
10/28/15	

1	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Advanced Programming
Lesson 5

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

•  After you complete this lesson you should be able to:
– Explain the core components of a Spark Application
– Understand partitions in Spark
– Understand the shuffle
– Explain Job/Stage/Task and creation of the DAG
– Describe the difference between cache and persist

10/28/15	

2	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Core Components of a Spark application

•  Storage System (HDFS/S3/etc)
•  YARN or Spark Standalone Resource Manager
•  Driver
•  SparkContext
•  Executor

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

HDFS

•  Hadoop distributed file system
•  Provides fault tolerant storage for data
•  Scales incredibly well to accommodate more data
•  Creates blocks of data that in turn can be processed by

other frameworks

10/28/15	

3	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

YARN – Yet Another Resource Manager

•  The “HR Team”
•  Democratizes hadoop to allow multiple execution/

processing frameworks to use hadoop
•  Provides resources for applications to run in the form of a

container
•  Allows jobs to be run on a Kerberized cluster

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spark Executor

•  The “workers”
•  Comparable, but not equivalent to mappers and reducers
•  Do all the processing for the application
•  If we lose an executor, anything assigned to the current

one, along with any lost data will be reassigned and
recomputed on another executor

•  Configuring correctly can greatly increase performance

10/28/15	

4	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spark Context

•  The “boss”
•  Contains the code/objects required to process data in the

cluster
•  Works with YARN to get resources for the application
•  Coordinates the processing, following the DAG schedule
•  Schedules the tasks to be done on the executors
•  Checks in with executors to report on work being done

– We can see this in the web ui, covered in the future

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spark Driver

•  The “owner”
•  Responsible for containing the Spark Context
•  Holds resources for the Spark Context to communicate

with the cluster
•  Responsible for writing logs from the context
•  Essentially the most important part

–  If this goes down, the job fails

10/28/15	

5	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

How do they all fit together?

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spark Partitioning/Parallelism

•  White Board
•  Notes:

– Defaults to number of blocks a file is on HDFS
– Can be set with spark.default.parallelism

•  Default is num of cores on local, or total cores on all executors
•  This setting is for operations with no parent RDD’s

– Shuffle based operations (join, reduceByKey, etc) take the
largest number in the parent

– Shuffle based operations take an optional param for partitions
•  rdd.reduceByKey(lamda a, b: a+b, 20) will have 20 partitions

10/28/15	

6	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Example: word-count

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Tune Data Parallelism

•  Spark works with partitions as the core mechanism for
data parallelization

•  Use repartition() or coalesce() to control parallelism when
needed
– Use coalesce when reducing partitions, repartition to increase
rdd.repartition(500)
rdd.coalesce(20)

•  Many operations include numPartitions as parameter that
does this automatically

10/28/15	

7	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Wide vs Narrow Operations

•  Wide operations require a shuffling of data (normally)
–  reduceByKey
– groupByKey
–  repartition
–  join

•  Narrow operations can be executed locally
– map
–  filter
–  flatMap

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Narrow Dependencies/Operations

10/28/15	

8	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Wide Dependencies

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Understanding the Shuffle

•  White board how a shuffle works
•  Extra Notes/Gotchas

– Lots of parallelism + lots of reducers = lots of small files
•  Not a big deal, except when you open more then 32k files on a system
•  spark.shuffle.consolidateFiles=False

– Shuffle the minimal amount of data
•  Avoid groupByKeys
•  Filter/Distinct Early!

– Embrace the Shuffle
•  Not necessarily bad

10/28/15	

9	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spark Task/Stage/Job

•  Task is a unit of work (pipeline of narrow operations)
•  Stage is a group of tasks separated by a wide operation
•  A job is a grouping of stages

•  The next stage cannot start before all the tasks in the
previous stage have finished

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Caching/Persisting Data

•  Spark allows the developer to “put” data into memory
– Very useful (and incredibly fast) for iterative applications
– Useful when an RDD is going to be used more then once

•  Spark offers several ways to “put” data into memory
– persist()
– cache()

10/28/15	

10	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Use RDD persistence to avoid re-computation

•  RDD can be persisted in memory across operations
– Each node stores any partitions in the TDD computed by that

node
– Cached data is reused from memory for other transformations/

actions down the processing DAG
•  Usage: rdd.persist(storageLevel)

– cache() == persist(MEMORY_ONLY_SER)
•  Must import library to use it:

scala -> import org.apache.spark.storageLevel._
python -> from pyspark import StorageLevel

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spark RDD Persist options

10/28/15	

11	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Which storage level to choose?

•  If your RDD fits in memory, use the default MEMORY_ONLY
•  If RDDs don’t fit in memory, try MEMORY_ONLY_SER

– This uses more CPU, so use efficient serialization like Kryo
–  It may be faster to read and RDD from disk then recomputing then

use MEMORY_AND_DISK
– Set spark.rdd.compress to true, this saves space but cost CPU

•  Replicated storage is good for fast fault recovery
– Usually this is overkill, and not a good idea if you’re using a lot of

data relative to total memory

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Lab 3

•  We’re going to redo Lab 1, but use the cache to show
performance improvements.

10/28/15	

12	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Conclusion and Key Points

