
10/28/15	

1	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Programming with Apache Spark
Lesson 3

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Learning Objectives

•  After you complete this lesson you should be able to:
– Start the spark shell
– Understand what an RDD is
– Load data from the HDFS and perform a word count
– Know the differences between Transformation and Action
– Explain Lazy Evaluation

10/28/15	

2	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

How to start using Apache Spark?

•  The Spark Shell provides an interactive way to learn
Spark and explore data

•  Available for python and scala
– pyspark
– spark-shell

•  REPL

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

The Spark Context

•  Main entry point for Spark Applications
•  All Spark Applications require one
•  The Spark Context tells Spark how to access a cluster
•  The REPLs automatically create one for you

–  In Spark 1.3 and on, the shell creates a SQL context too

10/28/15	

3	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Working with the Spark Context

Attributes:
•  sc.appName: Spark application name
•  sc.master: Spark Master (local, yarn-client, etc)
•  sc.version: Version of Spark being used
Functions:
•  sc.parallelize(): create an RDD from local data
•  sc.textfile(): create RDD from a text file in HDFS
•  sc.stop(): stop the spark context

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

The Resilient Distributed Dataset

•  An Immutable collection of objects (or records) that can
be operated on in parallel
– Resilient: can be recreated from parent RDDs - An RDD keeps

its lineage information
– Distributed: partitions are distributed across nodes in the

cluster
– Dataset: a set of data that can be accessed
– Each RDD is composed of 1 or more partitions - The user can

control the number of partitions - More partitions => more
parallelism

10/28/15	

4	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Create an RDD

•  Load data from HDFS – or any other file system (S3,
Local, etc)
 rdd1 = sc.textFile(“/path/to/file.txt”)
 rdd2 = sc.textFile(“hdfs://namenode:8020/mydata/”)

•  With parallelize() function in driver – useful for learning
Spark
 rdd3 = sc.parallelize([1, 2, 3, 4, 5])

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Working with RDDs

•  RDDs have two types of operations

– Transformations: the RDD is transformed into a new RDD

– Actions: an action is performed on the RDD and a result is
returned to the driver, or data is saved somewhere

•  Transformations are lazy: they do not compute until an
action is performed

10/28/15	

5	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Actions – count()

•  The count() action returns the number of elements in the
RDD

 data= [5, 12, -4 , 7, 20]
 rdd= sc.parallelize(data)
 rdd.count()

 The output is: 5

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Actions – reduce()

•  The reduce() action has a lot of use cases in Spark
– Aggregating elements of an RDD using a defined function
– That function must be commutative and associative

•  a+b = b+a and a+(b+c)=(a+b)+c

rdd.reduce(lambda a, b : a+b)
40

rdd.reduce(lambda a, b: a if (a>b) else b)
20

10/28/15	

6	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Other Useful Spark Actions

•  first(): return the first element in the RDD
•  take(n): return the first n elements of the RDD
•  collect(): return all the elements in the RDD to the driver

– Make sure you only call this on small datasets or risk crashing
your driver!

•  saveAsTextFile(path): write the RDD to a file

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spark Actions: Examples

rdd.first(): 5

rdd.take(3): [5, 12, -4]

rdd.saveAsTextFile(“myfile”)

10/28/15	

7	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Spark Transformations

•  Spark Transformations create new RDD’s from existing
ones

•  The transformation is lazy, and doesn’t occur until an
action is called on the rdd, or subsequent rdd
– Transformation create a recipe, or lineage, for processing
– The actions trigger data to flow through the transformation and

create the result

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Transformations: map()

•  Map applies a function to each element of the RDD

 rdd=sc.parallelize([1, 2, 3, 4, 5])
 rdd.map(lambda x: x*2+1).collect()
 [3, 5, 7, 9, 11]

10/28/15	

8	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Transformations: flatMap()

•  Map applies a function to each element of the RDD

 rdd.map(lambda x: [x, x*2]).collect()
 [(1,2), (2, 4), (3,6), (4,8), (5,10)]

 rdd.flatMap(lambda x: [x, x*2]).collect()
 [1, 2, 2, 4, 3, 6, 4, 8, 5, 10]

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Transformation: filter()

•  Keep some elements based on a predicate

 rdd.filter(lambda x: x%2 == 0).collect()
 [2, 4]

 rdd.filter(lambda x: x<3).collect()
 [1, 2]

10/28/15	

9	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Transformation: distinct()

•  Remove all duplicate elements

 rdd.flatMap(lambda x: [x, x*2]).distinct().collect()
 [8, 4, 1, 5, 2, 10, 6, 3]

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Key Value Pair Intro (Pair RDDs)

•  A Key/Value RDD is an RDD whose elements comprise a
pair of values – key and value

•  Pair-RDDs are very useful for many applications
– Allow to group operations by key
– For example: join(), groupByKey(), or reduceByKey

10/28/15	

10	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Creating Pair RDDs

•  Pair RDDs are often created from regular RDDs by using
the map() transformation:
 wordlist = ‘this is my list and it is a nice list’

 rdd1 = sc.parallelize([wordlist])
 kv_rdd = rdd1.flatMap(lambda x: x.split(‘ ‘)).
 .map(lambda x: (x,1))
 kv_rdd.collect()
 [(this, 1), (is, 1), (my, 1), (list, 1), (and, 1), … (list,1)]

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Pair RDD Transformation: reduceByKey()

•  reduceByKey performs a reduce function on all elements
of a key/value pair RDD that share a key

 kv_rdd.reduceByKey(lambda a,b: a+b).collect()
 [('this', 1), ('my', 1), ('and', 1), ('list', 2), ('a', 1), ('it', 1),
 ('is', 2), ('nice', 1)]

10/28/15	

11	

© Hortonworks Inc. 2011 – 2014. All Rights Reserved

Conclusion and Key Points

•  There are two* types of operations
– Transformation which returns a new RDD
– Action which returns a result

•  Spark is lazy, it only does work when it has too
•  RDD’s are in your mind

– They’re just a set of directions to transform data, the data is
never stored in the RDD

