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Advanced Programming 
Lesson 5 
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Learning Objectives 

•  After you complete this lesson you should be able to: 
– Explain the core components of a Spark Application 
– Understand partitions in Spark 
– Understand the shuffle 
– Explain Job/Stage/Task and creation of the DAG 
– Describe the difference between cache and persist 
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Core Components of a Spark application 

•  Storage System (HDFS/S3/etc) 
•  YARN or Spark Standalone Resource Manager 
•  Driver 
•  SparkContext 
•  Executor 
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HDFS 

•  Hadoop distributed file system 
•  Provides fault tolerant storage for data 
•  Scales incredibly well to accommodate more data 
•  Creates blocks of data that in turn can be processed by 

other frameworks 



10/28/15	
  

3	
  

© Hortonworks Inc. 2011 – 2014. All Rights Reserved 

YARN – Yet Another Resource Manager 

•  The “HR Team” 
•  Democratizes hadoop to allow multiple execution/

processing frameworks to use hadoop 
•  Provides resources for applications to run in the form of a 

container 
•  Allows jobs to be run on a Kerberized cluster 
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Spark Executor 

•  The “workers” 
•  Comparable, but not equivalent to mappers and reducers 
•  Do all the processing for the application 
•  If we lose an executor, anything assigned to the current 

one, along with any lost data will be reassigned and 
recomputed on another executor 

•  Configuring correctly can greatly increase performance 
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Spark Context 

•  The “boss” 
•  Contains the code/objects required to process data in the 

cluster 
•  Works with YARN to get resources for the application 
•  Coordinates the processing, following the DAG schedule 
•  Schedules the tasks to be done on the executors 
•  Checks in with executors to report on work being done 

– We can see this in the web ui, covered in the future 
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Spark Driver 

•  The “owner” 
•  Responsible for containing the Spark Context 
•  Holds resources for the Spark Context to communicate 

with the cluster 
•  Responsible for writing logs from the context 
•  Essentially the most important part 

–  If this goes down, the job fails 
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How do they all fit together? 
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Spark Partitioning/Parallelism 

•  White Board 
•  Notes: 

– Defaults to number of blocks a file is on HDFS 
– Can be set with spark.default.parallelism 

•  Default is num of cores on local, or total cores on all executors 
•  This setting is for operations with no parent RDD’s 

– Shuffle based operations (join, reduceByKey, etc) take the 
largest number in the parent 

– Shuffle based operations take an optional param for partitions 
•  rdd.reduceByKey(lamda a, b: a+b, 20) will have 20 partitions 
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Example: word-count 
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Tune Data Parallelism 

•  Spark works with partitions as the core mechanism for 
data parallelization 

•  Use repartition() or coalesce() to control parallelism when 
needed 
– Use coalesce when reducing partitions, repartition to increase 
rdd.repartition(500) 
rdd.coalesce(20) 

•  Many operations include numPartitions as parameter that 
does this automatically 
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Wide vs Narrow Operations 

•  Wide operations require a shuffling of data (normally) 
–  reduceByKey 
– groupByKey 
–  repartition 
–  join 

•  Narrow operations can be executed locally 
– map 
–  filter 
–  flatMap 
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Narrow Dependencies/Operations 
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Wide Dependencies 
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Understanding the Shuffle 

•  White board how a shuffle works 
•  Extra Notes/Gotchas 

– Lots of parallelism + lots of reducers = lots of small files 
•  Not a big deal, except when you open more then 32k files on a system 
•  spark.shuffle.consolidateFiles=False 

– Shuffle the minimal amount of data 
•  Avoid groupByKeys 
•  Filter/Distinct Early! 

– Embrace the Shuffle  
•  Not necessarily bad 
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Spark Task/Stage/Job 

•  Task is a unit of work (pipeline of narrow operations) 
•  Stage is a group of tasks separated by a wide operation 
•  A job is a grouping of stages 

•  The next stage cannot start before all the tasks in the 
previous stage have finished 
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Caching/Persisting Data 

•  Spark allows the developer to “put” data into memory 
– Very useful (and incredibly fast) for iterative applications 
– Useful when an RDD is going to be used more then once 

•  Spark offers several ways to “put” data into memory 
– persist() 
– cache() 
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Use RDD persistence to avoid re-computation 

•  RDD can be persisted in memory across operations 
– Each node stores any partitions in the TDD computed by that 

node 
– Cached data is reused from memory for other transformations/

actions down the processing DAG 
•  Usage: rdd.persist(storageLevel) 

– cache() == persist(MEMORY_ONLY_SER) 
•  Must import library to use it: 

scala -> import org.apache.spark.storageLevel._ 
python -> from pyspark import StorageLevel 

© Hortonworks Inc. 2011 – 2014. All Rights Reserved 

Spark RDD Persist options 
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Which storage level to choose? 

•  If your RDD fits in memory, use the default MEMORY_ONLY 
•  If RDDs don’t fit in memory, try MEMORY_ONLY_SER 

– This uses more CPU, so use efficient serialization like Kryo 
–  It may be faster to read and RDD from disk then recomputing then 

use MEMORY_AND_DISK 
– Set spark.rdd.compress to true, this saves space but cost CPU 

•  Replicated storage is good for fast fault recovery 
– Usually this is overkill, and not a good idea if you’re using a lot of 

data relative to total memory 
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Lab 3 

•  We’re going to redo Lab 1, but use the cache to show 
performance improvements. 
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Conclusion and Key Points 


