of cores on local, or total cores on all executors
* This setting is for operations with no parent RDD’s
— Shuffle based operations (join, reduceByKey, etc) take the
largest number in the parent

— Shuffle based operations take an optional param for partitions
* rdd.reduceByKey(lamda a, b: a+b, 20) will have 20 partitions
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Example: word-count

TextFile -~

| Partition1  Partion2 Partiton3  Partiton4 | 9% !
flatMap l l l l

. Partiton 1 Partition 2 Partition 3 Partition 4
e ! ! !

Partition 1 Partition 2  Partition 3  Partition 4
reduceByKey .. Nl oSl SN .

: ' Stage 2
collect
result
© Hortonworks Inc. 2011 — 2014. Al Rights Reserved Hortonworks

Tune Data Parallelism

» Spark works with partitions as the core mechanism for
data parallelization

» Use repartition() or coalesce() to control parallelism when
needed

— Use coalesce when reducing partitions, repartition to increase
rdd.repartition(500)
rdd.coalesce(20)

* Many operations include numPartitions as parameter that
does this automatically
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Wide vs Narrow Operations

» Wide operations require a shuffling of data (normally)
— reduceByKey
— groupByKey
— repartition
—join
« Narrow operations can be executed locally
—map
— filter
— flatMap
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Narrow Dependencies/Operations

Voo :" iti L ;
Partiion 1 ——> Partition 1 ; PartonAl S (. ParttonaAl |

Partiton2 ——> Partition 2  ParifionA2 - Partition A2 |

Partiton 3 ———> Partion3 | | ... . i ParitonB1 |

S ' | PartiionB1 |
1 ! i, PartionB2 !
| Partiion B2 - '

map(), filter()

Narrow dependencies, where each partition of the parent RDD is used by at
most one partition of the child RDD
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Wide Dependencies

R Join()
(when inputs not co-partitioned)

groupByKey()

Wide dependencies, where multiple child partitions may depend on a single
partition
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Understanding the Shuffle

* White board how a shuffle works

» Extra Notes/Gotchas

— Lots of parallelism + lots of reducers = lots of small files
* Not a big deal, except when you open more then 32k files on a system
+ spark.shuffle.consolidateFiles=False

— Shuffle the minimal amount of data
 Avoid groupByKeys
* Filter/Distinct Early!

— Embrace the Shuffle
* Not necessarily bad
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Spark Task/Stage/Job

» Task is a unit of work (pipeline of narrow operations)
» Stage is a group of tasks separated by a wide operation
« Ajob is a grouping of stages

» The next stage cannot start before all the tasks in the
previous stage have finished
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Caching/Persisting Data

» Spark allows the developer to “put” data into memory
— Very useful (and incredibly fast) for iterative applications
— Useful when an RDD is going to be used more then once

» Spark offers several ways to “put” data into memory
— persist()
— cache()

Hortonworks
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Use RDD persistence to avoid re-computation

* RDD can be persisted in memory across operations
— Each node stores any partitions in the TDD computed by that

node

— Cached data is reused from memory for other transformations/
actions down the processing DAG

« Usage: rdd.persist(storageLevel)
— cache() == persisttMEMORY_ONLY_SER)

« Must import library to use it:
scala -> import org.apache.spark.storagelLevel._

python -> from pyspark import StoragelLevel
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Spark RDD Persist options

Storage Level Where? Storage format | Comments

MEMORY_ONLY RAM Deserialized Default level

MEMORY_AND_DISK RAM and DISK | Deserialized Disk is backup for partitions that don’t
fit in memory

MEMORY_ONLY_SER RAM Serialized Reduced RAM but more CPU intensive

MEMORY_AND_DISK_SER |RAMAND DISK | Serialized Reduced RAM but more CPU intensive

DISK_ONLY DISK Deserialized

MEMORY_ONLY_2 RAM Deserialized Stores each partition on two cluster
nodes

MEMORY_AND_DISK_2 RAM AND DISK | Deserialized Stores each partition on two cluster
nodes

OFF_HEAP TACHYON Serialized Experimental
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Which storage level to choose?

* If your RDD fits in memory, use the default MEMORY_ONLY

* |If RDDs don't fit in memory, try MEMORY_ONLY_SER
— This uses more CPU, so use efficient serialization like Kryo

— It may be faster to read and RDD from disk then recomputing then
use MEMORY_AND_DISK

— Set spark.rdd.compress to true, this saves space but cost CPU

» Replicated storage is good for fast fault recovery

— Usually this is overkill, and not a good idea if you’re using a lot of
data relative to total memory
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Lab 3

« We're going to redo Lab 1, but use the cache to show
performance improvements.
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Conclusion and Key Points
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