
Programming with
Apache Spark

Learning Objectives
After you complete this lesson you should be able to:

• Start the Spark shell
• Understand what an RDD is
• Load data from HDFS and perform a word count
• Know the differences between Transformation and Action
• Explain Lazy Evaluation

The Spark Ecosystem

The Resilient Distributed Dataset
An Immutable collection of objects (or records) that can be operated in
parallel

• Resilient: can be created from parent RDDs - An RDD keeps its
lineage information

• Distributed: partitions of data are distributed across nodes in the
cluster

• Dataset: a set of data that can be accessed

Each RDD is composed of 1 or more partitions - The user can control
the number of partitions - More partitions => More parallelism

What Does "Lazy Execution" Mean?
file = sc.textFile("hdfs://some-text-file")
counts = file.flatMap(lambda line: line.split(" ")) \
 .map(lambda word: (word,1)) \
 .reduceByKey(lambda a,b: a+b)

DAG of transformations is built by Spark on driver side

counts.saveAsTextFile("hdfs://wordcount-out")

Action triggers execution of whole DAG

Transformation: filter()
Keep some elements based on a predicate

rdd = sc.parallelize([1, 2, 3, 4, 5])

rdd.filter(lambda x: x%2 == 0).collect()
[2, 4]

rdd.filter(lambda x: x<3).collect()
[1, 2]

Creating a DataFrame: from a table in
Hive
Load the entire table

df = hc.table("patients")

Load using a SQL query

df1 = hc.sql("SELECT * FROM patients WHERE age>50")
df2 = hc.sql("""
 SELECT col1 AS timestamp, SUBSTR(date,1,4) AS year, event
 FROM events WHERE year>2014""")

Defining Workflow with
Oozie

Overview of Oozie
Oozie has two main capabilities:

• Oozie Workflow: a collection of actions
• Oozie Coordinator: a recurring workflow

Defining an Oozie Workflow

Pig Actions
<workflow-app xmlns="uri:oozie:workflow:0.2"
 name="whitehouse-workflow">
 <start to="transform_whitehouse_visitors"/>
 <action name="transform_whitehouse_visitors">
 <pig>
 <job-tracker>${resourceManager}</job-tracker>
 <name-node>${nameNode}</name-node>
 <prepare>
 <delete path="wh_visits"/>
 </prepare>
 <script>whitehouse.pig</script>
 </pig>
 <ok to="end"/>
 <error to="fail"/>
 </action>
 <kill name="fail">
 <message>Job failed, error
 message[${wf:errorMessage(wf:lastErrorNode())}]
 </message>
 </kill>
 <end name="end"/>
</workflow-app>

